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Unitary evolution law describes isolated particle scattering processes in an empty Minkowski spacetime.
We put forward a hypothesis that the physical Universe includes a quantum environment that interacts with
some particle scattering and decay processes. While the scattering process is governed by the S-matrix
dynamics and its conservation laws and unitarity, the interaction with the environment evolves the
produced final state ρfðSÞ to the observed state ρfðOÞ. To be consistent with the Standard Model this new
interaction must be a pure dephasing interaction. Governed by a nonunitary evolution law, it modifies the
phases of the S-matrix amplitudes and can give rise to mixing of such amplitudes to form observed
amplitudes. We present the first test of unitary evolution law in particle scattering. Conservation of P-parity
in strong interactions imposes constraints on partial wave helicity and nucleon transversity amplitudes in
πN → ππN processes. An independent set of constraints on these amplitudes is imposed by the S-matrix
unitary evolution law. The unitary evolution evolves pure initial states into pure final states leading to 9
independent constraints on 16 components of angular intensities in πN → ππN processes. When expressed
in terms of parity conserving transversity amplitudes, all 9 constraints are identities provided a single
constraint on the transversity amplitudes holds true. The constraint implies that relative phases between
transversity amplitudes of the same naturality and transversity must be 0 or�π. Assuming a self-consistent
set of these unitary phases we use the CERN data on spin observables R0

u and R0
y to determine a unique

solution for the S- and P-wave moduli below 1080 MeV. The data require ρ0ð770Þ − f0ð980Þmixing in the
S-wave but this unitary solution is excluded by data on observables R0

x within at least 5 standard deviations.
All previous amplitude analyses of πN → ππN processes found nonunitary relative phases in an apparent
violation of the unitary evolution law. The contrast between the predicted unitary relative phases and the
observed nonunitary phases presents unambiguous evidence for the nonunitary evolution of the produced
final state and supports the hypothesis of the existence of a quantum environment and its pure dephasing
interaction with particle scattering processes.
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I. INTRODUCTION

The concept of the S-matrix is deeply rooted in the
concept of Minkowski spacetime and its Poincaré sym-
metry. The Poincaré group on the Minkowski spacetime
allows us to define particle four-momentum and spin. This
in turn allows us to consider particle scattering and decay of
incident states into outgoing states. The resulting proba-
bility amplitudes are summarized as S-matrix elements.
The conservation of probability imposes unitarity of the
S-matrix. The S-matrix commutes with the generators of the
Poincaré group. As a result of this symmetry the total four-
momentum and total angular momentum are conserved in
particle scattering and decays. Internal symmetries of the
S-matrix impose additional conservation laws.
In S-matrix theory particle scattering and decays are

isolated and time-reversible quantum events in Minkowski
spacetime. The reason for this is that Minkowski spacetime
is empty. There is no quantum environment in Minkowski
spacetime with which the scattering and decay processes

could interact. Another reason is that the scattering and
decay processes do not interact with the Minkowski
spacetime itself since it has no quantum structure that,
in effect, could present itself as a quantum environment.
Particle scattering and decay processes take place, in

fact, in the real physical Universe. Suppose that there exists
a quantum environment in the Universe that interacts with
particle processes. Such an interaction cannot originate in
the known interactions of the Standard Model. These
interactions would lead to observable violation of the
conservation laws and render the dynamics of particle
interaction inaccessible to experiment. The interaction of
particle processes with the quantum environment must
originate from the outside of the Standard Model. If the
quantum environment and this new kind of interaction are
to be an integral part of nature, then they must be fully
consistent with the conservation laws and unitarity of the
Standard Model.
There exists such an interaction in nature. It is the pure

dephasing interaction between a quantum system S and a
quantum environment E which is a nondissipative inter-
action that affects only the phase(s) of the quantum system*svec@hep.physics.mcgill.ca
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S. In general, its effect is to change the quantum informa-
tion content of the quantum system S. Unlike the force of
gravity, which has undetectable effects on particle proc-
esses, the pure dephasing interaction could be observable.
The key to observing the dephasing interaction, and thus
the quantum environment, is the S-matrix unitarity.
The evolution of an isolated initial state ρi into isolated

final states ρfðSÞ is governed by the unitary evolution law

ρfðSÞ ¼ SρiSþ: ð1:1Þ

Evolution of an initial state ρi interacting with a quantum
environment E is governed by a nonunitary evolution law
given by Kraus representation

