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The topological structure of lattice gluodynamics is studied at intermediate resolution scale in the
deconfining phase with the help of a cluster analysis. UV-filtered topological charge densities are determined
from a fixed number of low-lying eigenmodes of the overlap Dirac operator with three types of temporal
boundary conditions applied to the valence quark fields. This method usually allows us to find all three
distinguished (anti)dyon constituents in the gauge field of Kraan–van Baal–Lee–Lu (anti)caloron solutions.
The clustering of the three topological charge densities inMonte Carlo generated configurations is then used to
mark the positions of anticipated (anti)dyons of the corresponding type. In order to support this interpretation,
inside these clusters, we search also for timelike Abelian monopole currents (defined in the maximally
Abelian gauge) as well as for local holonomies with at least two approximately degenerated eigenvalues. Our
results support the view that light dyon-antidyon pairs—in contrast to the heavy (anti)caloron dyon
constituents—contribute dominantly to thermal Yang-Mills fields in the deconfinement phase.
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I. INTRODUCTION

For lattice gauge theory, 1998 was a remarkable year, in
particular for those interested in chirality and topology. The
Ginsparg-Wilson [1] condition to be imposed on a Dirac
operator and providing a solution of the chirality problem at
finite lattice spacing was rediscovered [2], a concrete
construction of the Neuberger overlap Dirac operator was
proposed [3,4], and the relation to topological structure was
clarified [2,5].
The paradigm of instantons as a semiclassical realization

of topological structure at the infrared scale [6] found a
competitor when P. van Baal and T. C. Kraan [7–9], and
K.-M. Lee and C.-H. Lu [10], for the case of finite
temperature, worked out a broader class of classical
Euclidean solutions of Yang-Mills theory: calorons with
arbitrary holonomy, called “KvBLL calorons” throughout
this paper. These solutions have not reached the same level
of acceptance and interest among lattice practitioners that
instantons once had (see, for example, [11,12]). However,
immediate response to the new solutions from the lattice
community can be found in Refs. [13,14].

Three of us were among the authors of [15] who
demonstrated first that cooling of confining lattice ensem-
bles leads to the extraction of KvBLL multi-(anti)caloron
solutions (see also [16]).
Shortly thereafter, D. Diakonov, who had been very

active before trying to connect instantons with confine-
ment, in particular by relating the instanton gas to monop-
ole percolation [17,18], wrote his famous review Instantons
at Work [19], to which he added, in a later version, the
chapter, “Non-instanton semiclassical configurations.”
This extension has become the starting point of a new
research direction. D. Diakonov, together with V. Petrov
and other coworkers, calculated the analog of ’t Hooft’s
instanton amplitude [20] and—following T. C. Kraan’s
work [21]—formalized the moduli space of calorons
[22] in terms of dyon degrees of freedom.
A simulation of a random nontrivial holonomy

caloron gas or liquid model already provided a much
better behavior of the potential of a static quark-antiquark
pair towards confinement [23] than the corresponding
Harrington-Shepard caloron gas model (with trivial
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holonomy) [24]. Surely influenced by Polyakov’s work
[25] on quark confinement by monopoles, D. Diakonov
and V. Petrov then formulated a dyon (i.e. monopole) gas
model of confinement [26], for which they have been
able to present a closed analytical solution (for random
monopole gas simulations, see [27,28]).
In fact, the idea to reformulate the statistical mechanics

of a gas of multi-instantons in terms of the moduli space of
their constituents (“instanton quarks”) had already been
discussed already much earlier for the two-dimensional
nonlinear sigma model [29,30] by transforming the parti-
tion function into a Coulomb gas model of the constituents.
We are aware of recent papers by E. Shuryak and

collaborators to formulate models dealing with the stat-
istical mechanics of self-dual dyons (and anti-self-dual
antidyons), partly including the effect of dynamical fer-
mions [31,32]. We hope to come back to this problem. In
our present context we want to refer to Ref. [33] dealing
with the T dependence of the density of light and heavy
(L and M) dyons in SUð2Þ gluodynamics.
During our intensive search for evidence of calorons and

dyons in Monte Carlo–generated lattice gauge field ensem-
bles [15,34–38], we collaborated with P. van Baal [39,40].
In our recent work [41], after having searched for

signatures for calorons and dyons for SUð2Þ Yang-Mills
theory by means of overlap modes [42–44], we have turned
to pure SUð3Þ lattice gauge theory. The aim was to find
again hints for dyon structures (as topological clusters) very
close to the deconfinement temperature, revealed by the
topological charge density defined with the massless over-
lap Dirac operator. An infrared scale is introduced by
restriction to a small number of modes of the overlap Dirac
operator with low-lying eigenvalues (“fermionic filtering”),
i.e. only zero modes and near-zero modes. In this analysis,
three different types of boundary conditions have been
applied. The motivation was that these clusters might
eventually be viewed as dyons or antidyons, i.e. constitu-
ents of KvBLL calorons or anticalorons [8–10] which come
in three varieties.
We have demonstrated how their abundance and the

tendency either to recombine into calorons or to form pairs
of different types depends on the temperature in the vicinity
of the deconfinement phase transition at Td ≃ 300 MeV.
An increasing caloron dissociation has been observed when
passing the transition towards temperature values slightly
above Td. Similar observations were reported earlier for the
SUð2Þ Yang-Mills case [42,44].
KvBLL (anti)calorons are (anti-)self-dual solutions of

the classical SUð3Þ Yang-Mills field equations with topo-
logical chargeQt ¼ �1 and x4 periodicity (the latter related
to the inverse temperature). They are exhibiting character-
istic features worth looking for in gauge field configura-
tions provided by lattice simulations. In the case of the
gauge group SUð3Þ, they consist of three constituents
(monopoles or “dyons”) into which calorons can dissolve

under specific conditions, such that the dyon centers
become separated sufficiently far away from each other.
The constituents in this limit become “dyons” well sepa-
rated and static in “time” x4. Their integrated action
values or “masses” are fully determined by the Polyakov
loop at spatial infinity (“asymptotic holonomy”), while
their locations can be identified as positions, where the
local holonomy has at least two identical eigenvalues.
Moreover, the zero mode as well as the low-lying eigen-
modes of the massless Dirac operator become localized
around only one of the constituents [45]—which constitu-
ent depends on the temporal boundary condition imposed
on the Dirac operator defined in a finite space-time box.
(See the Appendix in [41] which presents a brief summary
of those aspects of caloron solutions essential also for our
present study.)
Suppose for a moment that these objects, which are

