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Quark fragmentation into spin-triplet S-wave quarkonium
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We compute fragmentation functions for a quark to fragment to a quarkonium through an S-wave spin-
triplet heavy quark-antiquark pair. We consider both color-singlet and color-octet heavy quark-antiquark

(QQ) pairs. We give results for the case in which the fragmenting quark and the quark that is a constituent
of the quarkonium have different flavors and for the case in which these quarks have the same flavors. Our
results for the sum over all spin polarizations of the QQ pairs confirm previous results. Our results for
longitudinally polarized QQ pairs agree with previous calculations for the same flavor cases and correct an
error in a previous calculation for the different-flavor case.
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I. INTRODUCTION

Quarkonium production at large transverse quarkonium
momentum pr proceeds at leading power (LP) in pr
through processes in which a high-energy collision pro-
duces a single parton, which subsequently fragments into a
quarkonium [1]. Fragmentation functions for a parton to
fragment into a quarkonium play a central role in calcu-
lations of such processes. In this paper, we compute the
fragmentation functions for a quark ¢ to fragment into a
quarkonium through heavy quark-antiquark (QQ) pair
channels in which the QQ pair is in a spin-triplet S-wave
state and a color-singlet or a color-octet state. We calculate
fragmentation functions for the case in which the flavors of
g and Q are the same, as well as for the case in which the
flavors are different. We carry out these calculations at the
leading nontrivial order in the strong coupling «, and at
order 1%, where v is the relative velocity of the Q and the Q
in the quarkonium rest frame.

Previous calculations have given the fragmentation
functions for a quark to fragment into an S-wave, spin-
triplet QQ pair for the case in which a sum over the QQ
spin polarizations has been taken. The case in which the
initial quark and final quark have different flavors and are
in a color-octet state is discussed in Refs. [2,3]. The cases in
which the initial quark and final quark have the same flavor
and are in a color-octet or a color-singlet state is discussed
in Ref. [3]. Our calculations confirm all of these results.
We also verify a previous calculation of the fragmentation
function for a quark to fragment into an S-wave, spin-
triplet, color-singlet QQ pair in which a sum over the QQ
spin polarizations is taken [4].

We have extended all of these spin-summed calculations
to the cases in which the QQ pair is in a longitudinally
polarized state. After our calculation was completed, we
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learned that these longitudinal-polarization fragmentation
functions had been calculated in Ref. [5]. Our calculation
agrees with the results in Ref. [5] for the color-octet and
color-singlet same-flavor cases and corrects an error in
Ref. [5] for the color-octet different-flavor case.

The remainder of this paper is organized as follows. In
Sec. II, we introduce our notation and the kinematics that
we use in the calculation and present projectors for the QQ
spin and color. In Sec. III, we present the Collins-Soper
fragmentation function for an initial quark [1] and give
the Feynman rules for its computation. Sections IV and V
contain, respectively, the calculations of the color-octet
fragmentation functions for the case in which the initial and
final quarks have different flavors and the case in which the
initial and final quarks have the same flavor. In Sec. VI, we
present the fragmentation functions for the color-singlet
case. Section VII contains a summary and discussion of
our results.

II. NOTATION, KINEMATICS, AND PROJECTORS

In this paper, we use the following light-cone coordinates
forafour-vector Vinthe d = 4 — 2e space-time dimensions:

V=(VHt,V-,V)), (1a)
Vi = (VO 4 v /V2, (1b)
Vo= (VO —vi1y//2, (1c)

where we call V¢~! the longitudinal component of the
(d — 1)-dimensional spatial vector V, and V| is the
(d — 2)-dimensional component of V that is transverse
to V4=!. In this coordinate system, the scalar product of
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two four-vectors V and W is given by V- W = VTW~+
VWt -V, -W,.

At the leading nontrivial order in «y, a quark fragments
into the QQ pair that forms the quarkonium plus an
additional final-state quark. We denote the momentum
and mass of the fragmenting quark by k and m,, respec-
tively. We denote the momentum of the final-state quark by
ky, and we denote the momentum of the QQ pair by P. We
work at order 2°, and so we take the Q and the O to have
identical momenta p = P/2, with p?> = mé where my, is
the mass of the Q or Q. The mass of the QQ state is then
given by M = 2m,,.