ρfðAÞ ¼
X
k

AkρiA
þ
k ð1:2Þ

where Ak are unitary or nonunitary Kraus operators [1–4].
The necessary and sufficient condition for the nonunitary
evolution law to be consistent with the unitary evolution
law is that the interaction with the environment be a final
state interaction which involves only the produced state
ρfðSÞ. The nonunitary evolution of the S-matrix final state
ρfðSÞ yields the observed nonunitary final state ρfðOÞ

ρfðOÞ ¼
X
k

AkρfðSÞAþ
k : ð1:3Þ

The effect of the pure dephasing interaction with the
environment thus shall be to modify the phases of the
S-matrix amplitudes in the observed amplitudes of the new
state ρfðOÞ. The existence of the quantum environment will
manifest itself in the difference between the phases of the
observed and S-matrix amplitudes. To an observer (ini-
tially) unaware of the nonunitary evolution of the produced
final state ρfðSÞ this difference would appear as an apparent
violation of the unitary evolution law. An observer who
insists on the validity of the unitary evolution law would
explain the difference differently: there is a presence of a
short time scale in which Standard Model interactions act to
produce the S-matrix final state ρfðSÞ and afterwards a
nonunitary evolution of this state leaves its imprints on the
observed final state ρfðOÞ.
To gain information about the phases of the S-matrix

amplitudes we shall use the fact that the S-matrix unitary
evolution law evolves pure initial states ρi into pure final
states ρfðSÞ in exclusive processes. In two-body processes
such as πN → πN this condition imposes no constraints on
the amplitudes and thus no specific information about their
phases. The situation is different in πN → ππN and similar
production processes.
In this work we aim to test the unitary evolution law in

the pion production π−p → π−πþn measured at CERN on
polarized target at 17.2 GeV=c [5]. We develop the

necessary spin formalism and show that the purity of the
final state density matrix in πN → ππN processes is
controlled by the recoil nucleon polarization. Evolution
of pure initial states to pure final states imposes 9 con-
straints on 16 angular intensities describing the final state.
Using P-parity conservation we show that all constraints
are identities provided that the partial wave amplitudes
satisfy the conditions

ImðUJ
λτN

K�
μ−τÞ ¼ 0 ð1:4Þ

where UJ
λτ and NK

μ−τ are parity conserving nucleon trans-
versity unnatural and natural exchange amplitudes with
dipion spin, helicity and nucleon transversity J; λ; τ and
K; μ;−τ, respectively. The conditions (1.4) imply that the
relative phases between any two unnatural or two natural
exchange amplitudes of the same transversity τ as well as
between any unnatural and natural exchange amplitudes of
opposite transversities must be 0 or �π. As a result, the
unnatural and natural amplitudes share a common phase
ΦðU0

0τÞ and ΦðN1
1τÞ, respectively. Because strong, electro-

magnetic and weak interactions do not mix particles with
different spins, self-consistency requires that there be no
mixing of resonances of different spins in any partial wave
amplitudes with such unitary phases.
The elegant simplicity and uniqueness of these predic-

tions render the test of unitary evolution law possible using
the existing CERN measurements on polarized target at
dipion masses below 1080 MeV where S- and P-wave
amplitudes dominate. We found that the measurements of
density matrices R0

u and R0
y yield a solution with ρ0ð770Þ −

f0ð980Þ mixing in the S-wave. But this solution is entirely
excluded by the measured data on density matrix R0

x within
at least five standard deviations. This result shows that the
data require ρ0ð770Þ − f0ð980Þ mixing in the S-wave but
reject unitary phases in an apparent violation of the unitary
evolution law.
All previous amplitude analyses of π−p → π−πþn at

