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The McLerran-Venugopalan model describes a highly boosted hadron/nucleus as a sheet of random
color charges which source soft classical Weizsäcker-Williams gluon fields. We show that due to
fluctuations, individual configurations are azimuthally anisotropic. We present initial evidence that impact
parameter dependent small-x Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov and Kovner (JIMWLK)
resummation preserves such anisotropies over several units of rapidity. Finally, we compute the first four
azimuthal Fourier amplitudes of the S-matrix of a fundamental dipole in such background fields.
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I. INTRODUCTION

To explain azimuthal asymmetries observed in high-
energy pA collisions [1–5], Refs. [6–8] argued that
individual configurations of the light-cone electric fields
of the target should be anisotropic, leading to a nontrivial
azimuthal distribution of a projectile parton scattered
off such a target. That is, configuration by configuration,
two-dimensional rotational symmetry is broken by E-field
“domains” of finite size in the impact parameter plane.
These, in contrast to Weiss magnetic domains separated
by domain walls, arise purely due to fluctuations of the
valence (large-x) random color charge sources for the soft,
small-x E field.
Assuming such azimuthal anisotropy of the light-cone

electric fields several features of the data could be
described, at least qualitatively [7,8]. On the other hand,
a direct calculation of the anisotropic distributions, in
particular for a large nucleus and small x (i.e. high energy),
has so far been lacking. It is our goal here to compute
scattering of a dipole off a large nucleus, and specifically,
to determine its angular dependence. That is, we compute
the (first four) Fourier amplitudes of the dipole S-matrix
with respect to the azimuthal orientation of the dipole.
We should stress that we do not address the fluctuations of
Sðr;bÞ in impact parameter space b (see Ref. [9] for a
recent study) but rather its dependence on the size and
orientation of the dipole vector r which is the variable
conjugate to the transverse momentum of the parton in the
final state.

II. THE MODEL

In the McLerran-Venugopalan (MV) model [10] the
large-x valence partons are viewed as random, recoilless
color charges ρaðxÞ which source the semiclassical small-x
gluon fields.We first provide a brief description of how these
color charge configurations are generated on a lattice; more
detailed discussions can be found in the literature [11,12].
The effective action describing color charge fluctuations

is taken to be quadratic,

Seff ½ρa� ¼
Z

dx−d2x
ρaðx−;xÞρaðx−;xÞ

2μ2
ð1Þ

with μ2 ∼ g2A1=3 proportional to the thickness of a nucleus
[10]; here A denotes the number of nucleons in the nucleus.
The variance of color charge fluctuations determines
the average saturation scale Q2

s ∼ g4μ2 [13]. The coarse-
grained effective action (1) applies to (transverse) area
elements containing a large number of large-x “valence”
charges, μ2ΔA⊥ ∼ ΔA⊥Q2

s=g4 ≫ 1.
Hence, in the first step we construct a random configu-

ration of color charges on a lattice according to the
distribution expð−S½ρ�Þ. Their (non-Abelian) Weizsäcker-
Williams fields are pure gauges; in covariant gauge,

Aμaðx−;xÞ ¼ −δμþ
g
∇2

ρaðx−;xÞ: ð2Þ

This also satisfies A− ¼ 0 and thus the only nonvanishing
field strength is Fþi ¼ −∂iAþ. The (light-cone) electric
field is

Ei ¼
Z

dx−Fþi ¼ −∂i

Z
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The propagation of a fast charge in this field is described
by an eikonal phase given by a lightlike SU(3) Wilson
line VðxÞ:

VðxÞ ¼ P exp

�
ig2

Z
dx−

1

∇2
taρaðx−;xÞ

�
; ð4Þ

where P denotes path ordering in x−. The absolute value
squared of this amplitude gives the S-matrix for scattering
of this charge off the given target field configuration,

