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Starting from a simple empirical parametrization of the scattering amplitude, successfully describing the
dip-bump structure of elastic pp scattering in t at fixed values of s, we construct a toy model interpolating
between missing energy intervals to extract the Odderon contribution from the difference between p̄p and
pp elastic and total cross sections. The model is fitted to data from

ffiffiffi
s

p ¼ 23.5 GeV to 7 TeV and used to
extract the Odderon and its ratio to the Pomeron. From our fits, a unit intercept Odderon follows,
as predicted by J. Bartels, L. N. Lipatov, and G. P. Vacca, on the basis of perturbative quantum
chromodynamics.
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I. INTRODUCTION

The nature of the Odderon—an asymptotic odd-C Regge
pole exchange, counterpart of the Pomeron—for a long
time remains a subject of debate. Although there is little
doubt about its existence, we still lack direct evidence of
the Odderon. Various reactions supposedly dominated by
Odderon exchanges, called “Odderon filters” [1], may offer
only indirect evidence either because of low statistics or
contamination by competing exchanges.
In quantum chromodynamics the Odderon corresponds

to the exchange of an odd number of gluons. Relevant
calculations were done in a number of papers; see [2] and
earlier references therein.
The only direct way to see the Odderon is by comparing

particle and antiparticle scattering at high enough energies.
The high-energy proton-proton and proton-antiproton elas-
tic scattering amplitude is a difference or sum of even and
odd C-parity contributions, Ap̄p

ppðs; tÞ ¼ “Even”� “Odd”,
where, essentially, the even part consists of the Pomeron
and f Reggeon, while the odd part contains the Odderon
and the ω Reggeon. It is clear from the above formula that
the odd component of the amplitude can be extracted from
the difference of the proton-antiproton and proton-proton
scattering amplitudes, and, since at high enough energies
the contributions from secondary Regge trajectories die

out, this difference offers a direct way of extracting the
Odderon contribution. Unfortunatelly, pp and p̄p elasctic
scatterings were typically measured at different

ffiffiffi
s

p
, with

the exception of the ISR energies of 31, 53, 62 GeV
(see Fig. 1).

FIG. 1 (color online). Timeline of proton and antiproton elastic
scattering measurements. New accelerators are run first at the
maximum available energies; however, at the start of the Spp̄S
accelerator, the pp and the pp̄ elastic scattering data were
measured at the same

ffiffiffi
s

p ¼ 31, 53, and 62 GeV.
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At present, the only way to extract the Odderon from the
difference of the p̄p and pp scattering amplitudes is by
means of a reliable interpolation of both amplitudes (or
cross sections) over the missing energy regions. While the
energy dependence of the forward amplitude (or total cross
sections) is controlled by the Regge pole theory, its t
dependence, especially in the dip-bump region, to a large
extent is model dependent and unpredictable.
A simple, general, and reliable parametrization of the

complicated diffraction structure at high energies at any
fixed energy is a sum of two exponentials in t related by a
complex phase eiϕ. Using this generic expression, Phillips
and Barger (PB) [3] (for brevity we shall refer to it as the
PB ansatz) obtained good fits to the proton-proton differ-
ential cross sections, including the dip-bump region at
several CERN ISR fixed energies. In Refs. [5–7] the
model was extended and improved, in particular, by
accounting for the nonexponential behavior in the low
jtj region. In Ref. [9] the parametrization was shown to be
applicable to proton-antiproton scattering as well. Its
connection with inelastic reactions is discussed on
p. 185 of Ref. [10].
The PB ansatz reads

Aðs; tÞ ¼ i½
ffiffiffiffi
A

p
expðBt=2Þ þ expðiϕðsÞÞ

ffiffiffiffi
C

p
expðDt=2Þ�;

