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We compute fragmentation functions for a quark to fragment to a quarkonium through an S-wave spin-
triplet heavy quark-antiquark pair. We consider both color-singlet and color-octet heavy quark-antiquark
(QQ̄) pairs. We give results for the case in which the fragmenting quark and the quark that is a constituent
of the quarkonium have different flavors and for the case in which these quarks have the same flavors. Our
results for the sum over all spin polarizations of the QQ̄ pairs confirm previous results. Our results for
longitudinally polarized QQ̄ pairs agree with previous calculations for the same flavor cases and correct an
error in a previous calculation for the different-flavor case.
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I. INTRODUCTION

Quarkonium production at large transverse quarkonium
momentum pT proceeds at leading power (LP) in pT
through processes in which a high-energy collision pro-
duces a single parton, which subsequently fragments into a
quarkonium [1]. Fragmentation functions for a parton to
fragment into a quarkonium play a central role in calcu-
lations of such processes. In this paper, we compute the
fragmentation functions for a quark q to fragment into a
quarkonium through heavy quark-antiquark (QQ̄) pair
channels in which the QQ̄ pair is in a spin-triplet S-wave
state and a color-singlet or a color-octet state. We calculate
fragmentation functions for the case in which the flavors of
q and Q are the same, as well as for the case in which the
flavors are different. We carry out these calculations at the
leading nontrivial order in the strong coupling αs and at
order v0, where v is the relative velocity of theQ and the Q̄
in the quarkonium rest frame.
Previous calculations have given the fragmentation

functions for a quark to fragment into an S-wave, spin-
triplet QQ̄ pair for the case in which a sum over the QQ̄
spin polarizations has been taken. The case in which the
initial quark and final quark have different flavors and are
in a color-octet state is discussed in Refs. [2,3]. The cases in
which the initial quark and final quark have the same flavor
and are in a color-octet or a color-singlet state is discussed
in Ref. [3]. Our calculations confirm all of these results.
We also verify a previous calculation of the fragmentation
function for a quark to fragment into an S-wave, spin-
triplet, color-singlet QQ̄ pair in which a sum over the QQ̄
spin polarizations is taken [4].
We have extended all of these spin-summed calculations

to the cases in which the QQ̄ pair is in a longitudinally
polarized state. After our calculation was completed, we

learned that these longitudinal-polarization fragmentation
functions had been calculated in Ref. [5]. Our calculation
agrees with the results in Ref. [5] for the color-octet and
color-singlet same-flavor cases and corrects an error in
Ref. [5] for the color-octet different-flavor case.
The remainder of this paper is organized as follows. In

Sec. II, we introduce our notation and the kinematics that
we use in the calculation and present projectors for the QQ̄
spin and color. In Sec. III, we present the Collins-Soper
fragmentation function for an initial quark [1] and give
the Feynman rules for its computation. Sections IV and V
contain, respectively, the calculations of the color-octet
fragmentation functions for the case in which the initial and
final quarks have different flavors and the case in which the
initial and final quarks have the same flavor. In Sec. VI, we
present the fragmentation functions for the color-singlet
case. Section VII contains a summary and discussion of
our results.

II. NOTATION, KINEMATICS, AND PROJECTORS

In this paper, we use the following light-cone coordinates
for a four-vectorV in thed ¼ 4 − 2ϵ space-time dimensions:

V ¼ ðVþ; V−;V⊥Þ; ð1aÞ

Vþ ¼ ðV0 þ Vd−1Þ=
ffiffiffi
2

p
; ð1bÞ

V− ¼ ðV0 − Vd−1Þ=
ffiffiffi
2

p
; ð1cÞ

where we call Vd−1 the longitudinal component of the
(d − 1)-dimensional spatial vector V, and V⊥ is the
(d − 2)-dimensional component of V that is transverse
to Vd−1. In this coordinate system, the scalar product of
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two four-vectors V and W is given by V ·W ¼ VþW−þ
V−Wþ − V⊥ ·W⊥.
At the leading nontrivial order in αs, a quark fragments

into the QQ̄ pair that forms the quarkonium plus an
additional final-state quark. We denote the momentum
and mass of the fragmenting quark by k and mq, respec-
tively. We denote the momentum of the final-state quark by
k1, and we denote the momentum of the QQ̄ pair by P. We
work at order v0, and so we take the Q and the Q̄ to have
identical momenta p ¼ P=2, with p2 ¼ m2

Q, where mQ is
the mass of the Q or Q̄. The mass of the QQ̄ state is then
given by M ¼ 2mQ.
Wework in the frame in which the transverse momentum

of the QQ̄ pair vanishes. In this frame, the momenta are

k ¼
�
kþ; k− ¼ k2 þ ðP⊥=zÞ2

2kþ
;−

P⊥
z

�
; ð2aÞ

P ¼
�
zkþ;

M2

2zkþ
; 0⊥

�
; ð2bÞ

k1 ¼
�
z1kþ;

m2
q þ k21⊥
2z1kþ

; k1⊥ ¼ −
P⊥
z

�
; ð2cÞ

where z and z1 ≡ 1 − z are the longitudinal momentum
fractions of the QQ̄ pair and the final-state quark,
respectively:

z ¼ Pþ

kþ
; ð3aÞ

z1 ¼
kþ1
kþ

: ð3bÞ

We note that

k1 · P ¼ Pþk−1 þ P−kþ1 ¼ z2ðm2
q þ k21⊥Þ þ z21M

2

2zz1
: ð4Þ

We wish to project the QQ̄ pair onto spin-triplet states.
The required spin-triplet projectors in order v0 are [6–11]

