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We present a simple approach to combine NNLO QCD calculations and parton showers, based on the
UNLOPS technique. We apply the method to the computation of Drell-Yan lepton-pair production at the
Large Hadron Collider. We comment on possible improvements and intrinsic uncertainties.
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I. INTRODUCTION

The combination of fully exclusive next-to-leading order
(NLO) calculations in perturbative quantum chromody-
namics with resummed predictions from parton showers
has been in the focus of interest for the past decade. Awide
range of matching [1–5] and merging [6–13] methods has
been developed and implemented in Monte Carlo event
generators [14]. By now they are standard tools for
simulating final states at hadron colliders such as the
LHC. However, so far only three proposals were made
that extend these methods to next-to-next-to-leading order
(NNLO) in the strong coupling expansion [8,15,16], and
only two of them were implemented. They allow NNLO
accurate particle-level simulations of two-jet production at
LEP [8] and Higgs production via gluon fusion at hadron
colliders [15]. Event generators for Drell-Yan lepton pair
production at NNLO QCD matched to parton showers are
not available. Due to the high relevance of this process as a
standard candle for the LHC and possible future hadron
colliders, we address the problem in this article, and we
also provide a simple formulation for matching at NNLO,
improving upon the UNLOPS method suggested in [10]. We
use the Monte Carlo event generator SHERPA [17], includ-
ing a parton shower [18] based on Catani-Seymour dipole
subtraction [19], combined with the BlackHat library [20]
for one-loop matrix elements. This implementation is
publicly available.
Our matching scheme, which we call UN2LOPS, pre-

serves both the logarithmic accuracy of the parton shower
and the fixed-order accuracy of theNNLOcalculation.1 It is a
generic method to augment NNLO calculations with the
primitive resummation encoded in an existing parton shower.
At NLO, a considerable difference exists between matching

methods, pertaining to the treatment of the finite remainder of
higher-order corrections. This difference must be reduced
at NNLO. The excellent convergence of the perturbative
series in the Drell-Yan process further reduces potential
differences.We therefore expect that UN2LOPSwill serve as
a useful benchmark for future, more sophisticated NNLO
matching schemes. The parton shower employed in our
calculations already includes full color and spin information
in the first emission term and the associated Sudakov factor
[4]. It is therefore improved compared to the standard large-
Nc approximation with spin averaging.
The outline of this article is as follows: Sec. II gives

an introduction to the problem of matching at NLO and
outlines our simplified approach. Section III extends the
simplified UNLOPS method to NNLO, which we dub
UN2LOPS. Section IV contains first results from applying
the method to Drell-Yan lepton pair production at the LHC.
We also present some benchmark results for a high-energy
LHC and a possible future proton-proton collider at
100 TeV center-of-mass energy. Section V contains some
concluding remarks.

II. A SIMPLE EXAMPLE

To set the stage for the discussion of our method at
NNLO we reformulate in this section the UNLOPS method
and simplify its event generation algorithm. The extension
to NNLO is then nearly straightforward. It will be presented
in Sec. III.
The leading-order expression for an observable O is

written as

hOiðLOÞ ¼
Z

dΦ0B0ðΦ0ÞOðΦ0Þ; ð1Þ

where Φ0 is the differential Born phase-space element, and
B0ðΦ0Þ is the Born differential cross section, including
symmetry and flux factors as well as parton luminosities.
We now add and subtract Sudakov-reweighted real-
emission tree-level cross sections, denoted by B1 [7]:

1For the purpose of this article, we assume that the parton
shower is next-to-leading logarithmic (NLL) accurate, by includ-
ing all effects described in [21]. Color coherence is implemented
through dipole splitting operators rather than angular ordering.
By maintaining the parton shower accuracy in the matching we
mean preserving the logarithmic structure up to NLL in the
Sudakov exponent as well as local four-momentum conservation
as given by the shower kinematics.
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�Z
dΦ0B0ðΦ0ÞOðΦ0Þ −

