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We derive the relations necessary for the extraction of matrix elements of multihadron systems from
finite-volume lattice QCD calculations. We focus on systems of n ≥ 2weakly interacting identical particles
without spin. These results will be useful in extracting physical quantities from lattice QCD measurements
of such matrix elements in many-pion and many-kaon systems.
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I. INTRODUCTION

An important goal in nuclear physics is to understand
how the presence of a hadronic/nuclear medium modifies
the properties of hadrons. Experimentally, there are a
number of examples where such modifications are
observed and are significant in their effects. The EMC
effect [1,2], modifications of the parton distribution func-
tions of the proton inside a nucleus, is a particularly well-
studied example where Oð10%Þ effects are observed.
Similarly, Gamow–Teller transitions of nuclei occur at
rates that indicate that the axial coupling of the nucleon
is modified at an even more significant level in medium-
mass nuclei, being as large as a 30% effect in some cases
[3,4]. It is natural that such effects arise as a result of the
strong dynamics that exist inside the nucleus. However,
theoretically such effects are not understood in a compel-
ling, predictive way, and it is a contemporary challenge to
provide a rigorous description of these effects using
methods that are directly connected to the underlying
theory of the strong interactions, QCD. This is not purely
an academic exercise in understanding the structure of a
nucleus; nuclei are becoming increasingly important as
targets in contemporary and planned studies of neutrino
properties and in many searches for physics beyond the
Standard Model. The ability of the Long Baseline Neutrino
Facility and other proposed neutrino experiments to deter-
mine the neutrino mass hierarchy and extract the CP
violating phases in the neutrino mixing matrix is limited
by neutrino flux and energy measurements on nuclear
targets [5,6]. These, in turn, are fundamentally limited by
the current uncertainties in our knowledge of the axial (and
induced pseudoscalar) form factors of nuclei. In many dark
matter direct detection experiments, nuclear recoils are
the primary signal mechanism. Expected rates therefore
depend not only on the dynamics of the dark sector but
also on the amplitudes for interactions of the target nuclei
(Ar, Si, Ge, Xe, …) with the current that mediates the
connection to the dark sector. For example, for a dark sector

that couples to the Standard Model via a scalar mediator,
the relevant Standard Model input is the nuclear target
matrix element of the scalar quark bilinear current, the
so-called sigma term of the nucleus [7,8]. An understanding
of nuclear effects in these classes of experiments at a
quantitative level is required to maximize their impact
and is thus an important goal for QCD practitioners over
the coming decade.
In this work, we develop the theoretical framework

necessary for the QCD exploration of external currents
in particularly simple multihadron systems. As the only
known method with which to calculate the properties of
hadrons (including nuclei) in QCD from first principles is
through lattice QCD, it is expected that the requisite
understanding will involve lattice calculations. However,
lattice calculations are performed in Euclidean space and in
a finite volume by necessity, which restricts the physical
(infinite-volume Minkowski space) information that can be
extracted. It is important to understand what information is
accessible in such calculations and how it can be extracted.
In its full generality, this is a very challenging task, and to
make progress, we will focus on the limiting case of
perturbatively interacting spin-zero systems in our current
analysis.

II. MULTIBOSON SYSTEMS

Over the last few years, systems of many identical
composite bosons have been extensively studied in lattice
QCD with particular focus on states with the quantum
numbers of many like-charged pions. Following the classic
works of Lee, Huang, and Yang [9,10], the theoretical
understanding of the dependence of the ground state
spectrum of these systems on the finite volume used in
numerical calculations was developed in Refs. [11,12].
There, the ground-state energy of n identical bosons of
mass M in a cubic box of side length L was determined
using time-ordered perturbation theory, with a Hamiltonian
density of the form
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where the operator hk annihilates a boson with momentum
k with unit amplitude, and terms are kept that will
contribute at the order in the large-volume expansion to
which we work. The momentum labels on the creation
and annihilation operators are constrained such that

