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We report on lattice QCD results for the thermodynamic equation of state of quark-gluon matter obtained
with Nf ¼ 2 degenerate quark flavors. For the fermion field discretization we are using the Wilson twisted
mass prescription. Simulations have been carried out at three values of the bare quark masses corresponding
to pion masses of ∼360, ∼430 and ∼640 MeV. We highlight the importance of a good control of the lattice
cutoff dependence of the trace anomaly which we have studied at several values of the inverse temperature
T−1 ¼ aNτ with a timelike lattice extent up to Nτ ¼ 12. We contrast our results with those of other groups
obtained forNf ¼ 0 andNf ¼ 2þ 1. At low temperature we also confront them with hadron resonance gas
model predictions for the trace anomaly.
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I. INTRODUCTION

Lattice QCD investigations of the (pseudo-) critical
behavior of quark and gluon matter at varying temperature
have been carried out over many years by several groups
employing various improved discretization prescriptions.
The special and very demanding task to determine the
thermodynamic equation of state (EoS) has reached the
physical point, i.e. realistic up-, down- and strange-quark
masses. For this aim highly improved staggered fermion
discretizations have been employed as reported by the
Budapest-Wuppertal group [1,2] and the HotQCD collabo-
ration [3] (both for Nf ¼ 2þ 1 dynamical quark degrees of
freedom). The staggered fermion approach is most effective
from the computational point of view. However, one pays
the price of a theoretical uncertainty by applying the
rooting trick for the fermionic determinant in order to
reduce unwanted (taste) degrees of freedom.
The (improved) Wilson fermion approach is theoretically

safe but computationally very demanding and has arrived
at the physical point for the zero-temperature case with a
corresponding delay [4]. For thermodynamic applications
this limit probably will still need some more time.
Thermodynamicswith improvedWilson quarkswas studied
for two quark flavors more than one decade ago by the
CP-PACS collaboration [5]. At that time only a very small
lattice extent in the Euclidean time direction was feasible
(Nτ ¼ 4, or 6). Therefore, the results were strongly influ-
enced by lattice artifacts. The DIK collaboration continued
this effort by enlarging Nτ up to 14 lattice units [6,7]. More
recently improvedWilson fermions were studied withNf ¼
2þ 1 on large lattices by the WHOT collaboration [8] and

the Budapest-Wuppertal group [9,10]. Let us also mention
attempts to study lattice QCD at nonzero temperature with
chirally perfect fermion approaches like the domain wall
ansatz [11–16] and overlap fermions [17,18].
Simulations with a dynamical charm quark, which is

expected to be relevant above temperatures of 400 MeVare
also in the course of being performed by the Budapest-
Wuppertal [19] and MILC [20] collaborations employing
staggered discretizations and by us with Wilson twisted
mass quarks in a fixed scale study [21]. Recent reviews of
the whole subject can be found in [22–27].
In addition to the investigations mentioned above, the

analysis of the two-flavor model has several points of
interest. The crossover region and the issue of universality
in the chiral limit have been investigated by us with twisted
mass Wilson fermions [28,29], with clover improved
fermions in [30] and with Nf ¼ 2 staggered flavors with
imaginary chemical potential [31].
Here, we present our results for the EoS in the two-flavor

case with twisted mass fermions. Preliminary results can be
found in [29]. From a technical viewpoint, we want to see
how twisted mass Wilson fermions perform in the deter-
mination of the EoS. Given satisfactory performance we
may aim at studying the flavor dependence of the EoS in
the critical region by comparing with the quenched and the
Nf ¼ 2þ 1 cases.
Our main observable is the trace anomaly (also called

interaction measure)

I ¼ ϵ − 3p ¼ T5
∂
∂T

�
p
T4

�
ð1Þ

PHYSICAL REVIEW D 91, 074504 (2015)

1550-7998=2015=91(7)=074504(23) 074504-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.074504
http://dx.doi.org/10.1103/PhysRevD.91.074504
http://dx.doi.org/10.1103/PhysRevD.91.074504
http://dx.doi.org/10.1103/PhysRevD.91.074504


related to the partition function by a total derivative with
respect to the lattice spacing a,

I ¼ −
T
V
d lnZ
d ln a

: ð2Þ

For the calculation of the temperature dependence of the
pressure pðTÞ and the energy density ϵðTÞ we employ the
integral method (see e.g. [22]) according to which
the pressure can be evaluated by integrating Eq. (1),

p
T4

−
p0

T4
0

¼
Z

T

T0

dτ
ϵ − 3p
τ5

����
LCP

; ð3Þ

along a line of constant physics (LCP). The lower bound of
the integration has to be set at a sufficiently low temper-
ature T0 in such a way that p0 is close to zero and can be
neglected. Alternatively it may be set from a hadron
resonance gas (HRG) model analysis.
In Sec. II we describe our lattice setup using twisted

mass fermions and the tree-level Symanzik improved gauge
action followed by the outline of the scale setting pre-
scription in Sec. III. In Sec. IV we describe the lines of
constants of physics along which the temperature integra-
tion will be carried out. Since we have redone our scale
setting in comparison to our previous work Ref. [28], and
since we have added a new (higher) pion mass value we
present a new computation of the pseudocritical temper-
ature in Sec. V. Section VI provides all details for the
computation of the β-function and prefactors of the
fermionic contributions to the trace anomaly. Since we
have to subtract T ¼ 0 results, which are not available for
all parameter values discussed, we present the outcome
of corresponding interpolations in Sec. VII. Finally, our
results for the trace anomaly, pressure and energy density
as functions of the temperature are shown in Secs. VIII–IX.
In Sec. X we show how to use an appropriate modification
of the hadron resonance gas model to estimate the low
temperature contribution to the pressure. Finally, in Sec. XI
we contrast our Nf ¼ 2 determination with the quenched
and Nf ¼ 2þ 1 results. In Sec. XII we draw the con-
clusions. In Appendix A we collect the arguments for why
one of the contributions to the trace anomaly vanishes in
the continuum limit and therefore can be neglected from
the beginning. Appendix B lists all tables of simulation
parameters and of unrenormalized data for the Polyakov
loop and the chiral condensate.

II. LATTICE TWISTED MASS SETUP

For the present study of Nf ¼ 2 thermodynamics we
have been relying on the twisted mass lattice quark action
for two flavors of mass-degenerate quarks

Stmf ½U;ψ ; ψ̄ � ¼
X
x;y

χ̄ðxÞðamδx;y þDWðx; yÞ½U�

þ iaμγ5τ3δx;yÞχðyÞ: ð4Þ

The Wilson discretization of the covariant derivative is
given by

DWðx; yÞ½U� ¼ 4δx;y þ
1

2

X
μ

ð1 − γμÞUμðxÞδy;xþaμ̂

þ ð1þ γμÞU†
μðx − aμ̂Þδy;x−aμ̂; ð5Þ

where the usual Wilson parameter has been put as r≡ 1.
Via κ ≡ ð2amþ 8Þ−1 the bare (untwisted) quark mass m is
related to the hopping parameter κ which has been set to its
coupling dependent critical value κcðβÞ as determined by
the European Twisted Mass Collaboration (ETMC) [32]
and suitably interpolated to the coupling values used in this
study [28].
The gauge action is discretized with a tree-level

Symanzik improved action

StlSymg ½U� ¼ β

�
c0
X
P

�
1 −

1

3
ReTrðUPÞ

�

þ c1
X
R

�
1 −

1

3
ReTrðURÞ

��
ð6Þ

with c0 ¼ 5=3 and c1 ¼ −1=12 and sums extending over
all plaquettes (P) and all planar rectangles (R) attached to
each lattice site in positive directions, respectively.
We have simulated three values of the pion mass

mπ ∼ 360, ∼430 and ∼640 MeV, referred to as the B, C
and D mass in what follows. In each case several values of
Nτ ranging from Nτ ¼ 4 to Nτ ¼ 12 have been simulated;
see Tables VI, VII, and VIII in Appendix B. The data
of the B and the C mass have already partly been used in
Ref. [28] for the study of the chiral limit of the transition.1

Preliminary results for the EoS in our setup have been
reported in Ref. [29].

III. SCALE SETTING

The lattice scale is set using the physical value of the
Sommer scale r0 determined by ETMC from the nucleon
mass in Ref. [33]. For the ETMC generated gauge
ensembles the values for r0=a have been published in
Ref. [34]. Table IV in Appendix B lists the ETMC

1In Ref. [28] an even smaller mass has been considered (called
“A mass”). We have not included it here, since for the EoS
required T ¼ 0 simulations would run into metastable states of
the bulk transition occurring at sufficiently small β. A way out
would be to keep to larger β-values, i.e. to describe the crossover
region with a timelike lattice extent Nτ ≥ 14. Such large lattice
sizes go beyond the scope of the present investigation.
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ensembles we have used and analyzed in this work. On
additionally generated T ¼ 0 gauge ensembles (see
Table V) the ratio r0=a has been determined from the
Euclidean time dependence of the static potential Vðx4Þ,
which was extracted from timelike Wilson loops as
described in Ref. [34]. The latter have been evaluated on
HYP- and APE-smeared configurations. In order to reduce
lattice artifacts in the determination of Vðx4Þ at low values
of β we employ a tree-level improved definition for the
spatial separation as in Ref. [35] for β ≤ 3.76. We perform
the chiral limit extrapolation of r0=a for obtaining rχ=a by
assuming either a linear dependence on the bare quark mass
μ or a pure quadratic dependence without a linear piece.
Half of the resulting difference of rχ is taken as a systematic
error and is added to the statistical error of rχ=a. The
quadratically extrapolated values have entered our fits as
central values. For setting the scale and also for evaluating
the β-function (cf. Sec. VI) we proceed by fitting rχ=a and
the data shifted by �1σ with the following ansatz [36] (see
also Ref. [37]):

ðrχ=aÞðβÞ ¼
1þ n0RðβÞ2

d0a2loopðβÞð1þ d1RðβÞ2Þ
: ð7Þ

The ratio RðβÞ≡ a2loopðβÞ=a2loopðβrefÞ is defined in terms
of the two-loop renormalization group formula for the
(dimensionless) scale a2loopðβÞ at vanishing fermion mass

a2loopðβÞ ¼
�
6β0
β

�
−β1=2β20

exp

�
−

β

12β0

�
ð8Þ

with the first two (universal) coefficients of the pertur-
bative β-function β0 ¼ ð11 − 2Nf=3Þ=ð4πÞ2 and β1 ¼
ð102 − 38

3
NfÞ=ð4πÞ4. In our analysis we have chosen

βref ¼ 3.9 for an intermediate reference scale and have

checked that the results do not depend on this choice. We
add the maximal deviation from the fits to the data of upper
and lower error bands from the central fit to the statistical
error in quadrature. In order to account for the systematic
error associated with the specific choice of a fit function we
have performed the fits either setting d1 ≡ 0 or keeping it as
a free parameter in the fit, the former representing our central
fit. We propagate the resulting difference of the so fitted β
dependences of rχ=a to all subsequent analyses such as the
β-function and other scale dependent quantities.
Allowing for three fit parameters at maximum we use a

lower number of parameters compared toRef. [36], since the
functional dependence of rχ=a on β is rather mild, and
we have less data points to fit. In Fig. 1 we present the fit
which—with twelve data points for rχ=a at our disposal—
yields a good χ2=dof ¼ 1.6. The fitted parameters read as
follows:

Fit n0 d0 d1 χ2=dof

1 −0.1096ð75Þ 13.04(12) 0 1.6
2 0.35(30) 12.27(44) 0.62(43) 1.1

The temperature in physical units is then estimated from
the fit using

TðβÞ½MeV� ¼ ðrχ=aÞðβÞ
Nτr0

ð9Þ

and taking r0 ¼ 0.462ð28Þ fm from Ref. [33] as input. The
uncertainty of the temperature evaluated in this manner is
of the order of 4% throughout the whole temperature range.

