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We present new results for the amplitude A2 for a kaon to decay into two pions with isospin I ¼ 2:
ReA2 ¼ 1.50ð4Þstatð14Þsyst × 10−8 GeV; ImA2 ¼ −6.99ð20Þstatð84Þsyst × 10−13 GeV. These results were

obtained from two ensembles generated at physical quark masses (in the isospin limit) with inverse
lattice spacings a−1 ¼ 1.728ð4Þ GeV and 2.358(7) GeV. We are therefore able to perform a continuum
extrapolation and hence largely to remove the dominant systematic uncertainty from our earlier results
[1,2], that due to lattice artifacts. The only previous lattice computation of K → ππ decays at physical
kinematics was performed using an ensemble at a single, rather coarse, value of the lattice spacing
[a−1 ≃ 1.37ð1Þ GeV]. We confirm the observation reported in [3] that there is a significant cancellation
between the two dominant contributions to ReA2 which we suggest is an important ingredient in
understanding the ΔI ¼ 1=2 rule, ReA0=ReA2 ≃ 22.5, where the subscript denotes the total isospin of the
two-pion final state. Our result for A2 implies that the electroweak penguin contribution to ϵ0=ϵ is
Reðϵ0=ϵÞEWP ¼ −ð6.6� 1.0Þ × 10−4.
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I. INTRODUCTION

Nonleptonic K → ππ decays continue to be an impor-
tant class of processes in the phenomenology of the
standard model of particle physics. Historically it was in
these decays that both direct and indirect CP-violation
were discovered and the challenges for theoretical phys-
icists include an explanation of the long-standing puzzle
of the ΔI ¼ 1=2 rule and an ab initio computation of ϵ0=ϵ.
Developments in the theoretical framework of lattice
QCD and in efficient algorithms, together with the
availability of the latest computing power, have made
meeting these challenges feasible. A significant element
of the current joint research program of the RBC and
UKQCD collaborations is the evaluation of the K → ππ
amplitudes A0 and A2, where the subscript represents the
isospin of the two-pion final state (which by Bose
symmetry is restricted to 0 or 2). In this paper we present
our latest results for A2.
In [1,2] we reported on the first results from a lattice

determination of the amplitude A2 for K → ðππÞI¼2

decays, where I is the total isospin of the two-pion final
state:

ReA2 ¼ 1.381ð46Þstatð258Þsyst10−8 GeV;

ImA2 ¼ −6.54ð46Þstatð120Þsyst10−13 GeV: ð1Þ

This was the first quantitative calculation of an amplitude
for a realistic hadronic weak decay and hence extended
the framework of lattice simulations into the important
domain of nonleptonic weak decays. As explained in the
Introduction of [2], in order to obtain the result in Eq. (1)
it was necessary to overcome a number of theoretical
problems and exploit recent improvements in algorithms
and the opportunities provided by increases in computing
resources. The systematic errors in (1) are dominated
by the fact that the calculation was performed at a single,
rather coarse, value of the lattice spacing (a≃ 0.14 fm).
We estimated these errors to be Oð15%Þ.
In this paper we repeat the calculation at two finer values

of the lattice spacing and perform the continuum extrapo-
lation. The simulations are carried out at physical pion
masses (with unitary sea- and valence-quark masses) using
our two new ensembles with lattice spacings a ¼ 0.011 fm
and a ¼ 0.084 fm. Our new result is presented in Eq. (63)
and we reproduce it here for the reader’s convenience:
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ReðA2Þ ¼ 1.50ð4Þstatð14Þsyst × 10−8 GeV;

ImðA2Þ ¼ −6.99ð20Þstatð84Þsyst × 10−13 GeV: ð2Þ

Avery interesting feature of our earlier calculation of A2

was the observation that the two dominant contributions
to ReA2 show a significant numerical cancellation [3].
We argued in [3] that this cancellation is an important
element in the explanation of the ΔI ¼ 1=2 rule,
ReA0=ReA2 ≃ 22.5. We confirm this cancellation in the
present calculation. Of course, before we can claim that we
fully understand theΔI ¼ 1=2 rule, we need to compute A0

at physical quark masses and momenta; this calculation is
even more challenging than the evaluation of A2 but is
under way. For the status of this calculation we refer the
reader to [4].
The structure of the remainder of this paper is as follows.

In the next section we present the parameters of the two
ensembles used in this calculation. The evaluation of the
bare matrix elements and the renormalization of the lattice
operators are discussed in Secs. III and IV respectively. We
consider finite-volume effects in Sec. V and present an
overview of the different sources of systematic uncertainty
in Sec. VI. We perform the continuum extrapolation in
Sec. VII and present our final result in Eq. (63).
Section VIII contains our conclusions and a brief
discussion of the prospects for the reduction of the errors
in A2 as well as for the calculation of A0. There is one
appendix in which we reproduce the calculation from [5] of
the Lellouch-Lüscher factor for finite-volume corrections
in the context of chiral perturbation theory. This calculation
demonstrates how to disentangle the finite-volume
corrections which decrease exponentially with increasing
lattice volume (a source of systematic error) from those
which decrease as a power of the volume (which are
corrected by the Lellouch-Lüscher factor). This calculation
also clarifies a misunderstanding of these effects in the
literature [6].

II. DETAILS OF THE SIMULATION

The calculations described below have been performed
on two new 2þ 1 flavor ensembles generated with the
Iwasaki gauge action and with Möbius domain-wall fer-
mions [7]. The parameters of the ensembles are

(i) 483×96×24 with β ¼ 2.13 (a−1 ¼ 1.728ð4Þ GeV);
(ii) 643×128×12 with β¼2.25 (a−1 ¼ 2.357ð7Þ GeV).

These two ensembles use the Möbius variant of domain-
wall fermions [8] with a Möbius scale factor α ¼ 2. For
compactness of notation we will refer to these ensembles
as 483 and 643 respectively. The lattice spacing and quark
masses were set by choosing the masses of the pion, kaon
and the Ω-baryon to be equal to their physical values. The
corresponding sea-quark masses are amud ¼ 7.8 × 10−4

and ams ¼ 3.62 × 10−2, with the residual mass
amres ¼ 6.19ð6Þ × 10−4 for the 483 ensemble and

amud ¼ 6.78 × 10−4, ams ¼ 2.661 × 10−2 and amres ¼
2.93ð8Þ × 10−4 for the 643 ensemble. The two ensembles
have approximately the same physical volume with spatial
extent L≃ 5.5 fm, enabling the continuum extrapolation to
be separated from finite-volume effects which we estimate
separately. For more details on these ensembles see [7] and
we will return briefly to the determination of the lattice
spacings in the context of the continuum extrapolation in
Sec. VII.
The results presented below were obtained using 76

gauge configurations on the 483 ensemble and 40 on the
643 ensemble. The large statistical uncertainty one
expects with a relatively small number of gauge con-
figurations can be significantly reduced if we perform
many measurements on each configuration in which the
sources and sinks are simply translated in space and
time [7]. Performing multiple measurements on the
same configuration offers two important opportunities
for increased efficiency. First if we can use a low-mode
deflation method such as eigCG [9] we will be able to
the amortize the setup costs of such an approach over a
large number of inversions. Second we can use the all
mode averaging technique [10] and perform most of
these many inversions at reduced precision and use
relatively few accurate inversions to determine a cor-
rection that guarantees systematic double precision but
with an additional (usually small) statistical error that
reflects the small number of accurate solves.
Specifically for the 483 ensemble, the eigCG method
was used in single precision with 600 approximate low-
lying eigenvectors and a stopping residual of 10−4. The
approximate (wall source) propagators were computed
on all 96 time slices. The accurate solves used to correct
the approximation were computed on time slices 0, 76,
72, 68, 64, 60 and 56 with conjugate gradient (CG)
stopping residual 10−8. (This choice of time-slice
separations is not related to the K → ππ calculation
presented here but to an accompanying calculation of
BK [7].) To ensure that no bias results from the choice
of inexact solves for which the correction is calculated,
this complete pattern of source time slices for the
accurate solves was shifted by a different random time
displacement on each configuration. A similar procedure
was used on the 643 ensemble but with 1500 low modes
and a stopping residual of 10−5 for the approximate
solves and accurate solves on time slices 0, 103, 98, 93,
88, 83, 78 and 73. On both ensembles, the accurate CG
solves were also computed using eigCG, exploiting the
approximate eigenvectors created during the inaccurate
applications of eigCG.
Measurements on the 483 and 643 ensembles are

separated by 20 and 40 molecular dynamics (MD) units
respectively. In order to study the effects of autocorre-
lations we bin the data. We find that the effects are
small, typically leading to a variation of the statistical
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errors of less than 10%. The results presented below
were obtained after binning the 76 configurations of the
483 ensemble into 19 bins of 4 configurations and the
40 configurations of the 643 ensemble into 8 bins of 5
configurations. The 40 configurations from the 643

ensemble are precisely those used in the global analysis
reported in [7]. The 76 configurations from the 483

ensemble include 73 of the 80 used in [7]. We have
however, repeated the relevant analysis of [7], including
the determination of the lattice spacings, using precisely
the 76 configurations for which we have computed A2.
This makes it possible to compute standard jackknife
errors for our physical results which necessarily depend
upon the value of the lattice spacing.
The pion (mπ) and kaon masses (mK) as well as the

energies of the I ¼ 2 two-pion state (Eππ) obtained on the
two ensembles are shown in Table I. The fitting ranges used
for pion and kaon masses as well as two pion energies were
from 10 to 86 on the 483 ensemble and from 10 to 118 on
the 643 ensemble. These choices were motivated by the
plateaus in the effective mass plots shown in Figs. 1–2. The
effective mass of the kaon, meff

K , is defined numerically by
the ratio

CKðtþ 1Þ
CKðtÞ

¼ coshðmeff
K ðtþ 1 − T=2ÞÞ

coshðmeff
K ðt − T=2ÞÞ ; ð3Þ

and the two-pion effective mass, Eeff
ππ , is found by inverting

Cππðtþ 2Þ − Cππðtþ 1Þ
Cππðtþ 1Þ − CππðtÞ

¼ e−E
eff
ππ ðtþ2Þ þ e−E

eff
ππ ðT−t−2Þ − e−E

eff
ππ ðtþ1Þ þ e−E

eff
ππ ðT−t−1Þ

e−E
eff
ππ ðtþ1Þ þ e−E

eff
ππ ðT−t−1Þ − e−E

eff
ππ t þ e−E

eff
ππ ðT−tÞ

:

ð4Þ
The two-point correlation functionsCK andCππ are defined
explicitly in Eq. (22) below and the differences in the
numerator and denominator on the left-hand side of Eq. (4)
are introduced to eliminate the constant C in Eq. (23).
The pion and kaon masses correspond closely to their

physical values.Wewill explain below that thepions aregiven
a momentum π=L in each of the three spatial directions and
from the table we see that with this choice Eππ ≃mK and the
K → ππ matrix elements correspond to the on-shell (within
statistical errors) decay of a kaon in the center-of-mass frame.
We now discuss the evaluation of the matrix elements.

III. EVALUATION OF THE BARE
MATRIX ELEMENTS

K → ππ decay amplitudes are defined by

ffiffiffi
2

p
A2;0eiδ2;0 ¼ hðππÞI¼2;0∣HW∣K0i; ð5Þ

where HW is the component of the weak Hamiltonian
which changes the strangeness by one unit. The weak
Hamiltonian can be separated into short and long distance
contributions by using the operator product expansion:
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FIG. 1 (color online). Effective mass plots for the kaon correlation functions on the 483 ensemble (left) and 643 ensemble (right).

