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Asymptotically free lattice gauge theory in five dimensions
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A lattice formulation of Lifshitz-type gauge theories is presented. While the Lorentz-invariant
Yang-Mills theory is not renormalizable in five dimensions, non-Abelian Lifshitz-type gauge theories
are renormalizable and asymptotically free. We construct a lattice gauge action and numerically examine

the continuum limit and the bulk phase structure.
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I. INTRODUCTION

Since olden times, the Lifshitz-type anisotropic field
theory [1,2] has been considered in various condensed
matter systems. In recent years, the Horava-Lifshitz-type
gravity [3] has received much interest. Its analogues in
nongravitational quantum field theories have also been
discussed intensively [4-47]. Besides a purely theoretical
interest on its own, there are several motivations to look into
such non-Lorentz invariant field theories in the context of
physics beyond the Standard Model. First, various extra-
dimensional models have been proposed in attempts to
remedy the hierarchy problem in particle physics, and their
common problem is that gauge theories in higher dimensions
are usually unrenormalizable and need a UV cutoff scale. In
anisotropic Lifshitz-type theories with higher derivative
terms, the behavior of propagators in UV is improved,
and one can construct renormalizable theories in higher
dimensions, which may be appreciated as UV completion of
phenomenologically introduced extradimensional models. In
addition, such renormalizable theories admit four-fermion
interactions, which may shed new light on the traditional
technicolor models in which the Higgs particle is generated
from strong-coupling dynamics of fermions. We refer the
reader to [48] for a review on these directions.

We note that anisotropic gauge theories are also expected
to arise as an effective theory at quantum critical points in
certain condensed matter systems; see [49-53] and refer-
ences therein. Cold atomic gases may also provide a venue
for non-Abelian gauge theories [54-56].

In this work we propose a lattice formulation of an
anisotropic non-Abelian gauge theory put forward by
Hotava [6]. The action of this Hotava-Lifshitz-type gauge
theory inthe (1 4+ D)-dimensional Euclidean spacetime reads
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where the indices i, j, k run from 1 to D, and

E; = Fy, (2a)
Di — 8i + iAi, (20)
D¥F = O,F + i[A;, F). (24d)

The gauge field A; = A¢T“ takes values in the Lie algebra of a
non-Abelian compact Lie group. For the second term of (1) to
be nonzero, d=1-+ D >3 is required. There are two
couplings, e®> and ¢*>. In a weighted power counting with
the dimensions of fields [Ag] =2 and [A;] = 1, we find
[e?] = [¢*] = 4 — D. Thecritical dimensionis d = 1 + 4, for
which the couplings are marginal. According to a general rule
[4,5], renormalizability demands that all terms with weighted
dimensions less than or equal to D42 [such as
Tr(F;;F i Fy;) and Tr{(D¥F ;)(D*F ;)}] be retained in
the action. Nevertheless it was argued by Horava that for
d = 5thetheory (1) isrenormalizable and asymptotically free
[6]. This remarkable property is a consequence of the fact that
the action (1) satisfies the so-called detailed balance con-
dition; that is to say, the spatial part of the anisotropic action in
d dimensions consists of a square of the equation of motion of
a theory living in d — 1 dimensions. This particular form of
anisotropic actions is known to arise in the Fokker-Planck
dynamics of stochastic quantization [57], where a fictitious
fifth dimension is introduced as a device of quantization.
When this condition is met, the renormalization property of a
theory is greatly simplified thanks to a special Becchi-Rouet-
Stora-type symmetry [58]. Borrowing results from perturba-
tive calculations for stochastic quantization of Yang-Mills
theory [59,60], Hotava showed that the theory (1) ford = 5is
renormalizable and asymptotically free.

While renormalizability in the continuum requires d < 5,
we will shortly see that the theory can be discretized on a
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lattice in any d > 3 dimensions, thus opening a way toward
a nonperturbative study of Horava-Lifshitz-type gauge
theories. With a soft deformation term, the theory restores
effective Lorentz invariance in the infrared [6], and hence
the theory may be considered as a UV completion of the
nonrenormalizable Yang-Mills theory in five dimensions
[61-70].

This paper is structured as follows. In Sec. I we present a
lattice action for the Hofava-Lifshitz-type gauge theory and
discuss its continuum limit. In Sec. III the setup of our
lattice simulation is outlined, and the first numerical results
of this theory for the SU(3) gauge group are presented.
Section IV is devoted to the summary and conclusions.
Some technical details on the classical continuum limit are
presented in Appendix A. Lattice actions for more general
terms in the continuum are discussed in Appendix B.