17.2 GeV=c [6–15] and at 1.78 GeV=c [16] as well as of
πþn → πþπ−p at 5.98 and 11.85 GeV=c [10–12] found
nonunitary relative phases of all transversity amplitudes.
Recent amplitude analysis of the S- and P-wave subsystem
in π−p → π−πþn at 17.2 GeV=c established that the width
of the ρ0ð770Þ resonance peak observed in all P-wave
amplitudes does not depend on its helicity λ [13,15] as
required by the rotational/Lorentz symmetry of the S-
matrix. Furthermore, the nonunitary relative phases of
the S- and P-wave amplitudes are near the unitary values.
These findings show that the observed nonunitary phases
are consistent with the S-matrix unitary evolution law for
the production process. This is possible if the nonunitary
phases arise from a pure dephasing interaction of the
produced S-matrix final state ρfðSÞ with a quantum
environment. The contrast between the predicted unitary
relative phases and the observed nonunitary phases
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therefore presents unambiguous evidence for the nonuni-
tary evolution of the produced final state and supports the
hypothesis of the existence of the quantum environment
and its pure dephasing interaction with particle scattering
processes.
In a sequel paper [17] we show that the consistency of the

pure dephasing interaction with the Standard Model in
πN → ππN processes requires that it be a dipion spin
mixing interaction the effect of which is the mixing of S-
matrix partial wave amplitudes to form observable ampli-
tudes. The theory predicts ρ0ð770Þ − f0ð980Þmixing in the
S- and P-wave amplitudes in π−p → π−πþn. The predicted
moduli and relative phases of the mixed amplitudes are in an
excellent qualitative agreementwith the experimental results
[13,15]. The evidence for ρ0ð770Þ − f0ð980Þ mixing dates
back to the 1960s [18–23] and was later confirmed in all
amplitude analyses of π−p → π−πþn and πþn → πþπ−p on
polarized targets. A survey of evidence for ρ0ð770Þ −
f0ð980Þ mixing from all these amplitude analyses on
polarized targets is presented in Ref. [24].
The issue of the experimental test of the unitary

evolution law was first raised in 1974 by Marinov who
suggested to describe the time evolution of the K0K0

system using a model of a nonunitary evolution from pure
states into mixed states [25]. He found that such evolution
is time irreversible and violates CPT symmetry and
proposed to make a complete measurement of matrix
elements of ρf to test the unitary evolution law. In 1980
Wald showed rigorously that any scattering process of
particles that evolves a pure initial state into a mixed final
state is not an invertible process and therefore it is time
irreversible and violates CPT symmetry [26]. He suggested
that such nonunitary processes will occur in curved
spacetime, and that quantum gravity violates CPT sym-
metry and time-reversal invariance. In 1982 Hawking
pointed out that particle scattering does not take place in
a structureless continuum of the Minkowski spacetime but
in an environment of quantum spacetime fluctuations and
suggested that pure initial states of interacting particles will
evolve into mixed final states due to the interaction of the
particle scattering process with quantum fluctuations of the
spacetime metric—at any energy [27,28]. Hawking ques-
tioned the universal validity of the unitary time evolution in
the presence of metric fluctuations, and suggested that
initial and final state density matrices ρi and ρf are
connected by a nonunitary evolution law described by a
linear but nonunitary and noninvertible superscattering
operator

ρf ¼ ρi: ð1:5Þ

To avoid negative probabilities the mapping (1.5) must be
completely positive. A linear mapping (1.5) is completely
positive if and only if it has the form of the Kraus
representation (1.2) [1–4]. Recently Unruh and Wald