TABLE I. Pion and kaon masses and the I ¼ 2 two-pion energies in lattice and physical units measured on the 483 and 643 ensembles.
The momentum of each of the final-state pions is �π=L in each of the three spatial directions.

mπ mK Eππ mK − Eππ

483 (lattice units) 8.050ð13Þ × 10−2 2.8867ð15Þ × 10−1 2.873ð13Þ × 10−1 1.4ð14Þ × 10−3

643 (lattice units) 5.904ð14Þ × 10−2 2.1531ð14Þ × 10−1 2.1512ð68Þ × 10−1 9ð10Þ × 10−4

483 (MeV) 139.1(2) 498.82(26) 496.5(16) 2.4(24)
643 (MeV) 139.2(3) 507.4(4) 507.0(16) 2.1(26)
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HW ¼ GFffiffiffi
2

p V�
udVus

X
i

CiðμÞQiðμÞ; ð6Þ

where GF is the Fermi constant, Vus and Vud are Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements, the Qi are
all the possible dimension-6 operators which contribute to
the decay and Ci are the corresponding Wilson coefficients
which contain information about the short distance physics.
The Ci take the form Ci ¼ zi þ τyi where τ is the ratio of
CKM matrix coefficients τ ¼ − V�

tsVtd
V�
usVud

. Throughout this
paper we use the particle data group convention for the
matrix elements [11], where Vus ¼ 0.97425, Vud ¼ 0.2252
and τ ¼ 0.0014148 − 0.0005558i.
In this paper we only consider ΔI ¼ 3=2 decays where

the two-pion final state has total isospin 2. The non-
perturbative contribution to the decay amplitude is con-
tained in the matrix elements:

MK0

i ≡ hðππÞI¼2
I3¼0∣QΔI¼3=2

ΔI3¼1=2;i∣K0i and

MKþ
i ≡ hðππÞI¼2

I3¼1∣QΔI¼3=2
ΔI3¼1=2;i∣Kþi: ð7Þ

There are only three operators which contribute to A2,
which we label according to their chiral SUð3ÞL × SUð3ÞR
transformation properties. We have one (27,1) operator
and two electroweak penguin operators labeled (8,8) and
ð8; 8Þmx, where the subscript mx denotes a color mixed
operator. Explicitly, the operators are given by

QΔI¼3=2
ð27;1Þ ¼ ðs̄idiÞLðūjuj − d̄jdjÞL þ ðs̄iuiÞLðūjdjÞL; ð8Þ

QΔI¼3=2
ð8;8Þ ¼ ðs̄idiÞLðūjuj − d̄jdjÞR þ ðs̄iuiÞLðūjdjÞR; ð9Þ

QΔI¼3=2
ð8;8Þmx ¼ ðs̄idjÞLðūjui − d̄jdiÞR þ ðs̄iujÞLðūjdiÞR: ð10Þ

The subscripts L and R denote the left- and right-handed
spin structures respectively:

ðq̄1q2ÞL ¼ q̄1γμð1 − γ5Þq2 and

ðq̄1q2ÞR ¼ q̄1γμð1þ γ5Þq2: ð11Þ

The Lorentz indices are understood to be contracted
between the two parentheses in each of the operators in
Eqs. (8)–(10) and i; j are color indices which are summed
from 1 to 3.
Below we will confirm the feature found in our earlier

work [1,2] that the dominant contribution to ReðA2Þ comes
from the (27,1) operator, while the dominant contribution
to ImðA2Þ in the MS scheme at 3 GeV comes from the
ð8; 8Þmx operator. We can now write the expressions for the
A2 amplitude, which are

A2 ¼
GFffiffiffi
2

p V�
udVus

X
i

CiðμÞ
�

1ffiffiffi
2

p MK0

i

�

¼ GFffiffiffi
2

p V�
udVus

X
i

CiðμÞ
�

1ffiffiffi
3

p MKþ
i

�
: ð12Þ

The relative factor between the two expressions is due to
the different Clebsch-Gordan coefficients.
A major challenge in the calculation of A2 (and even

more so in the calculation of A0) is to ensure that the
pions have physical momenta. In the center-of-mass
frame with periodic boundary conditions, the ground state
for the two-pion system has each pion at rest. The
evaluation of matrix elements at physical kinematics
therefore corresponds to the contribution from an excited
two-pion state resulting in a considerable loss of precision.
We can avoid the necessity of multiexponential fits to
extract the excited state contribution by utilizing the
technique suggested in [12,13] and applied successfully
in our original calculation of A2 [1,2]: we introduce
antiperiodic boundary conditions for the (valence) d-quark
in all three spatial directions, and periodic boundary
conditions for the u- and s-quarks [12]. We then exploit
the Wigner-Eckart theorem to relate Kþ → πþπ0 matrix
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FIG. 2 (color online). Effective mass plots for the two-pion correlation functions on the 483 ensemble (left) and 643 ensemble (right).

T. BLUM et al. PHYSICAL REVIEW D 91, 074502 (2015)

074502-4



elements to those for the unphysical transition
Kþ → πþπþ. The relation is

hðππÞI¼2
I3¼1∣|fflfflfflfflfflffl{zfflfflfflfflfflffl}

1ffiffi
2

p ðhπþπ0∣þhπ0πþ∣Þ

QΔI¼3=2
ΔI3¼1=2;i∣Kþi¼ 3

2
hðππÞI¼2

I3¼2∣|fflfflfflfflfflffl{zfflfflfflfflfflffl}
hπþπþ∣

QΔI¼3=2
ΔI3¼3=2;i∣Kþi:

ð13Þ
The indices I and I3 label the two-pion state’s total and
third component of isospin respectively. With antiperiodic
boundary conditions in three spatial directions, the jπþπþi
ground state has total momentum ~0, with each pion having
momentum j~pπj ¼

ffiffiffi
3

p
π=L. It can be seen from Table I that

Eππ is very close tomK on both the 643 and 483 ensembles.
(For the smaller physical volume in our original calculation
[1,2], we imposed antiperiodic boundary conditions for
the d-quark in two spatial directions in order to achieve
Eππ ≃mK .) Note that with both periodic and antiperiodic
boundary conditions on the d-quark, the lowest momentum
of the π0 meson is zero; this motivates the use of the
Wigner-Eckart theorem to reformulate the calculation to
that of a matrix element with a jπþπþi final state.
The operators QΔI¼3=2

ΔI3¼3=2 which appear on the right-hand
side of Eq. (13), and which correspond to the QΔI¼3=2

ΔI3¼1=2

operators in Eqs. (8)–(10), are

Qð27;1Þ ¼ ðs̄idiÞLðūjdjÞL;
Qð8;8Þ ¼ ðs̄idiÞLðūjdjÞR;

Qð8;8Þmx ¼ ðs̄idjÞLðūjdiÞR: ð14Þ

To simplify the notation we have dropped the labels ΔI ¼
3=2 andΔIz ¼ 3=2 on the operators in Eq. (14); this will be
implicit in the following. In this paper we compute the
K → ππ matrix elements of the three operators in Eq. (14).
The factor of 3=2 in Eq. (13) is a combination of

ffiffiffi
3

p
=2

coming from the Clebsch-Gordan coefficients and the
Wigner-Eckart theorem, and a further

ffiffiffi
3

p
corresponding

to the simple choice for the normalization of operators
in Eq. (14). The amplitude A2 is given in terms of the
Kþ → πþπþ matrix elements Mi by

A2 ¼
GFffiffiffi
2

p V�
udVus

ffiffiffi
3

p

2

X
i

CiðμÞMi: ð15Þ

Since it is the Kþ → πþπþ matrix elements which we
compute directly in this paper, we choose the compact
notation Mi ≡MKþ→πþπþ

i . The label i runs over the three
operators in Eq. (14).

A. Evaluation of the correlation functions

The bare matrix elements are obtained from the compu-
tation of two- and three-point correlation functions. The
three-point functions are

CK→ππ
i ðtopÞ ¼ h0∣σππðtππÞQiðtopÞσ†Kð0Þ∣0i; ð16Þ

where Qi is one of the three operators in Eq. (14) and σK
and σππ are interpolating operators for the kaon and two-
pion state respectively. For σK and σππ we take Coulomb
gauge-fixed wall-source operators defined as follows:

σKðtÞ≡
X
~x1;~x2

s̄ð~x1; tÞγ5uð~x2; tÞ; ð17Þ

σππðtÞ≡ ½d̄ðtÞγ5uðtÞ�½d̄ðtÞγ5uðtÞ�; ð18Þ

where in (18) we have used the cosine momentum sources
for the d-quark:

dðtÞ ¼
X
x;y;z

dðx; y; z; tÞ cosðxpxÞ cosðypyÞ cosðzpzÞ: ð19Þ

dðx; y; z; tÞ represents the d-quark field and the components
of momenta satisfy px ¼ py ¼ pz ¼ π=L. Just as for the
u-quark source in Eq. (18), the u-quark sources in σππ
shown in Eq. (18) are given zero momentum by summing
them over the full spatial volume, evaluated in the Coulomb
gauge. As explained in Ref. [2] the cosine source described
above creates d-quarks with both signs for each component
of the three momentum �pi, for i ¼ x, y and z. This will
then produce pairs of pions with total momentum in each

direction of �2π=L in addition to the desired value of ~0.
For the three-point functions described in Eq. (16), the zero
total momentum of the decaying kaon and three-momen-
tum conservation imply that the nonzero π-π momenta
cannot occur. For the two-point function defined in Eq. (22)
below we use a π-π sink which is different from the source
and which explicitly projects onto π-π states with zero total
momentum, as described in Ref. [2]. A further subtlety, not
described in that reference, relates to the possible angular
momentum of the two-pion state. For our two identical πþ
bosons which carry equal but opposite momenta, there are
actually four possible states given our boundary conditions.
Specifically, the πþ which carries px ¼ þπ=L may have
four possible values for the other momentum components:
py ¼ �π=L and pz ¼ �π=L. These four states form a four-
dimensional representation of the cubic symmetry group,
which decomposes into two irreducible representations: a
singlet (A1) and a triplet (T2), out of which only A1 contains
an s-wave contribution. Since the lowest energy level of the
finite-volume I ¼ 2 s-wave spectrum of the A1 representa-
tion is nearly degenerate with the lowest energy level of the
d-wave spectrum of the T2 representation, it is important
that we use the cubically symmetrical source specified in
Eq. (19) which couples only to the A1 state of interest.
The spinor and color labels are contracted within each set

of square parentheses in Eq. (18). A schematic diagram of
the correlation function CK→ππ

i ðtopÞ is shown in Fig. 3.
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We have evaluated CK→ππ
i ðtopÞ for a range of values of

the source-sink separations tππ . For the 483 (643) ensemble
we performed the calculations for values of tππ between 24
and 39 (26 and 36). These separations were chosen to be
large enough for the plateau region to give a reliable fit and
small enough for the around-the-world effects to be small.
The fitting ranges were chosen to be from 10 to tππ − 10
for both ensembles. These choices are motivated by the
locations of plateau regions in Fig. 4.
For sufficiently large time separations top and tππ − top,

the expected time dependence of CK→ππ
i ðtopÞ is

CK→ππ
i ðtopÞ ¼ NππNKMbare

i e−ðmK−EππÞtope−Eππ tππ ; ð20Þ

where

Nππ ¼ jhππjσππð0Þj0ij and NK ¼ jhKjσKð0Þj0ij: ð21Þ

We have introduced the label “bare” as a reminder that
Mbare

i are matrix elements of the bare operators in the lattice
regularization which we are using. The renormalization of
the operators is discussed in the following section. For
illustration, in Fig. 4 we plot CK→ππ

i ðtopÞ computed on each
of the two ensembles for tππ ¼ 26. The observed plateaus
are a manifestation of the fact that the volumes have been
tuned so that Eππ ≃mK [cf. Eq. (20)].
We obtain the matrix elements Mi by fitting Eq. (20),

using the values of Nππ , NK , mK and Eππ obtained from
fitting (under the jackknife) the correlation functions,