Z
tc

dΦ1Π0ðt1; μ2QÞB1ðΦ1ÞOðΦ0Þ
�

þ
Z
tc

dΦ1Π0ðt1; μ2QÞB1ðΦ1ÞOðΦ1Þ: ð2Þ

To the accuracy of the parton shower, this method is
equivalent to the modified subtraction in MC@NLO [1] and
POWHEG [2], as discussed at the end of this section. In the
second term in the square bracket, the observableO is taken
at the reduced phase-space point, determined by clustering
the one-parton state Φ1 to Φ0 using an algorithm that
corresponds to inverting the parton shower [22]. In other
words, both terms in the square bracket enter the prediction
for O with Born kinematics, while the last term enters with
real-emission kinematics. This method is called a modified
NLO subtraction scheme [1].
We have defined the parton shower no-branching prob-

ability for an n-parton state,

Πnðt; t0;ΦnÞ ¼ exp

�
−
Z

t0

t
dΦ̂1KnðΦn; Φ̂1Þ

�
; ð3Þ

where Kn is the sum of differential branching probabilities,
including luminosity and flux factors for initial-state
evolution as appropriate [23]. In the case of Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi evolution, we have [14,24]

KnðΦn; Φ̂1Þ ¼
Xnin
i¼1

X
b¼q;g

αs
2π

PaibðzÞ
fbðxi=z; tÞ
zfaiðxi; tÞ

Θðz − xiÞ

þ
Xninþnout

i¼ninþ1

X
b¼q;g

αs
2π

PaibðzÞ: ð4Þ

Note that Kn depends on Φn through the Bjorken variables
xi. The multiparticle phase-space elements factorize as
dΦnþ1 ¼ dΦndΦ̂1, with dΦ̂1 the phase-space element for
the emission of a single additional parton. We can write
dΦ̂1 ¼ dtdzdϕ=ð2πÞJðt; z;ϕÞ, where t is the evolution
variable of the parton shower, z is the splitting variable,
and J is a Jacobian factor. tc denotes the infrared cutoff, and
μ2Q is the resummation scale. Note that the parton shower
employed here covers the full emission phase space, except
for the region t < tc. For ease of notation we have
defined t1 ¼ tðΦ1Þ.
Equation (2) describes the one-parton state in the

simplest possible matching approach. We can use the
unitarity constraint on the parton shower,

Π0ðtc; μ2QÞ ¼ 1 −
Z
tc

dΦ1K0ðΦ̂1ÞΠ0ðt1; μ2QÞ; ð5Þ

to rearrange the terms depending on OðΦ0Þ:

R
dΦ0B0ðΦ0ÞOðΦ0Þ −

R
tc
dΦ1Π0ðt1; μ2QÞB1ðΦ1ÞOðΦ0Þ

¼
Z

dΦ0B0ðΦ0ÞΠ0ðtc; μ2QÞOðΦ0Þ

−
Z
tc

dΦ1Π0ðt1; μ2QÞ½B1ðΦ1Þ

− B0ðΦ0ÞK0ðΦ0; Φ̂1Þ�OðΦ0Þ: ð6Þ

The term in square brackets is not logarithmically
enhanced, as B1 → B0K0 in the infrared limit. Therefore,
Eq. (2) reproduces the parton shower resummation. At the
same time, using B1 instead of B0K0 does not affect
the differential cross section as a function of the Born
kinematics, Φ0.
Additional emissions can be generated by replacing

OðΦ1Þ with the parton shower generating functional
F 1ðt1; OÞ, where
F nðt; OÞ ¼ Πnðtc; tÞOðΦnÞ

þ
Z

t

tc

dΦ̂1KnðΦ̂1ÞΠnðt̂; tÞF nþ1ðt̂; OÞ;

where t̂ ¼ tðΦ̂1Þ: ð7Þ
We now replace the Born differential cross section in
Eq. (2) by the differential NLO cross section

B̄ðΦ0Þ ¼ B0ðΦ0Þ þ ~V0ðΦ0Þ þ I0ðΦ0Þ

þ
Z

dΦ̂1½B1ðΦ0; Φ̂1Þ − S0ðΦ0; Φ̂1Þ�: ð8Þ

~V0 denotes the UV finite part of the virtual corrections,
including collinear mass factorization counterterms, I0 are
integrated NLO subtraction terms [19], and S0 the corre-
sponding real subtraction terms. The matched result is
given by