minimizing the Yang-Mills action, saturate the partition
function in a semiclassical-like path-integral representa-
tion. One is tempted to assume that the ensemble-averaged
Polyakov loop (as an order parameter for the deconfine-
ment transition) determines their asymptotic holonomy
and, therefore, in particular, also the mass ratio among
the constituents of different types. Since for T ≫ Td the
spatially averaged Polyakov loop tends to one of the
center values of SUð3Þ, one may expect that deeper in
the deconfinement phase one type of the tentative dyon
constituents becomes very heavy, while the others are light.
Taking the statistical weight into account for the constitu-
ents of different types, the heavy constituents should be
suppressed compared to the light ones. The calorons as
joint objects become more and more suppressed, too, and
we are left only with many light self-dual and anti-self-dual
monopole constituents which negligibly contribute to the
topological charge. This might explain why the topological
susceptibility becomes suppressed at T > Td (in addition to
the theoretically well-understood suppression of caloron
sizes [20,46]), while an area law of spacelike Wilson loops
is still observed. This picture, which emerged from our
earlier SUð2Þ lattice investigations [42,44], has not yet been
confirmed for the more realistic case of SUð3Þ gluody-
namics at temperatures well above Td.
In the lattice study of Ref. [41] we considered only T

values very close to Td, where the spatial average of the
trace of the Polyakov loop was still fluctuating closely
around the origin of the complex plane. In order to confirm
the appearance of topological objects like KvBLL calorons
and their dyon constituents, we studied the low-lying
spectrum of the overlap Dirac operator together with the
spatially local holonomy distribution. The latter required
an appropriate, small number of (over-improved) cooling
steps [47]. This cooling was found to shift the asymptotic
holonomy towards the respective SUð3Þ center values and
also to influence the local holonomy inside topological
clusters, which primarily have been determined by the
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low-lying overlap eigenmodes [48] of the uncooled con-
figurations. The consequence of this exercise was that the
positions of approximate equality of two eigenvalues of the
local holonomy became nicely correlated with the centers
of topological clusters. This gave us confidence that what
we are seeing at intermediate scales (of few lattice spac-
ings) can be interpreted as (anti)caloron and (anti)dyon
excitations as described by KvBLL solutions.
In the present paper, we are going a step further. First, we

are going to a higher temperature T ≈ 1.5Td, and second,
we employ another feature which becomes important in the
deconfined phase: thermal monopoles on nearly static
world lines [49–52]. Thermal monopoles are loops of
magnetic currents wrapped around the x4 direction. As
we shall see, they are also characterizing dyon constituents
by the occurrence of Abelian monopole world lines at their
centers. Therefore, we transform our real lattice gauge field
into the maximally Abelian gauge (MAG) and determine
the corresponding magnetic currents after Abelian projec-
tion. In order to clarify the role of cooling for the Abelian
monopole structure, we perform the gauge-fixing in two
variants, without (before) and with (after) cooling (that we
again apply as a few steps of over-improved cooling). We
shall convince ourselves that the thermal monopoles are
clearly correlated with the topological cluster centers
determined from fermionic filtering. As a byproduct, it
turns out that thermal monopoles are rather stable under
(moderate) cooling, in contrast to the local holonomy.
In Sec. II we introduce our lattice setup, and in Sec. III

we define the topologically relevant lattice observables
employed later on. In Sec. IV, starting from analytic
KvBLL caloron solutions, we construct (on a lattice) model
gauge field configurations consisting of one heavy or two
light dyon-antidyon pairs. We discuss how these pairs look
from the following three points of view that we apply to
analyze Monte Carlo generated thermal lattice gauge field
configurations of SUð3Þ gluodynamics: (i) from the topo-
logical cluster analysis based on the low-lying eigenmodes
of the overlap operator, (ii) from the behavior of the local
holonomy and its eigenvalues, and (iii) from the point of
view of the MAG monopole current structure. Light
dyon-antidyon pairs are supposedly the prototype of
topological excitations in the bulk which guarantee the
vanishing of the topological susceptibility. Moreover, we
expect a dilute-gas admixture of rare and uncorrelated
heavy (anti)dyon excitations. Our model configurations
will easily allow us to distinguish between light and heavy
dyon-antidyon pairs.
In Sec. V real gluodynamics is considered. The occur-

rence of a gap in the overlap eigenvalue spectrum depend-
ing on the fermionic boundary condition is demonstrated
and compared to the reference cases of semi-analytical
dyon-antidyon pairs. We construct the fermionic topologi-
cal charge density with the help of a set of low-lying Dirac
eigenmodes for all three different fermionic boundary

conditions. Finally, the clusters of the three densities under
consideration are presented, and their correlation to the
local holonomy and to the static Abelian monopoles
(obtained from the MAG construction) is analyzed.
As a result, we shall clearly identify a large fraction

of light (anti)dyons and a smaller contribution of heavy
(anti)dyons in the thermal lattice gluon fields in agreement
with the qualitative picture of the deconfinement phase
drawn above.
In Sec. VI we shall draw our main conclusions.

II. LATTICE SETUP

An ensemble of fifty SUð3Þ gauge field configurations
has been generated for this investigation by sampling
the pure SUð3Þ gauge theory on a lattice of size 203 × 4.
We have used the Lüscher-Weisz action [53] with the
value of the inverse coupling β ¼ 8.25. In our previous
work [41] we were using the same action at the same
β ¼ 8.25 but on a lattice of size 203 × 6. This choice was
meant to describe configurations slightly above the
deconfining temperature of Td ≃ 300 MeV characteristic
for pure SUð3Þ gauge theory. This means that we are
now addressing the deconfining phase at a temperature
T ≃ 1.5Td, while the lattice discretization scale is about
a≃ 0.11 fm.
Improved gauge actions are known to be mandatory for

analyses using the overlap Dirac operator in order to take
full advantage of the good chiral properties of the latter. For
example, the sampled gauge fields are smoother than those
sampled with the Wilson action. In particular, the idea of
our analysis rests on the observation that changing the
boundary condition leaves the number of zero modes
unchanged if the field is smooth enough. The Lüscher-
Weisz action has also been used in the QCDSF topological
studies [54] of pure Yang-Mills theory with overlap
fermions and by Gattringer and coworkers [55,56] when
they were using a specific chirally improved fermion action
for topological investigations. In the SUð2Þ case, the
tadpole-improved Symanzik action has been applied for
analogous reasons in our previous work [42–44].
In addition to the plaquette term (pl), the Lüscher-Weisz

action includes a sum over all 2 × 1 rectangles (rt) and a
sum over all parallelograms (pg), i.e. all possible closed
loops of length 6 along the edges of all 3-cubes

S½U� ¼ β

�X
pl

1

3
ReTr½1 − Upl� þ c1

X
rt

1

3
ReTr½1 −Urt�

þ c2
X
pg

1

3
ReTr½1 −Upg�

�
; ð1Þ

where the coefficients c1 and c2 are computed using results
of one-loop perturbation theory and tadpole improvement
[57–59]:
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c1 ¼ −
1

20u20
½1þ 0.4805α�; c2 ¼ −

1

u20
0.03325α:

ð2Þ
For the given β ¼ 8.25, the tadpole factor u0 and the lattice
coupling constant α have been self-consistently determined
on a symmetric lattice (204) in a series of iterations via

u0 ¼
��

1

3
ReTrUpl

��
1=4

; α ¼ −
lnðh1

3
ReTrUpliÞ
3.06839

;

ð3Þ

arriving at the average plaquette value h1
3
ReTrUpli ¼

0.639172.