ð1Þ

where s and t are the standard Mandelstam variables;
A;B;C;D, and ϕ were fitted to each energy independently;
i.e., energy dependence in the PB ansatz enters
parametrically.
The success of the simple PB parametrization motivates

its further improvement, extension, and utilization. In
papers [5,6] the low-jtj behavior of the PB ansatz was
improved by modifying its simple exponential behavior by
(a) inclusion of a two-pion threshold required by analyticity
and (b) by means of a multiplicative factor reflecting the
proton form factor. Achieving good fits to the TOTEM data
[4], at the LHC energies of

ffiffiffi
s

p ¼ 7 TeV, the modified
ansatz was used to predict the behavior of the observables
at future energies as well as the expected asymptotic
behavior of the cross sections.
The model was also tested in [7,9] against the TOTEM

data [4], and, contrary to many alternative models, it
works reasonably well. In Ref. [6] the PB ansatz Eq. (1)
was improved; in particular, its small-t behavior was
modified. The fitted parameters are collected in Table II
of that paper. For example, the authors of [6] quote the
following values for these parameters for pp scattering atffiffiffi
s

p ¼ 53 GeV:
ffiffiffiffi
A

p ¼ 6.55;
ffiffiffiffi
C

p ¼ 0.034 in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mb=GeV2

p
and B ¼ 10.20, D ¼ 1.7 in GeV−2, ϕ ¼ 2.53 rad.
As already mentioned, in addition to elastic pp scatter-

ing, the PB ansatz also describes pp̄ data, with a different
set of the parameters (see below), thus opening the way to

be used as a tool in extracting the Odderon from the
difference of the two. However, in its original form, the PB
ansatz does not describe the

ffiffiffi
s

p
dependence of the model

parameters.
In this paper, we try to remedy this limitation by

combining the appealingly simple and efficient form of
its t dependence with energy dependence inspired by the
Regge pole model. Work in this direction was started in
papers [5–7,9,11].
We address the following issues: (1) we smoothly

interpolate between the values of the parameters fitted at
fixed energy values, (2) extract the Odderon contribution
from the difference of the p̄p and pp cross sections, and
(3) compare the energy dependence of this difference with
the prediction [12] based on perturbative quantum chromo-
dynamics, by which the intercept of the Odderon trajectory
equal to one.
The structure of this paper is as follows: in the next

section, we introduce the
ffiffiffi
s

p
dependence of the parameters

of the PB model, which in the next section are determined
from the fits to data. Then we discuss the results, in
particular the

ffiffiffi
s

p
dependence of the results, including, for

example, the Odderon contribution and the Odderon/
Pomeron ratio. Finally, we summarize and conclude.

II. THE GENERALIZED PB MODEL

We use the norm where

σtot ¼ 4πℑAðt ¼ 0Þ ¼ 4π½
ffiffiffiffi
A

p
þ

ffiffiffiffi
C

p
cosϕ� ð2Þ

and

dσ
dt

¼ πjAðtÞj2

¼ π½AeBt þ CeDt þ 2
ffiffiffiffi
A

p ffiffiffiffi
C

p
eðBþDÞt=2 cosϕ�: ð3Þ

Following the Regge pole theory, we make the following
assignment,

ffiffiffiffi
A

p
→

ffiffiffiffiffiffiffiffiffi
AðsÞ

p
¼ a1s

−ϵa1 þ a2s
ϵa2 ;

ffiffiffiffi
C

p
→

ffiffiffiffiffiffiffiffiffiffi
CðsÞ

p
¼ csϵc ; ð4Þ

inspired by the Donnachie and Landshoff model [14] of
cross sections [see Eq. (2)] with effective falling (sublead-
ing Reggeons) and rising (Pomeron) components. It fol-
lows from our fits that the falling (subleading Reggeon)
components in

ffiffiffiffi
C

p
are small; hence, they are neglected.

The slopes B and D in the Regge pole theory are
unambiguously logarithmic in s, providing shrinkage of
the cone:

B → BðsÞ ¼ b0 þ b1 lnðs=s0Þ;
D → DðsÞ ¼ d0 þ d1 lnðs=s0Þ: ð5Þ
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In the above formulas a normalization factor s0 ¼ 1 GeV2

is implied.
The phase ϕ is the weakest point of this “toy” model or

generalized PB model. In Regge theory, it should depend
on t rather than on s. Fortunately, at high

ffiffiffi
s

p
the

dependence of Φ on energy is weak (see the fits below).
However, this is not the case as the energy decreases. The
best we can do is to fit the data with

cosðϕðsÞÞ ¼ k0 þ k1s−ϵcos : ð6Þ

The “low”-energy behavior is a weak point in any case.
Apart from the varying phase, we must account in some
way for the subleading (f and ω) Reggeon contributions.
This is done partly by the inclusion in

ffiffiffiffiffiffiffiffiffi
AðsÞp

of a
decreasing term (absent in

ffiffiffiffi
C

p
). A complete treatment

of these terms with proper t-dependent signatures will
require a radical revision of the model, and we hope to
come back to this issue in the future.
Now we proceed with this simple approach that has a

chance to be viable at high energies, where the Pomeron

and Odderon dominate [13] and the above complications
may be insignificant.
To understand better the existence of any connection

between the ansatz (1) and the Regge pole model, we plot
the values of the parameters A;B; C;D, and ϕ against s and
fit their “experimental” values to Regge-like formulas.
This can be done in two complementary ways: A

successive “two-step” fit. First, we acquire the values of
the parameters A; B;C;D;ϕ from the fits to the pp and p̄p
data, then we fit their Regge forms (see below) to the
obtained “experimental” values of A;B;C;D;ϕ.
Alternatively, one may determine the parameters of
Eqs. (4) and (5) from a single simultaneous fit to all
available data. We chose the first option (5 parameters)
since otherwise there were too many (at least 12) free
parameters. Thus, we proceed with a two-step fit, by which
the final values are determined from a fit to the
“experimental” values of A;B;C;D, and ϕ.
We fitted separately pp and pp̄ in two variables, s and t,

by using pp and pp̄ data on total and differential cross
sections ranging from the ISR to the LHC for pp and from
Spp̄S to the Tevatron for p̄p.
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FIG. 2 (color online). The PB model fitted to the pp and p̄p data at discrete energy values. The dσ=dt data are from Refs. [16–21]. The
data on σtot are from the Particle Data Group database [22].
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Here the following remarks are in order:
(1) It is clear from Eqs. (4) and (5) that, while the

parameters A and C are particularly sensitive to the
data on total cross sections, B and D are correlated
mainly with the differential cross sections (the slopes).

(2) Although we are interested mainly in the high-
energy behavior (the Odderon), low-energy effects
cannot be fully neglected. They are taken into
account approximately by including in A and C
subleading terms of the type sϵ; ϵ ≈ 0.5.
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FIG. 3 (color online). Energy-dependent values of the parameters extracted from a fit to pp and pp̄ data. The data on σtot are from the
Particle Data Group database [22].
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(3) Having fitted A;B;C;D, and ϕ, we perform a
cross-check by calculating the resulting total cross
sections.

(4) At high energies, the proton-proton and antiproton-
proton total cross sections are supposed to converge.
(We consider only this simple option, although we
are aware of alternatives.) Since the existing data are
not yet in this asymptotic domain, we introduce an
extra constraint.

(5) The most delicate issue is the phase, which in Regge
phenomenology is expected to be t, rather than s,
dependent. Our fits (and those of [5–7]) show
considerable energy dependence of the phase at
low energies but weak dependence at high energies,
where we are particularly interested in looking for
the Odderon signal. Postponing the introduction of a
true Regge-pole-motivated, t-dependent phase to a
further study, here we assume a simple parametriza-
tion cosϕ ¼ k0 þ k1sϵϕ .

III. FITTING THE MODEL TO THE DATA

We have calculated the s dependence of the parameters
using a fitting strategy consisting of three consecutive steps
described in detail below. In doing so, the following criteria
were applied:

(i) best χ2 for each fit;
(ii) the −t range was set within 0.35–2.5 GeV2;
(iii) for each fixed energy, the model was fitted simulta-

neously to dσ=dt and σtot (focusing on the dip
region);

(iv) from the resulting fits, σtot was reconstructed in the
whole available energy range.

The values of the fitted parameters, in general, are
consistent, within about 30%, with those obtained in
Refs. [3,6], except for the small value of

ffiffiffiffi
C

p
deviating

considerably from those quoted in the above papers, which
used a different t range for their data analysis.