�Z
dΦ0B̄

tc
0 ðΦ0Þ þ

Z
tc

dΦ1½1 − Π0ðt1; μ2QÞ�B1ðΦ1Þ
�
OðΦ0Þ

þ
Z
tc

dΦ1Π0ðt1; μ2QÞB1ðΦ1ÞF 1ðt1; OÞ; ð9Þ

where we have defined the vetoed cross section

B̄tc
0 ðΦ0Þ ¼ B̄0ðΦ0Þ −

Z
tc

dΦ̂1B1ðΦ0; Φ̂1Þ: ð10Þ

Equation (9) already contains the essence of our method.
The three terms can be generated in a Monte Carlo simu-
lation as follows: B̄tc

0 is a fixed-order contribution, which
does not undergo parton showering. B1 is assigned a parton
shower “history” using the clustering procedure first pro-
posed in [22]. The zero-parton state defined in this clustering
undergoes truncated parton shower evolution. By definition,
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the survival probability isΠ0ðt1; μ2QÞ, while the correspond-
ing branching probability is 1 − Π0ðt1; μ2QÞ. Thus, if an
emission is generated, the event is kept in the selected zero-
parton state, as indicated by the observable dependence
OðΦ0Þ in the first termof Eq. (9). If no emission is generated,
the event undergoes parton showering, starting from the one-
parton state. This procedure is an improvement of UNLOPS
and ensures that no counter-events with negative weights
must be generated during the matching.
Up to now we have ignored renormalization and fac-

torization scale dependence in B1. While terms generated
by the running of the strong coupling are formally of higher
order and therefore do not modify the fixed-order accuracy
of the matched result, they are important to restoring the
logarithmic accuracy of the parton shower. The same
reasoning applies to scaling violations in the parton
distribution functions (PDFs). Scales can be adjusted to
their parton shower values by reweighting, eventually
leading to the improved UNLOPS matching formula

hOiðUNLOPSÞ

¼
�Z

dΦ0B̄
tc
0 ðΦ0Þ

þ
Z
tc

dΦ1½1 − Π0ðt1; μ2QÞw1ðΦ1Þ�B1ðΦ1Þ
�
OðΦ0Þ

þ
Z
tc

dΦ1Π0ðt1; μ2QÞw1ðΦ1ÞB1ðΦ1ÞF 1ðt1; OÞ: ð11Þ

In the case of Drell-Yan lepton pair production we need
to match a single initial-state parton splitting a → fa0; jg.
The weight w1ðΦ1Þ is then defined as [10]

w1ðΦ1Þ ¼
αsðbt1Þ
αsðμ2RÞ

faðxa; t1Þ
faðxa; μ2FÞ

fa0 ðxa0 ; μ2FÞ
fa0 ðxa0 ; t1Þ

where β0 ln
1

b
¼

�
67

18
−
π2

6

�
CA −

10

9
TRnf: ð12Þ

faðxaÞ and fa0 ðxa0 Þ denote the PDFs associated with the
external and intermediate parton, respectively. The scale
factor b includes effects of the two-loop cusp anomalous
dimension in the parton shower [21].
The event generation procedure is modified as follows:

Weights of one-jet events are multiplied by 1þ 2jw1 − 1j.
In a fraction 1=ð2þ 1=jw1 − 1jÞ, the event is weighted by
sgnðw1 − 1Þ, and the point is discarded if an emission is
generated in the truncated parton shower. If the event is
kept, it is reduced to Born kinematics and the sign of its
weight inverted with probability 1=2. This procedure
sums—in a Monte Carlo fashion—over two event types,
which either contain factors of Π0 or 1 − Π0, or else the
terms �Π0ðw1 − 1Þ. This can lead again to the generation
of negative weights, however their fraction is much reduced
compared to the original UNLOPS scheme.