We work in the frame in which the transverse momentum
of the QQ pair vanishes. In this frame, the momenta are

K+ (PL/2)* Py
= + G e A —— 2
k (k k e o) ()
MZ
P: (Zk+,—2Zk+’0L>, (Zb)
24 12
(et Py 5
ky <Z1k, 2k 1L z ) (2¢)

where z and z; =1 — z are the longitudinal momentum
fractions of the QQ pair and the final-state quark,
respectively:

P+
k+
71 = k—'+ (3b)

We note that

zz(mg + k%l) + Z%M2
222, '

ky-P =P ki + P ki = (4)

We wish to project the QQ pair onto spin-triplet states.
The required spin-triplet projectors in order v° are [6—11]

0y(p. p.2) = = fémg EMp+me).  (5a)
L (p. p.2) = 7" (p, p. A)y°
|
= mé(l)(ﬂ - mQ)’ (5b)

where €(4) is the polarization vector for the spin state A.
These projectors correspond to nonrelativistic normaliza-
tion of the heavy-quark spinors.

The absolute squares of ¢(4) for various polarization
states can be written in covariant forms. The result for the
sum over all 4 is
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P, P
I;w = Z €;(ﬂ)€b(/1) = —Gw + ;)2’/ .
A=0,%+1

(6a)

The result for the sum over transverse polarizations is [12]

P,n,+Pyn,  P?

ITUE 6*(/1)611(/1):_9 vt - n,n,,
H /1;1 H H n-P (nP)2 H
(6b)
where
n=(0,1,0,). (6¢)

Then, for the longitudinal polarization, we have

L —
IW/ZG'

M(O)ev(o) = I;w - I;I;u- (6d)

The color-singlet and color-octet projection operators for
the QQ pair are

1
A= \/—N—c (7a)
A = V277, (7b)

where 1 is a unit SU(N,.)-color matrix, 7¢ is a generator of
the fundamental representation of SU(N.), a € {1,2, ...,
N?—1},and N, = 3.

III. COLLINS-SOPER DEFINITION OF
FRAGMENTATION FUNCTION

Collins and Soper have given the following gauge-
invariant definition of the quark fragmentation function
in d dimensions [1]:

743 too .
— —,—iPTx7/z
N, x4 x2x /_oo dite
x tr[#{0] W (0)E¥(0) Pry(p 1€ (x™) W (x)[0)], (8)

Dq—)H(Z)

where W(x) is the field of the initial quark and £(x7) is the
gauge link (eikonal line)

(o)
E(x™) =Pexp {+igs/ dzZAT (07, z7,0.)|. (9)
X
Here, P indicates path ordering, and g, = /47, is the
QCD coupling constant. The spinor field ¥ is an SU(N,.)-
color column vector in the fundamental representation, and
the gluon field A# = AT is an SU(N,.)-color matrix in the
fundamental representation. The trace is over the color and
Dirac indices. The factors N, and 4 in the denominator of
Eq. (8) arise from the average over the color and Dirac
indices of the initial-state quark, respectively. Pyp ) is a
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projector onto states that include a hadron A with momen-
tum P and polarization A:

Pupsy = D_|H(P.2) + X)(H(P.2) (10)

where the summation is over all possible degrees of
freedom.

The Feynman rules for the fragmentation function are the
standard ones for QCD, with the following exceptions.
First, there is an overall factor

Z1—26

qurag = 87N, s (11)

which arises from the definition of the fragmentation
function. Second, there are additional Feynman rules for
the eikonal lines. We state the rules for the part of the
Feynman diagram that lies to the left of the final-state cut.
The rules for the part of the diagram that lies to the right of
the final-state cut can be obtained by complex conjugation.
Each eikonal-line propagator that carries momentum 7,
flowing from the cut side to the operator side, contributes a
factor i6;;/(¢ - n + ie), where i and j are color indices. Each
eikonal-line—gluon vertex contributes a factor ign, T},

where yu is the four-vector index of the gluon. The final-
state cut in an eikonal line carrying momentum # contributes
a factor 2z5(Z - n).

In general, the final-state phase space for a fragmen-
tation function for n unobserved particles in the final state is
given by

471'M n N\ €
S 50) ()

dk;f d>~ 2€k,L
HH () S e (12)

where § is the statistical factor for identical final-state
particles, M and P are the mass and momentum of the
observed particle, respectively, and k; is the momentum
of the ith unobserved particle. We have included a factor
2M in the phase space in order to compensate for the fact
that we use nonrelativistic normalization for the heavy-
quark spinors. We associate the standard modified-
minimal-subtraction (MS) scale factor [u?e’=/(47)]¢ with
each dimensionally regulated integration in d =4 — 2¢
space-time dimensions. Here, u is the dimensional-
regularization scale and yg is the Euler-Mascheroni
constant.