CππðtÞ ¼ h0jσ†ππðt; ~p ¼ 0Þσππð0Þj0i and

CKðtÞ ¼ h0jσKðtÞσ†Kð0Þj0i; ð22Þ

which have the following time dependence:

CππðtÞ⟶
t→∞

jNππj2ðe−Eππ þ e−EππðT−tÞ þ CÞ; ð23Þ

CKðtÞ⟶
t→∞

jNKj2ðe−mKt þ e−mKðT−tÞÞ: ð24Þ

The “t → ∞” limit should be understood as taking a
sufficiently large time separation so that excited state
contributions are negligible. Introducing the constant C
in Eq. (23) allows one to account for possible around-the-
world effects in Cππ .
As a check, we can also construct the time-independent

ratio of the correlation functions:

Ci
K→ππðtÞ

CKðtÞCππðtππ − tÞ ¼
Mbare

i

NππNK
: ð25Þ

This ratio is plotted for tππ ¼ 26 in Fig. 5. As anticipated,
all three operators exhibit a constant behavior in the
region where the contribution from excited states is
negligible. Equation (25) is expected to hold in the region

FIG. 3. Diagrammatic representation of the K → ππ three-point
function defined in Eq. (16). The strange-quark propagator is
explicitly labeled, the remaining lines represent light-quark
propagators.
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FIG. 4 (color online). K → ππ three-point correlation function on the 483 lattice (left) and 643 lattice (right) with a kaon-pion
separation of tππ ¼ 26.

T. BLUM et al. PHYSICAL REVIEW D 91, 074502 (2015)

074502-6



0 ≪ t ≪ tππ ≪ T, where T is the total time extent of the
lattice. In this region “around-the-world” effects arising
from different time orderings of the operators can be
neglected.
The values of the bare Kþ → πþπþ matrix elements are

shown in Table II. The entries have been obtained by
performing weighted averages (under the jackknife) over
the values obtained for each choice of tππ .

IV. RENORMALIZATION OF THE OPERATORS

Having determined the matrix elements of the bare
operators in the lattice regularization we now have to
combine them with the remaining factors in Eq. (6) to
obtain A2. The Wilson coefficients [CiðμÞ] and composite
operators [QiðμÞ] appearing in Eq. (6) are separately
renormalization scheme and scale (μ) dependent. To obtain
the physical amplitudes they must be combined in the same
scheme and at the same scale. The CiðμÞ are calculated in
perturbation theory for which it is convenient to use the
MS-NDR scheme (called MS in the following). NDR
stands for naïve dimensional regularization prescription
for the γ5 matrix, which preserves the anticommutation
relations with other gamma matrices [14]. The matrix
elements calculated in Sec. III, on the other hand, were
obtained using bare operators with the lattice spacing as the
ultraviolet regulator with the lattice discretization of QCD.
The operators can be renormalized nonperturbatively, but
only into schemes for which the renormalization condition
can be imposed on lattice Green’s functions. The MS
scheme, which is based on dimensional regularization,

cannot be simulated in a lattice computation. Our procedure
is to start by renormalizing the operators nonperturbatively
into schemes which can be simulated, specifically the
regularization independent symmetric momentum (RI-
SMOM) schemes [15] as described in detail in [2] and
briefly summarized below. The matching between the RI-
SMOM and MS schemes is necessarily performed in
perturbation theory and is currently known at one-loop
order. (Below we also present the matrix elements in two
RI-SMOM schemes so that if the perturbative coefficients
are calculated to higher order in the future, these matrix
elements can be used to reduce the systematic uncertainty
in A2 due to the truncation of the perturbation series.)
We now briefly summarize the renormalization pro-

cedure. We write the five-point amputated Green’s func-
tions of the three operators in Eq. (14) as a three-component
vector Λ ¼ ðΛð27;1Þ;Λð8;8Þ;Λð8;8ÞmxÞ≡ ðΛ1;Λ2;Λ3Þ, and
impose a renormalization condition of the form

PfΛRðμÞg ¼ F; ð26Þ

where P is a vector of projectors and F the corresponding
tree-level matrix. Denoting the tree-level contribution by
the superscript (0) and including explicitly the spinor and
color labels, the matrix F is given by

PifΛð0Þ
j g≡ ½Pi�BA;DC

βα;δγ ½Λð0Þ
j �AB;CD

αβ;γδ
¼ Fij: ð27Þ

Here greek letters label spinor components, the uppercase
roman letters represent color indices and i; j ¼ 1; 2; 3
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FIG. 5 (color online). Ratios of K → ππ three-point correlation function to the two-point functions [Eq. (25)] on the 483 lattice (left)
and the 643 lattice (right) with a kaon-pion separations of tππ ¼ 27 and 36 respectively.

TABLE II. Results for the bare Kþ → πþπþ matrix elements in lattice units. Only statistical errors are shown.

a3Mbare
ð27;1Þ a3Mbare

ð8;8Þ a3Mbare
ð8;8Þmx

483 ensemble 3.700ð35Þ × 10−4 9.171ð69Þ × 10−3 3.058ð23Þ × 10−2

643 ensemble 1.371ð11Þ × 10−4 3.942ð39Þ × 10−3 1.308ð13Þ × 10−2
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denote the operators and projectors. For illustration, the
tree-level value of the Green’s function of Qð27;1Þ is

½Λð0Þ
1 �AB;CDαβ;γδ ¼ ½ðγμÞαβðγμÞγδ þ ðγμγ5Þαβðγμγ5Þγδ�δABδCD

− ½ðγμÞαδðγμÞγβ þ ðγμγ5Þαδðγμγ5Þγβ�δADδBC:
ð28Þ

For the renormalization we only consider the parity-even
component of the four-quark operators.
The choice of projectors is not unique and we implement

two different sets known as the γμ and q-projectors, given
explicitly by

½PðγμÞ�JI;LKβα;δγ ¼

0
B@

½ðγμÞβαðγμÞδγ þ ðγμγ5Þβαðγμγ5Þδγ�δJIδLK
½ðγμÞβαðγμÞδγ − ðγμγ5Þβαðγμγ5Þδγ�δJIδLK
½ðγμÞβγðγμÞδα − ðγμγ5Þβγðγμγ5Þδα�δJKδLI

1
CA

ð29Þ

and

½PðqÞ�JI;LKβαβ;δγ ¼

0
BB@

½ðqÞβαðqÞδγ þ ðqγ5Þβαðqγ5Þδγ�δJIδLK
½ðqÞβαðqÞδγ − ðqγ5Þβαðqγ5Þδγ�δJIδLK
½ðqÞβγðqÞδα − ðqγ5Þβγðqγ5Þδα�δJKδLI

1
CCA:

ð30Þ

The corresponding matrices F read

FðγμÞ ¼

0
B@

128NðN þ 1Þ 0 0

0 128N2 128N

0 128N 128N2

1
CA ð31Þ

and

Fq ¼ q2

0
B@

32NðN þ 1Þ 0 0

0 32N2 32N

0 32N 32N2

1
CA; ð32Þ

where N ¼ 3 is the number of colors.
The final result for the amplitude is, of course, inde-

pendent of the choice of intermediate scheme defined by P,
but comparing the results obtained with different projection
operators gives us an estimate of the systematic uncertainty
due to the truncation of perturbation theory in relating the
RI-SMOM schemes to the MS schemes.
The renormalized operators are related to the bare ones

by a matrix relation of the form

QR
i ðμÞ ¼ ZijðμaÞQbare

j ðaÞ: ð33Þ

In order to extract the renormalization constants we follow
the standard procedure [16,17] and compute numerically

the amputated Green’s functions of the bare operators in
Eq. (14) with particular choices of external momenta
(as discussed below) on Landau gauge-fixed configura-
tions. We next solve Eq. (26) which we rewrite in the form

ZijðμaÞ
Z2
qðμaÞ

PkfðΛbare
j ðaÞg

μ2¼p2 ¼ Fik; ð34Þ

where
ffiffiffiffiffiffi
Zq

p
is the quark field renormalization constant and

μ is the renormalization scale, which we ultimately choose
to be 3 GeV.
The choice of Zq is also not unique, and we use the

following two cases:

ZðqÞ
q

ZV
¼ qμ

12q2
TrΛμ

Vq; and
Z
ðγμÞ
q

ZV
¼ 1

48
TrΛμ

Vγ
μ; ð35Þ

where Λμ
V is the three-point amputated Green’s function

of the local vector current and ZV is the renormalization
constant of the local vector current. In practice, we multiply
each side of Eq. (34) by the square of the corresponding side
of Eq. (35). This eliminates Zq and after this multiplication
the left-hand side of Eq. (34) contains the ratio of renorm-
alization factors Zij=Z2

V . ZV is then calculated by imposing
theWard identity ZVhPjV4jPi ¼ 2mP, whereVμ is the local
vector current and jPi is the state of a pseudoscalar mesonP
at rest with mass mP; this is explained in detail in [7].
The choice of projection operator for the four-quark

operator and Zq defines a renormalization scheme, which
we will label ða; bÞ with a; b ∈ γμ; q for the choice of PðaÞ

and ZðbÞ
q . In particular, we consider the (γμ, γμ) and (q, q)

schemes, having found in earlier studies that the perturba-
tive conversion to the MS scheme is more precise in these
schemes. This is based on the observation that the non-
perturbative running is generally closer to the perturbative
one for these schemes for the four-quark operators in
Eq. (14) [2,18]. As explained below, we follow our
previous practice and choose the (q, q) scheme for our
central value and the (γμ, γμ) scheme to estimate the error
due to the perturbative conversion to the MS scheme.
Chiral symmetry suppresses mixing of operators in

different irreducible representations of the chiral symmetry
group, so that if the symmetry is exact, Zij is a block
diagonal matrix with a 1 × 1 block corresponding to the
renormalization of the (27,1) operator and 2 × 2 block
corresponding to the mixing of (8, 8) and ð8; 8Þmx oper-
ators. In a massless renormalization scheme with a chiral
discretization such as the domain-wall action, we expect a
mixing pattern very similar to this, but with a small
OððamresÞ2Þ mixing between the blocks.
The mixing of the operator Qð27;1Þ with either of Qð8;8Þ

or Qð8;8Þmx
due to explicit chiral symmetry breaking

induced by finite Ls is proportional to ðamresÞ2 (which
is ≲3.6 × 10−7 in this work). Such mixing can result from
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two mechanisms [19,20]. First, both quarks in a left-handed
q̄-q pair inQð27;1Þ can propagate in the fifth dimension from
the left-hand to the right-hand wall, exploiting numerous
but exponentially damped modes which even in perturba-
tion theory link the left- and right-hand walls. This will
change the (27,1) operator into one transforming as the
(8,8) representation, but requires the propagation of two
quarks from the left-hand to the right-hand wall. This incurs
a penalty of ðamresÞ2 since one power of the residual mass
results from the fifth-dimensional mixing of the left- and
right-handed components of a single quark.
The second mechanism is nonperturbative and more

subtle. For this case the propagation results from the left-
right tunneling that can be caused by an eigenvector of the
five-dimensional transfer matrix with a near-unit eigen-
value. Such eigenvectors permit Oð1Þ left-right mixing but
are rare and therefore give a small contribution to mres.
Under some circumstances such modes can simultaneously
allow a number of quark flavors to flip chirality. However,
to change a (27,1) representation into an (8, 8) one, both a
quark and an antiquark must flip chirality which requires
two distinct transfer matrix eigenvectors and is therefore
also doubly suppressed by a factor ðamresÞ2. Such doubled
suppression will not occur for the mixing between the
operator Qð27;1Þ and, for example, an operator in the ð6̄; 6Þ
representation. Here a single transfer matrix eigenvector
with near-unit eigenvalue can result in a OðamresÞ mixing
between Qð27;1Þ and ðs̄ð1þ γ5ÞdÞðūð1þ γ5ÞdÞ by allowing
both a u- and a d-quark (localized near this eigenvector) to
flip chirality. This kind of mixing has been studied for
example in [21] and it was found to be largely suppressed
by our choice of kinematics, as explained below.
In order to suppress physical infrared chiral-symmetry

breaking effects we choose to impose the renormalization
conditions with the kinematics indicated in Fig. 6 with
p2
1 ¼ p2