Equation (11) still holds if the phase-space separation is not
achieved in terms of the parton shower evolution parameter,
i.e. if the integration boundaries for B̄tc

0 and
R
tc
dΦ1B1 are not

given by tc. In this case, one can split the real-emission
contribution into a pure fixed-order part and a contribution
where parton shower resummation is applied. In the following,
we therefore define Πnðt; t0Þ ¼ Πnðtc; t0Þ for all t < tc.
We conclude this section with a comparison to the

POWHEG method [2]. Assuming that the parton shower
evolution kernels for the first emission can be replaced by
K0 → K̄0 ¼ w1B1=B0, we obtain from Eq. (11)

hOiðUNLOPSÞ →
Z

dΦ0B0ðΦ0ÞF̄ 0ðμ2Q;OÞ

þ
Z

dΦ0½B̄0ðΦ0Þ − B0ðΦ0Þ�OðΦ0Þ: ð13Þ

The main difference compared to the POWHEG result,

hOiðPOWHEGÞ ¼
Z

dΦ0B̄0ðΦ0ÞF̄ 0ðμ2Q;OÞ; ð14Þ

is that the finite remainder of higher-order corrections (after
UV renormalization and IR subtraction), B̄0 − B0, does not
undergo parton showering in UNLOPS, while it does in
POWHEG. A comparison with MC@NLO leads to the same
conclusion. While it is not obvious from the matching
conditions at NLO, whether UNLOPS or POWHEG is the
more natural prescription, the NNLO matching conditions
require that UNLOPS at NNLO behaves identically to both
MC@NLO and POWHEG in this regard, i.e. that the finite
remainder multiplies, F 0ðμ2Q;OÞ, rather than OðΦ0Þ. We
will return to this question at the end of Sec. III.

III. UN2LOPS WITH PHASE-SPACE SLICING

We first describe our calculation of the NNLO vetoed
cross section, corresponding to Eq. (10). It is performed in
the qT cutoff method, based on the ideas of qT subtraction
[25]. All soft and collinear singularities of NNLO origin
cancel within the zero-qT bin, leading to a finite differential

cross section, B
¼qT;cut
0 . The remainder is computed as an NLO

result for the original Born process plus one additional jet.
The NNLO cross section with a small cut on observables

like qT of the gauge boson has a simple factorization
formula, which can be described up to power corrections in
the cutoff, qT;cut, by effective field theory. This form is
generally more compact than the full NNLO result. The
cutoff method has been used previously to compute top
decays fully exclusively at NNLO [26]. We adopt the
framework developed in [27] to obtain the vetoed cross
section. All components needed for two-loop results for the
Drell-Yan process have recently been computed [28], and
verified against the hard collinear coefficients [29] used by
the original qT subtraction method.
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The contribution at qT > qT;cut is computed as a standard
NLO QCD result, using Catani-Seymour dipole subtraction
to regularize infrared divergences [19]. This type of
calculation has been fully automated [30]. We use
SHERPA [17,31] for tree-level-like contributions and
BlackHat [20] for virtual corrections. We match this
computation to the parton shower using a variant of the
MC@NLO method, which is described in [4]. The corre-
sponding expression for the qT > qT;cut cross section
depending on an infrared-safe observable O is

hOiðNLOÞ>qT;cut ¼
Z
qT;cut

dΦ1
~B1ðΦ1Þ ~F 1ðt1; OÞ

þ
Z
qT;cut

dΦ2H1ðΦ2ÞF 2ðt2; OÞ; ð15Þ

where the one-jet differential NLO cross section and the
hard remainder are defined as

~B1ðΦ1Þ ¼ B1ðΦ1Þ þ ~V1ðΦ1Þ þ I1ðΦ1Þ

−
Z
tc

dΦ̂1S1ðΦ1; Φ̂1ÞΘðt2ðΦ̂1Þ − t1ðΦ1ÞÞ;

H1ðΦ2Þ ¼ B2ðΦ2Þ − S1ðΦ2ÞΘðt1ðΦ2Þ − t2ðΦ2ÞÞ: ð16Þ

The generating functional of the MC@NLO is

~F 1ðt; OÞ ¼ ~Π1ðtc; t1ÞOðΦ1Þ

þ
Z
tc

dΦ̂1

S1ðΦ1; Φ̂1Þ
B1ðΦ1Þ

~Π1ðt̂; t1ÞF 2ðt̂; OÞ;