IV. LINES OF CONSTANT PHYSICS

The calculation of the pressure by means of integrating
Eq. (3) has to be done on the LCP. To this end we have fixed

FIG. 1 (color online). Left: Chirally extrapolated Sommer scale rχ=a and a fit using Eq. (7). Right: Charged pion mass in physical units
for the three ensembles together with a constant fit over all data points. Open symbols denote data that have been interpolated using
ETMC results.
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the mass of the (charged) pion mPS to three constant values
by tuning the bare quark mass by means of the β-function.
The quality of mass tuning is shown in the right panel of
Fig. 1 for the three masses together with a constant fit over
the whole range of the coupling. For the B mass such a
figure has already been shown in Ref. [29]—note however
that due to the updated value of r0 the curve shown there is
now slightly shifted. From the fit for the B, C and D masses
we obtain the values mPS ¼ 362ð2Þ, 433(2) and 637
(4) MeV, respectively. In the plot we do not show data
points obtained at β ¼ 4.35. In this case the box size is very
small which leads to an overestimation of the pseudoscalar
masses by about 20%.

V. THERMAL TRANSITION TEMPERATURE

Since the scale setting has changed with respect to our
previous study in Ref. [28] and one more pion mass has
been simulated, by applying the same methods we have
conducted a new determination of the pseudocritical chiral
temperature (Tχ) and—what we conditionally call—the
“deconfinement” temperature (Tdeconf).
The chiral temperature Tχ is obtained from fitting

Gaussian functions

GðβÞ ¼ aG þ bG · e−cGðβ−βχÞ2 ð10Þ

to the variance of the chiral condensate over configurations,
i.e. to (the disconnected part of) the chiral susceptibility,
which shows a maximum in the expected crossover temper-
ature region. The fits are performed in the bare coupling,
and the pseudocritical coupling βχ at the center of the
Gaussian function is then converted into physical units. In
Fig. 2 we show the chiral susceptibility normalized by the
squared temperature for the three simulated pion masses as
well as for several values of Nτ. Note that the data have not
been renormalized yet. In addition, in each case we show

also the fit curves for the finest discretization of the
Euclidean time extent (largest Nτ available). For the
smallest mass we can check whether the thermodynamic
limit can be considered to be satisfactorily achieved as
lattices of a smaller extent (Nσ ¼ 24) are available for
comparison. Since—within errors—the susceptibility data
for the smaller volume are compatible with the data
obtained on the larger volume (Nσ ¼ 32), we conclude
that Tχ is not affected by finite-size scaling effects as one
should expect for a crossover phenomenon. We have
restricted the Gaussian fits to data obtained in the larger
volume.
The deconfinement temperature Tdeconf is estimated from

the renormalized real part of the Polyakov loop hReðLÞiR
obtained by multiplicative renormalization using the static
potential V at zero temperature and distance r0,

hReðLÞiR ¼ exp ðVðr0Þ=2TÞhReðLÞi≡ ZLhReðLÞi: ð11Þ

It is read off from the inflection point of a hyperbolic
tangent function

PðTÞ ¼ aP þ bP · tanh ðcPðT − TdeconfÞÞ ð12Þ

by fitting the renormalized real part of the Polyakov loop
while ignoring the uncertainty in the temperature scale. For
Nτ ≥ 8, hReðLÞiR shows only small lattice artifacts while
they are sizable for Nτ ¼ 4 and Nτ ¼ 6 as can be seen in
Fig. 3. The fitted values for the deconfinement temperature
are listed in the last column of Table I. The first error
indicates the statistical error while the second denotes the
uncertainty of the temperature from the scale setting at the
fitted Tdeconf .
In what follows, for the pseudocritical temperature Tc we

will always use Tc ≡ Tχ at the largest Nτ available.

FIG. 2 (color online). The disconnected part of the chiral susceptibility in the crossover temperature range together with Gaussian fit
curves versus temperature. Left: For the B mass; Middle: C mass; and Right: D mass.
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VI. TRACE ANOMALY AND SCALE
DEPENDENCE OF THE PARTITION FUNCTION

The computation of the trace anomaly according to
Eq. (2) requires us to evaluate the derivatives of the partition
function with respect to the bare parameters κ, aμ and β. On
the LCP the bare hopping parameter as well as the twisted
mass are in turn functions of the gauge coupling.
Employing the following derivatives, which in analogy

to the well-known β-function let us call B-functions,

Bβ ¼ a
dβ
da

; Bμ ¼
1

ðaμÞ
∂ðaμÞ
∂β ;

Bκ ¼
∂κc
∂β ; Bm ¼ −

1

ðamÞ
1

ð2κcÞ2
Bκ ð13Þ

as well as the explicit form of our lattice action [Eqs. (4)
and (6)] we arrive at

I
T4

¼ −N4
τBβ

1

N3
σNτ

��
c0
3

X
P
ReTrUP

	
sub

þ
�
c1
3

X
R
ReTrUR

	
sub

− ðaμÞBμ

�X
x
χ̄xiγ5τ3χx

	
sub

− ðamÞBm

�X
x
χ̄xχx

	
sub



: ð14Þ

The expectation values are defined with an implicit sub-
traction of the corresponding expectation value at T ¼ 0 in
order to render them finite in the ultraviolet:

h…isub ≡ h…iT>0 − h…iT¼0: ð15Þ

For later use (see e.g. Appendix B) we abbreviate the gauge
part in the form of plaquette and rectangle contributions as

Sg ¼
1

NτN3
σ

�
c0
X
P

ReTrðUPÞ − c1
X
R

ReTrðURÞ
�

ð16Þ

and the condensate contribution as

Sf ¼ −
1

NτN3
σ

X
x

χ̄xiγ5τ3χx: ð17Þ

Since we are partly relying on the available T ¼ 0 ETMC
data, for taking these subtractions it is necessary to
interpolate the data in the mass as well as in the coupling.
We discuss the strategy in detail in Sec. VII.
The untwisted quark mass related function Bm is

calculated using ETMC input. To this end we employ
the coupling dependence of the critical hopping parameter
κc, using the prescription indicated in Eq. (13). We have
fitted this dependence with a spline ansatz which is shown

FIG. 3 (color online). The renormalized real part of the Polyakov loop versus temperature. Left: For the B mass; Middle: C mass; and
Right: D mass. Also shown are fits with PðTÞ according to Eq. (12) (where evaluated).

TABLE I. List of extracted values for the pseudocritical
temperatures Tχ and Tdeconf .

Ensemble mPS Nτ × N3
σ βc Tχ Tdeconf

B ∼360 12 × 323 3.92(1) 193(13) 219(3)(14)
12 × 243 � � � � � � 223(3)(14)
10 × 323 3.82(1) 195(13) 219(4)(14)

C ∼430 12 × 323 3.97(2) 208(14) 225(3)(14)
10 × 323 3.86(1) 209(14) 225(4)(14)
8 × 283 3.69(3) 198(15) 219(6)(14)

D ∼640 10 × 243 3.90(3) 229(16) 244(3)(15)
8 × 203 3.75(1) 225(15) 240(2)(15)
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in Fig. 4. In the low coupling region we have added several
further estimates of κc. Since we have started the tuning at
the largest mass, it is necessary to refine the tuning for
smaller masses, such that for couplings below β ¼ 3.78
slightly varying values for the critical hopping parameter
have been simulated at a given coupling but at varying
twisted mass, while ETMC kept κc fixed in this case. For
one value of the coupling (β ¼ 3.85; aμ ¼ 0.006) we have
conducted a check of how well the interpolation works in
determining κc at an intermediate coupling. To this end we
have simulated three values of κ in the vicinity of the value
predicted by the interpolation and have evaluated the PCAC
mass which upon vanishing acts as a criterion for maximal
twist [32]. The PCAC mass as well as a linear fit to the data
are shown in the right panel of Fig. 4. The critical value of κ
as predicted from the interpolation is indicated by the
vertical line. What can also be seen in the figure is that a

slight mistuning leading to a deviation of Oð10−3Þ in the
PCAC mass results in a value of κ being off by Oð10−5Þ
from its critical value. We thus conclude that the error on
the critical κ dependence is very small and we thus neglect
it in the further analysis, especially for evaluating Bm which
we take explicitly from the derivative of κcðβÞ using the
fitted spline interpolation. For this we have used κc as
determined at the lowest mass at given coupling β.
However, the m-derivative term in Eq. (14) containing

Bm does not contribute in the continuum limit. As will be
shown in Appendix A from a Symanzik expansion, the
subtracted vacuum expectation value of the operator arising
from them derivative, hPxχ̄xχxisub, is a pure lattice artifact
at maximal twist and is vanishing in the continuum limit as
Oða2Þ. We have checked this numerically by studying the
contribution to the trace anomaly from the term in question.
Figure 5 shows the continuum limit of Bmh

P
xχ̄xχxisub. As

FIG. 4 (color online). Left: The dependence of the critical hopping parameter κc on the coupling β. The curve represents a Padé
interpolation. In the inlaid figure we show the interpolation for asymptotically large β ¼ 6=g2, i.e. small g2, where the fit has been
constrained to κcðg≡ 0Þ ¼ 1=8 representing the asymptotic free limit value. Right: The PCAC mass as a function of the hopping
parameter κ around the critical value at β ¼ 3.85; aμ ¼ 0.006. This corresponds to a check of the validity of the spline interpolation of κc
(see text for details).