II. LATTICE FORMULATION

In the following, for convenience, we call the isotropic D
dimensions “space” and the other one dimension “time”
although it is not necessarily so. The spatial lattice spacing
is denoted by a and the temporal lattice spacing by b. The
mass dimensions are [a| = —1 and [b] = -2 according to
the standard weighted power counting for Lifshitz-type
theories [48]. Unit vectors in the x* direction will be
denoted as g for u =0,1,...,D.

The temporal and spatial link variables are defined
as Ug(x) = Pexp(i [0 dyAy(y)) = exp(ibAo(x)) and
U, (x)=Pexp(i [**dyA;(y)) =exp(iaA;(x)), respectively.

We define the lattice Hotava-Lifshitz gauge theory as

- / DU exp(=Si) 3)

with

Slat -

ZZReTr{ﬂ — Pyi(x)}

lat x  i=1

ZZReTr{ﬂ— T,] } (4)

latx Jj

where 1 denotes the unit matrix. The temporal component
of Sy, includes a 1 x 1 plaquette P, (x), which is well
known in the lattice Yang-Mills theory, while the spatial
component of S, includes a 2 x 1 twisted loop T,,(x),
which is shown in Fig. 1. Such a rectangular loop has been
considered for improved lattice actions [71]. We remark
that the ordering of 7’s in the product [[7,,(x) is
inessential because, as we shall shortly see, only subleading
terms irrelevant in the continuum limit are affected by this
ordering. Note also that gauge invariance is maintained,
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FIG. 1. A 2x 1 twisted Wilson loop T, (x).

since all the twisted loops begin and end at the same
point x.

We can check the naive continuum limit of this lattice
action using the Baker-Campbell-Hausdorff (BCH) for-
mula. The temporal plaquette may be evaluated as

Py;(x) = exp(iabFy;(x) + O(a*b, ab?)). (5)

Hence

Z Z ReTr{1 — Py;(x)}
x i=l

a*b?

5 > Tr{Fy(x)?} + O(@®h*. a*b?).  (6)

x i=1
Next, the twisted loop is given (cf. Appendix A) by
T;j(x) = exp(ia* D¥F;(x) + O(a*)). (7)

Then
ZZReTr{]]—l;ITU 0]
—ZZReTr{ﬂ _exp(,a > o >+o<a4>>}
_ %Z;Tr{ <IZ;D?dFij(x)>2} oW ®)
Collecting Eas. (6) and (8),
S — / x| ZZTr{FOZ
XDI {(ZD?‘]FU-@))ZH ©

a6_

1
2
Ghat

as a, b — 0. This reproduces the continuum action (1).
For completeness we outline the lattice discretization of
other possible terms in the action in Appendix B.
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Matching with the continuum action (1) yields

11 1 1 a%P
S =—>—s and =0 (10)

D-2 2
€ Cla @ 92 glal b

The two terms in Eq. (4) are of the same order only if we
take the limit @, b — 0 with b/a’> ~ O(1). Plugging this
scaling into Eq. (10), we find e, ~e?a*? and
g, ~ g*a*™P. Now, let us consider the continuum limit
in each dimension:
i) D=2 (d=2+1): e}y ghy x> = el G = O
with ey / g ~ O(1).
() D=3 d=3+1): €, ¢, xa' = ey, Gy =0
with €y, / grag ~ O(l)
(i) D=4 (d=4+1) €, g, xa’ = It is unclear
how to take the continuum limit at tree level.
This means that the continuum limit for D =2 and 3
(d = 3 and 4) is reached trivially by sending e;,; and gy, to
0. However, D = 4 (d = 5) is the critical dimension where
there is no scaling of the couplings at tree level. In D = 4,
the one-loop g functions [6] are given by

d 3
dlogye(ﬂ):_zczezg+“" (11a)
d 35
o) = =2 Ce e (11
or, with gy = /eg and 1 = g/e,
d 1 X
dlogﬂgYM(ﬂ) = _?CZQYM + O(gym)- (12a)
d 13, \
dlogﬂﬂ(w = —?ngYM'1 + O(gymd).  (12b)

where C, = N/(4x?*) for the gauge group SU(N). The
theory is asymptotically free, and therefore the continuum
limit is achieved by sending both gy and 4 to 0. Solving
Egs. (12a) and (12b) simultaneously, we find

Ap) o< (gym(u) M, i, goce®P (13)
This scaling defines lines of constant physics in the weak-
coupling region on the (e, g) plane. The renormalization
group flow of e and ¢ is displayed in Fig. 2. [Since C, only
enters the # functions (11) as a multiplicative factor, the
flow pattern is the same for all N > 2.] Integrating
Eq. (12a), we encounter an infrared energy scale which
survives the continuum limit,

2
A :éexp(— 24m ! > (14)

11 N 9%{M (é)
This is the phenomenon called dimensional transmutation.
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FIG. 2 (color online). The flow diagram of e and g for the
SU(N) gauge group. The origin is a UV fixed point.