ð17Þ
with the no-branching probability given by parton shower
unitarity:

~Π1ðt; t0;ΦnÞ ¼ exp

�
−
Z

t0

t
dΦ̂1

S1ðΦ1; Φ̂1Þ
B1ðΦ1Þ

�
: ð18Þ

Note that we choose qT;cut ≤ 1 GeV, which is below the
cutoff of the initial-state parton shower.
Equation (15) produces the correct dependence on the

observable O at next-to-leading QCD for qT > qT;cut. It can
thus be used to complement the exclusive NNLO calculation
in the zero-qT bin. However, the two calculations cannot be
naively added as in Eq. (11), since this would spoil theOðα2sÞ
accuracy of the full result. This problem was also addressed
by NLO merging methods [8–11], and by the MINLO scale
setting procedure [32]. TheOðαsÞ contribution to the fixed-
order expansion of theparton showermust first be subtracted,
which can be achieved efficiently by omitting the first
emission in a truncated shower [9], or by explicit subtraction
[8,10]. Correspondingly, any OðαsÞ contribution must be
subtracted from the corrective weight, Eq. (12). The full
formuladescribingour combinationmethod can bewritten as

hOiðUN2LOPSÞ ¼
Z

dΦ0B
¼qT;cut
0 ðΦ0ÞOðΦ0Þ

þ
Z
qT;cut

dΦ1½1 − Π0ðt1; μ2QÞðw1ðΦ1Þ þ wð1Þ
1 ðΦ1Þ þ Πð1Þ

0 ðt1; μ2QÞÞ�B1ðΦ1ÞOðΦ0Þ

þ
Z
qT;cut

dΦ1Π0ðt1; μ2QÞðw1ðΦ1Þ þ wð1Þ
1 ðΦ1Þ þ Πð1Þ

0 ðt1; μ2QÞÞB1ðΦ1ÞF̄ 1ðt1; OÞ

þ
Z
qT;cut

dΦ1½1 − Π0ðt1; μ2QÞ� ~BR
1 ðΦ1ÞOðΦ0Þ þ

Z
qT;cut

dΦ1Π0ðt1; μ2QÞ ~BR
1 ðΦ1ÞF̄ 1ðt1; OÞ

þ
Z
qT;cut

dΦ2½1 − Π0ðt1; μ2QÞ�HR
1 ðΦ2ÞOðΦ0Þ þ

Z
qT;cut

dΦ2Π0ðt1; μ2QÞHR
1 ðΦ2ÞF 2ðt2; OÞ

þ
Z
qT;cut

dΦ2HE
1 ðΦ2ÞF 2ðt2; OÞ: ð19Þ

We have defined ~BR ¼ ~B − B and the regular and excep-
tional part of the hard remainder

HR
1 ðΦ2Þ ¼ H1ðΦ2ÞΘðt1 − t2ÞΘðt2 − tcÞ;

HE
1 ðΦ2Þ ¼ H1ðΦ2Þ − HR

1 ðΦ2Þ:
ð20Þ

The exceptional contributions HE
1 contain phase-space

regions for which no ordered parton shower history can
be identified, as well as two-parton states that do not allow
an interpretation as having evolved from a zero- or one-
parton state via QCD-type parton splittings. Exceptional
contributions do not undergo the truncated parton shower-
ing used to produce Π0ðt1; μ2QÞ, as they do not generate
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logarithmic corrections at parton shower accuracy. Ambi-
guities in the matched result due to exceptional configu-
rations will be important for matching at higher logarithmic
accuracy, and can be resolved as soon as the parton shower
is amended with the necessary subleading logarithmic

corrections and electroweak splittings. This will allow us
to treat such states in the same manner as the regular
configurations.
The subtraction terms for the no-branching probability of