III. TOPOLOGICALLY RELEVANT
OBSERVABLES

The instruments (observables) of our analysis include
(i) the local holonomy with its trace (i.e. the Polyakov
loop), (ii) the (improved) gluonic topological charge,
(iii) our definition of over-improved cooling, (iv) the
Abelian monopoles revealed by Abelian projection in
MAG, and (v) the fermionic topological charge density
and its ultraviolet-filtered version, including the clustering
properties of the latter.
In the context of topological structure, the meaning and

usefulness of the finite-temperature holonomy (considered
globally and locally to distinguish the dyonic constituents
or “instanton quarks”) has become recognized only through
the discovery of the KvBLL-caloron solutions [8–10].

A. Holonomy

Let us begin with the local holonomy and its eigenvalues.
The local holonomy is the product of timelike links

Pð~xÞ ¼
YNτ

x0¼1

U0ð~x; x0Þ ð4Þ

having eigenvalues

λk ¼ exp ði2πμkð~xÞÞ; ð5Þ
which obviously depend on the spatial position.
On one hand, the spatial positions of the dyon constitu-

ents of KvBLL caloron solutions are determined by the
condition that two of these eigenvalues should coincide
(cf. Appendix in [41]). Later on we shall use this property
to localize (anti)dyons in artificially modeled, as well as in
simulated, lattice field configurations. On the other hand,
the asymptotic holonomy of KvBLL calorons (after a
suitable constant gauge transformation),

P∞ ≡ lim
j~xj→∞

Pð~xÞ ¼ exp½2πidiagðμ1; μ2; μ3Þ�; ð6Þ

with real and ordered numbers μ1 ≤ … ≤ μ3 ≤ μ4 ≡
1þ μ1 and μ1 þ μ2 þ μ3 ¼ 0) determines the masses of
well-separated dyon constituents via 8π2νm, where νm ≡
μmþ1 − μm (cf. Appendix in [41]).
Taking the trace of Pð~xÞ one gets the (gauge invariant)

complex-valued Polyakov loop

Lð~xÞ ¼ 1

3
TrPð~xÞ: ð7Þ

For SUð3Þ, the condition of two coinciding eigenvalues of
the local holonomy corresponds to the respective Polyakov
loop being located on the periphery of the Polyakov
triangle. All three eigenvalues coincide only in its corners
with Lð~xÞ ¼ zk ¼ exp ðik2π=3Þ · 1 with k ¼ 0; 1; 2. We
call L̄ the spatially averaged Polyakov loop of a given
gauge field configuration:

L̄ ¼ 1

V

X
~x

Lð~xÞ: ð8Þ

Averaged appropriately over the statistical ensemble of
gauge fields, it serves as an order parameter for the
deconfinement transition of pure Yang-Mills theory.
The latter has a global Zð3Þ symmetry of the action, and
the deconfined phase is characterized by the spontaneous
breaking of this symmetry; i.e., the nonvanishing spatially
averaged Polyakov loop, falling into one of the three
sectors, can be represented as L̄ ≈ jL̄jzk. For finite systems,
transitions between the Zð3Þ sectors (i.e. between different
deconfined phases) are not excluded. Therefore, we con-
sider all configurations with nonvanishing L̄ transformed
by a Zð3Þ flip to the real sector where L̄ ≈ jL̄jz0.
At this point it is probably worth underlining that the

local holonomies we search for in the following will be
related to the positions of the (anti)dyons in clusters of
topological charge and not to their closeness to the center
values of SUð3Þ as was the aim in Ref. [60].

B. The gluonic definition of the topological density

The continuum definition of topological charge density is

qðxÞ ¼ 1

16π2
TrðFμνðxÞ ~FμνðxÞÞ ð9Þ

with

~FμνðxÞ ¼
1

2
ϵμνλσFλσðxÞ: ð10Þ

The (improved) gluonic topological charge density on the

lattice rests on the field strength definition of FðnÞ
μν ðxÞ as a

“clover” average over all untraced plaquette loops (with
sidelength n ¼ 1) and over four untraced extended quadratic
loops of size n × n (with n ¼ 2; 3 in the improved case)
within the μν plane, placed around each site x and kept
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untraced in that site x [61]. The improved topological charge
and the corresponding continuum action (in units of the
one-instanton action Sinst) are then defined as

Qglue ¼
X
x

qðxÞ; ð11Þ

S=Sinst ¼
X
x

TrðFμνðxÞFμνðxÞÞ=ð16π2Þ: ð12Þ

C. Cooling and over-improved cooling

Cooling is an ad hoc method to remove quantum
fluctuations up to a certain “diffusion” scale from given
lattice field configurations created in the course of
Monte Carlo simulations. It proceeds by a sweep over
the lattice links, where the link is updated in such a way to
warrant the minimum of action relative only to this link
Ux;μ ∈ SUð3Þ, while all other links remain untouched. For
the SUð3Þ gauge group, this local minimization is realized
in the form of a sweep over three SUð2Þ subgroups of
SUð3Þ (Cabibbo-Marinari method). Cooling can be defined
with respect to different gluonic actions, not necessarily the
action used for the Monte Carlo generation of the ensemble
to work on. The simplest case is with respect to the Wilson
(one-plaquette) action. More generally, cooling is defined
with respect to an action of the form

SðϵÞ ¼
X
x;μν

4 − ϵ

3
ReTrð1 −Ux;μνÞ

þ
X
x;μν

1 − ϵ

48
ReTrð1 −U2×2

x;μνÞ; ð13Þ

which reduces to Wilson action in the case ϵ ¼ 1. The so-
called over-improved action [47] corresponds to ϵ ¼ −1.
Expanding in powers of lattice spacing a, one finds

SðϵÞ ¼
X
x;μν

a4Tr

�
1

2
F2
μνðxÞ −

ϵa2

12
ðDμFμνðxÞÞ2

�
þOða8Þ:

ð14Þ

For a discretized continuum instanton of size ρ, this
provides

SðϵÞ ¼ 8π2
�
1 −

ϵ

5

�
a
ρ

�
2

þO
��

a
ρ

�
4
��

; ð15Þ

suggesting that ρ under cooling will decrease for ϵ > 0 and
increase for ϵ < 0. The inversion of lattice artifacts relative
to the Wilson case makes topological lumps stable against
cooling.
It is worth noting that standard cooling (ϵ ¼ 1)—averaged

over gauge field ensembles—can be nicely mapped one to
one [62] to the theoretically well-understood Wilson or

gradient flow [63–65]. We believe the same to hold for
over-improved cooling.