The above formulation is straightforwardly applicable to
Abelian gauge theories as well. The geometrical structure
of the lattice action is the same, with SU(N) link variables
replaced with U(1) link variables. However, the resultant
compact U(1) gauge theory is not asymptotically free in
D=4 (d=5).

III. NUMERICAL SIMULATION

We apply the above formulation to the Ilattice
Monte Carlo simulation. The simulation can be done with
standard algorithms in the lattice Yang-Mills theory. In this
work, we performed a simulation of the lattice Horava-
Lifshitz theory for the case of the SU(N = 3) gauge group.

First we examine the bulk phase structure on the (e, g)
plane. We calculated the action density s = (Sy,)/Ny, for
various values of the lattice couplings defined as

2N 2N
fo="3 and p,="3 (15)
el2at ! glzat
The lattice size is Ny, = 6°. (We partially checked the
volume independence of the action density on a 10’ lattice.)
For isotropic couplings (B, = p, =), we find using
standard analytical methods [72] that the action density
behaves as
s =Dp+ O(p?)

(ﬂ — 0), (16a)

s = (N>~ 1)D/2+ O(1/B)

(f - ), (16b)

respectively. This is useful in checking numerical data.

In Fig. 3, we show the simulation results for isotropic
couplings f =, = p,. For comparison, we also show
simulation results of the isotropic Yang-Mills theory in five
dimensions. As already known, there is a jump at # = 4-5
in the five-dimensional lattice Yang-Mills theory [70]. This
jump indicates a bulk first-order phase transition from a
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FIG. 3 (color online). Action density with isotropic coupling
constants f(=f, = f3,). The data of the Hofava-Lifshitz theory
and the isotropic Yang-Mills theory on a 63 lattice are plotted.
The dashed lines are analytic results in the strong coupling limit
(# — 0) and the weak coupling limit (f — o).

confining phase to a deconfined phase. This bulk phase
transition is a lattice artifact. Its existence reflects the
nonrenormalizable nature of the lattice Yang-Mills theory
in five dimensions. On the other hand, there seems to be no
phase transition in the Horava-Lifshitz theory. In Fig. 3, the
dashed lines are asymptotics in the strong coupling limit
(16a) and in the weak coupling limit (16b) [73]. The action
density varies smoothly from the strong coupling limit to
the weak coupling limit. As shown in Fig. 4, there is no
discontinuity in the region 1 <f, <9 and 1 <6, <9.
Thus, we can smoothly take the continuum limit of the
lattice Horava-Lifshitz theory.

Next we study a rectangular Wilson loop W, lying in the
(x0, x;) plane. The lattice size is Ni,, = 10°. The temporal
Wilson loop may be interpreted as the infinite mass limit of

FIG. 4 (color online). Action density of the Hotava-Lifshitz
theory as a function of §, and f,. The data on a 6° lattice are
plotted. Statistical error bars are omitted.
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FIG. 5 (color online).  Effective mass Vg (f, x) at x/a = 2. The
data from simulations on a 10 lattice with f(=f, = ,) = 9 are
plotted.

a quark-antiquark system. (Although a Lifshitz-type fer-
mion action admits various kinds of terms [4,5,11,32], this
interpretation for the temporal Wilson loop should be
correct provided that fermions couple to the temporal
gauge field in a minimal way, as yyoDgw.) It gives the
color singlet potential

1
V(x) = —tlim;ln(WO,»(t, x)). (17)
In numerical simulations, the extrapolation to the

limit + — oo is done through a numerical fitting in a large
but finite range of ¢. To check the fit-range independence,
we plot the effective mass bV (f,x) = —(In{Wy,;(r +
b,x)/Wy;(t,x)}) in Fig. 5. The fit-range independence is
clearly seen.

In Fig. 6 we show numerical results of the color singlet
potential. The potential is linear. Therefore the Horava-
Lifshitz theory is a confining theory. We can analytically

3 T T T T

1%

z/a

FIG. 6 (color online). Color singlet potential V(x). The data
from simulations on a 10° lattice with B(=4, = py) =9 are
plotted.
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calculate the color singlet potential in two different limits:
(i) In the strong coupling limit, the strong coupling
expansion is justified. At leading order, we can prove that
the Wilson loop obeys an area law and thus the potential is
linear. The proof is exactly the same as the famous proof in
the Yang-Mills theory [74] because the temporal compo-
nent of the lattice action is given by the plaquettes P; both
in the Hofava-Lifshitz theory and in the Yang-Mills theory.
(ii)) In the short distance limit, the perturbative loop
expansion is justified because the theory is asymptotically
free. Since the gluon propagator of A, is ~1/p?, the
perturbative one-gluon-exchange potential is V(x) ~
[ dPpexp(—ipx)/p* ~ 1/x*. However, this correction
cannot be seen in Fig. 6. Its coefficient must be very small
or Zero.