the parton shower, and for the weight w1, are given by

Πð1Þ
0 ðt; t0Þ ¼

Z
t0

t
dΦ̂1

αsðμ2RÞ
αsðbt̂Þ

K1ðΦ1; Φ̂1Þ

wð1Þ
1 ðΦ1Þ ¼

αsðμ2RÞ
2π

�
β0 log

bt1
μ2R

− log
t1
μ2F

X
c

�Z
1

x

dz
z
PcaðzÞ

fcðx=z; μ2FÞ
faðx; μ2FÞ

−
Z

1

x0

dz
z
Pca0 ðzÞ

fcðx0=z; μ2FÞ
fa0 ðx0; μ2FÞ

��
: ð21Þ

They are generated by the Monte Carlo procedure outlined
below Eq. (12). Note that 1 − Π0ðw1 þ wð1Þ

1 þ Πð1Þ
0 Þ is of

order α2s. Therefore, it is easy to see that the method does
not spoil the accuracy of the fixed-order calculation. To
investigate whether the logarithmic accuracy of the parton
shower resummation is maintained, we take the collinear
limit, t1 → 0. In this limit, HE

1 only generates logarithms
that are beyond the parton shower approximation, and it can
thus be ignored. Consequently, for qT > qT;cut, we are left
with

Z
qT;cut

dΦ1Π0ðt1; μ2QÞw1ðΦ1ÞB1ðΦ1ÞF̄ 1ðt1; OÞ

þ
Z
qT;cut

dΦ1Π0ðt1; μ2QÞR1ðΦ1; OÞ ð22Þ

where

R1ðΦ1; OÞ ¼ ðB1ðΦ1Þðwð1Þ
1 ðΦ1Þ þ Πð1Þ

0 ðt1; μ2QÞÞ
þ ~BR

1 ðΦ1ÞÞF̄ 1ðt1; OÞ

þ
Z

dΦ̂1HR
1 ðΦ1; Φ̂1ÞF 2ðt2; OÞ: ð23Þ

The first term in Eq. (22) is, to the required accuracy,
equivalent to the parton shower result. Thus it remains
to be shown that R1 contains only subleading terms. In the
soft and collinear limit, HR

1 does not contribute at the
required accuracy [1]. Quark propagators in ~BR

1 can to

first order be approximated as ð1 − Πð1Þ
0 ðt; μ2QÞ − wð1Þ

1 þ
αs=ð2πÞβ0 logðbt=μ2RÞÞ=p [33], where p is the quark
momentum. Coupling renormalization leads to corrections
of the form αs=ð2πÞβ0 logðt=μ2RÞ, where t is the relative
transverse momentum in the gluon emission [34]. The two-
loop cusp anomalous dimension, simulated by means of the
scale factor b in Eq. (12), is naturally present in ~BR

1 . The
subtraction terms, Eq. (21), thus cancel all universal NLO
corrections in ~BR

1 , which have already been included in
the parton shower. The remainder is beyond the required

accuracy. Using the unitarity condition for parton shower
evolution, this argument extends to the region qT < qT;cut.
Note that because of the unitarity condition, also no
spurious logarithms are generated in the inclusive cross
section, and the NNLO accuracy is maintained exactly.
We now return to the difference between UNLOPS and

POWHEG/MC@NLO discussed in Sec. II. When performing a
one-jet matched NLO calculation in the UNLOPS imple-
mentation of [10], the nonuniversal terms in the first part
of Eq. (23) do not undergo parton showering above the
merging scale. The UN2LOPS prescription instead intro-
duces parton shower corrections to these terms throughout
the real-emission phase space, and it includes a Sudakov
form factor for a truncated shower to resum effects of
unresolved emissions above the scale of the hard jet. This
new matching condition is justified if we view the parton
shower as an all-order calculation dressing a hard input
state, which has a fixed-order expansion by itself, with the
effects of soft and collinear radiation.2 It can also be
understood in the following way: In the collinear limit,
the factorization of one-loop matrix elements leads to