D. The overlap Dirac operator, the near-zero band
and the UV filtered topological density

The next of our tools is the construction of the near-zero-
mode band of eigenmodes of the massless overlap operator
D. The overlap Dirac operator D fulfills the Ginsparg-
Wilson equation [1]. A possible solution—for any input
Dirac operator, in our case for the Wilson-Dirac operator
DW—is the following zero-mass overlap Dirac operator
[3,4],

Dðm ¼ 0Þ ¼ ρ

a

�
1þ DWffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D†
WDW

q
�

¼ ρ

a
ð1þ sgnðDWÞÞ; ð16Þ

with DW ¼ M − ρ
a, where M is the hopping term of the

Wilson-Dirac operator and ρ
a a negative mass term usually

subject to optimization. The index of D, i.e. the difference
in its number of right-handed and left-handed zero modes,
can be identified with the integer-valued topological charge
Qover [5].
The topological charge density with maximal resolution

(down to the lattice spacing a) is defined in terms of the
overlap Dirac operator as follows,

qðxÞ ¼ −tr
�
γ5

�
1 −

a
2
Dðm ¼ 0; x; xÞ

��
: ð17Þ

Using the spectral representation of (17) after diagonaliza-
tion (using a variant of the Arnoldi algorithm) in terms of
the eigenmodes ψ jðxÞ with eigenvalue λj, a UV smoothed
form of the density can be defined by filtering, i.e.
summing over a narrow band of near-zero eigenmodes,

qNðxÞ ¼ −
XN
j¼1

�
1 −

λj
2

�X
c

ðψc
jðxÞ; γ5ψc

jðxÞÞ; ð18Þ

summed over color c and with λN as a UV cutoff.
While the physical fermion sea is described by a Dirac

operator with antiperiodic boundary condition, for the
analysis of topological structure it is useful to diagonalize
the overlap Dirac operator with a continuously modified
boundary condition, which is characterized by an angle ϕ,

ψð~x; x4 þ βÞ ¼ expðiϕÞψð~x; x4Þ: ð19Þ
We have chosen three angles,

ϕ ¼
8<
:

ϕ1 ≡ −π=3
ϕ2 ≡þπ=3
ϕ3 ≡ π

9=
;; ð20Þ

DYON STRUCTURES IN THE DECONFINEMENT PHASE OF … PHYSICAL REVIEW D 91, 074505 (2015)

074505-5



ensuring for a single caloron solution that the correspond-
ing fermion zero modes become maximally localized at
each, but always at one of its three constituent dyons. Note
that ϕ3 corresponds to the antiperiodic boundary condition.
Only the spectrum corresponding to the latter boundary
condition (no matter whether the gauge field ensemble is
quenched or not) develops a gap in the high-temperature
phase (see Ref. [66]).
On the contrary, for the confined phase of gluodynamics

(as well as for the chirally broken phase of QCD), it is
known that the gross features of the Dirac spectrum are
only weakly dependent on the boundary conditions.
In the deconfined (high-temperature) phase, the con-

struction of the UV smoothed topological charge density in
terms of the eigenvalues and eigenmodes should be
specifically done for the three boundary conditions,

qi;NðxÞ ¼ −
XN
j¼1

�
1 −

λi;j
2

�X
c

ðψc
i;jðxÞ; γ5ψc

i;jðxÞÞ; ð21Þ

where i ¼ 1; 2; 3 enumerates the three boundary conditions
defined by Eq. (20) and j enumerates the eigenvalues λi;j
arranged in increasing order λi;1 < λi;2 < … < λi;N.
Let us note here that topologically nontrivial clusters

filtered out with the truncated densities (21) and averaged
over the boundary conditions can be nicely mapped onto
the ones seen with the gluonic definition (9) after an
optimized number of APE or STOUT smearing steps
[67–69]. We have no doubt that this will hold also when
applying the Wilson flow accordingly [63–65].

E. MAG and Abelian monopoles definitions

We use the definition of MAG introduced for lattice
SUðNÞ theory in [70] and later specified for the SUð3Þ
group in [71]. The MAG is fixed by maximizing the
functional,

F½U� ¼ 1

12V

X
x;μ

½jðUμðxÞÞ11j2 þ jðUμðxÞÞ22j2

þ jðUμðxÞÞ33j2�; ð22Þ

with respect to local gauge transformations g of the lattice
gauge field,

UμðxÞ → Ug
μðxÞ ¼ gðxÞ†UμðxÞgðxþ μ̂Þ: ð23Þ

Note that alternative definitions of the MAG for the SUð3Þ
group were introduced in [72] and were recently studied in
[73]. We use the simulated annealing algorithm first used to
fix MAG in the SUð2Þ case [74] and then extended to the
SUð3Þ group in [75]. The details of the implementation of
simulated annealing for the case of the SUð3Þ gauge group
can be found in [76]. To reduce the effects of ambiguities
due to Gribov copies, we have always generated ten

random gauge copies and have picked up the copy with
the maximal value of the gauge fixing functional.
The Abelian field uμðxÞ ∈ Uð1Þ ×Uð1Þ is determined as

uμðxÞ ¼ diagðuð1Þμ ðxÞ; uð2Þμ ðxÞ; uð3Þμ ðxÞÞ; ð24Þ

where

uðaÞμ ðxÞ ¼ eiθ
ðaÞ
μ ðxÞ; ð25Þ

with

θðaÞμ ðxÞ ¼ argðUμðxÞÞaa −
1

3

X3
b¼1

argðUμðxÞÞbbjmod2π;

ð26Þ

such that

θðaÞμ ðxÞ ∈
�
−
4

3
π;
4

3
π

�
: ð27Þ

This definition of Abelian projection uμðxÞ maximizes the

expression jTrðU†
μðxÞuμðxÞÞj2 [77].

The monopole currents are residing on links of the dual
lattice and are defined by

jðaÞμ ð�xÞ ¼ 1

2π
ϵμναβ∂νθ̄

a
αβðxÞ ¼ 0;�1;�2; ð28Þ

where ∂ν is the forward lattice derivative, and the Abelian
flux θ̄aμν ∈ ð−π; π� is defined from the Abelian plaquette,

θðaÞμν ðxÞ ¼ ∂μθ
ðaÞ
ν ðxÞ − ∂νθ

ðaÞ
μ ðxÞ; ð29Þ

using the relation

θðaÞμν ðxÞ ¼ θ̄ðaÞμν ðxÞ þ 2πma
μνðxÞ: ð30Þ

They are then shifted by 2πn to satisfy

X3
a¼1

θ̄ðaÞμν ðxÞ ¼ 0: ð31Þ

This guarantees that

X3
a¼1

jðaÞμ ðxÞ ¼ 0; ð32Þ

i.e., only two currents are independent. The current con-
servation law is satisfied for every a separately:

X
μ

∂−
μ j

ðaÞ
μ ðsÞ ¼ 0; a ¼ 1; 2; 3: ð33Þ
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IV. CONSTRUCTING (ANTI)DYON PAIRS

The analytic construction of an SUð3Þ caloron is
described in Ref. [8]. It can be used in order to create
model configurations of the type we might expect to be
dominant in the thermalized gauge field configurations
at T ¼ 1.5Td studied in this paper. Therefore, we have
chosen model calorons with an asymptotic holonomy
P∞ ¼ exp½2πidiagðμ1; μ2; μ3Þ� with μ1 ¼ −μ3 ¼ −0.271
and μ2 ¼ 0 such that its Polyakov loop value is
L ¼ 1