Sρðr;bÞ≡ 1

Nc
trV†ðxÞVðyÞ; r≡x−y; 2b≡xþy: ð5Þ

Thus, following the ideas leading to the MV model we
assume that every particular scattering event probes one
particular configuration in the target, i.e. that the S-matrix is
computed with a frozen ρaðxÞ. The main purpose of this
paper is to analyze the dependence of the S-matrix on the
angular orientation of the dipole vector r, conjugate to the
transverse momentum, at fixed transverse impact parameter
(coordinate) b.
The S-matrix for a fundamental charge is complex (for

three or more colors). Its real (imaginary) part corresponds
to C-even (C-odd) exchanges [14]:

1 −DρðrÞ≡ ReSρðrÞ ¼
1

2Nc
tr½V†ðxÞVðyÞ þ V†ðyÞVðxÞ�;

ð6Þ

OρðrÞ≡ ImSρðrÞ ¼
−i
2Nc

tr½V†ðxÞVðyÞ − V†ðyÞVðxÞ�:

ð7Þ
C conjugation transforms ρaðxÞ → −ρaðxÞ and VðxÞ →
V�ðxÞ. The dipole scattering amplitude DρðrÞ ¼ Dρð−rÞ is
even under r → −r and generates even azimuthal v2n
harmonics while the odderon OρðrÞ ¼ −Oρð−rÞ generates
odd v2nþ1 [7] of the one-particle distribution.
It is useful to consider the limit of small dipoles,

rQs ≪ 1. Then the real part of the S-matrix from
Eq. (6) is

ReSρðrÞ − 1 ¼ ðigÞ2
2Nc

trðr · EÞ2 þOðr4Þ: ð8Þ

To compute the elliptic (dipole) asymmetry, Refs. [6–8]
considered the following angular dependence of the two-
point function,

g2

2Nc
htrEiðb1ÞEjðb2Þi¼

1

4
Q2

sΔðb1−b2Þ

×

�
δijþ2A

�
âiâj−

1

2
δij

��
; ð9Þ

where â corresponds to the “event plane” orientation, and
Δðb1 − b2Þ describes the E-field correlations in the

transverse impact parameter plane. It is implicit that for
each configuration EðbÞ is rotated to point in a particular,
fixed direction â before performing the ensemble average.
In fact, Eq. (9) is the MV model analogue of the transverse
momentum dependent (TMD) gluon distribution for an
unpolarized target [15,16],

δijfg1ðx;k2Þ þ
�
k̂ik̂j −

1

2
δij

�
h⊥g
1 ðx;k2Þ: ð10Þ

Thus, the amplitude A from Eq. (9), which we shall denote
A2ðrÞ below, is basically h⊥g

1 at small x. However, beyond
the MV model the relation between these functions may be
more involved.
The action (1) is C-even and so hOρðrÞi ¼ 0 while

hDρðrÞi ∼ r2Q2
s (at small r) is proportional to the thickness

of the nucleus, A1=3. A C-odd operator

1

κ3
dabcρaρbρc ð11Þ

with κ3 ∼ g3A2=3 could be added to the action1 which would
then induce an expectation value ∼A1=3 for the odderon
[18]. This is beyond the scope of the present paper,
we focus here on azimuthal anisotropies due to fluctuations
of the charge densities ρaðxÞ and their associated electric
fields EaðxÞ. The main point is that even though the
ensemble averaged S-matrix is isotropic and real (even
under charge conjugation) that fluctuations generate anisot-
ropies and C-odd contributions locally in impact parameter
space for individual configurations.