2 ¼ ðp1 − p2Þ2 ≡ μ2. We compute the Green’s
functions for several momenta and interpolate to μ ¼
3 GeV using a quadratic Ansatz. Using partially twisted
boundary conditions, we have a good resolution around
the targeted momentum. The momenta in such RI-SMOM
schemes are chosen so that there are no “exceptional”
channels, i.e. no channels in which the square of the
momenta is small [15]. (This is in contrast with the original
RI-MOM scheme [16,17] in which p1 ¼ p2.) We have
already checked that with domain-wall fermions and this
choice of kinematics the chirally forbidden matrix elements
are numerically negligible [2]. In the present computation,
we use the 483 and 643 ensembles which have physical
light and strange sea-quark masses. However, the light-
quark mass is used in all of the valence-quark propagators
in the five-point Green’s functions, including those for both
light and strange quarks. We do not extrapolate either the
sea- or valence-quark masses to zero and, strictly speaking,
do not work in the chiral limit. In practice the light-quark
masses are sufficiently small that their effects are negligible

as is the nonzero mass of the strange sea quark. Comparing
our results with those of our previous work (with Shamir
domain-wall fermions) where a chiral extrapolation was
performed we find agreement at the per-mille level
or better.
We find that all the chirally forbidden renormalization

factors are smaller than 10−5, so we set the corresponding
matrix elements of PifΛjg to zero and finally obtain the
renormalization matrices:

Zðγμ;γμÞ
β¼2.13ðμ ¼ 3 GeVÞ

¼

0
B@

0.4617ð3Þ 0 0

0 0.5302ð4Þ −0.07018ð6Þ
0 −0.0386ð1Þ 0.4451ð5Þ

1
CA ð36Þ

Zðq;qÞ
β¼2.13ðμ ¼ 3 GeVÞ

¼

0
B@

0.4822ð3Þ 0 0

0 0.5305ð4Þ −0.07135ð7Þ
0 −0.0637ð1Þ 0.5052ð6Þ

1
CA ð37Þ

for the 483 ensembles and

Zðγμ;γμÞ
β¼2.25ðμ ¼ 3 GeVÞ

¼

0
B@

0.5194ð2Þ 0 0

0 0.5774ð2Þ −0.0751ð1Þ
0 −0.02797ð7Þ 0.4431ð6Þ

1
CA ð38Þ

Zðq;qÞ
β¼2.25ðμ ¼ 3 GeVÞ

¼

0
B@

0.5399ð2Þ 0 0

0 0.5782ð2Þ −0.0761ð1Þ
0 −0.05230ð4Þ 0.4990ð5Þ

1
CA ð39Þ

FIG. 6. Momentum flow defining a renormalization condition
of a four-quark operator in RI-SMOM scheme. The momenta are
chosen so that p2

1 ¼ p2
2 ¼ ðp1 − p2Þ2 ≡ μ2.
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for the 643 ensembles. With momentum sources [22], only
a few configurations are needed to obtain an excellent
statistical precision. The number of Landau gauge-fixed
configurations used to obtain these results varies between 5
and 15. The statistical errors were estimated with 200
bootstrap samples. The matrices in Eqs. (36)–(39) are the
ones used in Eq. (33) to obtain the operators renormalized
in the RI-SMOM schemes at the scale μ ¼ 3 GeV from the
corresponding lattice bare operators.
The procedure described above enables us to calculate

the matrix elements of the operators in Eq. (14) in the
(continuum) RI-SMOM schemes with a very small sys-
tematic uncertainty due to the renormalization. The Wilson
coefficients, however, are computed in the MS scheme and
so we have to match the RI-SMOM schemes to the MS one.
We repeat that this matching is perturbative and at present is
only known to one-loop order [23]; this limitation amplifies
the uncertainty due to the renormalization. This uncertainty
could be reduced by extending the perturbative calculations
to higher orders. Future lattice calculations could also help
here by using step scaling to run the renormalization
constants obtained in the RI-SMOM schemes nonpertur-
batively to larger momentum scales. The perturbative
matching to the MS scheme can then be performed at
these larger scales where the coupling constant is smaller,
leading to smaller uncertainties. We now estimate the
current uncertainty due to the matching.
To estimate the uncertainty due to the truncation of the

perturbative matching factors, we note that the matrix
elements in the MS scheme should be independent of
the choice of intermediate RI-SMOM scheme. Differences
in the results are observed (see Table III) and attributed to
the truncation. Following the procedure in [1,2] we take the
result obtained using the ðq; qÞ intermediate scheme as our
central value and the difference of the results obtained
using the two schemes as an estimate of the systematic
error. This uncertainty is marked as “NPR (perturbative)” in
the error budgets presented in Tables IX and X in Sec. VI.
The uncertainties marked as “NPR (nonperturbative)” are
the statistical errors in the evaluation of Zij.

V. FINITE-VOLUME EFFECTS

The presence of two pions in the final state in K → ππ
decays leads to finite-volume corrections which decrease as

inverse powers of the volume, in addition to the exponential
correction present in simpler quantities such as decay
constants and form factors. The power corrections result
in a multiplicative correction to the matrix element [24]:

hππ∣HW∣Ki∞ ¼ Fhππ∣HW∣KiFV: ð40Þ

The subscripts ∞ and FV correspond to infinite and finite
volume respectively, and the factor F is given by the
Lellouch-Lüscher formula [24]:

F2 ¼ 8πq

�∂ϕ
∂q þ ∂δ

∂q
�
mKE2

ππ

p3
; ð41Þ

where p is the magnitude of the momentum of a pion in the

center-of-mass frame given by p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
ππ
4
−m2

π

q
and q is

defined as q ¼ pL=2π. Since the πþ mesons satisfy
antiperiodic boundary conditions in all three spatial
directions, the function ϕ in this case is defined by the
condition

tanϕ ¼ −
qπ3=2

Z00ð1; qÞ
;

Z00ð1; qÞ ¼
1ffiffiffiffiffiffi
4π

p
X
n∈Z3

1

ðnþ ð1
2
; 1
2
; 1
2
ÞÞ2 − q2

: ð42Þ

δ is the two-pion s-wave phase shift, which can be
calculated using the Lüscher quantization condition,
δðqÞ þ ϕðqÞ ¼ nπ, but the calculation of the derivative
in Eq. (41) requires an approximation.
The results presented in Table IV were obtained using

the approximation that δ is a linear function of the

TABLE III. The amplitude A2 calculated using two different intermediate RI-SMOM schemes. The two errors, labeled “stat” and
“NPR,” are the statistical uncertainties in the evaluation of the bare matrix elements and Zij respectively. Discrepancies in the results in
the two schemes are attributed to the truncation in the matching to the MS scheme.

483 ensembles 643 ensembles

ReðA2Þðγμ; γμÞ 1.346ð11Þstatð1ÞNPR × 10−8 GeV 1.4029ð93Þstatð11ÞNPR × 10−8 GeV
ImðA2Þðγμ; γμÞ −5.739ð46Þstatð8ÞNPR × 10−13 GeV −6.143ð73Þstatð9ÞNPR × 10−13 GeV
ReðA2Þðq; qÞ 1.386ð12Þstatð1ÞNPR × 10−8 GeV 1.4386ð95Þstatð11ÞNPR × 10−8 GeV
ImðA2Þðq; qÞ −6.174ð49Þstatð9ÞNPR × 10−13 GeV −6.548ð78Þstatð10ÞNPR × 10−13 GeV

TABLE IV. Contributions to the Lellouch-Lüscher factor on the
483 and 643 ensembles. The rate of change of the phase shift was
calculated by using a linear approximation in momentum as
explained in the text.

Eππ q δ (radians) ∂δ
∂q

∂ϕ
∂q

483 0.2873(13) 0.9087(61) −0.158ð22Þ −0.174ð24Þ 3.7147(20)
643 0.21512(68) 0.9157(43) −0.184ð16Þ −0.201ð17Þ 3.7171(15)
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momentum between 0 and p. Since the second term in the
parentheses on the right-hand side of Eq. (41) is much
smaller than the first and given the remaining systematic
uncertainties discussed in Sec. VI, this procedure gives an
adequate approximation. In order to estimate the error due
to this approximation we also evaluate the derivative ∂δ

∂p
using the phenomenological curve of Ref. [25] illustrated in
Fig. 7; we take the difference of the two procedures as an
estimate of the corresponding uncertainty. For our central
value we use the linear approximation for the derivative of
the phase shift so that it is independent of phenomeno-
logical estimates.
At the pion momentum which corresponds to the decay

of a physical kaon to two pions (p ¼ 207 MeV) the value
of the derivative of the phase shift with respect to the
momentum obtained from the phenomenological curve is
9.53 × 10−4 MeV−1. Converting this to ∂δ

∂q gives −0.216 for
the 483 and −0.221 for the 643 ensembles. While this
makes a significant difference to the derivative of the phase
shift, it represents a relatively small uncertainty in the
Lellouch-Lüscher factor F ∝ ∂δ

∂q þ ∂ϕ
∂q. This sum is domi-

nated by the ∂ϕ
∂q term and thus the difference in the Lellouch-

Lüscher factor between both approaches to calculating ∂δ
∂q

amounts to 1.1% and 0.6% on the 483 and 643 ensembles
respectively.
When quoting our central value we include the Lellouch-

Lüscher factor evaluated as described in the preceding
paragraph. In order to estimate the size of the remaining
exponential finite-volume effects we use chiral perturbation
theory and include the corresponding effects in our

systematic uncertainty. Since we are only calculating an
estimate, we do not use partially twisted chiral perturbation
theory, but take both the sea and valence d-quarks to satisfy
antiperiodic boundary conditions.
In SUð3ÞL × SUð3ÞR chiral perturbation theory, the

leading order (LO) and leading logarithmic next-to-leading
order (log) contributions to the (27,1) and (8,8) matrix
elements are given by [6,26]