3
TrP∞ ¼ ð2 cosð2πμ1Þ þ 1Þ=3 ¼ 0.24. This value

corresponds to the averaged Polyakov loop hjL̄ji observed
for the thermalized gauge field configurations at 1.5Td.
Modeling gauge field ensembles with calorons and their

constituents in this way should include a self-consistent
(bootstraplike) determination of the average Polyakov loop
to be equal to the trace of the asymptotic holonomy of the
superposed semiclassical objects, which also includes a
fine-tuning of the properties of the different types of dyons.
We refer to [23], where this strategy in the case of the gauge
group SUð2Þ for varying temperature has been approx-
imately realized with a random gas of calorons and
anticalorons. This modeling was triggered by our under-
standing of the confinement phase, where the Polyakov
loop fluctuates around zero. Within the maximally non-
trivial-holonomy SUð2Þ caloron, the Polyakov loop varies
from zero (i.e. the asymptotic value) inside the constituents
to þ1 and −1, respectively, which provides an almost zero
Polyakov loop average even for a single caloron.
In our present SUð3Þ case, two of the three constituent

dyons are light (i.e. if well separated they carry the
topological charge fraction ν1 ¼ ν2 ¼ 0.271) and the third
becomes heavier (ν3 ¼ 0.458). The local Polyakov loops at
the dyon positions happen to be located on the sides of the
Polyakov triangle as pointed out in Pierre van Baal’s review
[78] and in the Appendix of Ref. [41].
In order to construct a dyon-antidyon pair of the third

(heavy) type, we have placed the dyon-triplet of such a
caloron solution at positions

x1 ¼ −1; y1 ¼ −10; z1 ¼ 0

x2 ¼ 1; y2 ¼ −10; z2 ¼ 0

x3 ¼ 0; y3 ¼ 1; z3 ¼ 0 ð34Þ

with the local Polyakov loop values,

Lð~x1Þ ¼ Lð~x2Þ� ¼ 0.395 − i � 0.171;
Lð~x3Þ ¼ −0.333;

and calculated the potentials for −2.5 < x; z < 2.5 in the
positive-y half-space 0 < y < 2.5 (all numbers are given in
units of the time period of periodic caloron solution). Note
that the light dyons are far outside the region where the
gauge field is calculated. Similarly, we have placed

antidyons (as constituents of a corresponding anticaloron
solution) at

x̄1 ¼ −1; ȳ1 ¼ 10; z̄1 ¼ 0

x̄2 ¼ 1; ȳ2 ¼ 10; z̄2 ¼ 0

x̄3 ¼ 0; ȳ3 ¼ −1; z̄3 ¼ 0 ð35Þ

and calculated their potentials for −2.5 < x; z < 2.5 in the
negative-y half-space −2.5 < y < 0. Finally, we have
sewed together these potentials defined in their respective
domains and—for the purpose of discretization—have
calculated links on a 20 × 20 × 20 × 4 lattice (with lattice
spacing equal to 1=4). This lattice covers the full spatial
region −2.5 < x; y; z < 2.5 and the temporal periodicity
range 0 < t < 1. On this lattice the dyon is at position (10,
14, 10) and the antidyon at (10, 6, 10). Next, cooling has
been applied to the constructed lattice field configuration in
order to remove the discontinuites left over from sewing
together the half-spaces and in order to arrange for smooth
spatially periodic boundary conditions (spatial torus).
We have analyzed the obtained configuration by diag-

onalizing the overlap Dirac operator and identifying
N ¼ 20 near-zero eigenvalues and respective eigenmodes.
The diagonalization has been performed for three temporal
boundary conditions (20). The pattern of near-zero eigen-
values of the overlap operator is shown in Fig. 1 for the
three types of boundary conditions. Note that the spectrum
develops a gap for the first and second kind of boundary
conditions, while there are near-zero eigenvalues for the
third kind.
The profile of the gluonic topological charge density (as

described in Sec. III B) over the xy plane that contains the
dyon-antidyon pair is shown in Fig. 2(a). In the same plane,
static MAG thermal monopoles are found. Their positions
are visualized in Fig. 2(b). Here and in the following we

will have only temporal (μ ¼ 4) magnetic currents jðaÞ4 ðxÞ,
and these are of three types: ð�1;∓1; 0Þ, ð0;�1;∓1Þ,
ð∓1; 0;�1Þ, which will form closed loops in the temporal
direction.
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FIG. 1 (color online). Overlap eigenvalues for a heavy (third-
type) dyon-antidyon pair for the three different boundary con-
ditions of Eq. (20).
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For the given configuration, the same xy plane is mapped
to the complex plane of the Polyakov loop. The scatter plot
Fig. 2(c) shows the local Polyakov loop of the isolated
heavy dyon-antidyon pair as the part of the real axis
connecting the origin with the left side of the Polyakov
triangle.
Using N ¼ 20 low-lying eigenmodes of the overlap

Dirac operator, we have reconstructed the profiles of the
fermionic topological charge density according to the
spectral representation of the latter (21) for the three
temporal boundary conditions (20). Only the third boun-
dary condition catches the topological charge profile of the
dyon-antidyon pair of the third (heavy) type (see Fig. 3).
This example of a dyon-antidyon pair demonstrates that

there is a strong correlation between clusters of gluonic as
well as fermionic topological charge density on the one
hand and MAG monopoles on the other.
Another example of an artificial dyon-antidyon system is

a pair of two light dyon-antidyon pairs formed out of the
two light types (first and second) of the same caloron
solution as discussed above. For this purpose we have
placed the constituents of the caloron at

x1 ¼ −1; y1 ¼ 1; z1 ¼ 0

x2 ¼ 1; y2 ¼ 1; z2 ¼ 0

x3 ¼ 0; y3 ¼ −10; z3 ¼ 0 ð36Þ

and those of the corresponding anticaloron at

x̄1 ¼ −1; ȳ1 ¼ −1; z̄1 ¼ 0

x̄2 ¼ 1; ȳ2 ¼ −1; z̄2 ¼ 0

x̄3 ¼ 0; ȳ3 ¼ 10; z̄3 ¼ 0; ð37Þ

respectively, and applied the same cut-and-paste procedure
for the half spaces y > 0 and y < 0 as before.
The pattern of near-zero eigenvalues of the overlap

operator for the extracted light double-dyon–antidyon pair
is shown in Fig. 4 for the three types of boundary
conditions. Now we observe a clear gap opening around
zero for the third kind of boundary condition, while for the
other ones near-zero eigenvalues occur.
The gluonic topological charge density, as well as the set

of monopole currents, shows all dyons and antidyons,
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FIG. 2 (color online). A heavy (third-type) dyon-antidyon pair is presented (a) by the profile of gluonic topological charge density over
the xy plane, (b) by the local magnetic charge distribution of (static, timelike) MAG monopole currents in the xy plane, and (c) a scatter
plot of the Polyakov loop values taken at the same plane.
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FIG. 3 (color online). The fermionic topological charge densities (a), (b), (c) are shown for the heavy dyon-antidyon pair reconstructed
from the eigenmodes, corresponding to the three types of boundary conditions.
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FIG. 4 (color online). Overlap eigenvalues for a light double-
dyon–antidyon pair for the three different boundary conditions
of Eq. (20).
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independent of their type, as can be seen in Fig. 5(a) and
Fig. 5(b). The Polyakov loop scatter plot for the (light)
double-dyon–antidyon pair [cf. Fig. 5(c)] is not a simple
combination of Polyakov loop plots for single dyon-
antidyon pairs of a given type [compare with Fig. 2(c)],
but has a dispersed form due to the influence of dyons
(antidyons) of different type on each other.
For the same configuration the fermionic topological

charge densities are shown in Fig. 6. As expected, only the
first and second type of fermionic boundary conditions
visualizes topological lumps; more precisely, each of them
visualizes the respective pair of a light dyon and antidyon.
Let us finally mention that an alternative approach to

studying dyon-antidyon pairs has been chosen very
recently in [79] by putting a hedgehog ansatz of
(anti)dyon solutions on a lattice and investigating its
behavior under gradient flow.