Π3ðp; p; λÞ ¼ −
1

2
ffiffiffi
2

p
mQ

ϵ�ðλÞðpþmQÞ; ð5aÞ

Π̄3ðp; p; λÞ ¼ γ0Π†
3ðp; p; λÞγ0

¼ 1

2
ffiffiffi
2

p
mQ

ϵðλÞðp −mQÞ; ð5bÞ

where ϵðλÞ is the polarization vector for the spin state λ.
These projectors correspond to nonrelativistic normaliza-
tion of the heavy-quark spinors.
The absolute squares of ϵðλÞ for various polarization

states can be written in covariant forms. The result for the
sum over all λ is

Iμν ≡
X

λ¼0;�1

ϵ�μðλÞϵνðλÞ ¼ −gμν þ
PμPν

P2
: ð6aÞ

The result for the sum over transverse polarizations is [12]

ITμν≡
X
λ¼�1

ϵ�μðλÞϵνðλÞ¼−gμνþ
PμnνþPνnμ

n ·P
−

P2

ðn ·PÞ2nμnν;

ð6bÞ

where

n ¼ ð0; 1; 0⊥Þ: ð6cÞ

Then, for the longitudinal polarization, we have

ILμν ≡ ϵ�μð0Þϵνð0Þ ¼ Iμν − ITμν: ð6dÞ

The color-singlet and color-octet projection operators for
the QQ̄ pair are

Λ1 ¼
1ffiffiffiffiffiffi
Nc

p ; ð7aÞ

Λa
8 ¼

ffiffiffi
2

p
Ta; ð7bÞ

where 1 is a unit SUðNcÞ-color matrix, Ta is a generator of
the fundamental representation of SUðNcÞ, a ∈ f1; 2;…;
N2

c − 1g, and Nc ¼ 3.

III. COLLINS-SOPER DEFINITION OF
FRAGMENTATION FUNCTION

Collins and Soper have given the following gauge-
invariant definition of the quark fragmentation function
in d dimensions [1]:

Dq→HðzÞ ¼
zd−3

Nc × 4 × 2π

Z þ∞

−∞
dx−e−iP

þx−=z

× tr½nh0jΨð0ÞE†ð0ÞPHðP;λÞEðx−ÞΨ̄ðxÞj0i�; ð8Þ

where ΨðxÞ is the field of the initial quark and Eðx−Þ is the
gauge link (eikonal line)

Eðx−Þ ¼ P exp

�
þigs

Z
∞

x−
dz−Aþð0þ; z−; 0⊥Þ

�
: ð9Þ

Here, P indicates path ordering, and gs ¼
ffiffiffiffiffiffiffiffiffiffi
4παs

p
is the

QCD coupling constant. The spinor field Ψ is an SUðNcÞ-
color column vector in the fundamental representation, and
the gluon field Aμ ¼ Aμ

aTa is an SUðNcÞ-color matrix in the
fundamental representation. The trace is over the color and
Dirac indices. The factors Nc and 4 in the denominator of
Eq. (8) arise from the average over the color and Dirac
indices of the initial-state quark, respectively. PHðP;λÞ is a
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projector onto states that include a hadron H with momen-
tum P and polarization λ:

PHðP;λÞ ¼
X
X

jHðP; λÞ þ XihHðP; λÞ þ Xj; ð10Þ

where the summation is over all possible degrees of
freedom.
The Feynman rules for the fragmentation function are the

standard ones for QCD, with the following exceptions.
First, there is an overall factor

Cqfrag ¼
z1−2ϵ

8πNc
; ð11Þ

which arises from the definition of the fragmentation
function. Second, there are additional Feynman rules for
the eikonal lines. We state the rules for the part of the
Feynman diagram that lies to the left of the final-state cut.
The rules for the part of the diagram that lies to the right of
the final-state cut can be obtained by complex conjugation.
Each eikonal-line propagator that carries momentum l,
flowing from the cut side to the operator side, contributes a
factor iδij=ðl · nþ iεÞ, where i and j are color indices. Each
eikonal-line–gluon vertex contributes a factor igsnμTa

ij,
where μ is the four-vector index of the gluon. The final-
state cut in an eikonal line carryingmomentuml contributes
a factor 2πδðl · nÞ.
In general, the final-state phase space for a fragmen-

tation function for n unobserved particles in the final state is
given by

dΦn ¼
4πM
S

δ

�
kþ − Pþ −

Xn
i¼1

kþi

��
μ2

4π
eγE

�
nϵ

×
Yn
i¼1

θðkþi Þ
dkþi d

2−2ϵki⊥
2kþi ð2πÞ3−2ϵ

; ð12Þ

where S is the statistical factor for identical final-state
particles, M and P are the mass and momentum of the
observed particle, respectively, and ki is the momentum
of the ith unobserved particle. We have included a factor
2M in the phase space in order to compensate for the fact
that we use nonrelativistic normalization for the heavy-
quark spinors. We associate the standard modified-
minimal-subtraction (MS) scale factor ½μ2eγE=ð4πÞ�ϵ with
each dimensionally regulated integration in d ¼ 4 − 2ϵ
space-time dimensions. Here, μ is the dimensional-
regularization scale and γE is the Euler-Mascheroni
constant.
For our specific kinematics, with one unobserved par-

ticle in the final state, the phase space reduces to

dΦ¼ 4πMδðkþ−Pþ−kþ1 Þ
�
μ2

4π
eγE

�
ϵ

θðkþÞ dk
þ
1

4πkþ1

dd−2k1⊥
ð2πÞd−2

¼ 4πM
kþ

δð1− z− z1Þ
�
μ2

4π
eγE

�
ϵ

θðz1Þ
dz1
4πz1

d2−2ϵk1⊥
ð2πÞ2−2ϵ :