III. IMPLEMENTATION

To generate the random configurations ρaðx−;xÞ via
Monte Carlo techniques we discretize the longitudinal and
transverse coordinates. The number of sites in the longi-
tudinal direction is taken to be N− ¼ 100while the number
of sites in either transverse direction is N⊥ ¼ 1024. All
of our results presented here have been obtained
with g2μa ¼ 0.05, hence g2μL ¼ 51.2, where a≡ L=N⊥
denotes the transverse lattice spacing. We have determined
numerically that Qs ≈ 0.7125g2μ as defined from

hSρiðr ¼
ffiffiffi
2

p
=QsÞ ¼ expð−1=2Þ: ð12Þ

The physical value for the lattice spacing could be
determined by assigning a physical value to Qs; instead,
we choose to measure distance scales in units of 1=Qs or
1=g2μ and so this step is not required.
We use periodic boundary conditions in the transverse

directions and solve the Poisson equation (2) by fast
Fourier transform. The amplitude of the zero mode of

1Beyond a perturbative treatment of the cubic Casimir one
would have to add the quartic Casimir, too, so that the action is
bounded from below [17].
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ρaðkÞ is set to zero before inversion which ensures color
neutrality of each configuration. Alternatively, one could
introduce a mass cutoff m ≪ Qs in the Coulomb propa-
gator in Eq. (2). Either way, the dynamics of modes with k
well above the IR cutoff is the same.
We have generated about 104 configurations; for each

of them we measured DρðrÞ and OðrÞ at b ¼ 0. Both
functions were decomposed into their Fourier series to
extract the amplitudes of azimuthal anisotropy:

DρðrÞ ¼ N ðrÞ
�
1þ

X∞
n¼1

A0
2nðrÞ cosð2nϕrÞ

�
; ð13Þ

OρðrÞ ¼ N ðrÞ
X∞
n¼0

A0
2nþ1ðrÞ cosðð2nþ 1ÞϕrÞ: ð14Þ

The function N ðrÞ is the isotropic part of the dipole
S-matrix, see for example Ref. [12]. For a small dipole,
hN iðrÞ ∼ 1

4
r2Q2

s , up to logarithms.
The S-matrix SρðrÞ rotates randomly from configuration

to configuration. This manifests as a random shift
ϕr → ϕr − ψ in Eqs. (13) and (14). Hence, on average over
all configurations hA0

ni ¼ 0 for all n. This is a consequence
of the fact, already mentioned above, that the ensemble
average of the S-matrix is real and isotropic.
Azimuthal harmonics vn in hadronic collisions are

defined from multiparticle correlation functions in such a
way that they are invariant under a global shift of the
azimuthal angles of all particles by the same amount.
Consequently, we discard this random phase by defining
An ¼ π

2
jA0

nj; the factor of π=2 arises as the inverse average
of

R
dΔϕ=ð2πÞj cos nΔϕj ¼ 2=π. In other words, we define

the amplitudes An such that fluctuations do not average out.
We finally obtain their expectation values over the ensem-
ble of configurations, hA1i;…; hA4i, as well as the var-
iances of A1 and A2.

IV. RESULTS

Before presenting our results for the azimuthal ampli-
tudes we show two examples for SρðrÞ in Figs. 1 and 2.
Either of these corresponds to one particular (random)
configuration of color charges. The real parts display
predominantly a ∼ cosð2ϕÞ angular dependence, with ϕ
the angle between r and Eðb ¼ 0Þ. On the other hand, the
imaginary part for the configuration shown in Fig. 1 is
predominantly ∼ cosðϕÞ while that from Fig. 2 is mainly
∼ cosð3ϕÞ, modulo a random phase shift as mentioned
above. The figures show, also, that the angular structures
appear at a resolution on the order of rg2μ ∼ 1; this is
consistent with the requirement μ2ΔA⊥ ≫ 1 mentioned
above (which sets the regime of applicability of the
effective theory) at weak coupling: 1=g2 ≫ 1.
Figure 3 shows our results for the averaged amplitudes

of the first four azimuthal harmonics. As expected, the
biggest one is the quadrupole amplitude hA2iwhich reaches≳20% at r≲ 1=Qs. Such values are in the range of the
asymmetries extracted phenomenologically [7] for high-
multiplicity pþ Pb collisions at LHC energies. However,
here we have not made any attempts to bias the configu-
rations towards “high multiplicities.” The fact that the
variance

phðδA2Þ2i is not much smaller than hA2i indicates
that some configurations generate much larger elliptic
asymmetries than others. Also, we observe that hA2i is
approximately constant for r < 1=Qs since up to quadratic
order the real part of the S-matrix is