A. Step 1: Fitting the parameters A;B;… to dσ=dt
and σtot for fixed energies

Figure 2 shows a fit to the data on the pp and p̄p
differential and total cross sections. The parameters
A;B;C;D, and ϕ were fitted to each energy separately.
Given the simplicity of the model, the fits look reasonable.
Figure 3 shows the fitted values of the parameters

A;B;C;D, and ϕ both for pp and p̄p scattering to be
used as “experimental” data in the second stage of our
fitting procedure, in which the explicit expressions (4), (5),
and (6) are inserted. The fitted values of the parameters and
relevant χ2=NDF values are quoted in Tables I and II.
Note the difference between the present model and that

of Refs. [5–7] in the low-jtj behavior of the differential
cross section, corrected in [5–8] and taking account of the
deviation from an exponential. Normalization in Ref. [3] is
arbitrary since, in that paper, only the differential cross
section is shown. Total cross sections are not shown in the
above papers.

B. Step 2: Fitting the parameters ai;bi;…
entering Eqs. (4), (5), and (6) to the “data”
A;B;C;D; cosðϕÞ…, quoted in Tables I and II

The resulting values of the parameters after the second
stage of fitting are

TABLE I. Values of the parameters from a fit to the pp data at various
ffiffiffi
s

p
. The quoted errors correspond to the relative errors, as given

by CERN MINUIT fitting package (status ¼ converged, error matrix accurate).

Energy (GeV)
ffiffiffiffi
A

p
B

ffiffiffiffi
C

p
D cosðϕÞ χ2=NDF

23.4 3.13� 0.6% 8.66� 0.4% 0.019� 8.3% 1.54� 5.1% −0.97� 0.3% 1.6
30.5 3.21� 0.2% 8.95� 0.3% 0.014� 7.4% 1.28� 5.6% −0.98� 0.2% 1.1
44.6 3.33� 0.7% 9.32� 0.5% 0.017� 8.0% 1.45� 5.3% −0.93� 0.8% 1.7
52.8 3.38� 0.3% 9.44� 0.6% 0.017� 7.6% 1.43� 5.0% −0.92� 0.9% 1.1
62.0 3.49� 0.5% 9.66� 0.6% 0.018� 9.9% 1.53� 6.3% −0.92� 1.6% 1.5
7000.0 8.51� 1.6% 15.05� 0.8% 0.670� 2.3% 4.71� 0.8% −0.93� 0.3% 1.4

TABLE II. Values of the parameters fitted to pp̄ data.

Energy (GeV)
ffiffiffiffi
A

p
B

ffiffiffiffi
C

p
D cosðϕÞ χ2=NDF

63 3.43� 1.1% 10.07� 1.3% 0.022� 30.8% 1.90� 14.8% −0.60� 22.7% 0.7
546 5.06� 1.2% 11.25� 1.3% 0.204� 21.0% 3.55� 8.6% −0.86� 2.7% 0.6
630 5.13� 3.9% 11.26� 3.7% 0.176� 26.6% 3.23� 9.6% −0.81� 7.9% 0.5
1960 6.85� 3.7% 12.46� 3.3% 0.629� 41.6% 4.69� 15.4% −0.90� 3.6% 0.4
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AppðsÞ

q
¼ 1.31s0.106 þ 3.90s−0.298;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CppðsÞ

q
¼ 0.00117s0.358;

BppðsÞ ¼ 5.13þ 0.555 ln s;

DppðsÞ ¼ −0.838þ 0.312 ln s:

cosðϕppðsÞÞ ¼ −0.928 − 0.863s−0.429;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
App̄ðsÞ

q
¼ 1.31s0.106 þ 4.28s−0.298;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cpp̄ðsÞ

q
¼ 0.00177s0.358;

Bpp̄ðsÞ ¼ 7.87þ 0.274 ln s;