FIG. 5 (color online). Left: Check of the continuum limit of the trace anomaly contribution originating from the derivative with respect
to the untwisted quark mass m. We show data for the B-mass ensemble at two values of the temperature. Middle: The same for the C
mass. Right: The same for the D mass.
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can be seen in the figure, the extrapolations to 1=Nτ → 0 of
this term are compatible with zero in all studied cases.
Therefore, we have not included the contribution of this
term upon evaluating Eq. (14) right from the beginning.
The B-functions Bβ and Bμ in Eq. (13) are evaluated

nonperturbatively from T ¼ 0 lattice data closely following
Ref. [36]. In all cases we maintain the correct perturbative
behavior of the B-functions and incorporate it explicitly
into fit functions to T ¼ 0 data. The function Bβ, directly
related to the nonperturbative β-function and entering
Eq. (14) as a multiplicative factor, is evaluated by means
of the following identity in terms of the chirally extrapo-
lated Sommer parameter rχ=a:

Bβ ¼
�
a
dβ
da

�
¼ −rχ=a

�
drχ=a

dβ

�
−1
: ð18Þ

Using Eq. (18) and the two-loop expression Eq. (8) we
obtain the following asymptotic formula valid at large
inverse squared coupling β:

BβðβÞ ¼ −12β0 − 72
β1
β
: ð19Þ

The interpolation of Bβ determined from the fit is shown in
Fig. 6 together with the two-loop perturbative expectation
according to Eq. (19). The grey band in the graph shows the
error from the fit which is obtained by means of a bootstrap
analysis. The level of the error is of the order of 10% for
low values of β and goes down to the 3% level for higher
values.
For the evaluation of the mass renormalization function

Bμ we observe

Bμ ¼
1

ðaμÞ
∂ðaμÞ
∂β

¼ 1

ðaμÞ
�
ðaμÞ 1

a
∂a
∂β þ 1

rχ=a

∂ðrχμÞ
∂β

�

¼ B−1
β þ 1

rχμ

∂ðrχμÞ
∂β ; ð20Þ

where we have used the fact that ∂rχ
∂β ¼ 0, rχ being the

physical quantity that fixes the scale. Accordingly we fit
ðrχμÞðβÞ by the following expression:

rχμ ¼
�
12β0
β

�
γ0=2β0

PðβÞ: ð21Þ

The first factor gives the leading perturbative β-dependence
of the mass (compare with e.g. Ref. [38]) with
γ0 ¼ 1=ð2π2Þ. For the second factor we take a rational
ansatz in terms of the ratio RðβÞ as introduced in Eq. (7),

PðβÞ ¼ aμ
1þ bμRðβÞ2
1þ cμRðβÞ2

: ð22Þ

We employ our fit result of rχ=aðβÞ for building the product
ðrχμÞðβÞ. We have fixed cμ ≡ 0 for our main fits and take
half the difference to fits with free cμ but fixed bμ ≡ 0 into
account as a systematic error. The fits for the three masses
are shown in the left panel of Fig. 7. We obtain reasonable
fit results with χ2=dof ¼ 0.26, 0.27, 0.59 for the B, C and D
mass, respectively. We show the result for the combination
of B-functions BβBμ in the right panel of Fig. 7 and indicate
the asymptotic behavior of this quantity ðBμBβ ¼ 1þ 3

π3β
Þ

at high values of the coupling. The colored shaded areas
correspond to statistical errors and we have visualized the
total errors including the systematic fit type related errors
by grey bands. The error on Bβ has not been included at this
stage of the analysis. It is however accounted for when
computing the trace anomaly.

VII. INTERPOLATION OF T ¼ 0 OBSERVABLES

We have calculated the quantities needed in Eq. (14) for
all pairs of values of β and ðaμÞ that are available from
ETMC [34]; see Table IV in Appendix B. Additionally we
have substantially increased the T ¼ 0 data by additional
runs; see Table V. However, not every T > 0 simulation
point has been supplemented by an according T ¼ 0
simulation. Therefore, we have to interpolate quantities
entering Eq. (14) to the precise value of the twisted mass
parameter ðaμðβÞÞ and the coupling β that are used for the
finite temperature runs.
The mass dependence of the T ¼ 0 data points is fitted

with cubic spline functions in the bare mass aμ. We use the
interpolated values from the fit. This interpolation is only
necessary for some values of β where the bare masses are
not matched to the simulations at T > 0 (in most cases at
values of the couplings that have been studied by ETMC).

FIG. 6 (color online). The β-function obtained according to
Eq. (18) from fitting expression (7) to the chirally extrapolated
data of the Sommer scale rχ=a. We also show the perturbative
two-loop expectation at large couplings as obtained from Eq. (8).
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The interpolation of these [possibly (aμ)-interpolated]
values in the inverse coupling β is performed using three
types of fit functions in order to study the systematics
corresponding to the choice of a specific fit function. Our
first choice (further on called type A) is a simple poly-
nomial function with varying degree dp,

f
dp
A ðβÞ ¼

Xi¼dp

i¼0

ciβi: ð23Þ

This ansatzmay be extended by splitting the fit up into a low
and a high β part at a value of βcut leading to a fit type B,

fBðβÞ ¼
(
flowB ¼ f

dp
A ðβÞ if β < βcut

fhighB if β > βcut
; ð24Þ

and we ensure smoothness of the function by an appropri-
ately chosen fhighB ,

fhighB ðβÞ ¼ c0 þ c1ðβ − βcutÞ þ
Xi¼dp

i¼2

ciðβ − βcutÞi: ð25Þ

As a third type of fit (type C) function we have considered
again a cubic spline function.

The central values for the T ¼ 0 subtraction of the gauge
action contribution to the trace anomaly hSgi are obtained
from an average over three fits corresponding to the three fit
types A, B and C discussed above. For the former two the
quality of the fit is indicated in Table II. These had to be
restricted to β ≥ 3.7 for obtaining a good value for χ2=dof.
We therefore restrict the analysis to β ≥ 3.7 disregarding
some simulated data at β ¼ 3.65 for the D and the C mass.
For the B mass the fits have been conducted in the range
3.76 ≤ β ≤ 4.35. In the case of fit type B we have included
the best fit result (in terms of χ2=dof) obtainedwhenvarying
βcut in Eq. (24). For type Awe have restricted ourselves to
dp ¼ 5 since only for this choice was the quality of the fit
reasonable. Our final value is obtained from an average over
the three fits and taking half the maximal deviation of either
of the three fits from the central value into account as a
systematic error which is added to the statistical errors as
obtained from fit type A in quadrature.
Since the number of available T ¼ 0 points is very

limited above β ¼ 4.0 we had to take special care in order
to obtain a reliable interpolation for the inverse coupling
β ¼ 4.25 for the B mass and Nτ ¼ 12. In this case the
precision at T > 0 is good enough to see a∼2σ effect on the
value of I=T4 corresponding to β ¼ 4.25. To this end we
have fitted the above fit functions of type A and B with a
lower number of parameters there and used these inter-
polations for the subtractions at the inverse coupling
parameter values β ¼ 4.25 and β ¼ 4.35. For the C mass
andNτ ¼ 12with less statistics the effect is at the ∼1σ level
only and we stick to the analysis in terms of type A, B and
C fits fitted globally to all values of the coupling.
In Fig. 8 we show results of the fits for the three mass

values. As from the figures in the upper panels themselves
it is impossible to estimate the quality of the fit due to the
small errors, we show the residuals of the fits (i.e. the

TABLE II. Fit quality results for T ¼ 0 interpolations of hSgi
providing the subtraction for the trace anomaly. For fit type Awe
show the best achieved χ2=dof with dp ¼ 5 and for type B with
dp ¼ 4 or 5 and varying βcut, respectively.

χ2=dof Type A Type B

Ensemble B 1.7 1.5
Ensemble C 2.2 1.6
Ensemble D 3.4 1.5

FIG. 7 (color online). Left: Fit of rχμ with Eq. (21) for all three masses. Right: Combination of B-functions BβBμ for all three masses.
The perturbative asymptotic behavior is indicated by the lines at high values of the coupling. The curves for the B and D mass have been
shifted for better visibility.
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difference of the averaged fit and the data normalized by the
corresponding errors) in the middle panels of the figures.
Having in mind the values of χ2=dof obtained we underline
the fact that the different kinds of fits have provided curves
which reasonably fall on top of each other. The final error
estimate is shown as absolute errors in the lower panels of
Fig. 8. They are of orderOð10−3Þ at lower β values and fall
off even below Oð10−4Þ for larger β. This can be compared
with the magnitude of uncertainty of the nonzero temper-
ature estimates for hSgi as collected in Tables VI–VIII.
For the fermionic contribution hSfi we used exclusively

the fit type C for subtracting the divergent contribution at
T ¼ 0. The reason is that for the B ensemble the tuning of
the mass μ has not been done on the same footing for all
couplings. While in the near vicinity of the crossover the
one-loop β-function has been used, we have opted for the
two-loop β-function at larger as well as smaller couplings.
For Nτ ¼ 10 the mass has been even tuned only very
approximately in the range 3.86 ≤ β ≤ 3.93 and aμ ¼
0.006 has been set. Since the divergence to be subtracted
is of the form ∼aμ=a3, and thus sensitive to the mass, bad
fit results can be expected when the precise value of aμðβÞ
is slightly changed when varying β. We note however that

this slight variation in the way of tuning aμ does not affect
the tuning of the physical pion mass, i.e. the line of constant
physics, as was shown in Sec. IV.

VIII. TRACE ANOMALY RESULTS

In this section we present our results for the trace
anomaly and the there-from derived thermodynamic quan-
tities for the B, C and D ensembles. The data are shown for
varying Nτ in Fig. 9 where we observe severe lattice
artifacts. In order to remedy this large effect we have
studied what is known in the literature as tree-level
improvement Ref. [1].
The starting point for this method is the bosonic and

fermionic pressures per degree of freedom in the non-
interacting limit which read pB ¼ π2

90
T4 and pF ¼ 7

8
π2

90
T4,

respectively. Upon counting the number of bosonic and
fermionic degrees of freedom for Nf ¼ 2 QCD we obtain
the Stefan-Boltzmann limit of the pressure as

pSB

T4
¼

�
16þ 7

8
× 24

�
π2

90
≈ 4.0575: ð26Þ

FIG. 8 (color online). Upper panels: Interpolation of (T ¼ 0) values in β for the gauge action contributions hSgi to the trace anomaly
for (from left to right) the B, C and D mass. We show the outcome of the average of fits of type A (dp ¼ 5), B (dp ¼ 4 or 5) and C.
Middle panels: Residuals for the fit results in order to illustrate the quality of the interpolation. Lower panels: Magnitudes of the absolute
errors of the fit results shown in the upper panel. In the figures of the middle and lower panels only those points are shown for which
T > 0 computations have been carried out.
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On the lattice the free limit pressure pL
SB receives Nτ-

dependent corrections that vanish in the continuum limit. It
has been calculated for the twisted mass action in Ref. [39].
Through the mass dependence of the fermion propagator,
pL
SB as well as pSB depend in general on the ratio mR

T of
renormalized quark mass and temperature. However, this
dependence is weak, the change being of the order of below
1%when varyingmR in the ranges of the twisted masses we
have simulated. We have used the ratio pL

SB=pSB to correct
the trace anomaly data for its leading cutoff effects.
Together with the corresponding ratio for the tree-level

Symanzik improved gauge action that can be found in
Ref. [40]2 we obtain the following correction factors that
are used throughout this work:

Nτ 4 6 8 10 12

pL
SB=pSB 2.576 1.631 1.263 1.134 1.082

The tree-level correction of the trace anomaly then
amounts to making the following replacement in the whole
temperature interval:

�
I
T4

�
⇒

�
I
T4

�
=
�
pL
SB

pSB

�
: ð27Þ

The tree-level correction of the trace anomaly may be
checked by studying the continuum limit of I=T4 with and
without the correction in place. To this purpose we show in
Fig. 10 a comparison of two different ways to take the
continuum limit of the trace anomaly for the three ensem-
bles. In each case we consider two values of the temperature
T ¼ ð240 and 362Þ MeV, T ¼ ð270 and 362Þ MeV and

T ¼ ð275 and 362Þ MeV for the B, C and D ensemble,
respectively. The smaller temperature was chosen in the
range of the maximum of the interaction measure, while the
higher temperature is situated in the falling (right) flank.
Data for differentNτ were interpolated using a second order
polynomial fitted to the four data points closest to the given
temperature under investigation. We perform continuum
extrapolations linear in 1=N2

τ including Nτ ¼ 12, 10, 8
(where possible also Nτ ¼ 6) once with the multiplicative
correction [Eq. (27)] in place and once without it. We
observe that both procedures lead to compatible continuum
limit values matching each other within two standard
deviations for the trace anomaly. The correction leads in
general to a flatter continuum limit than we observe for the
uncorrected data. Apart from T ¼ 240 MeV for the B mass
(where no Nτ ¼ 6 data point is available) the corrected
results are even compatible with a flat continuum limit.
Moreover, the corrected trace anomaly values at the two
largest temporal extents (Nτ ¼ 8; 10 for the D mass and
Nτ ¼ 10; 12 for the B mass) are in all cases compatible with
each within errors.
The integration of Eq. (3) is performed by fitting a

modified version of an ansatz used in Ref. [1] to the
available lattice data for I

T4 (discarding those for Nτ ¼ 4).

I
T4

¼
�
1þ a2

N2
τ

�
× exp ð−h1 t̄ − h2t̄2Þ·

×

�
h0 þ

f0ftanh ðf1 t̄þ f2Þg
1þ g1 t̄þ g2t̄2

�
: ð28Þ

While in Ref. [1] the normalization temperature T0 in the
dimensionless ratio t̄≡ T=T0 has been fixed we let T0 vary
in the fit. Since we observe large cutoff effects in our trace
anomaly results we furthermore include a multiplicative

FIG. 9 (color online). Left: The trace anomaly for the B mass obtained for different values of the temporal extentNτ. Middle: The same
quantity for the C mass. Right: The same quantity for the D mass. For the B mass the results obtained on the smaller spatial volume are
superimposed slightly shifted for better visibility.

2Since the ratio rapidly approaches unity for increasing Nτ we
adopt a value of 1 for Nτ ¼ 12 which induces a negligible error.
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correction term into our fit function incorporating the
leading and subleading Nτ dependence.
Table III lists the best fit parameters together with errors

of fits of the interpolation formula Eq. (28) to the trace
anomaly data for the B, C and D ensembles, respectively,
after the trace anomaly has been corrected using the tree-
level correction Eq. (27). The table also provides the
χ2=dof values of these fits. The interpolation curves are
illustrated together with the data corresponding to the three
pion mass values in Fig. 11.
The error of the interpolation indicated by a grey band in

these figures is evaluated as follows. From fits to bootstrap
samples of our data we estimate a first error of our
interpolation, giving rise to the errors on the fit parameters
presented in Table III. A second error is obtained by fitting
the interpolation function to the data shifted by one
standard deviation in the upper and lower directions and
measuring the deviation to the fit of the original data. Both
errors are then added in quadrature. We have adopted this

rather nonstandard method because we have observed that
the first of these errors (originating from the bootstrap
analysis) is very small as compared to the uncertainties of
the data themselves. This is especially true for the low
temperature region. Thus by considering the pure fit error
we would certainly have underestimated the error of the
trace anomaly interpolation there.
For the D ensemble we have includedNτ ¼ 10 andNτ ¼

8 into the fit, while for the C and B ensemble we fit Nτ ¼
12; 10 and 8. This approach, which assumes a behavior
constant in Nτ towards the continuum limit, is justified by
the effectiveness and reliability of the tree-level correction.
The latter effectively superimposes data from different Nτ

as can be seen from Fig. 11. We have explicitly checked the
outcome of our global fits for two values of the temperature
in Fig. 10, where we compare standard continuum extrap-
olations in 1=N2

τ for data with and without tree-level
correction to the continuum estimate provided by this fit.
In all cases we find compatible continuum results.

FIG. 10 (color online). Continuum limit of the trace anomaly for three masses and for, in each case, two values of the temperature once
with tree-level correction (blue circles and lines) and once without (red squares and lines). We compare the continuum limit results for
the two extrapolations with the continuum estimate provided by the global fit Eq. (28) at the same temperature (green triangles).

TABLE III. Fit parameters obtained from fits of Eq. (28) to the tree-level corrected trace anomaly data of the B, C
and D mass ensembles, respectively.

Ensemble Parameters

B

h0 h1 h2 f0 f1
0.20(13) −4.4ð1.4Þ 4.9(1.8) 0.074(21) 0.9090(3)

f2 g1 g2 T0 χ2=dof
5.5112(3) −1.83ð8Þ 0.88(7) 211(4) 1.7

C

h0 h1 h2 f0 f1
0.03(3) −8.7ð2.5Þ 6.8(2.8) 0.021(9) 0(3)
f2 g1 g2 T0 χ2=dof
1(4) −2.2ð2Þ 1.29(18) 238(2) 1.2

D

h0 h1 h2 f0 f1
0.05(7) −5.3ð7Þ 5.3(8) 0.09(2) 1.15421(9)
f2 g1 g2 T0 χ2=dof

5.73995(7) −2.2ð6Þ 1.27(6) 268(2) 0.90

EQUATION OF STATE OF QUARK-GLUON MATTER FROM … PHYSICAL REVIEW D 91, 074504 (2015)

074504-11



We conclude this paragraph with a discussion of finite
size effects. At T > 0 the thermodynamic limit has been
studied for the smallest pion mass. We have evaluated the
trace anomaly for Nτ ¼ 12 reducing the spatial extent from
Nσ ¼ 32 to Nσ ¼ 24. As can be seen from Fig. 11 the
results on the smaller volume are compatible (within the
large errors) with the result obtained in the larger volume.

IX. PRESSURE AND ENERGY DENSITY

From the fitted interpolation of the interaction measure
Eq. (28) it is straightforward to calculate the pressure by
performing a numerical integration starting in all cases from
the lowest available data point of I=T4 where we set the

pressure equal to zero. In otherwordswe setp0 ¼ 0 in Eq. (3)
with T0 being our smallest temperature T ¼ 174 MeV
(T ¼ 177 MeV) for the B (C and D) mass. In Sec. X we
try to estimate p0 from a comparison of our Nf ¼ 2 lattice
data at unphysically high masses to adapted HRG models.
In this way we obtain the pressure (and the energy

density from adding three times the pressure to I) for all
temperatures in the temperature interval covered by our
simulations. We do not restrict ourselves to the points in T
where we actually have lattice data, but rather give the
corresponding error channels for all upper integration
bounds. This seems to us the most natural choice as we
have included into the interpolation fits to I=T4 data from

FIG. 11 (color online). Left: The tree-level corrected trace anomaly for the B mass obtained for different values of the temporal extent
Nτ. Tχ and Tdeconf are located at 193 and 219 MeV, respectively. Middle: The same quantity for the C mass with Tχ and Tdeconf located at
208 and 225 MeV, respectively. Right: The same quantity for the D mass with Tχ and Tdeconf located at 229 and 244 MeV, respectively.
Also shown is the result of a combined fit of the interpolation formula Eq. (28) to the Nτ ¼ 8; 10 and 12 data (Nτ ¼ 6; 8 and 10 in the
case of the D mass). For the B mass the results obtained on the smaller spatial volume are superimposed slightly shifted for better
visibility. This data however have not been included in the fit.

FIG. 12 (color online). Left: Final result for the pressure p and the energy density ϵ in units of T4 for the B-mass ensemble. We also
show once more the interpolation of the trace anomaly used for integrating the pressure. The arrow in the upper right corner indicates the
expected Stefan-Boltzmann limit for the pressure. On top of the panels we provide the temperature in units of Tc ≡ Tχ . Middle: The
same for the C mass. Right: The same for the D mass.
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several values of Nτ. In Fig. 12 we show our results for the
pressure (3p) as well as the energy density (ϵ) as a function
of the temperature. At the top of the three panels in this
figure we also mark the temperature in units of the
pseudocritical temperature Tc ≡ Tχ , the latter determined
from the maximum of the chiral susceptibility in each mass
case. We used the estimate originating from the largest Nτ

in all cases.
The energy density features a sharp rise around Tc

signaling the transition into the quark-gluon plasma regime.
At temperatures of about ∼1.3Tc however, the increase has
stopped and we observe an almost constant behavior up to
the largest temperatures considered. This feature is also
observed by other groups, cf. Ref. [1,5,41]. At large temper-
atures we can confront pressure and energy density to the
ideal gas Stefan-Boltzmann pressure [Eq. (26)], which is
indicated by the black arrow to the right of the figures. At our
largest accessible temperature corresponding to T=Tc ∼ 2
our computed energy density attains roughly half of its
expected asymptotic Stefan-Boltzmann limit value.
Another observable of phenomenological interest deriv-

able from the basic bulk thermodynamic quantities p and ϵ
is the velocity of sound of the hot medium which is defined
as the derivative of the pressure with respect to the energy
density

c2s ¼
dp
dϵ

ð29Þ

and may be calculated from the ratio p=ϵ by means of the
following identity [41]:

dp
dϵ

¼ ϵ
dðp=ϵÞ
dϵ

þ p
ϵ
: ð30Þ

In Fig. 13 we show our result for the ratio of pressure
and energy density as well as the speed of sound c2s as a
function of the energy density in units of GeV=fm3. The

ratio p=ϵ is evaluated most directly from p and ϵ, whereas
the speed of sound c2s is evaluated according to Eq. (30)
from its derivative. We do not calculate any error so far for
the velocity of sound, as the error on the basic quantity
p=ϵ itself is already very large. At large temperatures we
observe that the limiting Stefan-Boltzmann value of
ðp=ϵÞSB ¼ 1=3 is nicely approached. However, we are
not able at the current precision to resolve the dip at small
temperatures that is observed in p=ϵ results from staggered
simulations [1,42].