M27
LO ¼hπþπ−jOð27;1Þ;3=2jK0iLO ¼ −

4iα27
fKf2π

ðm2
K −m2

πÞ;
ð43Þ

M27
log ¼ hπþπ−jOð27;1Þ;3=2jK0ilog

¼ −
4iα27
fKf2π

1

f2

�
−

1

12
m4

K

�
1 −

m2
K

m2
π

�
βðm2

π; m2
K;m

2
ηÞ þm2

K

�
5

4

m4
K

m2
π
−
13

4
m2

K þ 2m2
π

�
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π; m2
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2
πÞ
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K − 3m2

πm2
K þ 2m4
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2
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1

4
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K
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π
−

1

12
m2
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π
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−m4

K

m2
π

−4m2
K þ 4m2

π

�
lðm2

KÞ

þ
�
5

4

m4
K

m2
π
−
45

4
m2

K þ 11m2
π

�
lðm2

πÞ
�
; ð44Þ

M88
LO ¼ hπþπ−jOð8;8Þ;3=2jK0iLO ¼ −

4iα88
fKf2π

; ð45Þ

M88
log ¼ hπþπ−jOð8;8Þ;3=2jK0ilog

¼ −
4iα88
fKf2π

1

f2
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FIG. 7 (color online). Comparison of I ¼ 2 two-pion s-wave
phase shifts calculated using Lüscher’s formula with the phe-
nomenological curve from Ref. [25]. The computed results are
consistent with the phenomenological curve.
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At this ordermη is given by the Gell-Mann-Okubo relation:
3m2

η ¼ 4m2
K −m2

π .
The functions lðm2Þ and βðq2; m2

1; m
2
2Þ correspond to

diagrams with one and two pseudo Goldstone boson
propagators respectively as illustrated in Fig. 8 and they
are the only sources of finite-volume corrections.
They are given by (in Minkowski spacetime)

lðm2Þ≡XZ Z
dk0

2π

i
k2 −m2 þ iϵ

¼
XZ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~k2 þm2

q ;

ð47Þ

βðq;m1; m2Þ≡
XZ Z

dk0

2π

i
ðk2 −m2

1Þððqþ kÞ2 −m2
2Þ

¼
XZ ω1 þ ω2

2ω1ω2ðq20 − ðω1 þ ω2Þ2Þ
; ð48Þ

where the symbol
PR

denotes the summation over ~k in finite

volume or the integration in infinite volume. ω1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

1

q
and ω2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~q − ~kÞ2 þm2

2

q
. The difference

between the sum and the integral can be calculated using
the Poisson summation formula:

1

L3

X
~k

fð~kÞ ¼
Z

d3~k
ð2πÞ3 fð

~kÞ þ
X
~n≠~0

Z
d3~k
ð2πÞ3 fð

~kÞeiL~k·~n;
ð49Þ

where the summation on the left-hand side is over all
~k ¼ 2π

L ~n, where ~n is a vector of integers. If f is a function
that has no singularities on the real axis, then the second
term on the right-hand side gives the exponential finite-
volume corrections which we are trying to evaluate.

A. Corrections to lðm2Þ
With periodic boundary conditions, applying the Poisson

summation formula (49) to l, writing ~k in spherical polar
coordinates and integrating over the angles, we obtain for

the difference between the finite- and infinite-volume
values of lðm2Þ [27]

Δlðm;LÞ≡ m2

16π2
δ1ðmLÞ≡ m

4π2L

X
~n≠0

K1ðj~njmLÞ
j~nj ; ð50Þ

where K1 is a modified Bessel function of the second
kind, ~n is an vector of integers and the sum is over
all ~n ≠ ð0; 0; 0Þ ∈ Z3.
Since our choice of boundary conditions breaks the

isospin symmetry Eq. (50) does not give the correct finite-
volume corrections for all the instances of l which appear
in Eqs. (44) and (46). Specifically, π0, Kþ and η satisfy
periodic boundary conditions [so that the corresponding
finite-volume corrections are indeed given by Eq. (50)]
whereas π� and K0 satisfy antiperiodic boundary condi-
tions for which the finite-volume corrections to l are

different. In the antiperiodic case, we replace fð~kÞ in

Eq. (49) by fð~kþ ~qÞ, where ~q ¼ ðπLÞð1; 1; 1Þ. Shifting

the integration variable from ~k to ~kþ ~q, we find that
δ1ðmLÞ in Eq. (50) is now replaced by

δA1 ðmLÞ ¼ 4

mL

X
~n≠~0

ð−1Þnxþnyþnz
K1ðj~njmLÞ

j~nj ; ð51Þ

where the index A denotes that the correction is evaluated
for a volume with antiperiodic boundary conditions in all
spatial directions. The difference from the periodic case is
the additional factor ð−1Þnxþnyþnz in the summands. The
known formulas in Eqs. (44) and (46) do not differentiate
between different isospin components, and therefore do not
specify which linear combination of periodic and antiperi-
odic corrections should be used. Since we are only using
these formulas for an approximate estimate of the size of
the error, we choose to be conservative and to include
the larger corrections which are those obtained with the
periodic boundary conditions given in Eqs. (50). The
numerical results are presented in Table V and as expected
the leading contributions come from the loops with a pion
propagator.

FIG. 8. Sample loop diagrams which contribute to finite-volume corrections of (27,1) and (8,8) K → ππ matrix elements in chiral
perturbation theory.
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B. Corrections to βðmπ;mK;mπÞ and βðmπ;mK;mηÞ
We now consider the contributions from loops with

two meson propagators and which are proportional to the
function β. We start by discussing the corrections to
βðmπ; mK;mπÞ and βðmπ; mK;mηÞ, for which in
Minkowski space the external energy is below the corre-
sponding two-particle cut; e.g. in βðmπ; mK;mπÞ the
external energy in the center-of-mass frame is mπ which
is clearly smaller than mK þmπ . In such situations the
finite-volume corrections are exponentially small. We
postpone the discussion of the contribution which does
contain the two-particle cut, that proportional to
βðmK;mπ; mπÞ, until the following subsection.
The corrections to βðmπ; mK;mπÞ and βðmπ; mK;mηÞ are

proportional to

Δβðq;m1; m2Þ ¼
X
~n≠0

Z
d3~k
ð2π3Þ

ei~k·~nðω1 þ ω2Þ
2ω1ω2ðq2 − ðω1 þ ω2Þ2Þ

ð52Þ

with

ω2
1 ¼ j~kj2 þm2

1 and ω2
2 ¼ j~qþ ~kj2 þm2

2: ð53Þ

Because of the angular dependence inside the integrals,
we evaluate the integrals numerically. With the boundary
conditions which we are using the corrections with a Kþ
and π− are equal and opposite to those with the neutral
mesons. In the estimate of the uncertainty we conserva-
tively do not exploit the cancellation but take the absolute
value in each case.
We note that care must be taken when using Eqs. (71)

and (73) for the finite-volume corrections to β in Sec. VIII
of [6]. In Eq. (52) above, the two terms in the factor in
the denominator of the integrand q2 − ðω1 þ ω2Þ2 come
with opposite signs. How this arises in finite-volume
Euclidean correlation functions is explained in the
Appendix following [5]. The corresponding terms in

the denominator of Eq. (73) in [6] appear (incorrectly)
with the same sign.

C. βðmK; mπ; mπÞ
Kinematically this case is simpler than the two β

integrals which were evaluated in Sec. V B since the
external particle (K) is now at rest which eliminates the
angular dependence from the integral. Furthermore, both
internal πþ propagators satisfy antiperiodic boundary
conditions. In this case, however, the integral for β has
a pole at ωπ ¼ mK=2, so the Poisson summation formula
will give both the exponential and powerlike corrections.
The power corrections are included as the Lellouch-
Lüscher factor F in Eq. (40) and we do not include these
in the estimate of the finite-volume uncertainty. The
evaluation of the remaining exponential corrections
following the approach of [28] is explained in the
Appendix.

D. Combining the finite-volume corrections

To one-loop order we write the systematic error asso-
ciated with the finite-volume corrections in terms of the
ratios ΔMlog=MLO. These are given by

ΔM27
log

M27
LO

¼ 1

f2ðm2
K −m2

πÞ
�
−

1

12
m4

K

�
1 −

m2
K

m2
π

�
Δβðm2

π; m2
K;m

2
ηÞ þm2

K

�
5

4

m4
K

m2
π
−
13

4
m2

K þ 2m2
π

�
Δβðm2

π; m2
K;m

2
πÞ

þ ðm4
K − 3m2

πm2
K þ 2m4

πÞΔβðm2
K;m

2
π; m2

πÞ þ
�
−
1

4

m4
K

m2
π
−

1

12
m2

K þ 1

3
m2

π

�
Δlðm2

ηÞ

þ
�
−m4

K

m2
π

− 4m2
K þ 4m2

π

�
Δlðm2

KÞ þ
�
5

4

m4
K

m2
π
−
45

4
m2

K þ 11m2
π

�
Δlðm2

πÞ
�

ð54Þ

and

TABLE V. Contributions to our estimate of the exponentially
suppressed finite-volume errors.

Quantity 483 lattice 643 lattice

L 5.48 fm 5.36 fm
Δlðm2

πÞ 14.32 MeV2 16.39 MeV2

Δlðm2
KÞ ð9.05 × 10−4Þ MeV2 ð1.03 × 10−3Þ MeV2

Δlðm2
ηÞ ð1.32 × 10−4Þ MeV2 ð1.52 × 10−4Þ MeV2

Δβðmπ; mK;mηÞ 3.0 × 10−7 3.0 × 10−7

Δβðmπ; mK;mπÞ 5.0 × 10−5 5.2 × 10−5

ΔβðmK;mπ ; mπÞ 6.67 × 10−5 6.97 × 10−5

ΔMð27;1Þ
Mð27;1Þ

0.022 0.024

ΔMð8;8Þ
Mð8;8Þ

0.024 0.026
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ΔM88
log

M88
LO

¼ 1

f2

��
5

4

m4
K

m2
π
− 2m2

K

�
Δβðm2

π; m2
K;m

2
πÞ þ ðm2

K − 2m2
πÞΔβðm2

K;m
2
π; m2

πÞ

þ 1

4

m4
K

m2
π
Δβðm2

π; m2
K;m

2
ηÞ −

�
4þ 1

2

m2
K

m2
π

�
Δlðm2

KÞþ
�
5

4

m2
K

m2
π
− 8

�
Δlðm2

πÞ −
3

4

m2
K

m2
π
Δlðm2

ηÞ
�
: ð55Þ

The numerical values of these ratios for the 483 and 643

ensembles are shown in Table V.