For our specific kinematics, with one unobserved par-
ticle in the final state, the phase space reduces to
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dkt =k,

Azkt (27)2
4zM u? € dzy &>k,

= (1 —z— ) [ Eoere ) 0(z)) LS L
grroti=z=a) (fen ) ot it O

(13)

2 €
d® = 4zM5(k* — P+ —k7) (Z eJ’E> 0(k")
T

IV. COLOR-OCTET FRAGMENTATION:
DIFFERENT-FLAVOR CASE

In this section, we compute the fragmentation function
for quark fragmentation into a color-octet QQ pair for the
case in which the initial quark g and the quark Q that is a
constituent of the quarkonium have different flavors. The
Feynman diagrams for this calculation are shown in Fig. 1.
In this calculation, and throughout the remainder of this
paper, we work in the Feynman gauge.

In each of the contributions from the diagrams in Fig. 1,
there is a common factor that arises from the annihilation of
a virtual gluon into a color-octet spin-triplet S-wave pair

QQ(3S[18]). The contribution to this factor from the left side
of the final-state cut can be written as

JeP () = —

‘i tr[(—igyy* T (p, p, A)AZ].  (14)

A straightforward calculation gives

s gaber (4). (15)

ab
Jira) = M?* +ie "

Multiplying by the complex conjugate and summing over
the final-state color index, we obtain

FIG. 1.

Feynman diagrams for quark fragmentation into a
color-octet QQ pair for the case in which the initial quark ¢
and the quark Q that is a constituent of the quarkonium have
different flavors. The diagram labels d; correspond to the
quantities that appear in Eq. (17).
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Xib(2) = Jie (@) () = S 8e (e (). (16)

Then, the diagrams of Fig. 1 give the following con-
tributions to the fragmentation function:

i
n
k1+P—mq+ie

d, (Z) = quragtr |:(kl + mq)(_igsyﬂTa)

—i

X
k1+P—mq—i

8(+igsy”T”)]ij,’,’d¢, (17a)

dZ(Z) = quragtr |:(k1 + mq) ( (igsn"T“)/z

l
k—k))-n+ie

X .
ki +P—m,—ie

(—i—igsy”Tb)] Xabd®,  (17b)

i
n
k1+P—mq+ie

ds (Z) = quragtr |:(k1 + mq)(_igsyﬂTa)

—i

x (—ign*T") ]X;ﬁdcb, (17¢)

(k—ky) -n—ie
l . a
4(2) = e (1 10) G (i T
—i
PN i) e — LY [} 17d
X( gsn )(k—kl)-n—ig] u ( )

In each contribution in Eq. (17), the overall color factor,

including the color factor in Xﬁf , 1S

CpN.

1 b
_sa TaTb — 1

where Cr = (N> —1)/(2N.). The dependence on k;, in
these expressions comes from the quark-propagator denom-
inators, which contribute factors (k7 + mg +152M?)7".
Thus, the integrals of these expressions over k;; can be
written in terms of the scalar integrals J,(m? +]Z;2ZM2),

J.(s) = ﬂ—zeVE C/dz_kku‘ !
" 4 (27)7¢ (ki +5)"

2e)eT(n — €
_ (/447[ ) r( F(:l)—’_ )Sl_"_e. (19)

where

The only integral that diverges as ¢ — 0 is J;(s):

2ele [ 5)€ €

For n > 2, J,(s), we can write
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sl—rz

W) = =D

+0(e) (n22). (21

Summing over the four contributions in Eq. (17),
using the expressions for the absolute squares of the
polarizations in Eq. (6), multiplying by the factor in
Eq. (11), and carrying out the phase-space integration in
Eq. (13), we obtain the following results for the fragmen-
tation functions:

SO (= Lo
— " q=>00(s")(W) aM3 71+
1_
xJ1<m§+ ZZM2>
Z

—[(1 —e)M? + Zm%[](l -2)

1-
x J, <m§ + ZZM2> }, (22a)

Z

4 2
(1-4) _2gsCF(1_Z) 2 -z 2
Dmoatsiu—0 &) = g e 2\mat M)

(22b)

Here, we retain the full ¢ dependence, as it may be useful
for calculations of fragmentation functions at higher orders
in a,.