virtual corrections of the form V0K0 þ B0K
ð1Þ
0 , where

Kð1Þ
0 are the one-loop splitting kernels. When including

the respective integrated subtraction terms and no-
branching probabilities of the truncated parton shower,
the remainder of the first term turns into ðB̄0 − B0ÞK0Π0,
and can be interpreted as a parton shower combined
with the finite remainder of the NLO corrections in the
zero-qT bin. This eliminates the difference between
Eqs. (14) and (13).
Following this argument, one may conclude that the

finite Oðα2sÞ corrections contained in zero-qT configura-
tions of Eq. (19) should also be “spread” across the one-
parton (and two-parton) phase space by the parton shower,
provided that the resulting change of the radiation pattern is
at most Oðα3sÞ. The difference between including and not

2A similar interpretation holds for factorization formulas in
analytic resummation, for which a fixed-order hard function is
convoluted with all-order soft and collinear functions, see for
example [27] and [35].
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including such parton shower corrections is within the
intrinsic uncertainty of NNLO matching schemes. We see
no strong reason for implementing them in the simulation
of the Drell-Yan process, due to the excellent convergence
of the perturbative series. The assessment may differ in
other reactions, like Higgs-boson production via gluon
fusion, where higher-order corrections are large.

IV. RESULTS

This section presents results using an implementation of
the UN2LOPS algorithm in the event generator SHERPA

[17]. We use a parton shower [18] based on Catani-
Seymour dipole subtraction [19]. NLO virtual corrections
for the one-jet process are provided by the BlackHat library
[20]. Dipole subtraction is performed using AMEGIC

[31,36]. For comparison to experimental data we use
RIVET [37]. We use the Martin-Stirling-Thorne-Watt
2008 PDF set [38] and the corresponding definition of
the running coupling. We work in the five flavor scheme.
Electroweak parameters are given in the Gμ scheme as
mZ¼91.1876GeV, ΓZ¼2.4952GeV, mW ¼80.385GeV,
ΓW ¼ 2.085 GeV, and GF ¼ 1.1663787 × 10−5 GeV−2.

In order to cross-check our implementation we first
compare the total cross section in the mass range 60 GeV ≤
mll ≤ 120 GeV to results obtained from VRAP [39]. Table I
shows that the predictions agree within the per-mill-level
statistical uncertainty of the Monte Carlo integration. We
also compared the central values to results from DYNNLO

[25] and found full agreement. Additionally, we have
checked that our predictions are identical when varying
qT;cut between 0.1 and 1 GeV. The default value is
qT;cut ¼ 1 GeV. Figure 1 compares differential cross sec-
tions from FEWZ [40] and SHERPA for the rapidity and
invariant mass spectra of the Drell-Yan lepton pair. We
computed the NLO reference results using NNLO PDFs.
This is indicated in the figure by the label NLO0. It is
interesting to observe the excellent agreement with the
genuine NNLO predictions.
Figure 2 shows predictions from the matched calcula-

tion. We now include a simulation of higher-order QED
corrections [41]. It is interesting to compare the matched
prediction to the fixed-order NNLO result for the transverse
momentum spectrum of the electron. In the region pT;e <
45 GeV the result is generically NNLO correct, while
for pT;e > 45 GeV, it is effectively only NLO correct.

TABLE I. Total cross sections for 60 GeV ≤ mll ≤ 120 GeV at varying center-of-mass energy for a pp collider. Uncertainties from
scale variations are given as sub-/superscripts. Statistical uncertainties from Monte Carlo integration are quoted in parentheses.

Ecms 7 TeV 14 TeV 33 TeV 100 TeV

VRAP 973.99ð9Þþ4.70
−1.84 pb 2079.0ð3Þþ14.7

−6.9 pb 4909.7ð8Þþ45.1
−27.2 pb 13346ð3Þþ129

−111 pb
SHERPA 973.7ð3Þþ4.78

−2.21 pb 2078.2ð10Þþ15.0
−8.0 pb 4905.9ð28Þþ45.1

−27.9 pb 13340ð14Þþ152
−110 pb
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FIG. 1 (color online). Comparison between FEWZ and SHERPA for rapidity and invariant mass spectra of the Drell-Yan lepton pair. The
gray solid (blue hatched) band shows scale uncertainties associated with the NNLO (NLO) prediction, obtained by varying μR=F in the
range mll=2 ≤ μ ≤ 2mll.
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Correspondingly, the uncertainty band is larger at high
transverse momentum. The fixed-order prediction lies well
within the NNLO scale uncertainty of the matched result,
except for the transition region pT;e ≳ 45 GeV, where real-
emission corrections play the dominant role.
Figure 3 compares the transverse momentum spectrum