VI. THE ERROR BUDGET

In this section we discuss the two remaining systematic
errors: those which arise because the meson masses and the
two-pion energy are not quite physical and those intro-
duced by the perturbative Wilson coefficients. Finally all
of the systematic errors in our results for the real and
imaginary parts of A2 are summarized in Tables IX and X,
respectively.
The volume, boundary conditions and quark masses

have been chosen to enable simulations of physical K→ππ
decays. Nevertheless, since the volume and quark masses
have to be chosen a priori, the output values of the meson
masses and two-pion energies will be a little different from
the physical values (see Table I). In order to estimate the
corresponding uncertainty we follow the procedure
described in [2,29] and outlined below. We use measure-
ments on 60 quenched configurations on a 243 lattice with
a−1 ¼ 1.31 GeV performed with three values of the light-
quark masses, five strange-quark masses and the applica-
tion of antiperiodic boundary conditions in ntw ¼ 0, 1, 2
and 3 directions. These measurements are used to deter-
mine the coefficients in the following phenomenological
formulas:

m2
xy ¼ B0ðmx þmyÞ þ B1; ð56Þ

E2
ππðntwÞ ¼ A0ðntwÞml þ A1ðntwÞ; ð57Þ

A2 ¼ C0ðntwÞms þ C1ðntwÞml þ C2ðntwÞ; ð58Þ

where ml and ms are the masses of the light and strange
quarks, mxy is the mass of the meson consisting of x and y
valence quarks (which can be either light or strange) and
ntw is the number of directions in which the antiperiodic
boundary conditions would have to be imposed on the
quenched lattice to get the correct two-pion energy. Note
that ntw does not have to be an integer, and is given instead
by p2 ¼ ntwπ2=L2, where p is the center-of-mass momen-
tum of each pion. The full list of coefficients A, B and C
obtained from these quenched configurations was pre-
sented in [29] and is reproduced in Table VI.
We can use the coefficients in Table VI to determine

A2 on the quenched ensembles for any choice of
fmπ; mK; Eππg. We exploit this possibility for three sets
of parameters: (i) the physical masses mK ¼ Eππ ¼
493.7 MeV, mπ ¼ 139.6 MeV; (ii) the values from the
483 simulation given in the third row of Table I and (iii) the
values from the 643 simulation given in the fourth row of
Table I. We denote the corresponding three estimates of A2

by Aq;phys
2 , Aq;48

2 and Aq;64
2 respectively, where the super-

script q reminds us that the results were obtained on the
quenched ensembles. We use the differences Aq;48

2 − Aq;phys
2

and Aq;64
2 − Aq;phys

2 as estimates of the systematic error due
to unphysical kinematics.
The results are

ReðAq;phys
2 Þ ¼ 2.25 × 10−8 GeV;

ImðAq;phys
2 Þ ¼ −1.344 × 10−12 GeV; ð59Þ

ReðAq;48
2 Þ ¼ 2.29 × 10−8 GeV;

ImðAq;48
2 Þ ¼ −1.341 × 10−12 GeV; ð60Þ

TABLE VI. Parameters used for extrapolations on the 243 quenched ensembles.

ntw 0 1 2 3

A0 17.53(16) 17.14(73) 14.9(2.3) 24.5(9.5)
A1 0.0273(12) 0.1038(60) 0.202(18) 0.196(82)
B0 2.124 2.124 2.124 2.124
B1 0.00692 0.00692 0.00692 0.00692
ReC0ðGeVÞ 1.016ð55Þ × 10−7 1.43ð11Þ × 10−7 1.53ð25Þ × 10−7 1.78ð54Þ × 10−7

ReC1ðGeVÞ 1.697ð89Þ × 10−6 1.29ð18Þ × 10−6 1.45ð38Þ × 10−6 4.22ð97Þ × 10−6

ReC2ðGeVÞ 2.53ð51Þ × 10−9 1.08ð12Þ × 10−8 1.68ð25Þ × 10−8 −2ð67Þ × 10−10

ImC0ðGeVÞ −1.06ð31Þ × 10−12 −4.6ð3.3Þ × 10−13 4.4ð7.4Þ × 10−13 2ð11Þ × 10−13

ImC1ðGeVÞ 5.54ð79Þ × 10−11 3.39ð91Þ × 10−11 2.1ð1.6Þ × 10−11 −1.8ð3.2Þ × 10−11

ImC2ðGeVÞ −1.689ð64Þ × 10−12 −1.392ð66Þ × 10−12 −1.24ð12Þ × 10−12 −7.5ð1.9Þ × 10−13
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ReðAq;64
2 Þ ¼ 2.36 × 10−8 GeV;

ImðAq;64
2 Þ ¼ −1.329 × 10−12 GeV: ð61Þ

The differences in Eqs. (59)–(61) translate to an estimated
1.8% error on ReðA2Þ and 0.2% error on ImðA2Þ on the 483
ensemble and a 4.5% difference for ReðA2Þ and 1.1%
difference for ImðA2Þ on the 643 ensemble. These numbers
are obtained from the difference of the simulated results
from those at the physical point (normalized by the result at
the physical point). These uncertainties are included in
Tables IX and X under the label “unphysical kinematics.”
To estimate the error in the Wilson coefficients, we

compare the results for A2 using Wilson coefficients
calculated at leading order and next-to-leading order. We
have used the set of coefficients evaluated in the MS
scheme at 3 GeV, which are shown in Table VII [30], and
the standard parametrization of Wilson coefficients was
used, i.e. Ci ¼ zi þ τyi where τ is the ratio of CKM matrix
coefficients τ ¼ − V�

tsVtd
V�
usVud

. The results for matrix elements
calculated at leading and next-to-leading orders are shown
in Table VIII. From the differences between the entries in
the columns marked as LO and NLO we estimate that the
uncertainties are 6.8% for ReðA2Þ on both sets of ensembles
and 10% (8%) for ImðA2Þ on the 483 (643) ensembles.
Tables IX and X show our estimates of systematic errors

associated with the results for ReðA2Þ and ImðA2Þ pre-
sented in this paper. The evaluation of the continuum
limit of A2 is discussed in the following section. As will be
seen, the systematic error associated with this extrapolation
is negligible with respect to the statistical errors.
Consequently no discretization error is shown in
Tables IX and X. The values in the column marked

“Cont.” are the errors assigned to our continuum-
extrapolated results, and are simply the larger of the
corresponding entries from the 483 and 643 columns. We
can see that the dominant contribution to the systematic error
for both real and imaginary parts of A2 on both ensembles
comes from the uncertainty in Wilson coefficients.

VII. CONTINUUM EXTRAPOLATION

In this section we discuss the extrapolation of the results
obtained on the 483 and 643 ensembles to the continuum
limit. We divide this discussion into two parts. In the first
we present the complete physical results for the complex
amplitude A2 in the continuum limit. As we will observe,
the dominant error in our result comes from the perturbative
error assigned to the Wilson coefficients. This may be
reduced in the future if higher order perturbation theory
results become available or if lattice step-scaling methods
are used to allow present perturbative results to be applied
at a higher energy scale. Therefore, in the second part we
determine the continuum limit of the individual matrix
elements themselves, normalized in the regularization-
independent ðq; qÞ and ðγ; γÞ schemes.

A. Continuum limit of ReðA2Þ and ImðA2Þ
As already mentioned in Sec. VI the quark masses used

in these ensembles are very slightly larger than their
physical values. This is illustrated in Table XI, in which
we compare the physical and simulated values of the
dimensionless quantities mπ=mΩ and mK=mΩ, which are
highly sensitive to the light- and heavy-quark masses
respectively. In order to determine the values of the lattice

TABLE VII. Wilson coefficients at 3 GeV in the MS scheme at
leading order (LO) and next-to-leading order (NLO).

(27,1) (8,8) ð8; 8Þmx

zLOi 0.26696 4.260055 × 10−5 −1.0063 × 10−5

yLOi −0.0035185 −2.026445 × 10−4 2.447741 × 10−4

zNLOi 0.290342 4.70099 × 10−5 −5.22390 × 10−5

yNLOi −0.00397252 −8.09555 × 10−5 3.26016 × 10−4

TABLE VIII. Comparison of matrix elements calculated with
leading order (LO) and next-to-leading order (NLO) Wilson
coefficients.

LO NLO

ReðA2Þ483 1.293ð11Þ × 10−8 1.386ð12Þ × 10−8

ImðA2Þ483 −5.551ð45Þ × 10−13 −6.174ð49Þ × 10−13

ReðA2Þ643 1.3410ð89Þ × 10−8 1.4386ð95Þ × 10−8

ImðA2Þ643 −6.037ð71Þ × 10−13 −6.548ð78Þ × 10−13

TABLE IX. Systematic error breakdown for ReA2.

ReA2 systematic errors 483 643 Cont.

NPR (nonperturbative) 0.1% 0.1% 0.1%
NPR (perturbative) 2.9% 2.5% 2.9%
Finite-volume corrections 2.2% 2.4% 2.4%
Unphysical kinematics 1.8% 4.5% 4.5%
Wilson coefficients 6.8% 6.8% 6.8%
Derivative of the phase shift 1.1% 0.6% 1.1%
Total 8% 9% 9%

TABLE X. Systematic error breakdown for ImA2.

ImA2 systematic errors 483 643 Cont.

NPR (nonperturbative) 0.1% 0.1% 0.1%
NPR (perturbative) 7.0% 6.2% 7.0%
Finite-volume corrections 2.4% 2.6% 2.6%
Unphysical kinematics 0.2% 1.1% 1.1%
Wilson coefficients 10% 8% 10%
Derivative of the phase shift 1.1% 0.6% 1.1%
Total 12% 10% 12%
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spacing we must therefore perform a short chiral extrapo-
lation; this is achieved using a simultaneous chiral and
continuum “global fit” that incorporates data from both
ensembles. Since the (renormalized) quark masses on the
two ensembles are very similar, we must include additional
ensembles in order to have a sufficient spread of masses for
the determination of the chiral dependence. The full set of
ensembles and details of this procedure can be found in [7].
The determination of A2 presented here was performed

using 76 configurations of the 483 ensemble, whereas the
lattice spacings in [7] were computed using 80. In order to
preserve the full correlations between the jackknife samples
of A2 and the corresponding superjackknife samples of the
lattice spacing, we repeated the global fit analysis using the
same 76 configurations. The details of the binning are also
different. In [7] we binned the 483 data over 5 successive
measurements (100 MD time units) in order to take into
account the observed autocorrelations in the data, whereas
in the present calculation, as explained in Sec. II, we
construct 19 bins each of 4 configurations. These
differences lead to determined values of the lattice spacings
in Eq. (62) below which are a little different from those
in [7]. For the 643 ensembles we use the same set of 40
configurations for the evaluation of A2 and the same
binning as in the global fit in [7].
In order to estimate the systematic errors due to the chiral

extrapolation and finite volume in the determination of the
lattice spacings, we have performed our fits using three
different chiral Ansätze: NLO SU(2) chiral perturbation
theory, with and without finite-volume corrections (referred
to as the ChPTFV and ChPT forms respectively), and a
linear Ansatz (referred to as the “analytic” form). In practice
we found the lattice spacings obtained from all three
Ansätze to be consistent to within a fraction of the statistical
error due to the dominance of the near-physical data; hence
we treat these systematic errors as negligible. The final
results for the values of the lattice spacing are

a−164 ¼ 2.3584ð70Þ GeV and a−148 ¼ 1.7280ð41Þ GeV;
ð62Þ

where the errors are statistical only.
The lattice matrix elements Mi scale as a3 and so small

differences in the lattice spacing become amplified. We
have performed the continuum extrapolation of A2 using
the lattice spacings obtained with each of the three chiral

Ansätze; the extrapolated values are given in Table XII. In
Fig. 9 we show the continuum extrapolation in the ðq; qÞ
scheme using the lattice spacings obtained with the
ChPTFV chiral Ansatz. We use results obtained with this
Ansatz as our central values for each lattice spacing and for
the extrapolated value in the continuum.
We obtain an estimate of the component of the chiral

extrapolation error arising from the lattice spacing deter-
mination by taking the difference between the continuum
values obtained using the ChPTFV and analytic lattice
spacings. The full jackknife differences are 0.3ð2.6Þ ×
10−10 and 0.1ð1.2Þ × 10−14 for the real and imaginary
parts respectively. As with the lattice spacings, we cannot
resolve these differences within the statistical error; hence
we set the chiral error to zero. On the other hand the
jackknife differences between the ChPTFV and ChPT
Ansätze are resolvable as they differ only in small
Bessel function corrections and are thus highly correlated:
we obtain 3.4ð1.0Þ × 10−11 and 1.59ð47Þ × 10−15 for the
real and imaginary parts respectively. Nevertheless, these
errors are only 5%–8% of the statistical error and can
therefore also be neglected. This leads to the result

ReðA2Þ ¼ 1.501ð39Þ × 10−8 GeV and

ImðA2Þ ¼ −6.99ð20Þ × 10−13 GeV; ð63Þ

where the errors are statistical.
Our final result for A2 is obtained by assigning the 9%

and 12% systematic errors from Tables IX and X as the
systematic errors to be associated with the values for
ReðA2Þ and ImðA2Þ given in Eq. (63):

ReðA2Þ ¼ 1.50ð4Þstatð14Þsyst × 10−8 GeV;

ImðA2Þ ¼ −6.99ð20Þstatð84Þsyst × 10−13 GeV: ð64Þ

In order to estimate the unknown quantity ImA0,
we combine our results for A2 with the experimental
values of ReA0 ¼ 3.3201ð18Þ × 10−7 GeV and ϵ0=ϵ ¼
ð1.65� 0.26Þ × 10−3 [11]. To this end we start by evalu-
ating the ratio ImA2=ReA2, taking into account any
statistical correlations between the real and imaginary parts
by performing the analysis within the jackknife procedure.
On the two ensembles we find

TABLE XI. The ratios of the pion and kaon mass to the Omega
baryon mass on the 483 and 643 ensembles as well as the physical
value.