The expression for » ;D contains a pole

9—00('s(2) o
in e. We renormalize this expression using the MS
procedure [1]:

TS lag, [1dy
DI;AEA(Z’/'{) = Dq—»A(Zvﬂ) _Ezﬂ_/ y qu(Z/y)Dg—m(Y),
Z

(23)

where the D,_,(z) and the D, ,(z) are the bare quark
and gluon fragmentation functions and P, (z) is the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi splitting func-
tion, which is given at lowest order in a, by

+(1—z)2'

1
qu<Z) = CF z (24)

The bare gluon fragmentation functions for the unpolar-
ized and longitudinally polarized states are given at
leading order in a, by [13]

oL
;DwQQ@S[*Uu)(Z) = o =2

(25a)

(25b)
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At this order in a«,, the bare gluon fragmentation
functions do not depend on e Carrying out the renorm-
alization and dropping contributions of order e and
higher, we obtain

DMS 3
gw00Cs () @ H)
a?Cr (2 =2z+2 u?
= 1 —log(1 — 2
2m3Q{ {og4m2Q og(l—z+rz )]
2(1-2)(1 +20)) (020D (s
—7— - 5 . (26a)
l—z+7rz 3(Nz-1)
4~00(s\")(1=0) (2)
2Cr2(1-z) 11—z (020CsP)skh)
L . . (26b)
2my z  l—z+rz2 3(Nz-1)

where r=m2/M? = m2/(2mg)*. In Eq. (26), we have
written the perturbative fragmentation function in the
factorized form of a short-distance coefficient times a
nonrelativistic-QCD  (NRQCD) long-distance matrix
element (LDME) [14] by making use of the fact’ that,
at order a?,

(0920 = (N2 -1)(d-1).  (27)

The NRQCD LDME (022(S")(*s®)) is defined by

(02001 (*s)

= (Oy'o T“V/ZPQQ pw'o'Ty0).  (28)

Here, y is the two-component (Pauli) spinor field operator
that annihilates a heavy quark and y' is the two-component
(Pauli) spinor field operator that annihilates a heavy anti-
quark. The projection operator P 000s¥) (1) is the free Q0

analogue of Py (p ;), except that, because we are considering
an NRQCD LDME, the intermediate state can contain only
light degrees of freedom in addition to the explicit QQ pair.

'"The e dependence in Eq. (25) is different from that in the
corresponding expression in Ref. [13]. In Ref. [13], a factor
[u2ee [ (4r)]¢ was associated with each factor g2. In the present
paper, we associate a factor [u?e’t /(4x)]¢ with each dimension-
ally regulated integral. This difference between these conventions
does not affect the finite result.

*Our convention for the LDME is to sum over all spin states of
the quarkonium or QQ pair, even in the case of fragmentation into
a single (longitudinally polarized) spin state. In that case, we use
the fact that the LDMEs for different spin states are identical, up
to corrections of relative order v2. Note that our LDMEs for the
longitudinally polarized case are larger than those in Ref. [5] by a
factor of 3.
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We can now obtain the quarkonium fragmentation
functions for the unpolarized and the longitudinally polar-
ized states by replacing the free QO LDMEs in Eq. (26)
with the quarkonium LDMEs:

ZDqQH

2C -2 2 2
:(Zs %F Z Z+ 10g qu —log(l—z—l—rzz)
ZmQ mg

A=) 420 (07(Cs) (299)
1—z+r? 3(N2-1)°
Dy () = BCr21=2) 1=z (0"Cs))
a=HE=0%) = 2my z  l—z+rz2 3(Nz-1)7
(29b)

where the NRQCD LDME (0 (*s1¥)) is defined by

(015 = <owalrawz7>mwv 710).  (30)

Identical expressions hold for the case of an initial
antiquark.

The result for the polarization-summed fragmentation
function in Eq. (29a) confirms the result in Eq. (4.2) of
Ref. [2] and the result in Eq. (C37) of Ref. [3]. The result
for the longitudinal-polarization fragmentation function in
Eq. (29b) disagrees with the result in Eq. (C.10) of
Ref. [5].3 The author of Ref. [5] has confirmed that the
result in Eq. (29b) is correct.