ð13Þ

IV. COLOR-OCTET FRAGMENTATION:
DIFFERENT-FLAVOR CASE

In this section, we compute the fragmentation function
for quark fragmentation into a color-octet QQ̄ pair for the
case in which the initial quark q and the quark Q that is a
constituent of the quarkonium have different flavors. The
Feynman diagrams for this calculation are shown in Fig. 1.
In this calculation, and throughout the remainder of this
paper, we work in the Feynman gauge.
In each of the contributions from the diagrams in Fig. 1,

there is a common factor that arises from the annihilation of
a virtual gluon into a color-octet spin-triplet S-wave pair

QQ̄ð3S½8�1 Þ. The contribution to this factor from the left side
of the final-state cut can be written as

Jabμ ðλÞ ¼ −igμν
P2 þ iε

tr½ð−igsγνTaÞΠ3ðp; p; λÞΛb
8�: ð14Þ

A straightforward calculation gives

Jabμ ðλÞ ¼ gs
M2 þ iε

δabϵ�μðλÞ: ð15Þ

Multiplying by the complex conjugate and summing over
the final-state color index, we obtain

FIG. 1. Feynman diagrams for quark fragmentation into a
color-octet QQ̄ pair for the case in which the initial quark q
and the quark Q that is a constituent of the quarkonium have
different flavors. The diagram labels di correspond to the
quantities that appear in Eq. (17).
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Xab
μνðλÞ ¼ Jacμ ðλÞJbc�ν ðλÞ ¼ g2s

M4
δabϵ�μðλÞϵνðλÞ: ð16Þ

Then, the diagrams of Fig. 1 give the following con-
tributions to the fragmentation function:

d1ðzÞ ¼ Cqfragtr

�
ðk1 þmqÞð−igsγμTaÞ i

k1 þ P −mq þ iε
n

×
−i

k1 þ P −mq − iε
ðþigsγνTbÞ

�
Xab
μνdΦ; ð17aÞ

d2ðzÞ ¼ Cqfragtr

�
ðk1 þmqÞ

i
ðk − k1Þ · nþ iε

ðigsnμTaÞn

×
−i

k1 þ P −mq − iε
ðþigsγνTbÞ

�
Xab
μνdΦ; ð17bÞ

d3ðzÞ ¼ Cqfragtr

�
ðk1 þmqÞð−igsγμTaÞ i

k1 þ P −mq þ iε
n

× ð−igsnνTbÞ −i
ðk − k1Þ · n − iε

�
Xab
μνdΦ; ð17cÞ

d4ðzÞ ¼ Cqfragtr

�
ðk1 þmqÞ

i
ðk − k1Þ · nþ iε

ðþigsnμTaÞn

× ð−igsnνTbÞ −i
ðk − k1Þ · n − iε

�
Xab
μνdΦ: ð17dÞ

In each contribution in Eq. (17), the overall color factor,
including the color factor in Xab

μν , is

1

2
δabtrðTaTbÞ ¼ CFNc

2
; ð18Þ

where CF ¼ ðN2
c − 1Þ=ð2NcÞ. The dependence on k1⊥ in

these expressions comes from the quark-propagator denom-
inators, which contribute factors ðk21⊥ þm2

q þ 1−z
z2 M2Þ−1.

Thus, the integrals of these expressions over k1⊥ can be
written in terms of the scalar integrals Jnðm2

q þ 1−z
z2 M2Þ,

where

JnðsÞ≡
�
μ2

4π
eγE

�
ϵ Z d2−2ϵk1⊥

ð2πÞ2−2ϵ
1

ðk21⊥ þ sÞn

¼ ðμ2eγEÞϵ
4π

Γðn − 1þ ϵÞ
ΓðnÞ s1−n−ϵ: ð19Þ

The only integral that diverges as ϵ → 0 is J1ðsÞ:

J1ðsÞ ¼
ðμ2eγE=sÞϵ

4π

Γð1þ ϵÞ
ϵ

: ð20Þ

For n ≥ 2, JnðsÞ, we can write

JnðsÞ ¼
s1−n

4πðn − 1Þ þOðϵÞ ðn ≥ 2Þ: ð21Þ

Summing over the four contributions in Eq. (17),
using the expressions for the absolute squares of the
polarizations in Eq. (6), multiplying by the factor in
Eq. (11), and carrying out the phase-space integration in
Eq. (13), we obtain the following results for the fragmen-
tation functions:

X
λ

Dð1−4Þ
q→QQ̄ð3S½8�

1
ÞðλÞðzÞ ¼

g4sCF

πM3z1þ2ϵ

�
½1þ ð1 − zÞ2 − ϵz2�

× J1

�
m2

q þ
1 − z
z2

M2

�

− ½ð1 − ϵÞM2 þ 2m2
q�ð1 − zÞ

× J2

�
m2

q þ
1 − z
z2

M2

��
; ð22aÞ

Dð1−4Þ
q→QQ̄ð3S½8�

1
Þðλ¼0ÞðzÞ ¼

2g4sCF

πM
ð1 − zÞ2
z3þ2ϵ J2

�
m2

q þ
1 − z
z2

M2

�
:

ð22bÞ

Here, we retain the full ϵ dependence, as it may be useful
for calculations of fragmentation functions at higher orders
in αs.
The expression for

P
λDq→QQ̄ð3S½8�

1
ÞðλÞ contains a pole

in ϵ. We renormalize this expression using the MS
procedure [1]:

DMS
q→Aðz; μÞ ¼ Dq→Aðz; μÞ −

1

ϵ

αs
2π

Z
1

z

dy
y
Pgqðz=yÞDg→AðyÞ;