X. HADRON RESONANCE GAS MODEL: FIXING
THE INTEGRATION CONSTANT P0

In the hadronic phase at temperatures below the cross-
over transition hadrons and resonances form the relevant
degrees of freedom that may be thermally excited. It has
been argued that in this region of temperature a gas of free,
noninteracting hadrons and resonances could provide a
good approximation to the interacting thermal medium. A
comparison of the HRG model with lattice data has been
conducted for instance in Ref. [2,3]. Good agreement with
results of nonperturbative lattice evaluation is found for
various quantities even up to the crossover temperature.
At vanishing chemical potential the free pressures of

mesons (M) and baryons (B) can be written as

pHRG

T4
¼ 1

VT3

X
i∈Mesons

lnZM
mi
ðT; VÞ

þ 1

VT3

X
i∈Baryons

lnZB
mi
ðT; VÞ; ð31Þ

where according to Bose and Fermi statistics for mesons
and baryons, respectively, and in terms of the energies
Eiðmi; kÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

i þ k2Þ
p

and state degeneracies di the

contributions lnZM=B
mi are given as

FIG. 13 (color online). Left: The ratio p=ϵ for the B ensemble as a function of the energy density in units of GeV=fm3. We also show
the speed of sound squared c2s obtained from p=ϵ. Arrows indicate the expected large T Stefan-Boltzmann limit given by 1=3. Middle:
The same for the C mass. Right: The same for the D mass.
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lnZM=B
mi ¼ ∓di

V
2π2

Z
∞

0

k2 ln ð1∓e−Eiðmi;kÞ=TÞdk: ð32Þ

We have conducted a threefold analysis confronting our
lattice data of the interaction measure for the B and the C
mass with the interaction measure provided by the above
formula upon taking the derivative with respect to
temperature as prescribed in Eq. (1). There are three
options. First we may include all known physical states
as referenced by the PDG [43] up to a certain cutoff
mass, which we have set to mcut ¼ 1.9 GeV throughout.
The heaviest meson we include is the π2ð1880Þ and the
heaviest baryon is the Δð1905Þ. As can be seen from
Fig. 14 the interaction measure evaluated with all
physical states (corresponding to the Nf ¼ 3 curve in
the pictures) overshoots the data at small temperatures
significantly.
As another choice we may restrict the set of states

entering Eq. (31) to the ones with S ¼ 0, i.e. to states
without strangeness. Doing so already closes more than
half of the gap between our lattice results and the HRG
estimate from Nf ¼ 2 which is labeled “Nf ¼ 2 HRG
phys.” in the pictures. Since the value of pion masses
we have considered in this work is yet somewhat above
the physical value the remaining difference to a Nf ¼ 2

HRG model at physical masses is not unexpected.
Along the ideas of Ref. [44] we have therefore
conducted a third approach and have used where
possible the measured lattice mass spectrum data
corresponding to unphysical pion masses obtained
within the ETMC. We summarize in the list given
below the mass information MB and MC for the states
we have included in this analysis for the cases of the B
and C ensembles and give the reference, where it has
been published:

State Reference MB [GeV] MC [GeV]

ρ [45] 0.943 0.858
a0 [45] 1.116 1.252
b1 [45] 1.603 1.529
η2 [46] 1.008 1.066
N [47] 1.209 1.282
Δ [47] 1.517 1.589

In all cases at least two lattice spacings (corresponding to
β ¼ 3.9 and β ¼ 4.05) as well as several values of the bare
quark mass aμ have been studied. A detailed continuum
extrapolation including three or more values of the cutoff
would go beyond our possibilities in most of the cases. For
converting into physical units we have used the lattice
spacings obtained in Ref. [33], a ¼ 0.089 and a ¼ 0.070
for β ¼ 3.9 and β ¼ 4.05, respectively. Since in all cases
cutoff effects are small, we have used in our analysis the
value obtained from a spline interpolation of the hadron
mass in lattice units as a function of the bare quark mass at
the finer lattice spacing and converted to physical units. The
values are shown in the table above.
As the mass splitting of different isospin states induced

by the twisted mass term is mostly small (with the
exception of the neutral pion) and since no cutoff effects
are visible in our trace anomaly data at low temperature, we
have neglected this splitting.
Furthermore, in addition to the table above we could use

the ω − ρ mass splitting of 27 MeV calculated in Ref. [48]
which then fixed the ω mass in our analysis. The excited
states of the ρ; a; b; η;ω; N and Δ particles have been
considered by taking the mass difference between the
excited and the ground state particle from PDG and adding
this splitting to the ground statemassmeasured on the lattice.
Since this analysis is intended to stay on a qualitative level
only, given the unknown systematics, we do not consider
errors on the hadron masses either taken from PDG or from a

FIG. 14 (color online). Comparison of the interaction measure in the low temperature region to the predictions of several HRG model
adaptations. Left: The data and analysis corresponding to the B mass is shown. Right: The same for the C mass. See text for details.
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lattice study.Masses for other particles than those listed in the
above table have been set to their PDG values.
As can be seen from the curve labeled with “Nf ¼ 2

HRG lattice” in Fig. 14, this Nf ¼ 2 HRG model incor-
porating the unphysically high masses is compatible with
our determination of the trace anomaly at temperatures in
the vicinity to the transition both for the B and the C mass.
In the left panel of Fig. 15 we show curves for the pressure
at low temperature obtained from the various adaptations of
the HRGmodel under consideration. The curves correspond-
ing to the B and C mass we can use to fix the value for the
integration constantp0. AtT ¼ 174 MeVweobtain for theB
mass pB

0 ¼ 0.302 and at T ¼ 177 MeV we obtain for the C
mass pC

0 ¼ 0.267. Using these values to start the pressure
integral and assuming a conservative 20% error onp0 in both
cases we obtain for the integrated pressure and the energy
density the curves depicted in the right panel of Fig. 15.

XI. COMPARISON WITH OTHER RESULTS

Since the trace anomaly is the starting point for all bulk
thermodynamics observables it is natural to choose this
quantity for a comparison with other results. In our Nf ¼ 2
study the maximum of the trace anomaly has a height of
∼3. Continuum extrapolated results for Nf ¼ 2þ 1 at the
physical point are reported for stout staggered quarks in
Ref. [1] and for HISQ staggered quarks in Ref. [3]. Both
report the maximum of the trace anomaly at height ∼4. A
study using Wilson quarks together with the fixed scale
approach reports the maximum at a value of ∼7.5 [8]. We
compare our result for the trace anomaly at the smallest
mass with a peak height of ∼3 with the data of Ref. [3] in
the right panel of Fig. 16. The data are shown as a function
of the ratio T=Tc, where we use our estimates from Table I
at the largest available Nτ for Tc. It is also worthwhile to
compare with the Nf ¼ 0 case for which the EoS was
computed in Ref. [49] and more recently with increased

precision in Ref. [50]. The continuum extrapolated data
taken from Table I of the latter reference are also shown in
Fig. 16. We have connected data points with lines to guide
the eye. The Nf ¼ 0 peak value is smaller than for Nf ¼ 2,
and the falling edge of the trace anomaly stays below our
interpolation for the B mass. The curves from our two
larger quark masses seem to approach the Nf ¼ 0 curve at
large temperature.
When including a nonzero p0 as a starting point for the

pressure integration we obtain at T ¼ 2 Tc a value of
p=pSB ¼ 0.45ð7Þ and 0.48(7) for the B and C mass, respec-
tively. These values are slightly smaller than those computed
with Nf ¼ 2þ 1 at the physical point in Refs. [1] and [3].

FIG. 15 (color online). Left: The pressure as obtained from several HRG models is shown. See text for details. Right: The pressure and
energy density for the B mass (mπ ∼ 360 MeV) and for the C mass (mπ ∼ 430 MeV) as obtained when using the lattice HRG model
pressure for estimating the integration constant p0.

FIG. 16 (color online). A comparison of I=T4 versus T=Tc
between Nf ¼ 0 obtained in Ref. [50], our data at Nf ¼ 2 for the
B mass and Nf ¼ 2þ 1 obtained in Ref. [3]. We also show our
curves for the C and D (mπ ∼ 640 MeV) masses, however,
suppressing the errors for better visibility. For Tc we use our
Tχ estimates obtained at the largest Nτ available.
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XII. CONCLUSIONS

In this work we have presented a calculation of QCD
thermodynamics with two degenerate flavors of Wilson
twisted mass quarks. To our knowledge this is the first work
at Nf ¼ 2 providing a continuum limit estimate of thermo-
dynamics. Moreover, our work constitutes the first fully
systematic determination of the trace anomaly using a
Wilson-type quark discretization. Since we were not (yet)
able to work at the physical value of the pion mass, we have
conducted the calculation at three values of unphysically
large pion mass. Comparing the results as a function of
T=Tc we found only little residual mass dependence for
the trace anomaly, while Tc itself decreases with smaller
mass as was seen in Ref. [28]. Here we investigated the
pseudocritical temperature further at several lattice spac-
ings for each considered (charged) pion mass and found no
significant Nτ dependence.
The trace anomaly depends on the quark mass. For a

small mass interval we find that this dependence is mostly
due to a shift in Tc, since the results expressed as a function
of T=Tc show little mass dependence. However, there is a
clear sensitivity to the matter content which is seen by
comparing with the quenched determination and results
with a dynamical strange mass, and lighter quarks. The
peak height of the interaction measure is steadily increasing
when enlarging the number of active quark flavors. This
suggests that the quark-gluon plasma is more strongly
interacting when adding more fermions which confirms
and extends the analysis of Refs. [51–52].
On the basis of a continuum estimate of the trace

anomaly using an interpolation ansatz we have calculated
by means of the integral method (up to an integration
constant) the pressure, the energy density and the speed of
sound in the transition region and up to ∼ð2.0–2.5ÞTc.
We have compared our findings for the trace anomaly at the

two lowerquarkmass values in the regionof the transitionwith
adaptations of the hadron resonance gas model. In order to
reproduce (within errors) in these two cases of lower quark
mass the risingpart of the trace anomaly, not only hadronswith
strangeness had to be disregarded in the model, but also the
masses of their ground and excited states had to be adapted to
match the nonphysical masses used in our simulations. With
these adaptations to the HRGmodel we found it to agree with
our trace anomaly results. Given this agreement we have
extracted from the HRG model a value of the integration
constant for thepressure at our smallest available temperatures.
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APPENDIX A: SYMANZIK
EXPANSION OF hχ̄ χ isub

Starting from Eq. (14) we need to measure a term
hPxχ̄xχxisub stemming from the m derivative of the action
Eq. (4). Since the sum is composed of short distance
contributions and the operator may mix with different
operators of the same symmetry the usual arguments of
automatic OðaÞ improvement do not necessarily hold. In
[56] the Symanzik expansion of the vacuum polarization
tensor has been studied. We rely for the following argument
on the characterization of operators in terms of symmetry
transformations achieved there.
At maximal twist the symmetry transformations of

hχ̄χisub (we suppress the sum over spacetime in what
follows) read

P1=2 P½μ→−μ� T 1=2 T ½μ→−μ� C PD½−m�½−r� R1=2
5 D½−μ�

χ̄χ þ1 þ1 þ1 þ1 þ1 −1 þ1

Being an operator of mass dimension three χ̄χ will mix
with operators of mass dimension lower or equal to three
under renormalization which have the same symmetry
transformation properties. The local operators having the
same symmetry properties as χ̄χ up to dimension 4 read

fr;mq; rm2
q; rmqχ̄χ; rμqχ̄γ5τ3χg; ðA1Þ

where mq is to be considered as the subtracted quark mass
mq ¼ m −mc with mc denoting the critical value.
Using the above set a finite subtracted operator can be

constructed as

χ̄χR ¼ Zχ̄χ χ̄χ þ r
Zr

a3
þmq

Zmq

a2
þm2

q
Zm2

q

a

þ armqZrmq þ arμqZrμ2q þOða2Þ: ðA2Þ

The expansion becomes complete once the effective
Lagrangian is also expanded:
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Leff ¼ L4 þ aL5 þ a2L6 þ a3L7 þOða4Þ: ðA3Þ