In the case of light initial quarks, it is useful to take the
limit m, — 0, which gives

2 2_2 2 2
ZD » aSC;p Z 7+ log z/t 2,
= 2my, z 4mp(1-z)
(0" (s
AR NS WA 31
“Sv-1) (312)
2Cp2(1 —2) (04SP
Dq—»H(/I:O)(Z): s F ( )< ( 1)> (31b)

2my oz 3(Ni-1)°
We have compared our result in Eq. (31a) with the result in
Eq. (20) of Ref. [15] for quark fragmentation into lepton
pairs, taking into account differences in the color and

*We find that a denominator factor in Eq. (C.10) of Ref. [5]
should be #5z?> —4z+4, rather than 5°z> —4z+4, where
= m%,/mZQ = 4r. We also find that the result in Eq. (C.10) of
Ref. [5] should be multiplied by an overall factor of three. Here,
we have taken into account the fact that the LDME in Eq. (29b) is
a factor of three larger than the corresponding LDME in Ref. [5].
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FIG. 2. Additional Feynman diagrams for quark fragmentation
into a color-octet QQ pair for the case in which the initial quark ¢
and the quark Q that is a constituent of the quarkonium have the
same flavor. These diagrams differ from those in Fig. 1 in that
the identical quarks have been interchanged in the amplitudes on
both the left and the right sides of the final-state cut. The diagram
labels d; correspond to the quantities that appear in Eq. (32).

phase-space factors, and have found that they are consistent
with each other.

V. COLOR-OCTET FRAGMENTATION:
SAME-FLAVOR CASE

Now let us consider the fragmentation function for the
case in which the initial quark g and the quark Q that is a
constituent of the quarkonium have the same flavor. In this
case, there are contributions from the diagrams that are
shown in Fig. 1. These are given by the expressions in

|

i
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FIG. 3. Additional Feynman diagrams for quark fragmentation
into a color-octet QQ pair for the case in which the initial quark ¢
and the quark Q that is a constituent of the quarkonium have the
same flavor. These diagrams differ from those in Fig. 1 in that the
identical quarks have been interchanged in an amplitude on only
one side of the final-state cut. The diagram labels d; correspond to
the quantities that appear in Eq. (34).

Eq. (17), but with m,, set equal to m,. In addition, there are
contributions from the diagrams that are shown in Fig. 2
and in Fig. 3. The diagrams in Fig. 2 differ from those in
Fig. | in that the identical quarks have been interchanged in
the amplitudes on both the left and right sides of the final-
state cut. The diagrams in Fig. 3 differ from those in Fig. 1
in that the identical quarks have been interchanged in an
amplitude on only one side of the cut.
The contributions of the diagrams in Fig. 2 are

—i

dS (Z» /1) = quragtr |:H3 (p’ p, /I)Aé (_igsyﬂTa)

X (+igy Ty (p, p )AL (+igsys ") (K1 + mQ><—igsma>}

(k—PJ2)-n+ ie

d(,(Z, ’1) = quragtr |:H3 (P, P, l)Ag (igsn”

x (+ig* TP)3(p, p, AN (+igey, T?) (ky + mg)(—igsnT“)}

i

T

n
ki +P—mg+ie k+P—mgy—ie

—i +i
(ky + P/2)? + ie (k; + P/2)* —ie

d®, (32a)

—i
ki +P—mg—ie

—i +i
(ky + P/2)* + ie (ky + P/2)* —ie

dd, (32b)

d7 (Z» /1) = quragtr |:H3 (p’ p, /I)Aé (_igsyﬂTa)

—i

X(k—P/Z)-n—ie_3

I (p’ P,A)A§(+i9s}’uTb)(k1 + mQ)(_igsyuTa):|

n(—ign*T")

ki +P—mg+ie

—i +i 4
(ky + P/2)* + ie (ky + P/2)* —ie
(32¢)

’
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1
ds(z,4) = Cytragtr | TI3(p, p, A) A (k—PJ2)-n—+ie

PHYSICAL REVIEW D 91, 074013 (2015)

(igsn"T*)A(=ig,n"T")

—i _ —i +i
I (p, p, A)AS(+ig,y,T?) (k —ig,y,T? dod.
k= p2) = ie P P WA T K+ mo) (=i9 ) | e v e P2 — e
(32d)
In each contribution in Eq. (32), the overall color factor is
tr(ASTOTPASTP T4) = Cr (33)
8 8 2Nc

The contributions from the diagrams in Fig. 3 are

i

—i

d9(z’ /1) = _quragtr |:H3 (pv P, ﬂ)Ag(—ing”Ta)

X Jf“*

i
4o+ c.c.,
CEYI T

n
k1+P—mQ+i€ k1+P—mQ—i

e (+lgsnyb)(kl + mQ)(_igsyuTa)]

(34a)

i . —i . .
d10(27)*) = _quragtr |:H3(p, P,i)Ag (k — P/2> n+ie (lgsnMTa)/l kl + P — my — ie (+lgs7/yTb)(kl + mQ)(_lgsyﬂTa)]
—i
ch* dd .C., 34b
PRy TS (340)
o i . —i .
d11(2:4) = =Cofraglt [Ha(p, p,i)Aé(—lgsy"T”)kl P —mg+ igﬁ(—lgsn”T”)m (K + mQ)(—quT“)]