3-momentum is conserved. The couplings a, r, and η3ðμÞ
correspond to the two-particle scattering length and effective
range and to the leading momentum-independent three-
particle interaction.1 In particular, the shift in the ground-
state energy from n free bosons was determined to be
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where μ is a renormalization scale and

I ¼ −8.9136329; J ¼ 16.532316;

K ¼ 8.4019240; SMS ¼ −185.12506

are geometric constants arising from finite-volume loop
contributions [11,12]. The corresponding expression
including Oð1=L7Þ corrections is presented in Ref. [12].
Determinations of the corresponding energy shifts in

many-boson systems can be used to determine the various
interactions in Eq. (1) for a given set of systems. To this
end, sophisticated techniques have been constructed in
order to study these complicated systems numerically in
QCD [13–15]. Calculations using these methods have led
to extractions of the I ¼ 2 two-pion interaction, the I ¼ 3
three-pion interaction, and the effects of these systems on
other hadronic quantities [16,17]. Using relations between
baryons and mesons in QCD with Nc ¼ 2 colors, these
results have also enabled a recent study of the analogs of
nuclei for Nc ¼ 2 [18].
From considerations of chiral dynamics, QCD inequal-

ities [19], and the explicit numerical explorations men-
tioned above, it is apparent that interactions in isospin
I ¼ n many-πþ systems are repulsive and that there are no
bound states for any n. Chiral symmetry guarantees that the
strength of the interactions is perturbatively weak, so an
expansion in the couplings a, r, and η3ðμÞ is expected to
be reliable provided na=L remains small, as do similar
combinations of the other couplings. Such systems there-
fore provide an ideal situation for the application of the
methods discussed herein.

III. MATRIX ELEMENTS OF EXTERNAL
CURRENTS IN MULTIBOSON SYSTEMS

The time-ordered perturbation theory methods used to
derive the energy shifts in Refs. [11,12] order by order in the
coupling and large-volume expansion also determine the
state vector as an expansion in couplings (see, for example,
Ref. [20]). In particular, then-boson state can be expanded as

jniða;r;η3ðμÞÞ¼ jnð0Þiþηjnð1Þiþη2jnð2Þiþη3jnð3Þiþ…;

ð3Þ
where jnð0Þi corresponds to the free n-particle system and
subsequent terms are induced by perturbative interactions
among the particles in the periodic volume. In the above
expression, η is representative of any one of the couplings.
Knowing the statevector, it is thus a simplematter to compute
the expectation values of currents that are of phenomeno-
logical interest. To be general, we do not assume a particular
type of current and consider the current density
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where α1 and α2 are constants that describe the momentum-
independent one-boson current and the two-boson current,
respectively. Themomentum sums on the two-body operator
fix the total momentum Q in the initial and final states (the
current does not transfer momentum) but allow for different

1The three-particle interaction η3ðμÞ as defined in the Ham-
iltonian depends on the regularization and renormalization
prescription as discussed in Ref. [11] but will not contribute at
the order in which we work in this current study.
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relative momenta before and after the interaction with the
current, p and k, respectively. The particular strengths of
the different terms and the flavor and spin dependence of the
interactions may differ for different fundamental currents,
but the above form is general up to momentum-dependent
and higher-body corrections that are suppressed by addi-
tional powers of 1=L in our results. For simplicity, we have
assumed the soft limit in which the current does not inject
momentum into the system so that the two-hadron current

amounts to a simple reshuffling of the boson momenta.
No obstacles are encountered in extending the current results
to the case of momentum transfer provided it is small
compared to the hadronic scale.
The full finite-volume matrix elements of J involve the

various terms inEq. (3). The calculation is straightforward (if a
little tedious), and the reader is referred to Refs. [11,12] for
more details; wewill only state the result. Thematrix elements
of J for systems of n pions up to OðL−5Þ are as follows:
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FIG. 1. Representative contributions in the calculation of the finite-volume matrix elements. The solid lines correspond to the boson
propagators, and the vertices indicate either strong scattering (dark square) or one- and two-body currents (light and dark circles,
respectively). The contribution of a given topology is shown up to combinatoric factors. The combinations U ¼ Q0