[29] and Oppenheim and Reznik [30] demonstrated the
feasibility of nonunitary evolution in quantum field theo-
ries. However, in these models Lorentz invariance fails. In
2002 Greenberg showed that any interacting (scattering
producing) theory that violates CPT invariance necessarily
violates Lorentz invariance [31].
Hawking’s ideas inspired attempts to test unitary evo-

lution law experimentally. The efforts focused mainly on
nonunitary time evolution of the neutral kaon K0K0 system
using Lindblad-type evolution laws [32–37] and led to the
predictions of CPT violation and a modification of
Einstein-Podolsky-Rosen correlations [38,39]. During the
recent years experiments with neutral kaons have yielded
sensitive results on violations of CPT symmetry, time-
reversal invariance and entanglement of kaon pairs [40–42].
So far these experiments did not provide a conclusive
confirmation of a nonunitary evolution of free neutral kaon
systems. These observations can be understood as the result
of the absence of the diparticle spin mixing in the time

evolution of the K0K0 system.
What are the implications of the nonunitary evolution for

the CPT symmetry in πN → ππN processes? In quantum
field theory and in the Standard Model CPT symmetry is
conserved as a consequence of locality, Lorentz symmetry
and a Hermitian interaction Lagrangian [43,44]. This
means that the produced final state ρfðSÞ and the S-matrix
amplitudes are CPT symmetric. According to Wald’s
theorem nonunitary evolution of ρfðSÞ to the observed
state ρfðOÞ violates CPT symmetry and is time irrevers-
ible. Greenberg’s theorem then implies a violation of
Lorentz symmetry. This means that the nonunitary evolu-
tion and pure dephasing interaction cannot be described by
local and Lorentz invariant quantum field theory. In
Ref. [17] we show that the Kraus operators are forward
scattering operators akin to forward scattering of light in a
refracting medium. The forward scattering of dipion spin
states on recoil nucleon into dipion spin states with
different spin leads to dephasing and spin mixing of the
S-matrix amplitudes to form the observed amplitudes.
Interactions that are invariant under CPT symmetry lead

to observables that are invariant under CPT as well.
Conversely, interactions that violate CPT symmetry lead
to observables that violate CPT symmetry. It is important
to recognize that the CPT violating nonunitary evolution
and interaction with the quantum environment do not
contradict the CPT invariant interactions and their observ-
ables involved in the production of the state ρfðSÞ. Thus we
may expect e.g. the masses and lifetimes of π− and πþ to be
the same and rotationally invariant width and mass of the
ρð770Þ resonance in π−p → π−πþn. The CPT violating
interactions will manifest themselves in other observable
aspects of the pion creation process. In this case the CPT
violating observables are the observed transversity ampli-
tudes. The distinct CPT violating effects seen only in these
nonunitary amplitudes are their nonunitary phases and the
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spin mixing. As an alternative to spin mixing certain
observed amplitudes violate the so called cosine gap
condition which S-matrix amplitudes must satisfy [17].
The paper is organized as follows. In Sec. II we briefly

discuss the evolution of pure initial states by unitary and
nonunitary evolution laws. In Sec. III we show that S-
matrix unitary evolution implies evolution from pure initial
states into pure final states in exclusive processes. In
Secs. IV–VI we review and develop the spin formalism
necessary to derive and discuss the constraints imposed by
the unitary evolution law on the nucleon transversity
amplitudes. We emphasize the coherent superposition of
diparticle states and the constraints imposed by the con-
servation of P-parity on partial wave amplitudes. The final
state density matrix is defined and its properties derived in
some detail. This material will be used also in the sequel
paper. In Sec. VII we present the unitary constraints on
angular intensities from which we derive the unitary
condition (1.4) and a self-consistent set of unitary phases.
In Sec. VIII we present a unique unitary solution for S- and
P-amplitudes below 1080 MeV and show it is excluded by
the data on observables R0

x. This conclusion does not
change when we include D-waves in the analysis. We
discuss the evidence for the quantum environment and the
dephasing interaction in Sec. IX and a physical interpre-
tation of the unitary and nonunitary relative phases in
Sec. X. We present our conclusions and outlook in Sec. XI.
The Appendix provides an outline of the proof of the
unitary condition (1.4).