From the expansion of the effective action S in the
Boltzmann weight

exp ð−SÞ ¼ exp ð−S4Þ
�
1 − aS5 þ a2

�
1

2
S25 − S6

�

þ a3
�
−
1

6
S35 þ S5S6 − S7

�
þOða4Þ



ðA4Þ

further terms arise in the Symanzik expansion of the
operator, where the notation Si ¼

R
LiðxÞd4x has been

used. Keeping only terms up to order OðaÞ and restricting
to the case mq ≡ 0 that is implied by the maximal twist
condition the combined Symanzik expansion is given by

hχ̄χiR ¼ Zχ̄χhχ̄χi0 þ r
Zr

a3
h1i0 þ r

Zr

a2
h−S5i0

þ r
Zr

a

��
−S6 þ

1

2
S25

	
0

�

þ rZr

��
−S7 þ S5S6 −

1

6
S35

	
0

�
þOðaÞ: ðA5Þ

The divergent terms ∼a−n need to be cared for by
subtracting the T ¼ 0 result. The two finite terms hχ̄χi0
and rZrhL7i0 vanish due to R1=2

5 symmetry of L4 over

which the terms are averaged, since they are R1=2
5 odd.

After T ¼ 0 subtraction we thus note that the remaining
terms are lattice artifacts of OðaÞ and higher.
For the trace anomaly we however need to consider the

bare dimensionless lattice operator a3hχ̄χi0 instead of the
fully subtracted and multiplicatively renormalized operator
discussed above. Restricting the expansion to Oða2Þ
precision we obtain

a3

Zχ̄χ hχ̄χisub ¼ a3hχ̄χi0 þ r ~Zrh1i0 þ ar ~Zrh−S5i0

þ ra2 ~Zr

��
−S6 þ

1

2
S25

	
0

�
þOða3Þ; ðA6Þ

where we have absorbed the Zχ̄χ on the right-hand side into
the definition of the Z-factors of the operators. Since the
bare operator χ̄χ is anR1=2

5 -odd (or equally a twisted parity

odd) operator its expectation value with respect to theR1=2
5 -

symmetric (twisted parity even) continuum twisted mass
action vanishes. The constant piece proportional to h1i0 will
be eliminated by the T ¼ 0 subtraction of the trace anomaly.
The remaining terms are lattice artifacts that can be further
restricted to being of order Oða2Þ and higher upon noting
that also the contributions to S5 are R1=2

5 odd. The T ¼ 0

subtracted contribution to the trace anomaly from the m
derivative of the action is thus seen to be vanishing in the
continuum limit at Oða2Þ and can (and also should) be
disregarded in the evaluation right from the beginning.

APPENDIX B: TABLES

TABLE IV. Parameters and results for T ¼ 0 ETMC generated gauge ensembles used in this analysis. For further details we refer the
reader to Refs. [34,35]. We show results for the pseudoscalar mass, ðr0a Þ, the gauge action hSgi and the fermion action hSfi. The latter two
have been evaluated fully using the available statistics.

Nτ Nσ β κ aμ amPS mPSL hSgi hSfið×102Þ ðr0aÞ
48 24 3.80 0.164111 0.00600 0.1852(9) 4.4 5.34639(94) 4.467(16) 4.321(32)
48 24 3.80 0.164111 0.00800 0.2085(8) 5.0 5.34747(60) 5.590(09) 4.440(34)
48 24 3.80 0.164111 0.01100 0.2424(5) 5.8 5.34900(82) 7.164(07) 4.362(21)
48 24 3.80 0.164111 0.01650 0.2957(5) 7.1 5.34887(22) 10.001(08) 4.264(14)
64 32 3.90 0.160856 0.00300 0.1167(4) 3.7 � � � � � � � � �
64 32 3.90 0.160856 0.00400 0.1338(2) 4.3 5.47032(15) 2.753(07) � � �
48 24 3.90 0.160856 0.00400 � � � � � � 5.47012(33) 2.737(08) 5.196(28)
32 16 3.90 0.160856 0.00400 � � � � � � 5.47108(54) 2.490(21) � � �
48 24 3.90 0.160856 0.00640 0.1694(4) 4.1 5.47027(17) 3.923(09) 5.216(27)
48 24 3.90 0.160856 0.00850 0.1940(5) 4.7 5.47011(27) 4.926(10) 5.130(28)
48 24 3.90 0.160856 0.01000 0.2100(5) 5.0 5.47074(18) 5.654(11) 5.143(25)
48 24 3.90 0.160856 0.01500 0.2586(7) 6.2 5.47003(27) 8.030(10) 5.039(21)
64 32 4.05 0.157010 0.00300 0.1038(6) 3.3 5.63404(19) 1.691(05) 6.584(34)
64 32 4.05 0.157010 0.00600 0.1432(6) 4.6 5.63419(08) 3.019(03) 6.509(38)
64 32 4.05 0.157010 0.00800 0.1651(5) 5.3 5.63419(14) 3.879(05) 6.494(36)
64 32 4.05 0.157010 0.01200 0.2025(8) 6.5 5.63400(06) 5.612(04) 6.284(22)
96 48 4.20 0.154073 0.00200 0.0740(3) 3.6 5.78133(06) 1.0013(29) 8.295(45)
64 32 4.20 0.154073 0.00650 0.1326(5) 4.2 5.78130(05) 2.8200(33) 8.008(29)
64 32 4.35 0.151740 0.00175 0.0748(17) 2.4 5.91477(04) 0.7363(48) 9.9(2)
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TABLE V. Simulation parameters for the T ¼ 0 runs. We show results for the pseudoscalar and PCAC mass as well as ðr0a Þ where
calculated.

Nτ Nσ β κ aμ amPS mPSL amPCAC hSgi hSfið×102Þ ðr0a Þ TU

24 16 3.65 0.170250 0.01200 0.302(6) 4.8 7ð9Þ × 10−4 � � � � � � 3.437(33) 17396
40 16 3.65 0.170200 0.02517 0.425(7) 6.8 2ð2Þ × 10−3 � � � � � � 3.249(64) 3610
24 16 3.70 0.168062 0.00900 0.254(8) 4.0 −3.6ð1.0Þ × 10−3 5.2231(12) 7.356(29) 3.853(59) 29042
24 16 3.70 0.168062 0.01055 0.268(6) 4.3 −2.6ð7Þ × 10−3 5.2212(13) 8.331(23) 3.706(116) 15126
40 20 3.70 0.168092 0.02406 0.397(7) 7.9 −4.8ð9Þ × 10−3 5.21675(32) 16.085(16) 3.673(40) 7359
20 20 3.72 0.167216 0.00724 � � � � � � � � � � � � � � � 3.895(51) 5637
20 20 3.72 0.167229 0.02342 � � � � � � � � � 5.24341(52) 15.236(22) 3.721(38) 3017
20 20 3.74 0.166401 0.02279 � � � � � � � � � 5.26912(46) 14.396(15) � � � 6237
24 16 3.76 0.165607 0.00689 0.208(5) 3.3 5ð6Þ × 10−4 5.29840(53) 5.291(19) 4.186(52) 52665
24 16 3.76 0.165607 0.00979 0.246(6) 3.9 −1.1ð7Þ × 10−3 5.29826(54) 6.979(10) 4.058(97) 20000
40 20 3.76 0.165608 0.02218 0.354(9) 7.0 −2.1ð9Þ × 10−3 5.29581(24) 13.652(08) 3.972(24) 7405
20 20 3.78 0.164844 0.02158 � � � � � � � � � 5.32171(49) 12.916(15) � � � 2900
32 20 3.80 0.164111 0.00655 � � � � � � 5.34846(27) 4.787(08) � � � 24343
40 20 3.80 0.164111 0.02100 0.338(4) 6.7 −1.8ð9Þ × 10−3 5.34767(28) 12.274(11) 4.166(51) 5319
48 24 3.82 0.163407 0.00639 � � � � � � � � � 5.37469(76) 4.538(12) � � � 2263
20 20 3.82 0.163407 0.02043 � � � � � � � � � 5.37207(49) 11.672(13) � � � 3030
48 24 3.84 0.162731 0.00623 � � � � � � � � � 5.39978(55) 4.281(10) � � � 1941
20 20 3.84 0.162731 0.01989 � � � � � � � � � 5.39851(37) 11.066(19) � � � 2541
48 24 3.85 0.162403 0.00600 0.175(2) 4.2 −1ð4Þ × 10−4 5.41145(75) 4.076(09) 4.711(53) 1244
48 24 3.85 0.162403 0.00893 0.208(4) 5.0 0.2ð4.4Þ × 10−4 5.41094(17) 5.573(06) 4.684(43) 4881
40 20 3.85 0.162403 0.01962 0.311(6) 6.2 −1.9ð8Þ × 10−3 5.41025(15) 10.799(11) 4.550(52) 4880
48 24 3.86 0.162081 0.00617 0.174(2) 4.1 −3ð3Þ × 10−4 5.42323(21) 4.092(06) � � � 10054
20 20 3.86 0.162081 0.01935 � � � � � � � � � 5.42195(29) 10.553(14) � � � 3003
20 20 3.87 0.161766 0.01909 � � � � � � � � � 5.43396(20) 10.285(13) � � � 4517
48 24 3.88 0.161457 0.00600 0.168(5) 4.0 −7ð4Þ × 10−4 5.44729(19) 3.857(04) � � � 9528
20 20 3.88 0.161457 0.01883 � � � � � � � � � 5.44576(24) 10.060(19) � � � 4032
40 20 3.90 0.160856 0.01833 0.292(6) 5.8 −1.9ð9Þ × 10−3 5.46948(18) 9.589(09) 4.842(44) 2522
20 20 3.92 0.160278 0.01784 � � � � � � � � � 5.49305(23) 9.111(12) � � � 2899
48 24 3.93 0.159998 0.00561 0.158(3) 3.7 −1ð3Þ × 10−4 5.50477(22) 3.345(04) 5.447(61) 9324
48 24 3.93 0.159998 0.00801 0.182(8) 4.4 −8ð7Þ × 10−3 5.50495(24) 4.486(08) 5.367(72) 2817
20 20 3.93 0.159997 0.01759 � � � � � � � � � 5.50434(18) 8.917(25) 5.324(83) 4437
20 20 3.94 0.159722 0.01736 � � � � � � � � � 5.51565(25) 8.717(13) � � � 2809
48 24 3.95 0.159452 0.00546 0.151(3) 3.6 2ð2Þ × 10−4 5.52714(11) 3.185(05) � � � 6955
20 20 3.96 0.159187 0.01689 � � � � � � � � � 5.53763(21) 8.330(14) � � � 2045
64 32 3.97 0.158927 0.00531 0.144(1) 4.6 −5ð2Þ × 10−4 5.54940(10) 3.013(06) 5.809(112) 2299
48 24 3.97 0.158926 0.00752 0.176(7) 4.2 −6ð7Þ × 10−4 5.54901(10) 4.036(04) 5.733(59) 4800
40 20 3.97 0.158926 0.01666 0.263(4) 5.2 −1.7ð8Þ × 10−3 5.54880(12) 8.151(10) 5.455(55) 4211
20 20 3.98 0.158671 0.01644 � � � � � � � � � 5.55936(21) 7.972(10) � � � 2806
48 24 3.99 0.158421 0.00517 0.141(4) 3.3 −2ð3Þ × 10−4 5.57097(11) 2.856(05) � � � 5538
64 32 4.01 0.157933 0.00503 0.135(2) 4.3 −3ð3Þ × 10−4 5.59268(16) 2.722(10) � � � 926
48 24 4.01 0.157933 0.00718 0.164(4) 3.9 −3ð4Þ × 10−4 5.59207(10) 3.690(05) � � � 5264
40 20 4.05 0.157010 0.01520 0.233(8) 4.6 −3ð2Þ × 10−3 5.63380(09) 6.974(09) 6.233(76) 4180
64 32 4.10 0.155945 0.00445 0.117(2) 3.7 2ð1Þ × 10−4 5.68485(06) 2.192(05) � � � 2090
20 20 4.10 0.155946 0.01431 � � � � � � � � � 5.68453(18) 6.334(03) � � � 1485
48 24 4.20 0.154073 0.01000 0.16(2) 3.8 4ð12Þ × 10−4 5.78135(11) 4.205(08) 7.6(2) 810
40 20 4.20 0.154073 0.01270 0.20(2) 4.0 −3ð2Þ × 10−3 5.78114(08) 5.254(08) � � � 3432
48 24 4.35 0.151740 0.00600 0.14(3) 3.3 −8ð20Þ × 10−4 5.91479(09) 2.363(06) 9.61(49) 977
40 20 4.35 0.151740 0.01050 0.176(8) 3.5 −0.2ð9Þ × 10−3 5.91485(08) 4.069(18) 10.19(55) 3907
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TABLE VI. Simulation parameters for the B-mass ensembles. Results for the bare Polyakov loop, the gauge action hSgi and the
fermion action abbreviated as hSfi. TU denotes the number of Monte Carlo time units simulated.