ð23Þ

where the Dq→AðzÞ and the Dg→AðzÞ are the bare quark
and gluon fragmentation functions and PgqðzÞ is the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi splitting func-
tion, which is given at lowest order in αs by

PgqðzÞ ¼ CF
1þ ð1 − zÞ2

z
: ð24Þ

The bare gluon fragmentation functions for the unpolar-
ized and longitudinally polarized states are given at
leading order in αs by [13]

X
λ

D
g→QQ̄ð3S½8�

1
ÞðλÞðzÞ ¼

παs
m3

Q
δð1 − zÞ; ð25aÞ

D
g→QQ̄ð3S½8�

1
Þðλ¼0ÞðzÞ ¼ 0: ð25bÞ
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At this order in αs, the bare gluon fragmentation
functions do not depend on ϵ.1 Carrying out the renorm-
alization and dropping contributions of order ϵ and
higher, we obtain

X
λ

DMS
q→QQ̄ð3S½8�

1
ÞðλÞðz; μÞ

¼ α2sCF

2m3
Q

�
z2 − 2zþ 2

z

�
log

μ2

4m2
Q
− logð1 − zþ rz2Þ

�

− z −
zð1 − zÞð1þ 2rÞ

1 − zþ rz2

� hOQQ̄ð3S½8�
1
Þð3S½8�1 Þi

3ðN2
c − 1Þ ; ð26aÞ

D
q→QQ̄ð3S½8�

1
Þðλ¼0ÞðzÞ

¼ α2sCF

2m3
Q

2ð1 − zÞ
z

1 − z
1 − zþ rz2

hOQQ̄ð3S½8�
1
Þð3S½8�1 Þi

3ðN2
c − 1Þ ; ð26bÞ

where r≡m2
q=M2 ¼ m2

q=ð2mQÞ2. In Eq. (26), we have
written the perturbative fragmentation function in the
factorized form of a short-distance coefficient times a
nonrelativistic-QCD (NRQCD) long-distance matrix
element (LDME) [14] by making use of the fact2 that,
at order α0s,

hOQQ̄ð3S½8�
1
Þð3S½8�1 Þi ¼ ðN2

c − 1Þðd − 1Þ: ð27Þ

The NRQCD LDME hOQQ̄ð3S½8�
1
Þð3S½8�1 Þi is defined by

hOQQ̄ð3S½8�
1
Þð3S½8�1 Þi

¼ h0jχ†σiTaψ
X
λ

P
QQ̄ð3S½8�

1
ÞðP;λÞψ

†σiTaχj0i: ð28Þ

Here, ψ is the two-component (Pauli) spinor field operator
that annihilates a heavy quark and χ† is the two-component
(Pauli) spinor field operator that annihilates a heavy anti-
quark. The projection operator P

QQ̄ð3S½8�
1
ÞðP;λÞ is the free QQ̄

analogue ofPHðP;λÞ, except that, becausewe are considering
an NRQCD LDME, the intermediate state can contain only
light degrees of freedom in addition to the explicitQQ̄ pair.

We can now obtain the quarkonium fragmentation
functions for the unpolarized and the longitudinally polar-
ized states by replacing the free QQ̄ LDMEs in Eq. (26)
with the quarkonium LDMEs:

X
λ

DMS
q→HðλÞðz; μÞ

¼ α2sCF

2m3
Q

�
z2 − 2zþ 2

z

�
log

μ2

4m2
Q
− logð1 − zþ rz2Þ

�

− z −
zð1 − zÞð1þ 2rÞ

1 − zþ rz2

� hOHð3S½8�1 Þi
3ðN2

c − 1Þ ; ð29aÞ

Dq→Hðλ¼0ÞðzÞ ¼
α2sCF

2m3
Q

2ð1 − zÞ
z

1 − z
1 − zþ rz2

hOHð3S½8�1 Þi
3ðN2

c − 1Þ ;

ð29bÞ

where the NRQCD LDME hOHð3S½8�1 Þi is defined by

hOHð3S½8�1 Þi ¼ h0jχ†σiTaψ
X
λ

PHðP;λÞψ†σiTaχj0i: ð30Þ

Identical expressions hold for the case of an initial
antiquark.
The result for the polarization-summed fragmentation

function in Eq. (29a) confirms the result in Eq. (4.2) of
Ref. [2] and the result in Eq. (C37) of Ref. [3]. The result
for the longitudinal-polarization fragmentation function in
Eq. (29b) disagrees with the result in Eq. (C.10) of
Ref. [5].3 The author of Ref. [5] has confirmed that the
result in Eq. (29b) is correct.
In the case of light initial quarks, it is useful to take the

limit mq → 0, which gives

X
λ

DMS
q→HðλÞðz;μÞ¼

α2sCF

2m3
Q

�
z2−2zþ2

z
log

μ2

4m2
Qð1− zÞ−2z

�

×
hOHð3S½8�1 Þi
3ðN2

c−1Þ ; ð31aÞ

Dq→Hðλ¼0ÞðzÞ ¼
α2sCF

2m3
Q

2ð1 − zÞ
z

hOHð3S½8�1 Þi
3ðN2

c − 1Þ : ð31bÞ

We have compared our result in Eq. (31a) with the result in
Eq. (20) of Ref. [15] for quark fragmentation into lepton
pairs, taking into account differences in the color and

1The ϵ dependence in Eq. (25) is different from that in the
corresponding expression in Ref. [13]. In Ref. [13], a factor
½μ2eγE=ð4πÞ�ϵ was associated with each factor g2s. In the present
paper, we associate a factor ½μ2eγE=ð4πÞ�ϵ with each dimension-
ally regulated integral. This difference between these conventions
does not affect the finite result.