V. RESULTS FOR THE YANG-MILLS
ENSEMBLE

In the following we will analyze the gluodynamics
ensemble of 50 thermalized configurations along the lines
sketched above for the model dyon-antidyon pairs. For
identifying topological clusters of the lattice gauge fields
with the help of the low-lying spectrum of the overlap
operator, we used a fixed number of 20 lowest modes
always determined before any cooling or smearing was
applied. In order to detect gluonic features of (anti)dyon
excitations inside such clusters, we employed four steps of

over-improved cooling [47]. This amount of cooling
changes (clarifies) the conformation of what we call the
thermal monopole structure. The number of thermal
monopoles was reduced by an approximate factor 2, and
they became strictly static. Cooling beyond that stage kept
the monopole number stable for a long period of cooling.
Within four cooling steps, we did not completely match the
topological profiles (gluonic and fermionic) as we did in
our previous paper [41] where we followed the concept of
an equivalent filtering as developed in [67–69].
In Fig. 7(a) we show a scatter plot of the spatially

averaged Polyakov loop L̄ obtained from the ensemble of
50 generated configurations. The (black) points concen-
trated around L̄≃ 0.24 belong to the Monte Carlo equi-
librium configurations, while the shifted (red) points
(around L̄≃ 0.75) correspond to the same configurations
but after the four steps of over-improved cooling.
It is clearly seen that the Zð3Þ symmetry is sponta-

neously broken for the equilibrium configurations as
expected for temperatures above the critical one. (Over-
improved) cooling enhances this effect. Identifying the
average hL̄i≃ 0.24 with the asymptotic holonomy of an
assumed dyon-antidyonic content of the gauge fields, we
conclude that such content would render dyons of the first
and second type lighter than dyons of the third type.
Therefore, we expect for equilibrium configurations that
dyons of the third (heavy) type will gain a smaller statistical
weight. (This differs from the situation of maximally
nontrivial holonomy in the confinement phase (hL̄i≃ 0),
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FIG. 5 (color online). For the light double-dyon–antidyon pair we show (a) the profile of gluonic topological charge density on the xy
plane, (b) the local magnetic charge distribution of (static, timelike) MAG monopole currents in the xy plane and (c) a scatter plot of the
Polyakov loop values picked up at the same plane.
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FIG. 6 (color online). For the light double-dyon–antidyon pair the reconstructed fermionic topological charge densities are shown in
(a),(b),(c), corresponding to the three boundary conditions mentioned in the text.
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where we expect all the (anti)dyons occur with the same
“mass” and statistical weight, respectively.)
That such a splitting may happen is supported by the

following observation. The three eigenvalue spectra of the
overlap operator obtained with the three boundary con-
ditions [for a typical configuration see Fig. 7(b), for the
whole ensemble compare with Fig. 7(c)] look different. The
third boundary condition, which is the physical one in QCD
with fermions, provides a much larger gap than the others.
Thus, the spectra qualitatively resemble those observed for
the light double-dyon–antidyon pair (first- and second-type
dyons) as shown in Fig. 4. Therefore, we believe that light
dyon-antidyon pairs (involving dyons of the two light
species) form the bulk of configurations in the deconfine-
ment phase and present further evidence below. Concerning
the topological charge density, we have applied the same
cluster analysis as in our previous paper [41] with a variable
lower cutoff qcut > 0 to analyze the density functions of
Eq. (21) for thermal configurations describing the decon-
fined phase. Let us repeat here the idea of the cluster
algorithm.
In a first step–for each of the three fermionic boundary

conditions Eq. (20)–the algorithm identifies the points
forming the interior of all clusters (the so-called “topo-
logical cluster matter”) defined by the condition jqðxÞj >
qcut. The crucial second step is to enquire the connected-
ness between the lattice points in order to form individual
clusters out of this “cluster matter.” Neighboring points
with jqðxÞj above threshold and sharing the same sign of
the topological charge density are defined to belong to the
same cluster. The cutoff qcut has been chosen such as to
resolve the given continuous distribution qðxÞ into a
maximal number of internally connected, while mutually
separated clusters. The cutoff value has been independ-
ently adapted for each configuration. As a result in the
average the linear cluster size turns out approximately
3.2a≃ 0.35 fm.
We cannot exclude that this procedure might overesti-

mate the number of separately counted clusters by inclusion
of too small objects with too low density. But in any case, it
allows us to discover extended objects that eventually can

be qualified as (anti)dyons in the deconfined phase. There
are two conditions to make this interpretation in each case
more likely: the local correlation with timelike Abelian
monopoles in MAG and the occurrence of nearly coincid-
ing eigenvalues of the local holonomy in the centers of all
clusters.
Thus, we have to inquire several criteria in order to

enforce the evidence for the dyonic nature of these clusters
in the deconfined phase, in the sense of being KvBLL
caloron constituents. In our previous work [41] we have
concentrated on the profile of the local Polyakov loop
inside them, which points towards the relative closeness of
two (or three) eigenvalues of the holonomy. Here addi-
tionally we use MAG monopoles as another feature
characterizing dyons. We have seen this in the artificial
examples of dyon-antidyon pairs considered in Section IV.
The removal of entropic monopole fluctuations (as result

of over-improved cooling as mentioned above) renders all
monopole loops static in temporal direction. Moreover, it
maximizes the number of timelike monopole currents
contained in topological clusters compared to the number
of timelike monopole currents present in the whole lattice.
This latter criterion has been decisive to determine the

actual number of sweeps of over-improved cooling (four).
At this cooling stage the average action for the given
volume turned out equal to S ¼ 61.2ð2ÞSinst. The (non-
integer) gluonic topological charge Qglue according to
Eq. (11) for each configuration was found to be equal to
the (integer) fermionic topological charge Qover [given by
the index of the overlap operator Eq. (16)] within 10%
accuracy. In our ensemble of 50 configurations, we found
43 configurations withQover ¼ 0 and 7 configurations with
jQoverj ¼ 1, which leads for our temperature T ¼ 1.5Td
and lattice volume to a rough estimate of the (suppressed)
topological susceptibility χt ¼ hQ2