Nτ Nσ β κ aμ T½MeV� ReðLÞ hSgi hSfið×102Þ TU

12 32 3.86 0.162081 0.00617 175 5.9ð3Þ × 10−4 5.42332(22) 3.937(08) 16697
3.88 0.161457 0.00600 181 7.3ð3Þ × 10−4 5.44716(13) 3.691(06) 17375
3.90 0.160856 0.00584 186 8.7ð2Þ × 10−4 5.47070(17) 3.440(07) 14249
3.93 0.159998 0.00561 195 1.24ð3Þ × 10−3 5.50501(13) 3.114(11) 12099
3.95 0.159452 0.00546 201 1.51ð4Þ × 10−3 5.52741(12) 2.930(10) 7878
3.97 0.158927 0.00531 208 1.95ð3Þ × 10−3 5.54952(12) 2.724(10) 9653
3.99 0.158421 0.00517 214 2.20ð4Þ × 10−3 5.57121(10) 2.557(13) 8968
4.01 0.157933 0.00503 220 2.70ð5Þ × 10−3 5.59285(06) 2.391(10) 15223
4.04 0.157235 0.00689 230 3.39ð5Þ × 10−3 5.62441(08) 2.186(07) 6080
4.07 0.156573 0.00463 241 4.07ð6Þ × 10−3 5.65537(10) 2.030(07) 3359
4.10 0.155945 0.00445 251 4.84ð5Þ × 10−3 5.68538(06) 1.894(04) 15073
4.15 0.154969 0.00422 270 6.17ð7Þ × 10−3 5.73446(07) 1.736(03) 4080
4.20 0.154073 0.00396 290 7.57ð8Þ × 10−3 5.78177(06) 1.5828(19) 4640
4.25 0.153247 0.00372 311 9.17ð7Þ × 10−3 5.82769(07) 1.4510(23) 4160
4.35 0.151740 0.00316 356 1.22ð1Þ × 10−2 5.91511(05) 1.1852(17) 4334

10 32 3.76 0.165607 0.00689 178 1.53ð3Þ × 10−3 5.29836(42) 5.138(08) 18438
3.78 0.164844 0.00672 184 1.87ð4Þ × 10−3 5.32338(63) 4.756(11) 10385
3.80 0.164111 0.00655 190 2.29ð4Þ × 10−3 5.34970(26) 4.408(11) 11692
3.82 0.163407 0.00639 197 2.72ð6Þ × 10−3 5.37499(29) 4.085(15) 7811
3.84 0.162731 0.00623 203 3.34ð4Þ × 10−3 5.40005(15) 3.772(15) 9433
3.88 0.161457 0.00600 217 4.63ð5Þ × 10−3 5.44832(15) 3.233(61) 7945
3.90 0.160856 0.00600 224 5.75ð8Þ × 10−3 5.47185(13) 3.101(20) 2987
3.93 0.159998 0.00600 234 7.17ð10Þ × 10−3 5.50601(24) 2.967(14) 4025
3.95 0.159452 0.00545 242 8.03ð8Þ × 10−3 5.52882(17) 2.578(08) 1971
3.97 0.158926 0.00529 249 8.53ð9Þ × 10−3 5.55047(09) 2.469(06) 7276
4.01 0.157933 0.00503 265 1.06ð2Þ × 10−2 � � � � � � 2720
4.05 0.157010 0.00478 281 1.25ð1Þ × 10−2 5.63524(06) 2.060(03) 8716
4.10 0.155945 0.00449 302 1.45ð2Þ × 10−2 5.68587(10) 1.873(04) 2211
4.20 0.154073 0.00396 348 2.02ð2Þ × 10−2 5.78199(07) 1.5640(05) 4000
4.35 0.151740 0.00326 428 2.86ð2Þ × 10−2 5.91510(09) 1.2199(04) 2235

8 28 3.76 0.165607 0.00689 222 1.21ð2Þ × 10−2 5.30280(42) 4.204(14) 4350
3.80 0.164111 0.00655 238 1.58ð2Þ × 10−2 5.35447(28) 3.584(10) 4500
3.85 0.162401 0.00615 258 2.01ð2Þ × 10−2 5.41578(15) 3.082(07) 4444
3.90 0.160856 0.00578 280 2.46ð2Þ × 10−2 5.47404(21) 2.722(04) 3007
3.97 0.158934 0.00529 311 3.08ð2Þ × 10−2 5.55181(13) 2.348(03) 3148
4.01 0.157955 0.00503 331 3.45ð2Þ × 10−2 5.59437(12) 2.1692(20) 2746
4.05 0.157010 0.00479 351 3.80ð2Þ × 10−2 5.63594(11) 2.0119(07) 3792
4.10 0.155952 0.00449 377 4.27ð2Þ × 10−2 5.68652(10) 1.8372(04) 3581
4.20 0.154073 0.00396 435 5.12ð2Þ × 10−2 5.78247(11) 1.5462(03) 3750
4.35 0.151740 0.00328 535 6.56ð2Þ × 10−2 5.91527(08) 1.1681(02) 4200

6 32 3.80 0.164111 0.00655 317 7.17ð3Þ × 10−2 5.36235(17) 3.2125(10) 2926
3.82 0.163406 0.00639 328 7.38ð3Þ × 10−2 5.38576(20) 3.0758(22) 2085
3.84 0.162730 0.00623 339 7.70ð2Þ × 10−2 5.40928(22) 2.9446(07) 1578
3.86 0.162080 0.00608 350 7.98ð2Þ × 10−2 5.43233(21) 2.8243(09) 1611
3.90 0.160856 0.00578 373 8.60ð2Þ × 10−2 5.47760(16) 2.6033(05) 2337
3.97 0.158934 0.00529 415 9.62ð2Þ × 10−2 5.55432(15) 2.2734(03) 2034
4.05 0.157010 0.00479 468 1.076ð2Þ × 10−1 5.63805(16) 1.9634(02) 2151
4.10 0.155952 0.00449 503 1.15ð3Þ × 10−1 5.68829(20) 1.7979(02) 1025
4.20 0.154073 0.00396 580 1.284ð1Þ × 10−1 5.78360(06) 1.5174(01) 7440

4 32 3.80 0.164111 0.00655 476 2.507ð1Þ × 10−1 5.38475(23) 2.9518(03) 2528
3.86 0.162080 0.00608 525 2.605ð1Þ × 10−1 5.45140(20) 2.6245(02) 2233
3.90 0.160856 0.00578 559 2.669ð1Þ × 10−1 5.49520(32) 2.4324(02) 1737
3.97 0.158934 0.00529 623 2.782ð1Þ × 10−1 5.56926(18) 2.1392(02) 1547
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TABLE VII. Simulation parameters for the C-mass ensembles.