of the Drell-Yan lepton pair to data from the CMS [42]
and ATLAS [43] collaborations. These measurements
are insensitive to generic NNLO corrections, which are

generated only in the zero-qT bin in our approach.
However, they probe the form of the Sudakov form factor
as simulated by the matched calculation, and they are
therefore useful to judge whether the radiation pattern of
the parton shower is preserved. The results indicate that
higher-logarithmic corrections originating in ~BR

1 and H1 are
numerically small and do not spoil our prediction. Note that
the parton shower parameters in the matched calculation
have not been tuned to fit either of these distributions. The

S
he

rp
a+

B
la

ck
H

at

LOPS2UN
MC@NLO
NNLO

 = 7 TeVs
<120 GeV

ll
60 GeV<m

ll<2m
R/F

μ/2<llm

ll<2m
Q

μ/2<llm

 [p
b/

G
eV

]
-

T,
e

/d
p

σd

1

10

210

R
at

io
 to

 N
N

LO

0.9

1

1.1

 [GeV]-T,e
p

0 10 20 30 40 50 60 70 80 90 100

S
he

rp
a+

B
la

ck
H

at

LOPS2UN
MC@NLO
NNLO

 = 7 TeVs
<120 GeV

ll
60 GeV<m

ll<2m
R/F

μ/2<llm

ll<2m
Q

μ/2<llm

 [p
b]

-
eη

/dσd

20

40

60

80

100

120

140

160

180

200

R
at

io
 to

 N
N

LO

0.9

1

1.1

-e
η

-5 -4 -3 -2 -1 0 1 2 3 4 5

FIG. 2 (color online). Transverse momentum and rapidity spectrum of the electron. The gray solid (blue hatched) band shows scale
uncertainties obtained by varying μR=F=Q (μQ) in the range mll=2 ≤ μ ≤ 2mll.

FIG. 3 (color online). UN2LOPS prediction for the transverse momentum spectrum of the Drell-Yan lepton pair in comparison to
ATLAS data from [43] (left panel) and CMS data from [42] (right panel). The gray solid (blue hatched) band shows scale uncertainties
obtained by varying μR=F=Q (μQ) in the range mll=2 ≤ μ ≤ 2mll.
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large perturbative uncertainties in the first bin of both
distributions do not lead to large uncertainties in the total
cross section, but they indicate that higher-logarithmic
resummation might be needed in order to improve the
low-pT;Z region.

V. OUTLOOK

We have presented a simple method for matching NNLO
calculations in perturbative QCD to existing parton show-
ers, based on the UNLOPS technique. In contrast to the
original implementation of UNLOPS, the event generation
algorithm does not lead to large cancellations, and con-
vergence of the Monte Carlo integration is much improved.
Remaining uncertainties of the method are related to the
treatment of finite remainders of the virtual corrections after
UV renormalization and IR subtraction, and to the treat-
ment of exceptional configurations in the hard remainder
of double real corrections. Our method can be applied to
arbitrary processes, and it can be systematically improved
by using parton showers with higher logarithmic accuracy,
which is currently an area of active research. The combi-
nation with higher-multiplicity NLO matched simulations

is straightforward and can be achieved in both the UNLOPS

[10] and MEPS@NLO [9] schemes.
We also provide an independent implementation of a

fully differential NNLO calculation of Drell-Yan lepton
pair production, using the qT-cutoff method. Both the
parton-level event generator and the shower-matched cal-
culation are made publicly available in the framework of
the SHERPA event generator. This also allows the production
of Les Houches Event Files [44] or Ntuple files [45]
containing NNLO event information at parton level.
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