X bex

—i
o+ cec..
Ty L P

i
dlz(Z,/l) - _quragtr [H3(p,p,/1)/\§ (k _ P/2) -n+ie

x Jhes

—1
dd +cec.,
o+ PP +iet . T

where c.c. stands for complex conjugate. In each contri-
bution in Eq. (34), the overall color factor, including the
color factor from J2¢*, is

se C
" twr(ATTPTY) = ——E. (35)

N 2

We note that the contributions in Eq. (34) contain a phase
—1 relative to the contributions in Egs. (17) and (32)
that arises because of the interchange of the identical
quarks in an amplitude on only one side of the final-state
cut. We also note that the quantities Y%, d;(z,4) [Eq. (17)],

8 odi(z,2) [Eq. (32)], and Y.}, d;(z,4) [Eq. (34)] are
separately gauge invariant.

The dependence on k; in the expressions in Egs. (32)
and (34) comes from the quark- and gluon-propagator

(ign*T*)A(~ig,n*T")

(34c)

—i

(=) -n—ie (k1 + mQ)(—igshT“)]

(34d)

[
denominators, which contribute factors [ki, + (5=M)*]~".
Thus, the integrals of these expressions over k;; can be
expressed in terms of the scalar integrals Jn[(ZZ—‘ZZM)z]
[Eq. (19)]. Summing over the contributions in Egs. (32)
and (34), using the expressions for the absolute squares of
the polarizations in Eq. (6), multiplying by the factor in
Eq. (11), and carrying out the phase-space integration4 in
Eq. (13), we obtain the following contributions to the
fragmentation functions:

*We note that, although the final state contains two identical
quarks, the statistical factor S in the phase space is unity.
This follows from the fact that there is no integration over
the momentum of the QQ pair or from the fact that the two
final-state particles, namely, the QQ pair and the single Q, are
distinct.
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12 4
g1 -2) s, [(2=2,.\* 2 8, [(2=2,,)\° a8 [(2=2, .\
> D e h) = g2 (o M) | H M| (M) | mtals (M)

A=0,%1 i=5

(36a)
12 4 2
9:Cr(1-2) 8, (2220, oaes® 7 [ (2220, ey [(2220,)
;dl(z,i 0) 2N (2= M L\ 5 M| (=, +MU L (5 . (36b)

|
where the dimensionless coefficients aE ) and ZLS] are given /18]

in terms of z and e by

=2*z4+2+€(z-2)>-4N .2 (z-2)[z+2+€e(z—2)],

(37d)
(8] 2 2 2
ay, =z2°(z—1)[—-(9z2° +4z+4) +2¢(3z° + 4
o j ey = =22 -2~ 1)(e+2) 4 els =D+ 42 -8
€2(522 =4z —12) + 263 (4 — 4z + %)) 5 )
+2N.z(z = 2)*[4(z = 1) + e(z = 2)%], (37e)
— 2N, z(z = 2)[-2(52* = 5z + 2)
Fe(-PB+82—6z+4)+ (B =222, (37a) I =2R2(z-1)+e(z-2)?(z-1)(z-2)% (37)
a[Ss] — —2(z = 1)(z=2)[-2(2 + 62— 4) Here, the terms that are proportional to N. come from t}[lge]
) contributions in Eq. (34). Such terms do not appear in a,
+ez(z +6) +2e°z(z - 2)] 8] : . -
) and /;". Again, we retain the full e dependence, as it may be
—2N.z(z = 1)(z=2)*(3 - 2e), (37b) useful for calculations of fragmentation functions at higher
orders in a;.
04[18] — _(3-2¢)(z—1)2(z=2), (37¢) Taking the limit € — 0, writing the result in the NRQCD-

factorized form, and replacing free QQ LDMEs with
quarkonium LDMESs, we obtain

Cr(l -
S by = L)GZ)% [2(1 = 2)(5z% = 322% + 7222 = 327 + 16) + 8N, (2 — 2)2(2® — 622 + 62 — 2)]
mo

2=0,£1 <2 -
(0"(’s") (38)
3(N2-1)°
(5-12) 2Crz(1-2)% . 4 . , , (oH(*stEy)
Dy im0y = m [3z% —24z° + 64z= — 327+ 16 + 12N (2 — 2)*(4 — 2)] m (38b)

One obtains the complete fragmentation functions for the case in which the initial quark ¢ and the quark Q that is a
constituent of the quarkonium have the same flavor by adding the contributions in Eq. (38) to the contributions in Eq. (29)
with r = m7/(2mg)? set equal to 1/4. The results are

a;Cr W
D = _IN2(2=27+4+2)(2-z2)%log—"—5—5 —N2z2(2—2)*(z* =10z + 10
OH 35[8]

+16N,.z(2-2)* (1 —2)(z2 =622+ 62—-2) +272(1 —z)?(5z* —327° + 7272 =327+ 16) w
(39a)

BCp(1-2)? (0"1('sth))

D _ :“— 12N%(2 - 12N,72(2—z2)*(4 - 2324 =243 + 6472 =327+ 16)| ———12L.