Nτ Nσ β κ aμ T½MeV� ReðLÞ hSgi hSfið×102Þ TU

12 32 3.90 0.160856 0.00821 186 8.4ð5Þ × 10−4 5.47062(16) 4.654(08) 5879
3.93 0.159997 0.00801 195 1.16ð4Þ × 10−3 5.50490(17) 4.309(13) 5180
3.95 0.159452 0.00779 201 1.35ð3Þ × 10−3 5.52722(20) 4.066(21) 5822
3.97 0.158926 0.00752 208 1.63ð3Þ × 10−3 5.54938(13) 3.818(08) 9179
3.99 0.158421 0.00738 214 2.13ð5Þ × 10−3 5.57143(10) 3.603(12) 5151
4.01 0.157933 0.00718 220 2.48ð5Þ × 10−3 5.59288(10) 3.411(16) 3270
4.03 0.157463 0.00699 227 2.92ð7Þ × 10−3 5.61370(09) 3.241(25) 6428
4.05 0.157010 0.00680 234 3.57ð8Þ × 10−3 5.63471(09) 3.063(13) 2620
4.07 0.156573 0.00662 241 4.19ð9Þ × 10−3 5.65510(07) 2.905(07) 3916
4.10 0.155946 0.00639 251 4.92ð7Þ × 10−3 5.68525(09) 2.729(08) 2613
4.15 0.154975 0.00599 270 6.2ð1Þ × 10−3 5.73446(07) 2.464(04) 2653
4.20 0.154073 0.00563 290 7.4ð2Þ × 10−3 5.78167(08) 2.2465(17) 2627
4.25 0.153238 0.00528 310 8.6ð2Þ × 10−3 5.82742(07) 2.0612(22) 2807
4.35 0.151740 0.00466 356 1.22ð2Þ × 10−2 5.91509(07) 1.7446(10) 2718

10 32 3.76 0.165607 0.00979 178 1.29ð3Þ × 10−3 5.29785(36) 6.846(07) 10357
3.80 0.164111 0.00956 190 1.94ð3Þ × 10−3 5.34910(26) 6.142(09) 9002
3.85 0.162403 0.00893 207 3.20ð6Þ × 10−3 5.41170(20) 5.170(14) 7679
3.90 0.160856 0.00821 224 5.22ð8Þ × 10−3 5.47155(11) 4.267(16) 10065
3.93 0.159998 0.00801 234 6.76ð13Þ × 10−3 5.50603(12) 3.927(12) 7173
3.95 0.159452 0.00779 242 7.62ð8Þ × 10−3 5.52831(11) 3.720(12) 8530
3.97 0.158926 0.00752 249 8.49ð12Þ × 10−3 5.55048(09) 3.497(09) 6518
4.01 0.157933 0.00718 265 1.05ð1Þ × 10−2 5.59352(05) 3.198(03) 11240
4.05 0.157010 0.00680 281 1.25ð1Þ × 10−2 5.63526(06) 2.927(03) 7264
4.10 0.155946 0.00639 302 1.51ð1Þ × 10−2 5.68570(05) 2.6556(14) 6864
4.20 0.154073 0.00563 348 2.02ð2Þ × 10−2 5.78199(06) 2.2235(06) 5231
4.35 0.151740 0.00466 428 2.87ð1Þ × 10−2 5.91513(06) 1.7331(02) 5051

8 28 3.65 0.170250 0.01200 183 4.15ð7Þ × 10−3 � � � � � � 4100
3.70 0.168062 0.01055 200 7.12ð12Þ × 10−3 5.1385(13) 7.589(25) 4315
3.72 0.167220 0.01029 207 8.40ð14Þ × 10−3 5.22238(91) 6.987(28) 4943
3.74 0.166400 0.01004 215 9.89ð15Þ × 10−3 5.24896(71) 6.426(18) 5199
3.76 0.165607 0.00979 222 1.16ð2Þ × 10−2 5.30285(45) 5.910(27) 4763
3.80 0.164111 0.00956 238 1.54ð2Þ × 10−2 5.35463(22) 5.239(12) 4745
3.85 0.162403 0.00893 258 2.00ð2Þ × 10−2 5.41582(21) 4.477(07) 5130
3.90 0.160856 0.00821 280 2.44ð2Þ × 10−2 5.47407(14) 3.877(04) 4199
3.93 0.159998 0.00801 293 2.72ð2Þ × 10−2 5.50778(13) 3.670(04) 4468
3.95 0.159452 0.00779 302 2.92ð2Þ × 10−2 5.53003(15) 3.5080(19) 2640
3.97 0.158926 0.00752 311 3.07ð3Þ × 10−2 5.55158(14) 3.3380(20) 2688
4.01 0.157933 0.00718 330 3.43ð2Þ × 10−2 5.59457(12) 3.0964(13) 4200
4.10 0.155946 0.00639 377 4.23ð3Þ × 10−2 5.68634(14) 2.6127(08) 2122
4.20 0.154073 0.00563 435 5.16ð2Þ × 10−2 5.78232(12) 2.1970(04) 2689

6 32 3.70 0.168062 0.01055 267 5.59ð2Þ × 10−2 5.23893(18) 5.8523(42) 6314
3.76 0.165607 0.00979 297 6.50ð2Þ × 10−2 5.31365(14) 5.0121(17) 5351
3.80 0.164111 0.00956 317 7.09ð2Þ × 10−2 5.36179(13) 4.6898(14) 4353
3.85 0.162403 0.00893 344 7.85ð2Þ × 10−2 5.42080(11) 4.1833(09) 4276
3.90 0.160856 0.00821 373 8.60ð1Þ × 10−2 5.47772(10) 3.6980(05) 6027
3.95 0.159452 0.00779 403 9.32ð2Þ × 10−2 5.53282(11) 3.3895(03) 4520
4.01 0.157933 0.00718 441 1.019ð2Þ × 10−1 5.59667(10) 3.0112(03) 4054
4.05 0.157010 0.00680 468 1.078ð2Þ × 10−1 5.63790(10) 2.7902(02) 3069
4.10 0.155946 0.00639 503 1.146ð2Þ × 10−1 5.68786(08) 2.5554(02) 5168
4.20 0.154073 0.00563 580 1.285ð2Þ × 10−1 5.78372(10) 2.1564(02) 3167

4 32 3.70 0.168062 0.01055 400 2.346ð1Þ × 10−1 5.27035(14) 5.1616(06) 4353
3.76 0.165607 0.00979 445 2.442ð1Þ × 10−1 5.33934(14) 4.5500(03) 4840
3.80 0.164111 0.00956 476 2.506ð1Þ × 10−1 5.38473(12) 4.3062(02) 4714
3.85 0.162403 0.00893 517 2.587ð1Þ × 10−1 5.44025(12) 3.8816(03) 3463
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TABLE VIII. Simulation parameters for the D-mass ensembles.

Nτ Nσ β κ aμ T½MeV� ReðLÞ hSgi hSfið×102Þ TU

10 24 3.76 0.165608 0.02218 178 8.5ð4Þ × 10−4 5.29599(39) 13.561(09) 9076
3.80 0.164111 0.02100 190 1.21ð4Þ × 10−3 5.34724(24) 12.185(08) 9391
3.85 0.162401 0.01962 207 2.06ð6Þ × 10−3 5.41016(18) 10.652(11) 9044
3.90 0.160856 0.01833 224 3.64ð10Þ × 10−3 5.47014(18) 9.3163(12) 9648
3.93 0.159997 0.01759 234 4.98ð15Þ × 10−3 5.50473(16) 8.6074(17) 7742
3.97 0.158934 0.01666 249 7.25ð13Þ × 10−3 5.54965(10) 7.7486(11) 11627
3.99 0.158421 0.01621 257 8.47ð16Þ × 10−3 5.57166(12) 7.3759(10) 8546
4.01 0.157933 0.01578 265 9.41ð24Þ × 10−3 5.59281(14) 7.0487(21) 4059
4.05 0.157010 0.01524 281 1.22ð2Þ × 10−2 5.63506(11) 6.5485(05) 7210
4.10 0.155946 0.01431 302 1.45ð3Þ × 10−2 5.68574(13) 5.9618(09) 3373
4.20 0.154073 0.01261 348 2.03ð2Þ × 10−2 5.78192(08) 4.9791(02) 7059
4.25 0.153241 0.01184 372 2.30ð3Þ × 10−2 5.82768(12) 4.5758(02) 3377
4.35 0.151740 0.01043 428 2.87ð3Þ × 10−2 5.91509(13) 3.8838(01) 3368

8 20 3.65 0.170200 0.02517 183 3.03ð4Þ × 10−3 � � � � � � 21656
3.70 0.168063 0.02406 200 4.51ð7Þ × 10−3 5.21663(41) 15.762(14) 18240
3.72 0.167219 0.02342 207 5.29ð9Þ × 10−3 5.24389(37) 14.827(15) 16961
3.74 0.166400 0.02279 215 6.46ð8Þ × 10−3 5.27051(29) 13.942(14) 24771
3.76 0.165608 0.02218 222 8.1ð2Þ × 10−3 5.29755(30) 13.104(22) 18392
3.78 0.164845 0.02158 230 9.7ð2Þ × 10−3 5.32426(22) 12.272(18) 19091
3.80 0.164111 0.02100 238 1.22ð2Þ × 10−2 5.35106(20) 11.463(28) 33329
3.82 0.163406 0.02044 246 1.44ð2Þ × 10−2 5.37657(19) 10.777(17) 22399
3.84 0.162730 0.01989 254 1.65ð2Þ × 10−2 5.40132(18) 10.186(13) 20450
3.85 0.162401 0.01962 258 1.80ð2Þ × 10−2 5.41405(14) 9.861(10) 27895
3.86 0.162080 0.01935 262 1.94ð2Þ × 10−2 5.42623(13) 9.585(14) 24244
3.87 0.161764 0.01909 267 2.02ð2Þ × 10−2 5.43812(13) 9.329(14) 23330
3.88 0.161456 0.01883 271 2.16ð2Þ × 10−2 5.45008(15) 9.096(12) 21986
3.90 0.160856 0.01833 280 2.33ð2Þ × 10−2 5.47311(10) 8.653(07) 23455
3.92 0.160280 0.01784 288 2.58ð2Þ × 10−2 5.49627(10) 8.252(07) 22831
3.94 0.159726 0.01736 297 2.73ð2Þ × 10−2 5.51844(14) 7.885(06) 8812
3.96 0.159193 0.01689 307 2.93ð2Þ × 10−2 5.54054(12) 7.548(05) 10974
3.98 0.158681 0.01644 316 3.12ð2Þ × 10−2 5.56225(12) 7.234(04) 10889
4.05 0.157010 0.01524 351 3.80ð2Þ × 10−2 5.63588(09) 6.4043(14) 14180
4.10 0.155952 0.01431 377 4.24ð2Þ × 10−2 5.68620(11) 5.8511(12) 10233
4.20 0.154073 0.01261 435 5.17ð2Þ × 10−2 5.78223(09) 4.9219(05) 10861
4.25 0.153238 0.01184 466 5.62ð2Þ × 10−2 5.82806(09) 4.5297(10) 11573
4.35 0.151740 0.01043 535 6.52ð2Þ × 10−2 5.91533(07) 3.8505(02) 12089

6 16 3.65 0.170200 0.02517 243 4.29ð5Þ × 10−2 � � � � � � 10028
3.70 0.168063 0.02406 267 5.48ð6Þ × 10−2 5.23642(40) 13.341(14) 10198
3.76 0.165608 0.02218 297 6.44ð5Þ × 10−2 5.31246(25) 11.360(06) 13090
3.80 0.164111 0.02100 317 7.03ð4Þ × 10−2 5.36159(24) 10.301(05) 11773
3.85 0.162401 0.01962 344 7.80ð5Þ × 10−2 5.42026(22) 9.187(03) 10516
3.90 0.160856 0.01833 373 8.50ð5Þ × 10−2 5.47736(19) 8.2499(17) 11207
3.97 0.158934 0.01666 415 9.53ð5Þ × 10−2 5.55430(11) 7.1530(06) 11109
4.05 0.157010 0.01524 468 1.076ð4Þ × 10−1 5.63774(10) 6.2516(06) 15926

6 20 4.20 0.154073 0.01261 580 � � � 5.78357(11) 4.8317(04) 7568
4.35 0.151740 0.01043 713 � � � 5.91643(14) 3.8220(03) 3881
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