2Our convention for the LDME is to sum over all spin states of
the quarkonium orQQ̄ pair, even in the case of fragmentation into
a single (longitudinally polarized) spin state. In that case, we use
the fact that the LDMEs for different spin states are identical, up
to corrections of relative order v2. Note that our LDMEs for the
longitudinally polarized case are larger than those in Ref. [5] by a
factor of 3.

3We find that a denominator factor in Eq. (C.10) of Ref. [5]
should be ηz2 − 4zþ 4, rather than η2z2 − 4zþ 4, where
η ¼ m2

q=m2
Q ¼ 4r. We also find that the result in Eq. (C.10) of

Ref. [5] should be multiplied by an overall factor of three. Here,
we have taken into account the fact that the LDME in Eq. (29b) is
a factor of three larger than the corresponding LDME in Ref. [5].
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phase-space factors, and have found that they are consistent
with each other.

V. COLOR-OCTET FRAGMENTATION:
SAME-FLAVOR CASE

Now let us consider the fragmentation function for the
case in which the initial quark q and the quark Q that is a
constituent of the quarkonium have the same flavor. In this
case, there are contributions from the diagrams that are
shown in Fig. 1. These are given by the expressions in

Eq. (17), but with mq set equal to mQ. In addition, there are
contributions from the diagrams that are shown in Fig. 2
and in Fig. 3. The diagrams in Fig. 2 differ from those in
Fig. 1 in that the identical quarks have been interchanged in
the amplitudes on both the left and right sides of the final-
state cut. The diagrams in Fig. 3 differ from those in Fig. 1
in that the identical quarks have been interchanged in an
amplitude on only one side of the cut.
The contributions of the diagrams in Fig. 2 are

d5ðz; λÞ ¼ Cqfragtr

�
Π3ðp; p; λÞΛc

8ð−igsγμTaÞ i
k1 þ P −mQ þ iε

n
−i

k1 þ P −mQ − iε

× ðþigsγνTbÞΠ̄3ðp; p; λÞΛc
8ðþigsγνTbÞðk1 þmQÞð−igsγμTaÞ

�
−i

ðk1 þ P=2Þ2 þ iε
þi

ðk1 þ P=2Þ2 − iε
dΦ; ð32aÞ

d6ðz; λÞ ¼ Cqfragtr

�
Π3ðp; p; λÞΛc

8

i
ðk − P=2Þ · nþ iε

ðigsnμTaÞn −i
k1 þ P −mQ − iε

× ðþigsγνTbÞΠ̄3ðp; p; λÞΛc
8ðþigsγνTbÞðk1 þmQÞð−igsγμTaÞ

�
−i

ðk1 þ P=2Þ2 þ iε
þi

ðk1 þ P=2Þ2 − iε
dΦ; ð32bÞ

d7ðz; λÞ ¼ Cqfragtr

�
Π3ðp; p; λÞΛc

8ð−igsγμTaÞ i
k1 þ P −mQ þ iε

nð−igsnνTbÞ

×
−i

ðk − P=2Þ · n − iε
Π̄3ðp; p; λÞΛc

8ðþigsγνTbÞðk1 þmQÞð−igsγμTaÞ
�

−i
ðk1 þ P=2Þ2 þ iε

þi
ðk1 þ P=2Þ2 − iε

dΦ;

ð32cÞ

FIG. 2. Additional Feynman diagrams for quark fragmentation
into a color-octetQQ̄ pair for the case in which the initial quark q
and the quark Q that is a constituent of the quarkonium have the
same flavor. These diagrams differ from those in Fig. 1 in that
the identical quarks have been interchanged in the amplitudes on
both the left and the right sides of the final-state cut. The diagram
labels di correspond to the quantities that appear in Eq. (32).

FIG. 3. Additional Feynman diagrams for quark fragmentation
into a color-octetQQ̄ pair for the case in which the initial quark q
and the quark Q that is a constituent of the quarkonium have the
same flavor. These diagrams differ from those in Fig. 1 in that the
identical quarks have been interchanged in an amplitude on only
one side of the final-state cut. The diagram labels di correspond to
the quantities that appear in Eq. (34).
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d8ðz; λÞ ¼ Cqfragtr

�
Π3ðp; p; λÞΛc

8

i
ðk − P=2Þ · nþ iε

ðigsnμTaÞnð−igsnνTbÞ

×
−i

ðk − P=2Þ · n − iε
Π̄3ðp; p; λÞΛc

8ðþigsγνTbÞðk1 þmQÞð−igsγμTaÞ
�

−i
ðk1 þ P=2Þ2 þ iε

þi
ðk1 þ P=2Þ2 − iε

dΦ:

ð32dÞ

In each contribution in Eq. (32), the overall color factor is

trðΛc
8T

aTbΛc
8T

bTaÞ ¼ CF

2Nc
: ð33Þ

The contributions from the diagrams in Fig. 3 are

d9ðz; λÞ ¼ −Cqfragtr

�
Π3ðp; p; λÞΛc

8ð−igsγμTaÞ i
k1 þ P −mQ þ iε

n
−i

k1 þ P −mQ − iε
ðþigsγνTbÞðk1 þmQÞð−igsγμTaÞ

�

× Jbc�ν
−i

ðk1 þ P=2Þ2 þ iε
dΦþ c:c:; ð34aÞ

d10ðz; λÞ ¼ −Cqfragtr

�
Π3ðp; p; λÞΛc

8

i
ðk − P=2Þ · nþ iε

ðigsnμTaÞn −i
k1 þ P −mQ − iε

ðþigsγνTbÞðk1 þmQÞð−igsγμTaÞ
�

× Jbc�ν
−i

ðk1 þ P=2Þ2 þ iε
dΦþ c:c:; ð34bÞ

d11ðz; λÞ ¼ −Cqfragtr

�
Π3ðp; p; λÞΛc

8ð−igsγμTaÞ i
k1 þ P −mQ þ iε

nð−igsnνTbÞ −i
ðk − k1Þ · n − iε

ðk1 þmQÞð−igsγμTaÞ
�

× Jbc�ν
−i

ðk1 þ P=2Þ2 þ iε
dΦþ c:c:; ð34cÞ

d12ðz; λÞ ¼ −Cqfragtr

�
Π3ðp; p; λÞΛc

8

i
ðk − P=2Þ · nþ iε

ðigsnμTaÞnð−igsnνTbÞ −i
ðk − k1Þ · n − iε

ðk1 þmQÞð−igsγμTaÞ
�

× Jbc�ν
−i

ðk1 þ P=2Þ2 þ iε
dΦþ c:c:; ð34dÞ

where c.c. stands for complex conjugate. In each contri-
bution in Eq. (34), the overall color factor, including the
color factor from Jbc�ν , is

δbcffiffiffi
2

p trðΛc
8T

aTbTaÞ ¼ −
CF

2
: ð35Þ

We note that the contributions in Eq. (34) contain a phase
−1 relative to the contributions in Eqs. (17) and (32)
that arises because of the interchange of the identical
quarks in an amplitude on only one side of the final-state
cut. We also note that the quantities

P
4
i¼1diðz;λÞ [Eq. (17)],P

8
i¼5 diðz; λÞ [Eq. (32)], and

P
12
i¼9 diðz; λÞ [Eq. (34)] are

separately gauge invariant.
The dependence on k1⊥ in the expressions in Eqs. (32)

and (34) comes from the quark- and gluon-propagator

denominators, which contribute factors ½k21⊥ þ ð2−z
2z MÞ2�−1.

Thus, the integrals of these expressions over k1⊥ can be
expressed in terms of the scalar integrals Jn½ð2−z2z MÞ2�
[Eq. (19)]. Summing over the contributions in Eqs. (32)
and (34), using the expressions for the absolute squares of
the polarizations in Eq. (6), multiplying by the factor in
Eq. (11), and carrying out the phase-space integration4 in
Eq. (13), we obtain the following contributions to the
fragmentation functions:

4We note that, although the final state contains two identical
quarks, the statistical factor S in the phase space is unity.
This follows from the fact that there is no integration over
the momentum of the QQ̄ pair or from the fact that the two
final-state particles, namely, the QQ̄ pair and the single Q, are
distinct.
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X
λ¼0;�1

X12
i¼5

diðz; λÞ ¼
g4sCFð1 − zÞ

2πN2
cz3þ2ϵð2 − zÞ2M

�
a½8�2 J2

��
2 − z
2z

M

�
2
�
þM2a½8�3 J3

��
2 − z
2z

M

�
2
�
þM4a½8�4 J4

��
2 − z
2z

M

�
2
��

;

ð36aÞ
X12
i¼5

diðz;λ¼ 0Þ¼ g4sCFð1− zÞ2
2πN2

cz5þ2ϵð2− zÞ2M
�
l½8�2 J2

��
2− z
2z

M

�
2
�
þM2l½8�3 J3

��
2− z
2z

M

�
2
�
þM4l½8�4 J4

��
2− z
2z

M

�
2
��

; ð36bÞ

where the dimensionless coefficients a½8�n and l½8�n are given
in terms of z and ϵ by

a½8�2 ¼ z2ðz − 1Þ½−ð9z2 þ 4zþ 4Þ þ 2ϵð3z2 þ 4Þ
þ ϵ2ð5z2 − 4z − 12Þ þ 2ϵ3ð4 − 4zþ z2Þ�
− 2Nczðz − 2Þ½−2ð5z2 − 5zþ 2Þ
þ ϵð−z3 þ 8z2 − 6zþ 4Þ þ ϵ2ðz3 − 2z2Þ�; ð37aÞ

a½8�3 ¼ −zðz − 1Þðz − 2Þ½−2ðz2 þ 6z − 4Þ
þ ϵzðzþ 6Þ þ 2ϵ2zðz − 2Þ�
− 2Nczðz − 1Þðz − 2Þ2ð3 − 2ϵÞ; ð37bÞ

a½8�4 ¼ −ð3 − 2ϵÞðz − 1Þ2ðz − 2Þ2; ð37cÞ

l½8�2 ¼ z4½zþ2þ ϵðz−2Þ�2−4Ncz3ðz−2Þ½zþ2þ ϵðz−2Þ�;
ð37dÞ

l½8�3 ¼ −z2ðz − 2Þ½4ðz − 1Þðzþ 2Þ þ ϵðz − 2Þðz2 þ 4z − 8Þ�
þ 2Nczðz − 2Þ2½4ðz − 1Þ þ ϵðz − 2Þ2�; ð37eÞ

l½8�4 ¼ 2½2ðz − 1Þ þ ϵðz − 2Þ2�ðz − 1Þðz − 2Þ2: ð37fÞ

Here, the terms that are proportional to Nc come from the

contributions in Eq. (34). Such terms do not appear in a½8�4

and l½8�4 . Again, we retain the full ϵ dependence, as it may be
useful for calculations of fragmentation functions at higher
orders in αs.
Taking the limit ϵ → 0, writing the result in the NRQCD-