II. UNITARY AND NONUNITARY
EVOLUTION LAWS

Let H be a Hilbert space of vector states with an
orthonormal basis jni; n ¼ 1; N where N ¼ dimH. Let
BðHÞ be the Hilbert-Schmidt space of linear operators onH
with an orthonormal basis jnihmj; n; m ¼ 1; N. The density
matrix ρ ∈ BðHÞ is a Hermitian and positive operator
ρ ¼P ρmnjmihnj with TrðρÞ ¼ 1. The density matrix ρ
represents a pure state if it satisfies the condition
Trðρ2Þ ¼ ðTrðρÞÞ2. A quantum state satisfies this purity
condition if and only if its density matrix has the form
ρ ¼ jΨihΨj where jΨi is a vector in H.
Let A be a linear operator on H and ρi an arbitrary

density matrix in BðHÞ. Then A defines a mapping—or an
evolution law—of the state ρi into a state ρf

ρf ¼ AρiAþ: ð2:1Þ

Let ρi ¼ jiihij be a pure state and Ajii ¼ jΨAðiÞi. Then
ρf ¼ AjiihijAþ ¼ jΨAðiÞihΨAðiÞj is also a pure state. If A
is a unitary operator the mapping is a trace conserving
and invertible unitary evolution. Otherwise it is a simple
nonunitary evolution with normalized density matrix
ρ0f ¼ ρf=TrðρfÞ.

To be physically meaningful the mappings from initial to
final states must preserve the positivity of all probabilities
which requires that they be completely positive. The
necessary and sufficient condition for an evolution law
to be completely positive is that it has the form called Kraus
representation [1–4]

ρf ¼
X
k

AkρiA
þ
k ð2:2Þ

where Ak are unitary or nonunitary Kraus operators. For
trace preserving evolution they satisfy the completeness
relation X

k

Aþ
k Ak ¼ I: ð2:3Þ

Kraus representation (2.2) describes a general completely
positive, nonunitary and noninvertible evolution. Let ρi ¼
jiihij be a pure initial state. Then the final state is a mixed
state

ρf ¼
X
k

AkjiihijAþ
k ¼

X
k

jΨAk
ðiÞihΨAk

ðiÞj: ð2:4Þ

A special case of (2.2) is the evolution law (2.1) which
evolves pure initial states into pure final states. It describes
evolution of isolated quantum systems while the Kraus
representation describes a nonunitary evolution of open
quantum systems. Kraus representation arises from a
unitary evolution law governing the coevolution of the
quantum system with its quantum environment after the
interacting degrees of freedom between the two systems
have been traced out in their joint final state density matrix
[1–4]. The dissipative dephasing interactions exchange not
only phases but also four-momentum and/or angular
momentum. There is no exchange of four-momentum
and/or angular momentum in pure dephasing interactions
of the quantum system with its quantum environment.

III. EVOLUTION FROM PURE INITIAL
STATES INTO PURE FINAL STATES

IN EXCLUSIVE PROCESSES

The unitary S-matrix evolves an arbitrary initial state ρi
into a final state

ρ ¼ SρiSþ: ð3:1Þ

Any pure initial state ρi can be written in the form
ρi ¼ jiihij. The evolution operator S brings the state vector
jii to a state vector jΨi ¼ Sjii so that ρ ¼ jΨihΨj is a pure
state. Using a completeness relation

X
f

X
χf

Z
dΦfjpf; χf; γfihpf; χf; γfj ¼ I ð3:2Þ
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the state vector jΨi has an explicit form

jΨi ¼
X
f

X
χf

Z
dΦfjpf; χf; γfihpf; χf; γfjSjii ð3:3Þ

where the first sum is over all allowed final states f, the
second sum is over final state spins χf and the integration is
over the entire phase space of final state momenta pf. The

symbol γf labels the quantum numbers of the state f. The
density matrix ρ ¼ jΨihΨj has an explicit form