48I 64I Phys.

mπ=mΩ 0.08296(17) 0.08220(19) 0.08073
mK=mΩ 0.29740(32) 0.29982(37) 0.29643

TABLE XII. The continuum values of ReðA2Þ and ImðA2Þ
determined using the lattice spacings obtained with each of the
three chiral Ansätze.

Ansatz ReðA2Þð×10−8 GeVÞ ImðA2Þð×10−13 GeVÞ
ChPTFV 1.501(39) −6.99ð20Þ
ChPT 1.494(38) −6.96ð19Þ
Analytic 1.494(43) −6.96ð21Þ
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�
ImA2

ReA2

�
483

¼ −4.45ð5Þstatð65Þsyst × 10−5 and

�
ImA2

ReA2

�
643

¼ −4.55ð5Þstatð62Þsyst × 10−5: ð65Þ

The systematic errors for this ratio are given in Table XIII;
they are generally combined in quadrature except for that
due to the derivative of the phase shift because the
Lellouch-Lüscher factor cancels in the ratio. It is interesting
to note that if instead of adding the errors in the Wilson
coefficients for ReA2 and ImA2 in quadrature as in
Table XIII, we had calculated the ratios with the coef-
ficients at leading and next-to-leading order respectively
and taken the difference as a measure of the uncertainty we
would have obtained a much smaller answer (3.6% instead
of 12%). Since the operators which give the dominant
contributions to the real and imaginary parts are different,
and in the absence of an understanding which might
suggest a correlation between their Wilson coefficients,
we prefer to be cautious and take the larger uncertainty. We
find a similar feature in the NPR perturbative error.
The continuum extrapolation of the dimensionless ratio

ReA2=ImA2 is milder than that of ReA2 and ImA2 sepa-
rately and we obtain

�
ImA2

ReA2

�
continuum

¼ −4.67ð72Þ × 10−5: ð66Þ

Using this ratio, we can calculate the electroweak
penguin contribution to ϵ0=ϵ, given by

�
ϵ0

ϵ

�
EWP

≡ ωffiffiffi
2

p jϵj
ImA2

ReA2

¼ −6.6ð10Þ × 10−4; ð67Þ

where we have used the values ω≡ ReA2

ReA0
¼ 0.04454ð12Þ

and jϵj ¼ 2.228ð11Þ × 10−3 from [2]. This value for
ðϵ0=ϵÞEWP is consistent with our previously quoted value
−6.25ð44Þð119Þ × 10−4 [2]. Finally, for ImA0 we find

ImA0 ¼ ReA0

�
ImA2

ReA2

−
ffiffiffi
2

p jϵj
ω

ϵ0

ϵ

�

¼ −5.40ð64Þ × 10−11 GeV: ð68Þ

The results in Eqs. (67) and (68) were obtained using our
result for ImA2=ReA2 in Eq. (66). If instead we take ImA2

from our calculation, Eq. (64), and combine it with the
experimental result ReA2 ¼ 1.4787ð31Þ × 10−8 GeV we
obtain ImA2=ReA2 ¼ −4.73ð58Þ × 10−5, ðϵ0=ϵÞEWP ¼
−6.69ð82Þ × 10−4 and ImA0 ¼ −5.42ð63Þ × 10−11 GeV.

B. Continuum limit of the RI-SMOM
matrix elements

From the error budget in Table XIII we see that the
dominant uncertainty is due to the Wilson coefficients,
which we take to be the difference between the leading and
next-to-leading order contributions as defined in [14],
where the calculations were based on [31–33]. In case
the Wilson coefficients in the RI-SMOM schemes become
known with better precision in the future, we present in
Table XIV theKþ → πþπ0 matrix elementsMKþ

i defined in
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FIG. 9 (color online). The continuum extrapolation of ReðA2Þ (left) and ImðA2Þ (right). The points at finite lattice spacing are taken
from Table III for the ðq; qÞ intermediate renormalization scheme.

TABLE XIII. Systematic error breakdown for ImA2=ReA2.

Systematic errors in ImA2=ReA2 483 643 Cont.

NPR (nonperturbative) 0.1% 0.1% 0.1%
NPR (perturbative) 7.6% 6.7% 7.6%
Finite-volume corrections 3.5% 3.5% 3.5%
Unphysical kinematics 1.8% 4.6% 4.6%
Wilson coefficients 12.0% 10.5% 12.0%
Derivative of the phase shift 0 0 0
Total 14.7% 13.7% 15.3%
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Eq. (7), with the operatorsQi in Eqs. (8)–(10) renormalized
in the (q; q) and (γ; γ) renormalization schemes at a
renormalization scale of 3 GeV. These matrix elements
together with the new Wilson coefficients would enable an
improved evaluation of A2, without the need to recompute
the matrix elements. The systematic errors for the (27,1)
operator are estimated using the entries in Table IX with the
NPR (perturbative) and Wilson coefficient errors set to
zero. This gives the errors of 2.8%, 5.1% and 5.2% for
the 483 and 643 ensembles and in the continuum limit
respectively. For the (8, 8) operators using the entries in
Table X, the same procedure leads to systematic errors of
2.6%, 2.9% and 3.0% for the 483 and 643 ensembles and in
the continuum respectively.
For completeness we also convert these three

Kþ → ðππÞI¼2 matrix elements into those in the original
10 operator basis as defined in [34]:

MKþ
ð27;1Þ ¼ 3MKþ

1 ¼ 3MKþ
2 ¼ 2MKþ

9 ¼ 2MKþ
10 ð69Þ

MKþ
ð8;8Þ ¼ 2MKþ

7 and MKþ
ð8;8Þmx ¼ 2MKþ

8 ð70Þ

where MKþ
i ≡ hðππÞI¼2∣Qi∣Kþi.

VIII. CONCLUSIONS

Before briefly summarizing our results and discussing
prospects for future calculations we confirm our finding,
first presented in [3], that there is a significant cancellation
between the two dominant contributions to ReA2. As
explained above, ReðA2Þ is dominated by the matrix
element of the (27,1) operator and is proportional to the
sum of the two contractions C1 and C2 in Fig. 10. While
naïve factorization, frequently used for phenomenological
estimates, suggests that C1 ¼ 3C2 because of the color
suppression in C2, we find a strong cancellation between

these two contributions. For the 483 and 643 ensembles
studied in this paper, we illustrate this cancellation in
Fig. 11. (In Sec. III we explain that the numerical results
in this paper were obtained from correlation functions
with even values of tππ . The choice of tππ ¼ 27 for the 48
ensembles in Fig. 11 is made to ensure that the cancellation
is illustrated at the same value of tππ in physical units on the
two sets of ensembles.) As explained in [3] we believe that
this cancellation is a significant component in explaining
the ΔI ¼ 1=2 rule. Although we have not completed the
calculation of A0 at this stage, we note that the contributions
of the (27,1) operator all contribute with the same sign. A
similar partial cancellation occurs between the two corre-
sponding contractions in the evaluation of the BK parameter
of neutral kaon mixing as pointed out in [35] and
subsequently confirmed in [3,36].
Our ab initio determination of A2 shows clearly that

phenomenological approaches based on the dominance of
naïve factorization are not consistent. We note however,
that there were nonlattice studies based on chiral perturba-
tion theory and the 1=N expansion, where N is the number
of colors, which indicated that C2 may have the opposite
sign to C1 [37,38]. Of course, as illustrated in our results
above, the 1=N expansion per se is not a good approxi-
mation; C2 is suppressed by 1=N and yet is comparable
to C1. In different ways, the authors of [37,38] combine the
expansion with leading short- and long-distance loga-
rithms. In [37] the authors use an Ansatz for matching
the perturbative short-distance contributions and long-
distance effects based on a chiral Lagrangian for mesons.
In [38] the authors compare the experimental value of ReA2

with the leading term of the expansion to deduce that C2

should be negative. For recent discussions of these two
early approaches, stimulated by our lattice QCD result [1,2]
and written by subsets of their original authors, we refer the
reader to [39,40].

FIG. 10. Dominant contractions contributing to ReðA2Þ: C1 (left) and C2 (right).

TABLE XIV. Results for the Kþ → ðππÞI¼2 matrix elements MKþ
i [defined in Eq. (7)] in two nonexceptional RI-

SMOM renormalization schemes at the scale 3 GeV. The first error is statistical, while the second one is the
systematic uncertainty estimated as described in the text.