factorized form, and replacing free QQ̄ LDMEs with
quarkonium LDMEs, we obtain

X
λ¼0;�1

Dð5–12Þ
Q→HðλÞ ¼

α2sCFð1 − zÞ
N2

cð2 − zÞ6m3
Q

½zð1 − zÞð5z4 − 32z3 þ 72z2 − 32zþ 16Þ þ 8Ncð2 − zÞ2ðz3 − 6z2 þ 6z − 2Þ�

×
hOHð3S½8�1 Þi
3ðN2

c − 1Þ ; ð38aÞ

Dð5–12Þ
Q→Hðλ¼0Þ ¼

α2sCFzð1 − zÞ2
3N2

cð2 − zÞ6m3
Q

½3z4 − 24z3 þ 64z2 − 32zþ 16þ 12Ncð2 − zÞ2ð4 − zÞ� hO
Hð3S½8�1 Þi

3ðN2
c − 1Þ : ð38bÞ

One obtains the complete fragmentation functions for the case in which the initial quark q and the quark Q that is a
constituent of the quarkonium have the same flavor by adding the contributions in Eq. (38) to the contributions in Eq. (29)
with r ¼ m2

q=ð2mQÞ2 set equal to 1=4. The results are

X
λ

DMS
Q→HðλÞðz;μÞ¼

α2sCF

2zN2
cð2− zÞ6m3

Q

�
N2

cðz2−2zþ2Þð2− zÞ6 log μ2

ð2− zÞ2m2
Q
−N2

cz2ð2− zÞ4ðz2−10zþ10Þ

þ16Nczð2− zÞ2ð1− zÞðz3−6z2þ6z−2Þþ2z2ð1−zÞ2ð5z4−32z3þ72z2−32zþ16Þ
�hOHð3S½8�1 Þi

3ðN2
c−1Þ ;

ð39aÞ

DQ→Hðλ¼0ÞðzÞ¼
α2sCFð1−zÞ2

3N2
czð2− zÞ6m3

Q

½12N2
cð2− zÞ4þ12Ncz2ð2− zÞ2ð4− zÞþ z2ð3z4−24z3þ64z2−32zþ16Þ�hO

Hð3S½8�1 Þi
3ðN2

c−1Þ :

ð39bÞ
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Identical expressions hold for the case of an initial
antiquark.
Our polarization-summed result in Eq. (39a) differs from

the result in Eq. (111) of Ref. [16], which was duplicated
in Eq. (A3) of Ref. [17]. In Ref. [16], the color-octet
fragmentation function was obtained by multiplying the
color-singlet fragmentation function by a color factor.
Consequently, the contributions of the diagrams of
Figs. 1 and 3 were omitted. Our result in Eq. (39a) agrees
with that in Eq. (C29) of Ref. [3].
Our longitudinal-polarization result in Eq. (39b) agrees

with the result in Eq. (C.16) of Ref. [5], once one takes into
account the fact that the LDME in Eq. (39b) is a factor of
three larger than the corresponding LDME in Ref. [5].

VI. COLOR-SINGLET FRAGMENTATION

In this section, we compute the fragmentation function
for a quark to fragment through a spin-triplet color-singlet

S-wave pair QQ̄ð3S½1�1 Þ. This process proceeds at leading
order in αs only if the fragmenting quark has the same
flavor as the quark in the QQ̄ pair. The Feynman diagrams
that contribute to this process at leading order in αs are
those in Fig. 2. The corresponding contributions to the
fragmentation function for a quark to fragment into a

QQ̄ð3S½1�1 Þ pair are identical to the contributions d5–d8 in
Eq. (32), except that the color projectors Λ8 are replaced
with color projectors Λ1. In each contribution, the overall
color factor is now

trðΛ1TaTbΛ1TbTaÞ ¼ C2
F; ð40Þ

instead of CF=ð2NcÞ [Eq. (33)].
The dependence on k1⊥ in the expressions in Eq. (32)

comes from the quark- and gluon-propagator denomina-
tors, which contribute factors ½k21⊥ þ ð2−z

2z MÞ2�−1. Thus, the
integrals of these expressions over k1⊥ can be expressed in
terms of the scalar integrals Jn½ð2−z2z MÞ2� [Eq. (19)].
Summing over the contributions in Eq. (32), but taking
the color factor in Eq. (40), using the expressions for the
absolute squares of the polarizations in Eq. (6), multiplying
by the factor in Eq. (11), and carrying out the integration
over the phase space in Eq. (13), we obtain the following
contributions to the fragmentation functions:

X
λ¼0;�1

Dð5–8Þ
Q→QQ̄ð3S½1�

1
ÞðλÞ

¼ g4sC2
Fð1− zÞ2

3πz3þ2ϵð2− zÞ2M
�
a½1�2 J2

��
2−z
2z

M

�
2
�

þM2a½1�3 J3

��
2− z
2z

M

�
2
�
þM4a½1�4 J4

��
2−z
2z

M

�
2
��

;

ð41aÞ

Dð5–8Þ
Q→QQ̄ð3S½1�

1
Þðλ¼0Þ

¼ g4sC2
Fð1− zÞ2

3πz5þ2ϵð2− zÞ2M
�
l½1�2 J2

��
2− z
2z

M

�
2
�

þM2l½1�3 J3

��
2− z
2z

M

�
2
�
þM4l½1�4 J4

��
2− z
2z

M

�
2
��

;