DðrÞ ¼ g2

2Nc
trðr ·EÞ2 − 1

2

g4

4N2
c
½trðr ·EÞ2�2 þ � � � ð15Þ

at small r. To derive this expression one performs a gradient
expansion of Re trVðxÞV†ðyÞ, assuming that the electric
field is smoothly varying over scales of order r. The leading
term on the right-hand side (rhs), if scaled by 1=r2, is
independent of r which is consistent with the observed
constant hA2i at small r.

FIG. 1. The S-matrix in the fundamental representation as a function of the dipole vector r ¼ ðrx; ryÞ at fixed impact parameter b ¼ 0
for one particular random configuration of color charges ρaðxÞ.
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The numerical result for hA2ðrÞi agrees well with
h⊥g
1 ðx; rÞ derived in Ref. [16]:

h⊥g
1 ðx; r2Þ ∝ 1

r2Q2
s

�
1 − exp

�
−
r2Q2

s

4

��
: ð16Þ

The agreement suggests that (in the MV model) hA2ðrÞi
essentially corresponds to the distribution of linearly
polarized gluons, at least for sufficiently small dipoles.
Below we shall see that the functions differ at large r.
The second term in Eq. (15) generates a hexadecupole

asymmetry at the next to leading order in r2. However, the
numerical result for A4ðrÞ shown in Fig. 3 is essentially
constant at small r. We interpret this as due to corrections to
the gradient expansion which leads to Eq. (15); a ∼ cosð4ϕÞ
angular component appears already at Oðr2Þ albeit with a
much smaller amplitude than the ∼ cosð2ϕÞ harmonic.
We now turn to the odd amplitudes A1 and A3. As

already mentioned above, the expectation value of the
odderon over a C-even ensemble such as that generated by
the action (1) is of course zero. Nevertheless, each
particular configuration of semiclassical small-x fields

(2) does contain a C-odd component and iOðrÞ as defined
in Eq. (7) is nonzero. This is due to fluctuations of the
saturation momentum Qs in impact parameter space [19],

iOðrÞ ∼ iαsr · ∇bð1 −Dðr;bÞÞ

≃ iαsr3Q2
sQcB cosϕr

�
1 −

r2

4

�
Q2

ccos2ϕr

3
þQ2

s

��
:

ð17Þ

The expression on the rhs corresponds to an expansion in
powers of r; Qc is a cutoff for the spectrum of fluctuations
of QsðbÞ which was otherwise assumed to be scale
invariant, and B is their amplitude [7]. Equation (17) shows
that for small dipoles, after we divide by the isotropic
normalization factorN ðrÞ ∼ r2, that we should expect A1 ∼
r as well as a smaller A3 ∼ r3. The lattice results appear
consistent with hA1i ∼ r at r ≪ 1=Qs but so is hA3i, albeit
with a smaller slope. Future simulations on larger lattices
may be able to push to smaller r, and the analytical
derivation of Eq. (17) based on a simple fluctuation
spectrum could perhaps be refined as well.

FIG. 2. Same as Fig. 1 for a second configuration of color charges ρaðxÞ.

FIG. 3 (color online). The averaged amplitudes hAniðrÞ vs the dipole size r for n ¼ 1;…; 4. The fit to hA2i corresponds to the function
from Eq. (16).