We also measured the expectation values of spatial
plaquettes P;; and spatial Wilson loops W;; and found
them to be zero within errors. This means in particular that
the field strength Tr(F ,21) is not induced in the action, which
is consistent with the renormalizability of the theory due to
the detailed balance condition [6]. They can be nonzero if
spatial plaquettes or other deformation terms are added to
the action.

IV. SUMMARY

We proposed a lattice formulation of the Hotava-
Lifshitz-type gauge theory. For a non-Abelian gauge group

PHYSICAL REVIEW D 91, 074508 (2015)

they are asymptotically free even in five dimensions. We
performed the first Monte Carlo simulation of this theory
on a lattice for the SU(3) gauge group. Numerical results
suggest that the continuum limit can be taken smoothly, in
contrast to the ordinary Yang-Mills theory in five dimen-
sions which is beset with a bulk phase transition. Using the
present framework one can study various nonperturbative
aspects of the Horava-Lifshitz-type gauge theories by
means of numerical lattice simulations. For example, it
is straightforward to compactify a temporal or spatial
direction and study possible center symmetry breaking.
Of course one can perform simulations for other gauge
groups and in other spacetime dimensions. Lattice simu-
lations may also be performed with additional terms
in the action, such as Tr(F%j), Tr(F;;F Fy;), and
Tr{(D¥F ;) (D¥F )}, as discussed in Appendix B. The
interplay of these terms is an interesting subject. A more
ambitious generalization is to include fermions coupled to
the gauge field and study spontaneous chiral symmetry
breaking. These issues are left for future works.
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APPENDIX A: CLASSICAL CONTINUUM LIMIT

It has been known from [[17], Eq. (16)] that a spatial plaquette in the naive continuum limit @ — 0 becomes

Pyj(x) = Ui(x)U;(x + al)Ui(x + a)) U, ()

2

= exp <ia2F,~j(x) tod

(DM + Dj?d)Fij(x) + O(a4)>.

Because a twisted 2 x 1 Wilson loop is a product of two neighboring spatial plaquettes, we get

T;j(x) = exp <ia2Fi J(x) + a3 (DX + DW)Fyy(x) + 0(a4)> exp (—iazF,.j(x) — 3@ (=D + DI)Fy;(x) + O(a4)>

2
= exp(ia3D§‘dF,~j(x) + O(a*)),

which proves (7).

(A2)

APPENDIX B: MORE GENERAL LATTICE ACTION
Besides Tr{(D*F ;) (Df}dF &)}, there are many other terms that could have been added to the action (1). In this appendix

we discuss how to discretize them on a lattice.

First, the term Tr(F;;F xF};) can be realized on a lattice as follows. Let us consider

J

Tr{(1 - P;(x))(1 =P

k() (1 = Pri(x))}.

(B1)

This expression is manifestly gauge invariant. By plugging in (A1) for each P and expanding in powers of a we get
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FIG. 7. A Wilson loop on a lattice which reproduces
Tr{(D¥F,;)(DiF;;)} in the continuum limit.

(B1) = ia®Tr{F;;(x)F (x)Fy;(x)} + O(a’),  (B2)
which is the desired term.

The second term of our interest is Tr{D{F;;(x)x
D¥F,;(x)}. The case with k =i or k = j follows from
T;;(x) as given in (7), so it is enough to assume here
that i,j, and k are distinct from each other, which
requires D > 3.

Let us start from a Wilson loop W, (x) shown in Fig. 7,

Wii(x) = Pii(x) Uy (x) Py (x + ak) T U (x)*

— eazml eiaAk(x)JrO(az)e—az‘,Bz e—iaAk(x)+O(a2)

’
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where from (Al)

2 l a a

Py =iF;;(x) + Ea(Did + DI F;;(x) + O(a?),

By = iF;(x + ak) + %a(Df‘d + DMYF(x + ak) + O(a?)
=B, + iadiF;;(x) + O(a?).

Using the BCH formula,

Wi (x) = exp(a® (P — Bo) — ia®[Ar(x). B,] + O(a?))

= exp(—ia’ D{¥F;;(x) + O(a*)), (B3)
so that
ReTE{1 = W)} = 5 aTr{ D, (1) D F (1))
+0(d"). (B4)

However, it has been known from [[75], Eq. (2.10)]
that Tr{(D?dFik)(D?dij)}v Tr{Fij(x)ij(x)Fki(x>}v and
Tr{D¥F,;(x)D¥F;;(x)} are linearly dependent, up to a
total derivative. Thus it is sufficient to keep only two of
them in the action.

The lattice actions for other possible terms like
&juim Tr{ D¥F 4 (x)D¥F,,(x)} (for D = 4) can be worked
out along similar lines.
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