ð41bÞ

where the dimensionless coefficients a½1�n and l½1�n are given
in terms of z and ϵ by

a½1�2 ¼ z2½ð9z2 þ 4zþ 4Þ − ϵð6z2 þ 8Þ− ϵ2ð5z2 − 4z− 12Þ
− 2ϵ3ðz2 − 4zþ 4Þ�; ð42aÞ

a½1�3 ¼ zðz − 2Þ½−2ðz2 þ 6z − 4Þ þ ϵzð2ϵz − 4ϵþ zþ 6Þ�;
ð42bÞ

a½1�4 ¼ ð3 − 2ϵÞðz − 1Þðz − 2Þ2; ð42cÞ

l½1�2 ¼ ½zþ 2þ ϵðz − 2Þ�2z4; ð42dÞ

l½1�3 ¼ −ðz − 2Þz2½4ðzþ 2Þðz − 1Þ þ ϵðz2 þ 4z − 8Þðz − 2Þ�;
ð42eÞ

l½1�4 ¼ 2ðz − 1Þðz − 2Þ2½2ðz − 1Þ þ ϵðz − 2Þ2�: ð42fÞ

Taking the limit ϵ → 0, writing the result in the NRQCD-
factorized form, and replacing free QQ̄ LDMEs with
quarkonium LDMEs, we obtain

X
λ¼0;�1

DQ→HðλÞ ¼
α2sC2

Fzð1 − zÞ2ð5z4 − 32z3 þ 72z2 − 32zþ 16Þ
9Ncð2 − zÞ6m3

Q
hOHð3S½1�1 Þi; ð43aÞ

DQ→Hðλ¼0Þ ¼
α2sC2

Fzð1 − zÞ2ð3z4 − 24z3 þ 64z2 − 32zþ 16Þ
27Ncð2 − zÞ6m3

Q

hOHð3S½1�1 Þi; ð43bÞ

where the NRQCD LDME is defined by
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hOHð3S½1�1 Þi ¼ h0jχ†σiψ
X
λ

PHðP;λÞψ†σiχj0i; ð44Þ

and, in writing the result in the NRQCD-factorized form,
we have used the fact that

hOQQ̄ð3S½1�
1
Þð3S½1�1 Þi ¼ 2Ncðd − 1Þ: ð45Þ

The result in Eq. (43a) agrees with the result in Eq. (16)
of Ref. [4] and with the result in Eq. (C24) of Ref. [3], once
one takes into account the fact that the LDME in Eq. (43a)
is a factor of 2Nc larger than the corresponding LDME in
Ref. [3]. Our result in Eq. (43b) agrees with the result in
Eq. (C.11) of Ref. [5], once one takes into account the fact
that the LDME in Eq. (43b) is a factor of 6Nc larger than
the LDME in Ref. [5].

VII. SUMMARY AND DISCUSSION

In this paper we computed fragmentation functions for a
quark q to fragment into a heavy quarkonium through a
heavyQQ̄ channel in which theQQ̄ pair is in a spin-triplet,
S-wave state. Our computations are at the leading nontrivial
order in αs and at leading order in the heavy-quark velocity
v. We have considered the following cases: (i) the q and Q
have different flavors, in which case theQQ̄ pair must be in
a color-octet state; (ii) the q andQ have the same flavor and
the QQ̄ pair is in a color-octet state; (iii) the q and Q have
the same flavor and the QQ̄ pair is in a color-singlet state.
In each case, we have computed both the fragmentation
function summed over all spin polarizations of the QQ̄
pair and the fragmentation function for longitudinal polari-
zation of the QQ̄ pair. We have also presented expressions
in d ¼ 4 − 2ϵ dimensions, which may be useful in carrying
out calculations of fragmentation functions at higher orders
in αs.
Our results for case (i) are given for finite mq in Eq. (29)

and for mq ¼ 0 in Eq. (31). The result in Eq. (29a) for the
sum over QQ̄ polarizations agrees with previous calcu-
lations in Refs. [2,3], and the result in Eq. (31a) for the
sum over QQ̄ polarizations agrees with a calculation of
quark fragmentation into lepton pairs in Ref. [15], once
differences in the phase-space and color factors have been
taken into account. The result in Eq. (29b) corrects the
result in Ref. [5]. This correction has been confirmed by the
author of Ref. [5].
Our result for case (ii) for the fragmentation function

summed over QQ̄ polarizations is given in Eq. (39a) and
agrees with the result in Ref. [3], but disagrees with the
result in Ref. [16]. Our result for case (ii) for the
longitudinal-polarization fragmentation function is given
in Eq. (39b) and agrees with the result in Ref. [5].
Our result for case (iii) for the fragmentation function

summed over QQ̄ polarizations is given in Eq. (43a) and

agrees with the results in Refs. [3,4]. Our result for case
(iii) for the longitudinal-polarization fragmentation func-
tion is given in Eq. (43b) and agrees with the result
in Ref. [5].
The new results for longitudinally polarized fragmenta-

tion functions that we have obtained in this paper will
make it possible to compute quark-initiated leading-power
fragmentation contributions to the production of polarized
S-wave spin-triplet quarkonia. While gluon-initiated frag-
mentation dominates quark-initiated fragmentation in quar-
konium hadroproduction, quark-initiated fragmentation
may be important for other quarkonium production proc-
esses, such as production in eþe− annihilation.
As we have mentioned, our calculations are at the

leading nontrivial order in αs and v. A complete calculation
at order α5s of the LP contributions to quarkonium pro-
duction in the color-octet channels requires corrections to
the fragmentation functions for the 1S0 and 3PJ channels at
next-to-leading order (NLO) in αs and for the 3S1 channel
through next-to-next-to-leading order in αs. Corrections
of NLO in αs to the fragmentation function for a gluon
to fragment into a quarkonium through the 3S1 color-octet
channel have already been computed [3,18] and give a
contribution that is numerically large in comparison with
the leading-order (LO) contribution [19]. Corrections of
higher order in v are also known to be large, relative to the
LO contribution, for the fragmentation functions for gluons
to fragment into quarkonia through the 3S1 color-singlet
and color-octet channels [13,20]. These large corrections of
higher order in αs and v suggest that it may be important
to compute higher-order corrections for additional quarko-
nium production channels and for quark-initiated, as well
as gluon-initiated, fragmentation processes.
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