ADRIAN DUMITRU AND VLADIMIR SKOKOV PHYSICAL REVIEW D 91, 074006 (2015)

074006-4



Just as for the elliptic asymmetry we have also computed
the standard deviation of the amplitude A1. Again, we find
that

phðδA1Þ2i is not much smaller than hA1i, i.e. that some
configurations generate much larger dipole asymmetries
than others.
We have also analyzed the effect of “smearing” the

impact parameter of the projectile over a region corre-
sponding to its size [20]. If theE-field anisotropy exhibits a
nonzero correlation length in the impact parameter plane
[6–8], specifically a correlation length that exceeds the size
of the dipole, then the azimuthal moments should remain
approximately the same.
Hence, we have also computed the azimuthal amplitudes

An from smeared configurations:

D̄ρðr;bÞ ¼
Z

d2b0

πr2
Θðr − jb − b0jÞDρðr;b0Þ; ð18Þ

and similarly for iŌρðr;bÞ. On the rhs the points
x ¼ b0 þ r=2 and y ¼ b0 − r=2 are now determined by
r and b0. Equation (18) averages the S-matrix over an area
πr2. The result is shown in Fig. 4 which can be compared
to Fig. 3 from above. Except for a slight suppression of

their magnitudes, we do not observe any substantial
modification of the amplitudes hAni.
The behavior for large dipoles is different, cf. Fig. 5. For

a fixed impact parameter the harmonic amplitudes app-
roach a common nonzero function at large r ≫ 1=Qs.
This is consistent with universal (angular) scale invariant
fluctuations of the azimuthal dependence of the S-matrix.
Indeed, if Dðr;bÞ and Oðr;bÞ are first averaged over an
area πr2, see Eq. (18), then the resulting hAni are strongly
suppressed. This shows that the direction of E is not
correlated over distances far beyond ∼1=Qs. Also, as
already mentioned above, at large r the function hA2iðrÞ
is seen to differ from h⊥g

1 ðx; r2Þ.
We should stress that the behavior of hAni at r ≫ 1=Qs is

shown only to reveal their expected universality due to scale
invariant fluctuations (on a circle) within the model used
here. The result applies in the regime far below the lattice
IR cutoff scale L or whichever other IR cutoffs one may
choosewhen implementing the theory. On the other hand, in
practiceQs is expected to be on the order of a few GeVonly
at current collider energies and so distances of order 10=Qs
are not much shorter than the confinement scale. The MV
model used here does not provide a controlled approxima-
tion to QCD near the confinement scale.

FIG. 4 (color online). Same as Fig. 3 (note modified scale on the vertical axes) for smeared S-matrix.

FIG. 5 (color online). The averaged amplitudes hAniðrÞ vs the dipole size r for n ¼ 1;…; 4. This figure focuses on the behavior at
large r ≫ 1=Qs. Left: fixed impact parameter b ¼ 0; right: impact parameter averaged over an area πr2.
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V. HIGH-ENERGY EVOLUTION

In this section we consider effects due to resummation
of boost-invariant quantum fluctuations of the fields. This
is done through the so-called Jalilian-Marian, Iancu,
McLerran, Weigert, Leonidov and Kovner (JIMWLK)
[21,22] functional renormalization group evolution which
resums observables to all orders in αs logð1=xÞ ¼ αsY.
Performing a step ΔY in rapidity opens phase space for
radiation of gluons which modifies the classical action (1).
This corresponds to a “random walk” in the space of
Wilson lines VðxÞ [22–24]:

∂YVðxÞ ¼ VðxÞ i
π

Z
d2u

ðx − uÞiηiðuÞ
ðx − uÞ2

−
i
π

Z
d2vVðvÞ ðx − vÞiηiðvÞ

ðx − vÞ2 V†ðvÞVðxÞ: ð19Þ

The Gaussian white noise ηi ¼ ηiata satisfies hηai ðxÞi ¼ 0
and

hηai ðxÞηbj ðyÞi ¼ αsδ
abδijδ

ð2Þðx − yÞ: ð20Þ

The “left-right symmetric” form of Eq. (19) was introduced
in [24,25]. We solve the random walk numerically assum-
ing, for simplicity, a fixed but small coupling αs ¼ 0.14 so
that the speed of evolution is not too rapid.2 Once an
ensemble of Wilson lines on the transverse lattice has been
evolved to rapidity Y, we can again compute the dipole
scattering amplitude SYðrÞ, its azimuthal Fourier decom-
position and the corresponding saturations scale QsðYÞ
using Eq. (12). We stress that, even though we consider a
target of infinite transverse extent, the evolution equation is
solved on a transverse lattice which does allow for impact
parameter dependent fluctuations.