-1-0) =g o 1INE= 2+ TN 2P 4=2) 2024 248 642 =322 1 16) T

(39b)
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Identical expressions hold for the case of an initial
antiquark.

Our polarization-summed result in Eq. (39a) differs from
the result in Eq. (111) of Ref. [16], which was duplicated
in Eq. (A3) of Ref. [17]. In Ref. [16], the color-octet
fragmentation function was obtained by multiplying the
color-singlet fragmentation function by a color factor.
Consequently, the contributions of the diagrams of
Figs. 1 and 3 were omitted. Our result in Eq. (39a) agrees
with that in Eq. (C29) of Ref. [3].

Our longitudinal-polarization result in Eq. (39b) agrees
with the result in Eq. (C.16) of Ref. [5], once one takes into
account the fact that the LDME in Eq. (39b) is a factor of
three larger than the corresponding LDME in Ref. [5].

VI. COLOR-SINGLET FRAGMENTATION

In this section, we compute the fragmentation function
for a quark to fragment through a spin-triplet color-singlet

S-wave pair QQ(3S [11]). This process proceeds at leading
order in a, only if the fragmenting quark has the same
flavor as the quark in the QQ pair. The Feynman diagrams
that contribute to this process at leading order in a, are
those in Fig. 2. The corresponding contributions to the
fragmentation function for a quark to fragment into a

QQ(BS [11]) pair are identical to the contributions ds—dg in
Eq. (32), except that the color projectors Ag are replaced
with color projectors A;. In each contribution, the overall
color factor is now

tr(ATOTP A\ TP T?) = CE, (40)
instead of Cr/(2N,.) [Eq. (33)].

The dependence on k; in the expressions in Eq. (32)
comes from the quark- and gluon-propagator denomina-
tors, which contribute factors [kf, + (52M)*|™". Thus, the
integrals of these expressions over k| can be expressed in
terms of the scalar integrals J,[(32M)* [Eq. (19)].
Summing over the contributions in Eq. (32), but taking
the color factor in Eq. (40), using the expressions for the
absolute squares of the polarizations in Eq. (6), multiplying
by the factor in Eq. (11), and carrying out the integration
over the phase space in Eq. (13), we obtain the following
contributions to the fragmentation functions:

PHYSICAL REVIEW D 91, 074013 (2015)

Z b (QS;SQQGS?‘U(A)
1=0,+1 !

402 2 2
g;Cr(1-2) 0 2-z
- L (M
3n3 ¢ (2-z7)°M 221\,

1 2—Z 2 1 2—Z 2
+M2a[3]J3K22 M) + M4, SoM)

(41a)

(5-8)
0-00('s\")(1=0)

4C2(1-2)> 2-z \2
S ZF( Z)2 W, (M
3t (2—z)*M 2z

| 2—z_ \? ! 2—z \?2
+m2l, KZ—ZM) ] +M41£1J4[<2—ZM> ,

(41b)

where the dimensionless coefficients ag] and ZLI] are given
in terms of z and ¢ by

dy) = 2[(92% + 4z +4) — (622 +8) — (52 — 4z — 12)
263 (2 -4z +4)), (42a)

all = 2(2 = 2)[<2(2 + 62 — 4) + €2(2ez — 4e + 2 +6)].