Dpp̄ðsÞ ¼ −0.552þ 0.312 ln s;

cosðϕpp̄ðsÞÞ ¼ −0.928þ 4.37s−0.328: ð7Þ

The lowest right icon in Fig. 3 is a “cross-check,”
showing the pp and p̄p total cross sections calculated
from Eq. (2) with the explicit values of the parameters
defined by (4), (5), and (6). The p̄p total cross section
turns down at highest energies, deflecting dramatically
from that of pp. The reason for that nonphysical effect is
the scarcity of pp̄ data, leaving too much freedom in
the high-energy extrapolation of the cross section,
where one expects asymptotic equality σpp̄t ¼ σppt for
s → ∞; see Eq. (47) in Ref. [15]. This deficiency
should, and can, be cured by imposing an additional
constraint on the model. This will be done in the next
subsection, by fixing (tuning) the parameter ϵa2 (the

leading powers in s of
ffiffiffiffi
A

p
) to be the same in pp and p̄p

scattering.

C. Step 3: Tuning (refitting) the parameters
by imposing the asymptotic constraint

σpp̄t ¼ σppt , s → ∞
The above, unbiased fit does not satisfy automatically

the required (see [15]) asymptotic constraint σppt ¼ σp̄pt
since the available freedom (especially due to the
lack of simultaneous pp and pp̄ elastic scattering
data at

ffiffiffi
s

p ¼ 540, 630, 1800, and 7000 GeV)
leaves much freedom for the extrapolation to energies
beyond the existing accelerators. To remedy this
problem, we have tuned the parameters to meet the
above constraint in the currently available energy range.
Below are the results of the “tuned” fit (see in Fig. 4)
satisfying the asymptotic condition σppt ¼ σp̄pt in theffiffiffi
s

p
≤ 14 TeV energy range.

The refitted s-dependent values of the parameters for pp
and pp̄ scatterings are

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AppðsÞ

q
¼ 1.41s0.0966 þ 2.78s−0.267;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CppðsÞ

q
¼ 0.00223s0.308;

BppðsÞ ¼ 4.86þ 0.586 ln s;

DppðsÞ ¼ −0.189þ 0.250 ln s:

cosðϕppðsÞÞ ¼ −0.928 − 0.838s−0.425;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
App̄ðsÞ

q
¼ 1.41s0.0996 þ 4.00s−0.267;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cpp̄ðsÞ

q
¼ 0.00588s0.264;

Bpp̄ðsÞ ¼ 6.55þ 0.398 ln s;

Dpp̄ðsÞ ¼ 2.351þ 0.068 ln s;

cosðϕpp̄ðsÞÞ ¼ −0.908þ 4.376s−0.328: ð8Þ

IV. THE ODDERON

The existence of a parametrization for both pp and p̄p
scattering offers the possibility to extract the odd-C con-
tribution by using the formula

Ap̄p
pp ¼ Aeven �Aodd; ð9Þ

where Aeven and Aodd are, respectively, the C-even and
C-odd components of the scattering amplitude; see Table 1
in Ref. [13]).
While the C-even component contains the Pomeron

and the f trajectory (both known), the C-odd part is made
of the poorly known Odderon and the familiar ω trajectory.
At the LHC energies, the contribution from secondary
trajectories, e.g., f and ω, is negligible (see Ref. [13]);
therefore, by taking the difference between the known
(fitted) pp̄ and pp amplitudes, one gets a pure odd-C
contribution that, in the LHC energy range, is the Odderon.
From the explicit expressions for pp and p̄p amplitudes
(cross sections), we calculate the Odderon amplitude (or its
contribution to the cross section) by taking the difference
Ap̄p −App ¼ AOdd. The result (the energy dependence for
several fixed values of t and t dependence for several fixed
values of s) is shown in Fig. 4.
The extracted model parameters are used then to

evaluate the even and odd contributions to the forward
scattering amplitude. In Fig. 5 we show the Pomeron and
the Odderon contributions as the sum or the difference
of the differential cross section of pp̄ and pp elastic
scattering. We see that, as expected, the Pomeron domi-
nates at large colliding energies, while the Odderon
contribution is small and at t ¼ 0 even changes sign.
A particularly interesting feature is shown on the lower
right panel of Fig. 5, where the Odderon/Pomeron ratio is
shown at different values of t at various

ffiffiffi
s

p
. Apparently,

STER, JENKOVSZKY, AND CSÖRGŐ PHYSICAL REVIEW D 91, 074018 (2015)