1 þQ00
1 and

V ¼ R0
1 þ R00

1 are used in the final expression.
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Representative contributions for the various terms are
shown in Fig. 1. This expression is the primary result of
the current work and has been calculated through to the
second order at which the two-boson current contributes
so that the consistency of an extraction can be checked
between orders. The additional numerical constants that
enter this expression are

L ¼ 6.9458079;

U ¼ 85.1269266;

V ¼ −64.1765107;

and the sums which lead to these values are defined by

L ¼
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; ð6Þ
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where ~i and ~j are 3-tuples with integer valued components.
These three- and six-dimensional sums are convergent and
can be computed with the use of the Poisson summation
formula, yielding the values above.
From the above expression, we see that the finite-volume

matrix elements only depend on the one-boson current, α1,
at leading order and at next-to-leading order in the large
volume perturbative expansion. Dependence on the two-
boson current coupling, α2, arises at Oð½ aπL�3Þ; for a
repulsive interaction, such weak sensitivity is expected.
Notice that neither r or η3ðμÞ enter the calculation at
Oð1=L4Þ; however, they will contribute at higher orders in
1=L. Similarly, a three-boson contribution to the current
will eventually be relevant. As with the energy levels in
Eq. (2), off-shell effects will lead to additional exponen-
tially suppressed volume dependence ∼ expð−MπLÞ where
Mπ is the pion mass which dominates such effects as the
pion is the lightest hadronic state.

IV. DISCUSSION

The result presented above provides the expected had-
ronic behavior of a multiboson matrix element of a local (at
the hadronic scale) operator in a finite volume. It explicitly

depends on the one-body and two-body couplings of the
hadrons to the current and also on the two-body interactions
between the hadrons (higher-body interactions will become
relevant for subleading terms in the volume expansion).
Lattice QCD calculations of the corresponding matrix
elements in systems of n spin-zero bosons can be matched
onto these expressions to determine the external current
interactions in the appropriate hadronic theory once
the two-boson interaction is determined from the shifts
in energies of n-boson systems in a finite volume.
Consequently, the results derived herein will be useful in
the analysis of lattice QCD calculations of matrix elements
of currents in weakly interacting multipion states such as
those presented in preliminary form in Ref. [21].
Our calculation has focused on the case of identical

spin-zero bosons with perturbatively weak interactions at
energies near threshold in the appropriate channels. The
inclusion of the effects of angular momentum and spin
degrees of freedom and of more complicated systems with
coupled channels is left for future study. Further work is
also necessary to understand the behavior of multihadron
matrix elements with nonperturbatively strong interactions
or when the expansion in a=L breaks down. For two
particles, the nonperturbative dependence of the ground
state energy on the spatial extent of a periodic volume has
been known for many years [22,23], and there has been
significant recent progress [24–26] toward achieving the
same level of understanding for three-particle systems.
The effects of finite volume on 1 → 2 particle transitions
induced by an external current have also been understood
for simple cases in the pioneering work of Lellouch and
Lüscher [27] and recently generalized to more complicated
cases in Refs. [28–33]. It seems likely that the approaches
used in these analyses could be extended to consideration
of 2 → 2 current matrix elements and perhaps to the three-
particle case. For strongly interacting systems with more
than three particles, new methods are required to have
analytic control over the interactions of multihadron
systems and over the relation between multihadron matrix
elements in QCD and in the hadronic theory. In the absence
of such advances, the matching between QCD calculations
of matrix elements in finite volume and those in the
hadronic effective theory can be implemented through
numerical calculations of correlators in the hadronic theory
in a finite volume for varying input low-energy constants
(the analogs of the current couplings α1 and α2) until the
QCD results are reproduced, thereby determining the
hadronic couplings.
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