Ensemble Scheme MKþ
ð27;1Þ ðGeV3Þ MKþ

ð8;8Þ ðGeV3Þ MKþ
ð8;8Þmx ðGeV3Þ

483 (q; q) 0.04761(39)(133) 0.7026(52)(183) 3.892(28)(101)
643 (q; q) 0.04848(32)(247) 0.8412(88)(244) 4.140(44)(120)
483 (γ; γ) 0.04473(37)(128) 0.7112(53)(185) 3.471(26)(90)
643 (γ; γ) 0.04664(31)(238) 0.8477(88)(246) 3.724(40)(108)
Continuum (q; q) 0.0506(13)(26) 1.003(22)(30) 4.43(12)(13)
Continuum (γ; γ) 0.0489(13)(25) 1.007(23)(30) 4.02(10)(12)
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Ourearlier calculationofA2wasperformedonanensemble
at a single coarse lattice spacing,a−1 ¼ 1.364 GeV [1,2], and
so not surprisingly the dominant systematic uncertainty was
due to discretization errors. We estimated these to be about
15%, although with only a single lattice spacing this could
only be an estimate. In the present paper we repeat and refine
the earlier calculation which is now performed on two finer
ensembles with different lattice spacings, allowing for a
continuum extrapolation. We have determined ReA2 to be
1.50ð4Þstatð14Þsys × 10−8 GeV. This is consistent with the
experimental values of 1.4787ð31Þ × 10−8 GeV from
charged kaon decays and 1.570ð53Þ × 10−8 GeV from neu-
tral kaondecays.Wehavealsocalculated the imaginarypartof
A2 to be −6.93ð20Þstatð84Þsys × 10−13 GeV, which was
unknown until [1,2]. [We recall that the corresponding results
from our earlier work were ReA2 ¼ 1.38ð5Þstatð26Þsys ×
10−8 GeV and ImA2¼−6.54ð46Þstatð120Þsys ×10−8GeV.]
Our results for Im and ReA2 imply ðϵ0=ϵÞEWP ¼
−6.6ð10Þ × 10−4. This canbe compared to the result obtained
via finite energy sum rules [41], Reðϵ0=ϵÞEWP ¼ −ð11.0�
3.6Þ × 10−4 (see also results based on vacuum saturation
[41,42]). We also mention for completeness that the con-
tinuum value of the two-pion phase shift is δ ¼ −0.251ð24Þ.
The errors are currently dominated by systematic uncer-

tainties, the largest of which is due to the uncertainty in the
(perturbative) evaluation of the Wilson coefficients (see
Tables IX and X). It is a testimony to the huge progress in
the precision of lattice calculations that this is the case. We
have aimed to be conservative in estimating this error,
taking the difference between the lowest order and the next-
to-lowest order as the uncertainty. The natural way to
decrease this error is to perform higher-order perturbative
calculations in the standard model but it may also be
possible to use step scaling to increase the renormalization
scale in the intermediate schemes (such as the RI-SMOM
schemes used in this study) and hence to increase the scale
at which the matching to the MS scheme is performed and

at which the Wilson coefficients are calculated. It will be
interesting to explore this possibility.
In order to have a fully quantitative understanding of the

ΔI ¼ 1=2 rule, to determine ϵ0=ϵ and to compare the result
to the experimental value ϵ0=ϵ ¼ ð1.65� 0.26Þ × 10−3 we
need to perform the evaluation of A0 at physical kinematics.
A key ingredient which makes the calculation of A2 feasible
is the use of the Wigner-Eckart theorem described in
Sec. III. Together with the choice of volume and the use
of antiperiodic boundary conditions for the d-quark in all
three spatial directions, it ensures that the energy of the
two-pion ground state is equal to mK . Unfortunately this
approach cannot be directly applied to the calculation of
A0; in particular the breaking of isospin symmetry by the
boundary conditions invalidates the calculation. For exam-
ple, the π0 remains at rest with the antiperiodic boundary
conditions, whereas the charged pions have nonzero
momentum. More sophisticated boundary conditions mix-
ing quarks and antiquarks and an isospin rotation, the
so-called G-parity boundary conditions [12,43–46], must
therefore be used instead for both the valence and the sea
quarks. The evaluation of A0 with G-parity boundary
conditions is well underway and exciting progress has
recently been reported in [4] and we anticipate the first
complete calculation of A0, albeit on a single lattice
spacing, within the next year.
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APPENDIX: βðmK;mπ;mπÞ AND THE
LELLOUCH-LÜSCHER FACTOR

In Sec. V we use chiral perturbation theory to estimate
the finite-volume corrections in our calculation of A2 and
consider the differences between the finite-volume sums
and infinite-volume integrals in lðm2Þ and βðq;m1; m2Þ
defined in Eqs. (47) and (48). In the case with q ¼ ðmK; ~0Þ
and m1 ¼ m2 ¼ mπ , βðmK;mπ; mπÞ in Minkowski space
has an imaginary part which leads to finite-volume cor-
rections in Euclidean space which decrease only as inverse
powers of the volume and not exponentially. These power
corrections are the one-loop chiral perturbation theory
(NLO ChPT) contributions to the Lellouch-Lüscher factor
F in Eqs. (40) and (41). This factor is included fully in our
analysis and so we must not include it again from NLO
ChPT. A detailed study of how the Lellouch-Lüscher factor
arises in one-loop ChPTwas performed in [5], but we hope
that it will be useful to summarize the main points here.
In Minkowski space, performing the k0 integration in the

center-of-mass frame we obtain

βðmK;mπ; mπÞ ¼
Z

d3~k
ð2πÞ3

1

ωð~kÞ½m2
K − 4ω2ð~kÞ þ iε�

;

ðA1Þ

where ω2ð~kÞ ¼ j~kj2 þm2
π .

In finite-volume Euclidean space we evaluate the corre-
lation function illustrated in Fig. 12. The kaon propagator is
irrelevant for our discussion and so we amputate it, and
consider the two pions to be created at the origin, to
rescatter and to be annihilated on the time slice at ty. After
performing the integrals over ~y1, ~y2 (with phase factors
ei~q·~y1 and e−i~q·~y2 respectively) and ~x and exploiting the
resulting δ functions, we obtain for this contribution to the
correlation function

I ≡
Z

∞

−∞
dt

Z
d3~k
ð2πÞ3

Y4
i¼1

dEi

E2
i þ ω2

i
eiðE1−E2ÞteiðE3−E4Þðty−tÞ;

ðA2Þ

where in a finite volume the integral over ~k is replaced

by the corresponding sum. Here ω2
1 ¼ ω2

2 ¼ ω2ð~kÞ ¼
j~kj2 þm2

π and ω2
3 ¼ ω2

4 ¼ ω2ð~qÞ ¼ j~qj2 þm2
π so that

ω3;4 are not integration variables.
The energy integrals can now be performed by contour

integration; there are three contributions depending on the
value of t.
(1) The first contribution is from the interval −∞<t<0

and gives

I1¼
e−2ωð~qÞty

32ω2ð~qÞ
Z

d3~k
ð2πÞ3

1

ω2ð~kÞðωð~kÞþωð~qÞÞ
: ðA3Þ

(2) The second contribution comes from the region
0 < t < ty and gives

I2 ¼
e−2ωð~qÞty

32ω2ð~qÞ
Z

d3~k
ð2πÞ3

1

ω2ð~kÞðωð~kÞ − ωð~qÞÞ
× ð1 − e−2ðωð~kÞ−ωð~qÞÞtyÞ: ðA4Þ

(3) Finally we have the contribution from the region
ty < t < ∞ which gives

I3 ¼
1

32ω2ð~qÞ
Z

d3~k
ð2πÞ3

e−2ωð~kÞty

ω2ð~kÞðωð~kÞ þ ωð~qÞÞ
:

ðA5Þ

FIG. 12. Contribution to the correlation function in which two
pions are produced by an operator at the origin (grey circle), and
rescatter by the strong interactions denoted by the filled circle.
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The contribution to the amplitude is given by the
coefficient of

e−2ωð~qÞty

4ω2ð~qÞ :

In finite volume (FV) the integrals over ~k are replaced by
the corresponding sums and we obtain the following three
contributions. The first two are

T1 ¼
1

8L3

X
~k

1

ω2ð~kÞðωð~kÞ þ ωð~qÞÞ
ðA6Þ

from the region t < 0, and

T2 ¼
�
νqty
L3

�
1

4ω2ð~qÞ þ
1

8L3

X
j~kj≠j~qj

1

ω2ð~kÞðωðkÞ − ωðqÞÞ
;

ðA7Þ

from the region 0 < t < ty, where νq is the degeneracy of

states with ~k ¼ ~q. The term proportional to ty is the FV
correction to the two-pion energy and it can be checked that
this is correctly given by the Lüscher quantization con-
dition [5]. Finally from the region ty < t < ∞ we have

T3 ¼
�
νq
L3

�
1

16ω3ðqÞ : ðA8Þ

We now separate the terms with j~kj ¼ j~qj from those

where j~kj ≠ j~qj. When j~kj ¼ j~qj, we find a contribution

νq
L3

1

4ω2ð~qÞ
�

1

4ωð~qÞ þ
1

4ωð~qÞ
	
; ðA9Þ

where the first term in the braces corresponds to T1 and the
second corresponds to T3. The contribution from T3 is
cancelled by the FV correction to the matrix element of the
two-pion interpolating operator at ty [5] whereas the one
from T1 is a contribution to the FVeffects in the amplitude.
The contributions from j~kj ≠ j~qj come from T1 and T2

and can be combined to give

1

4L3

X
j~kj≠j~qj

1

ωð~kÞðω2ð~kÞ − ω2ð~qÞÞ
: ðA10Þ

Thus in Euclidean finite volume we obtain

S01 þ
νq

16L3E3
; ðA11Þ

where it is convenient to define

S0n ¼
ωn−1ð~qÞ
4L3

X
j~kj≠j~qj

1

ωnð~kÞðω2ð~kÞ − ω2ð~qÞÞ
ðA12Þ

and the corresponding integrals by

Jn ¼
ωn−1ð~qÞ

4
P
Z

d3~k
ð2πÞ3

1

ωnð~kÞðω2ð~kÞ − ω2ð~qÞÞ
: ðA13Þ

Relating this sum to the corresponding integral gives
the Lellouch-Lüscher-factor [5]. We now make this more
specific and determine the exponentially small corrections.
In the difference S01 − S00 there is no term with a pole at
ωðkÞ ¼ ωðqÞ so that this difference can be related to the
corresponding integral using the Poisson summation for-
mula and the exponentially small finite-volume corrections
can be identified:

S01 − S00 ¼ −
1

4L3ωð~qÞ
X
j~kj≠j~qj

1

ωð~kÞðωð~kÞ þ ωð~qÞÞ
ðA14Þ

¼ −
1

4L3ωð~qÞ
X
~k

1

ωð~kÞðωð~kÞ þ ωð~qÞÞ
þ νq
8L3ω3ð~qÞ

¼ J1 − J0 þ
νq

8L3ω3ð~qÞ þ e1;0: ðA15Þ

Thus we see that the finite-volume and infinite-volume
results are related by

S01 þ
νq

16L3E3
¼ J1 − J0 þ S00 þ

3νq
16L3E3

þ e1;0; ðA16Þ

where e1;0 represent the exponentially small corrections,

e1;0 ¼ −
1

8π2ωð~qÞL
X
~n;n≠0

1

n

Z
∞

0

kdk
sinðnkLÞ

ωðkÞðωðkÞ þ ωðqÞÞ ;

ðA17Þ

and n and k are j~nj and j~kj respectively. It was shown in [5]
that −J0 þ S00 þ 3νq

16L3E3 is precisely the one-loop contribu-
tion to the Lellouch-Lüscher factor. The residual exponen-
tially small finite-volume effects are given by e1;0. (The
ultraviolet divergence cancels in the difference J0 − S00, but
if the zeta function regularization is used, as in [24],
then J0 ¼ 0.)
We have presented the above detailed discussion because

we believe that there is a misunderstanding in the literature.
In Eqs. (71) and (73) of [6], the authors take the finite-
volume corrections in βðmK;mπ; mπÞ in Euclidean space to
be the difference between the momentum integral and the
corresponding sum over the integrand in Eq. (A1) but with
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the replacement m2
K − 4ω2ðkÞ → m2

K þ 4ω2ðkÞ in the
denominator. Since there would now be no singularity in
the denominator, the finite-volume corrections would be
exponential and there would be no Lellouch-Lüscher factor.
The above derivation demonstrates instead the origin of the
power corrections in the volume.
Throughout the above discussion we assumed periodic

boundary conditions in all three spatial directions so
that ki ¼ ni × ð2π=LÞ where ni is an integer. In our

determination of A2 we use antiperiodic boundary con-
ditions in all three directions so that

e1;0 ¼ −
1

8π2ωðqÞL
X
~n;n≠0

ð−1Þnxþnyþnz

n

×
Z

∞

0

kdk
sinðnkLÞ

ωðkÞðωðkÞ þ ωðqÞÞ : ðA18Þ
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