(42b)
dll = (3-2¢)(z~1)(z - 2) (42c)
1[21] =[z+2+e(z-2)]*7*, (42d)

B = —(2-2)24(z +2)(z - 1) + (22 + 42— 8)(z - 2)],
(42e)

B =20 -DE-2PR2(E-1) fez=27.  (420)
Taking the limit ¢ — 0, writing the result in the NRQCD-
factorized form, and replacing free QQ LDMEs with
quarkonium LDMEs, we obtain

a?Crz(1 — 7)*(5z* — 322% + 7222 — 327 + 16) 3.0
> Doy ==+ SN = 2o (07 ('), (43)
1=0.+1 el = 2) g
a?Cz(1 — 2)?(3z% — 247° + 647> — 327 + 16) 3
Do-nyrg) = = rL = (07 (s, (43b)

where the NRQCD LDME is defined by

6,3
27N (2 = 2)°m},
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(01Cs\N) = Loy Pupawior0).  (44)
A

and, in writing the result in the NRQCD-factorized form,
we have used the fact that

(022CsH sy = 2N (d - 1), (45)

The result in Eq. (43a) agrees with the result in Eq. (16)
of Ref. [4] and with the result in Eq. (C24) of Ref. [3], once
one takes into account the fact that the LDME in Eq. (43a)
is a factor of 2N larger than the corresponding LDME in
Ref. [3]. Our result in Eq. (43b) agrees with the result in
Eq. (C.11) of Ref. [5], once one takes into account the fact
that the LDME in Eq. (43b) is a factor of 6/N. larger than
the LDME in Ref. [5].

VII. SUMMARY AND DISCUSSION

In this paper we computed fragmentation functions for a
quark ¢ to fragment into a heavy quarkonium through a
heavy QQ channel in which the QQ pair is in a spin-triplet,
S-wave state. Our computations are at the leading nontrivial
order in « and at leading order in the heavy-quark velocity
v. We have considered the following cases: (i) the ¢ and Q
have different flavors, in which case the QQ pair must be in
a color-octet state; (ii) the ¢ and Q have the same flavor and
the QQ pair is in a color-octet state; (iii) the g and Q have
the same flavor and the QQ pair is in a color-singlet state.
In each case, we have computed both the fragmentation
function summed over all spin polarizations of the QQ
pair and the fragmentation function for longitudinal polari-
zation of the QQ pair. We have also presented expressions
in d = 4 — 2¢ dimensions, which may be useful in carrying
out calculations of fragmentation functions at higher orders
in a;.

Our results for case (i) are given for finite m, in Eq. (29)
and for m, = 0 in Eq. (31). The result in Eq. (29a) for the
sum over QQ polarizations agrees with previous calcu-
lations in Refs. [2,3], and the result in Eq. (31a) for the
sum over QQ polarizations agrees with a calculation of
quark fragmentation into lepton pairs in Ref. [15], once
differences in the phase-space and color factors have been
taken into account. The result in Eq. (29b) corrects the
result in Ref. [5]. This correction has been confirmed by the
author of Ref. [5].

Our result for case (ii) for the fragmentation function
summed over QQ polarizations is given in Eq. (39a) and
agrees with the result in Ref. [3], but disagrees with the
result in Ref. [16]. Our result for case (ii) for the
longitudinal-polarization fragmentation function is given
in Eq. (39b) and agrees with the result in Ref. [5].

Our result for case (iii) for the fragmentation function
summed over QQ polarizations is given in Eq. (43a) and

PHYSICAL REVIEW D 91, 074013 (2015)

agrees with the results in Refs. [3,4]. Our result for case
(ii1) for the longitudinal-polarization fragmentation func-
tion is given in Eq. (43b) and agrees with the result
in Ref. [5].

The new results for longitudinally polarized fragmenta-
tion functions that we have obtained in this paper will
make it possible to compute quark-initiated leading-power
fragmentation contributions to the production of polarized
S-wave spin-triplet quarkonia. While gluon-initiated frag-
mentation dominates quark-initiated fragmentation in quar-
konium hadroproduction, quark-initiated fragmentation
may be important for other quarkonium production proc-
esses, such as production in ete™ annihilation.

As we have mentioned, our calculations are at the
leading nontrivial order in a, and v. A complete calculation
at order a; of the LP contributions to quarkonium pro-
duction in the color-octet channels requires corrections to
the fragmentation functions for the 'S, and 3P, channels at
next-to-leading order (NLO) in a, and for the S, channel
through next-to-next-to-leading order in a,. Corrections
of NLO in «; to the fragmentation function for a gluon
to fragment into a quarkonium through the 3S, color-octet
channel have already been computed [3,18] and give a
contribution that is numerically large in comparison with
the leading-order (LO) contribution [19]. Corrections of
higher order in v are also known to be large, relative to the
LO contribution, for the fragmentation functions for gluons
to fragment into quarkonia through the S, color-singlet
and color-octet channels [13,20]. These large corrections of
higher order in @, and v suggest that it may be important
to compute higher-order corrections for additional quarko-
nium production channels and for quark-initiated, as well
as gluon-initiated, fragmentation processes.
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