074018-6



at
ffiffiffi
s

p
≈ 100 GeV, the Odderon/Pomeron ratio becomes t

independent and the t-dependent curves pass through the
same point of about 0.03.
An important finding of our paper is the near energy

independence of the odd-C contribution to the scattering

amplitude, which, at high (e.g., those of the LHC) energies,
is dominated by the Odderon exchange. In Fig. 6 we plot
the odd-C contribution calculated from the difference (9).
Both the real and imaginary parts of this difference at
t ¼ 0 tend to a (small) constant value, which correspond to
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a unit-intercept Odderon as predicted [12] from quantum
chromodynamics.

V. CONCLUSIONS

The present work is a semiquantitative estimate of the
possible odd-C contribution to the scattering amplitude
(cross sections) at high energies. “Semiquantitative”
implies limitations due to the following:

(i) For the sake of simplicity, we ignore the low-t
nonexponential behavior (sharpening) of the differ-
ential cross section. This simplification has dramatic
impact on the low-t behavior of the Odderon
contribution because of the large errors due to the
cancellation of the Pomeron contribution. The im-
portance of the low-t effects was emphasized, e.g., in
Refs. [5,6].

(ii) The s- (rather than t-) dependent signature factor
(phase) is in agreement with the data, but it is in
contrast to expectations based on Regge phenom-
enology.
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FIG. 6 (color online). Real and imaginary parts of the difference
Ap̄p −App ¼ ΔA calculated from the present model fitted to the
data. As seen from the figure, this difference tends to a (small)
constant, corresponding to a unit intercept Odderon [12].
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(iii) The odd-C contribution to the amplitude, equal to
the difference (9), shown in Fig. 6 tends to a constant
limit determined by a unit-intercept Odderon, pre-
dicted by Bartels, Lipatov, and Vacca [12].

(iv) It is an oversimplified treatment of the low-energy
(“secondary Reggeons”) contributions (Odderon
and Pomeron here implies, generally, odd and even
exchanges).

(v) There is the absence, for the moment, of any
physical interpretation in terms of Reggeon ex-
changes of the components in the PB ansatz.

Given these limitations and simplifications, our approach
can be considered as semiquantitative, showing however
some new aspects of the enigmatic Odderon.
We strongly recommend to run the LHC accelerator at the

injection energy
ffiffiffi
s

p ¼ 900 GeV and at the Tevatron energy
of 1.8–1.96TeV, so that themissing energy rangeofpp elastic
scatteringwill becoveredandelasticpp scatteringdatawillbe
measured in the region where elastic pp̄ scattering is already
measured. It would also be desirable to measure elastic pp
scattering at the

ffiffiffi
s

p ¼ 500 GeV region—the upper energy
range of the RHIC accelerator.
Using the presently available data, the indefinite rise of

the CðsÞ, multiplied by a negative “signature factor” cosϕ,
prevents the use of the generalized PB model beyond the
LHC energy region.
In the future we intend to
(i) rewrite the PB ansatz with correct, t-dependent

Regge signature factors [11], remembering that in
the present study the even and odd parts of the
amplitude differ only by the values of the fitted

parameters, without the identification of particular
Regge exchanges (trajectories);

(ii) fit to the data to provide hints concerning the
physical meaning of the components (two or more);
for example, our fits (and those of Refs. [3,5–7])
indicate that A ≫ C, but C rises with energy faster
than A. Similar considerations may help in relating
the second term with the Odderon or a “hard”
Pomeron, for which the slopes (B and D) may be
indicative.

(iii) add lower-lying contributions (subleading Re-
ggeons) which are inevitable at lower energies, at
the prise of giving up the attractive simplicity of
the model;

(iv) use other asymptotic Pomeranchuk-like constraints
in determining the parameters (see the work in
Ref. [8] that points to this interesting direction);

(v) calculate and fit the model to other observables,
e.g., the ratio of the real to imaginary parts of the
amplitude ρðs; tÞ, of the slope Bðs; tÞ, etc. Its relation
to inelastic processes (see [10]) may offer additional
information.
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