overi=V ≃ ð82 MeVÞ4.
The three-dimensional projection of points belonging to

topological clusters and the location of the static monopole
loops after four sweeps of over-improved cooling steps are
shown on Fig. 8 for a typical configuration.
All the data on the correlations between topological

charge density and the MAG monopoles are presented in
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FIG. 7 (color online). (a) Scatter plot of the spatially averaged Polyakov loop L̄ for 50 Monte Carlo generated configurations (shown in
black symbols); the right group (of red points) refers to the values of L̄ obtained after four steps of over-improved cooling. (b) Scatter
plot of low-lying overlap eigenvalues for one of these configurations under the three boundary conditions and (c) corresponding
distributions of the imaginary part of the overlap eigenvalues from all available configurations.
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Table I where the corresponding data for cooled and
original thermal configurations are shown for comparison.
Also the data obtained with only ten of the lowest overlap
modes used for determining the topological charge density
are shown for comparison. Let us note that the MAG
Gribov copy effects measured by the difference between
results obtained with one and with ten gauge copies
amounts to about 10% for equilibrium configurations.

For cooled configurations the results do not differ within
error bars. In the following we will discuss results obtained
after cooling.
Our main results on the correlation of low-lying modes of

the overlap Dirac operator (as represented by the clusters of
fermionic topological charge) with the Abelian monopoles
of MAG are as follows. Topological clusters occupy about
16.8% of the lattice volume, whereas topological clusters
with static MAG monopoles cover only 9.7% of the lattice
volume, but they contain about 35% of MAG monopoles.
Inside topological clusters with MAG monopoles the latter
are about 5 times more dense than outside these clusters.
These numbers become even more pronounced if one
counts not just the timelike monopole currents (dual links)
in topological clusters but the numbers of thermal monop-
oles piercing topological clusters. Then around 50% of
thermal monopoles are piercing topological clusters.
We expect that the topological clusters detected with

antiperiodic boundary conditions (in our case with a real-
valued average Polyakov loop) can be viewed as related to
heavy dyons which in the deconfinement phase should
become statistically suppressed because of their higher
action in comparison with the other constituents of a
caloron at a holonomy which is not maximally nontrivial.
We can estimate this suppression quantitatively by meas-
uring the abundance of MAG monopoles in topological
clusters of the third type compared to those in topological
clusters of the first or second type. We found after cooling
and with twenty low-lying modes the proportion

FIG. 8 (color online). The three-dimensional projection of
points belonging to topological clusters (black small points)
and the location of static timelike monopole loops after moderate
over-improved cooling inside clusters (larger red spheres) and
outside clusters (small blue spheres) are shown for one typical
Monte Carlo generated gauge field configuration.

TABLE I. Results of the cluster analysis using low-lying overlap operator modes with three kinds of boundary conditions, according
to Eq. (20). All numbers indicate averages per configuration. The pure statistical errors are given in parentheses. We denote with Vcl the
volume fraction occupied by all topological clusters, Vcl mon is the volume fraction occupied by clusters containing timelike magnetic
monopoles,Ncl is the number of all clusters per configuration,Ncl mon is the number of clusters containing timelike magnetic monopoles,
Nmon is the overall number of dual timelike links carrying monopole currents,Nmon cl is the number of dual timelike links with monopole
currents found inside topological clusters, Nloop is the overall number of thermal monopoles, and Nloop cl is the number of timelike
magnetic current loops piercing topological clusters. The effect of Gribov copies (see the text) on Nmon and Nloop for cooled and original
configurations is indicated in the last lines of the upper two subtables by “../..”.

Type of clusters Vcl Vcl mon Ncl Ncl mon Nmon Nmon cl Nloop Nloop cl

Clusters obtained with 20 lowest overlap modes, monopoles after cooling
3rd type (heavy) clusters 4.3(3)% 1.1(2)% 20(1) 1.3(1) � � � 3.6(5) � � � 1.4(2)
1st type (light) clusters 8.5(6)% 5.4(6)% 25(1) 3.7(2) � � � 14(1) � � � 4.7(3)
2nd type (light) clusters 8.0(7)% 4.7(7)% 25(1) 3.4(2) � � � 12(1) � � � 4.3(3)
All clusters in total 16.8(7)% 9.7(7)% 70(1) 8.4(4) 60ð2Þ=64ð2Þ 21(1) 15ð1Þ=16ð1Þ 7.2(3)

Clusters obtained with 20 lowest overlap modes, monopoles before cooling
3rd type (heavy) clusters 4.3(3)% 2.2(2)% 20(1) 4.3(3) � � � 12(1) � � � 4.4(3)
1st type (light) clusters 8.5(6)% 7.1(6)% 25(1) 7.2(3) � � � 32(2) � � � 11.8(7)
2nd type (light) clusters 8.0(7)% 6.5(6)% 25(1) 7.0(3) � � � 29(2) � � � 10.7(7)
All clusters in total 16.8(7)% 13.3(7)% 70(1) 18.5(6) 188ð3Þ=210ð4Þ 55(2) 32ð1Þ=35ð1Þ 18(1)

Clusters obtained with only 10 lowest overlap modes, monopoles after cooling
3rd type (heavy) clusters 4.4(4)% 1.3(2)% 13(1) 1.3(1) � � � 3.6(4) � � � 1.4(1)
1st type (light) clusters 8(1)% 6(1)% 19(1) 3.0(2) � � � 12(1) � � � 4.2(3)
2nd type (light) clusters 10(1)% 8(1)% 18(1) 2.7(2) � � � 12(1) � � � 4.1(3)
All clusters in total 18(1)% 13(1)% 50(1) 7.0(3) 60(2) 21(1) 15(1) 6.9(3)
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14∶12∶3.6 (see the upper subtable). Thus, the heavier
caloron constituent clusters are really suppressed.
The following observations are also of interest. The

average size of clusters with magnetic monopoles is about
four times larger than the average size of clusters without
magnetic monopoles, while their number is approximately
an order of magnitude smaller. Clusters of third type (heavy
dyons) are pierced just by one thermal (static) monopole
world line. In the average, only 2.5 timelike currents of
monopole loops (out of 4 belonging to a thermal monopole
after cooling) are running inside these clusters.
In the case of topological clusters of first and second

types (light dyon candidates) in the average three timelike
currents of monopole loops (out of four belonging to a
thermal monopole) are running inside these clusters.
Moreover, approximately 30% of these clusters are pierced
even by two monopole loops. In order to understand this
observation one should take into account that clusters of the
two light types occupy a volume approximately twice as
large as that of clusters of the third type (identified as heavy
dyons) and therefore, might overlap in space-time.
Unfortunately, to distinguish the monopoles (to make the
intersections one-to-one) is not a gauge-invariant concept.
Although the pattern of Polyakov loops becomes highly

modified by cooling in the deconfined phase, it is possible
to point out a correlation between the Polyakov loop on one
side and monopoles, respective clusters of topological
charge on the other.
First, let us compare the distributions of the minimal

distance between eigenvalues of the local holonomies for
all lattice sites and for sites carrying thermal monopoles.
From analytical caloron solutions and from our artificial
semianalytic configurations (see Figs. 2(c) and 5(c)) we
know that in the center of a topological dyon cluster with a
magnetic monopole the local holonomy has at least two
identical eigenvalues. This means that the local Polyakov
loop takes a value on one of the three sides of the Polyakov
triangle (see the Appendix in Ref. [41]).
We quantify the closeness of a Polyakov loop value to

the boundary of this triangle by the minimal distance
minfm1ð~xÞ; m2ð~xÞ; m3ð~xÞg, where the mið~xÞ are defined
as the differences between the three eigenvalues μið~xÞ of the
local holonomy according to Eqs. (4) and (5),

mið~xÞ ¼ jμiþ1ð~xÞ − μið~xÞj; i ¼ 1; 2; 3;