In Fig. 6 (left) we show the evolution of hA2iðrÞ and
hA4iðrÞ. Mean-field evolution of the dipole has been shown
to wash out initial elliptic anisotropies rather quickly [6].
On the other hand, here we only observe a relatively slow
decrease of hA2iðrÞ with Y. This is rather intuitive since
both the initial anisotropies at Y ¼ 0, as well as those of the
evolved JIMWLK configurations are generated by fluctua-
tions of the “valence charges” in the transverse impact
parameter plane. Furthermore, we observe that those
harmonics which are small initially, i.e. hA1iðrÞ, hA3iðrÞ
and hA4iðrÞ, in fact increase with rapidity at small r. There
is again a universal behavior at very large r.

VI. SUMMARY

Following the conjecture by Kovner and Lublinsky [6],
we have analyzed azimuthal anisotropies of the S-matrix
SðrÞ for scattering of a dipole off a large nucleus. They
arise due to fluctuations of the configuration of valence
color charges ρaðxÞ in the transverse impact parameter
plane.3

For a projectile in the fundamental representation of
color SU(3) these fluctuations generate both charge con-
jugation even as well as odd configurations. For small
dipoles, r≲ 1=Qs the McLerran-Venugopalan [10] model
gives hA2i and hA4i which are approximately constant (r
independent). Also, the amplitude of the elliptic harmonic
is much larger than that of the quadrangular harmonic,
hA2i ≫ hA4i. Odd harmonics appear at higher order in r
[7,19] and so their amplitudes decrease with decreasing r.
The fluctuations of both A1 and A2 are comparable to their
mean values, indicating that some configurations exhibit
much larger anisotropies than others.

FIG. 6 (color online). JIMWLK evolution of hA2iðrÞ and hA4iðrÞ (left) respectively of hA1iðrÞ and hA3iðrÞ (right). In either plot the
lower order harmonic corresponds to the upper set of curves.

2The “time” variable for fixed coupling evolution is αsY.

3An alternative picture in terms of OðN2
cÞ fluctuations of the

energy-momentum tensor of a holographic shock wave has been
discussed in Ref. [26]. Reference [27] considers the azimuthal
structure of gluon bremsstrahlung off the fast beam-jet sources.
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For large dipoles, r ≫ 1=Qs, we find that all amplitudes
hA1iðrÞ;…; hA4iðrÞ asymptotically approach a universal
function if the S-matrix is evaluated at fixed impact para-
meter. This points at angular scale invariant fluctuations of
the direction of E over large distances. Accordingly, if the
S-matrix is averaged over an area πr2 the resulting cosðnϕÞ
amplitudes are strongly suppressed.
Impact parameter dependent fluctuations during QCD

evolution in rapidity largely preserve the azimuthal
amplitudes. Our calculations confirm that individual
small-x target field configurations do exhibit angular
dependence which would play an important role in
understanding azimuthal vn harmonics in pp and pA
collisions [6–8]. In particular, the amplitude of elliptic
anisotropies hA2i ∼ 15%–20% is on the order of the v2
harmonic observed in pþ Pb collisions at the LHC.
Moreover, similar studies as the one performed here

might be able to shed some light on the behavior of the

linearly polarized gluon distribution h⊥g
1 ðx; r2Þ at small x;

work in that direction is in progress.
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