μ4ð~xÞ≡ μ1ð~xÞ:

The two distributions with respect to the minimal distance
are shown in Fig. 9 and tell that the local Polyakov loop at
sites with thermal monopoles tend to be located closer to
the boundary of the Polyakov triangle than for all lat-
tice sites.
Second, we show the scatter plot of Polyakov loops

measured (after cooling) in the centers of those clusters
which are associated with magnetic monopoles. Since the

clusters are labeled by one of the three boundary conditions
for the fermionic modes (used to define the fermionic
topological charge density), the scatter plot over the
Polyakov triangle Fig. 10(a) shows the different regions
of population. There is a tendency of the Polyakov loop in
the centers of topological clusters of the two light kinds to
populate two sides of the Polyakov triangle beginning from
the trivial Polyakov loop L ≈ ð1.0; 0.0Þ. Compared with the
results before cooling, the population has moved closer
towards the trivial Polyakov loop and towards the periph-
ery, thereby improving the (approximate) degeneracy of
two eigenvalues of the local holonomy. From Fig. 10(a) we
see also that clusters of the third type (which are heavy) are
less abundant and distributed over most of the Polyakov
triangle. Cooling has moved part of them towards the trivial
Polyakov loop, too, but others are still differing strongly
from trivial holonomy.
Finally, if one extends the scatter plots by a third

dimension representing the maximal absolute value of
topological charge density of the corresponding clusters
by spikes [see Fig. 10(b)] one observes the clusters of first
and second type to have negligible topological charge,
while the clusters of third type may carry noticeable
topological charge (deserving the name heavy clusters).
There is a tendency of heavy clusters to have a Polyakov
loop opposite to the trivial one, L ≈ ð1.0; 0.0Þ.
In conclusion, the Polyakov loop characteristics of the

“light plus heavy dyonic picture” for the clusters of
topological charge in the deconfined phase are clearly
visible after a slight cooling of the configurations.

VI. CONCLUSIONS

For SUð3Þ gluodynamics we have discussed the signa-
tures of dyonic topological excitations of thermal lattice
gauge fields generated in the deconfinement phase. We
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FIG. 9 (color online). For all lattice sites (shaded histogram)
and for all cubes where thermal monopoles are located (open red
histogram), the distributions with respect to the minimal distance
minðm1ð~xÞ; m2ð~xÞ; m3ð~xÞÞ between the Polyakov loop and one of
the boundaries of the Polyakov triangle are shown. In the case
of a monopole the minimum is taken also among the eight corners
of the three-dimensional cube containing that monopole.
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have chosen a temperature value T ¼ 1.5Tc, i.e. well above
the critical one. Under the assumption that (anti)dyon
excitations become really relevant in the sense proposed
by Diakonov and Petrov [26], we suppose them to be
related to the constituents of KvBLL calorons [8–10] with
an asymptotic holonomy determined by the average
Polyakov loop (always taken in the real sector of the
Polyakov triangle) which is then clearly different from zero
(i.e. different from maximally nontrivial holonomy in the
confinement phase). In this case the three monopole (dyon)
constituents of KvBLL calorons are known to differ with
respect to their masses or summed topological charges, the
latter being directly related to the eigenvalues of the
asymptotic holonomy. Then it is natural to conjecture that
the heavy kind of dyons will be statistically suppressed
compared with the light type. This means also that full
KvBLL calorons should become rare excitations, too. It
was our task to provide numerical evidence for this semi-
classical-like dyon picture.
In order to find signatures of distinct light and heavy

(anti)dyon pairs, we have first constructed classical model
configurations from KvBLL (anti)caloron solutions with
the help of an appropriate cut-and-paste procedure. For
these configurations we checked the fermionic overlap
eigenvalue spectrum and visualized them with several local
observables:

(i) the gluonic topological density,
(ii) the fermionic topological density filtered with the

low-lying modes of the overlap operator and deter-
mined with a set of three different timelike boundary
conditions, such that each boundary condition ex-
tracts just one dyon type,

(iii) local values of the Polyakov loop as corresponding
to the local holonomies for which the degeneracy of
eigenvalues are pointing to the positions of the dyon
constituents,

(iv) the Abelian monopole currents in the maximally
Abelian gauge.

For the examples of a heavy dyon-antidyon pair and for a
light double-dyon–antidyon pair, we produced a very clear
pattern to be qualitatively compared with that of topologi-
cal clusters of Monte Carlo generated quantum gauge
fields.
Such topological clusters were then established by

filtering with 20 low-lying modes of the overlap Dirac
operator by employing the same three boundary conditions.
Additionally, we subjected the lattice fields to a few (over-
improved) cooling steps after which a similar pattern of
clusters occurs with the gluonic topological charge dis-
tribution. With and without cooling, we looked for the
behavior of the spatially averaged as well as the local
distributions of the Polyakov loop (as well as its local
holonomies) and searched for MAG monopole currents.
First of all—depending on the boundary conditions—we

mostly found eigenvalue spectra similar to those produced
by light dyon-antidyon pairs and rare cases telling about
heavy dyon-antidyon pairs. Moreover, we found clear
correlations of the topological clusters with thermal
monopoles as well as with lattice sites, where the local
holonomy has close-to-degenerate eigenvalues.
All this points to an interpretation in terms of mostly

light—with only a dilute admixture of heavy—(anti)dyon
excitations of the KvBLL type.
Moreover, our findings resemble very much what we

found earlier in the SUð2Þ case [38,42,44] where in the
deconfinement phase the dominance of light dyon con-
stituents was seen, too. F. Bruckmann [80], as well as more
recently E. V. Shuryak and T. Sulejmanpasic in [33], came
to a similar conclusion.
It remains to be seen how the situation will change in

lattice QCD with dynamical fermions taken into account.
We hope to come back to this question in the near future.
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FIG. 10 (color online). (a) Scatter plots of Polyakov loop PL (after four steps of cooling) in clusters selected to contain monopoles.
The clusters are separated according to the type of boundary condition for the overlap near-zero modes. For clusters of the first type, the
Polyakov loop is shown by green triangles, for clusters of the second type, by blue filled circles, and for clusters of the third type, by red
open circles. (b) The maximum of the topological charge density inside the respective cluster is additionally shown in respective color
(for second and third type clusters only).
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