ρ ¼
X
f

ρf þ
X
f0

X
f00≠f0

ρf0f00 ð3:4Þ

where

ρf ¼
X
χ0f;χ

00
f

Z
dΦ0

fdΦ
00
fhp0

f; χ
0
f; γfjSjiihijSþjp00

f; χ
00
f; γfijp0

f; χ
0
f; γfihp00

f; χ
00
f; γfj

ρf0f00 ¼
X
χf0 ;χf00

Z
dΦf0dΦf00 hpf0 ; χf0 ; γf0 jSjiihijSþjpf00 ; χf00 ; γf00 ijpf0 ; χf0 ; γf0 ihpf00 ; χf00 ; γf00 j: ð3:5Þ

The density matrix ρf of the final state f is the block-
diagonal submatrix of ρ. It is a pure state ρf ¼ jΨfihΨfj
where

jΨfi ¼
X
χf

Z
dΦfjpf; χf; γfihpf; χf; γfjSjii: ð3:6Þ

The projection of ρf into a state ρfðpfÞ with definite final
state momenta pf is given by

ρfðpfÞ ¼ jpf; γfihpf; γfjρjpf; γfihpf; γfj
¼
X
χ0f;χ

00
f

hpf; χ0f; γfjSjii

× hijSþjpf; χ00f; γfijpf; χ0f; γfihpf; χ00f; γfj: ð3:7Þ

It is a pure state ρfðpfÞ ¼ jΨfðpfÞihΨfðpfÞj where

jΨfðpfÞi ¼
X
χf

jpf; χf; γfihpf; χf; γfjSjii: ð3:8Þ

Note that
P

f

R
dΦfjpf; γfihpf; γfj ¼ I since the spin

projection operators
P

χf
jχfihχfj ¼ I. The S-matrix uni-

tary evolution (3.1) and the completeness relation (3.2) thus
imply that for any initial pure state ρi all final states ρfðpfÞ
must be pure states.

IV. TWO-PARTICLE COHERENT
STATES AND DIPARTICLES

The state vector jp1p2; μ1μ2; γi of two noninteracting
particles with four-momenta p1; p2, helicities μ1; μ2 and
quantum numbers γ is a direct product of two single-
particle helicity states. It is an eigenstate of the momentum
operator Pμ with eigenvalue p ¼ p1 þ p2 and invariant
mass m2 ¼ p2. It does not define an irreducible

representation of the restricted inhomogeneous Lorentz
group, and therefore it has no definite spin and P-parity.
However, it can be expressed as a coherent superposition of
spin states with four-momentum p and definite spin and
parity. These states have a character of free noninteracting
single-particle helicity states with variable mass and carry
the quantum numbers γ. We shall refer to these states as
diparticles.
In the center-of-mass system where ~p� ¼ ~p�

1 þ ~p�
2 ¼ 0

and E� ¼ m the two-particle coherent state reads [45,46]

jp�
1p

�
2; μ1μ2; γi ¼

�
4m
q

�1
2jp�ijθϕ; μ1μ2; γi

¼
�
4m
q

�1
2
X
Jλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

4π

r

×DJ
λ;μðϕ; θ;−ϕÞjp�ijJλ; μ1μ2; γi ð4:1Þ

where μ ¼ μ1 − μ2 and q ¼ qðm2Þ, θ;ϕ describe the
momentum and the direction of the particle 1 in the center-
of-mass system. The summation is over all integral or half-

integral values of J. In the two-particle rest frame ~p� ¼ 0
and λ is the component of the spin J along the direction of
the z axis. As in the case of single-particle spin states, a
boost along the z axis and a rotation define a pure Lorentz
transformation Λp that brings the state jp�ijJλ; μ1μ2; γi
from the rest frame to a state with any momentum p on the
orbit

UðΛpÞðjp�ijJλ; μ1μ2; γiÞ ¼ jpijJλ; μ1μ2; γi: ð4:2Þ

Here λ is now a helicity of the angular helicity state
jpijJλ; μ1μ2; γi in the direction of ~p. The states
jpijJλ; μ1μ2; γi define the irreducible representation of
the restricted inhomogeneous Lorentz group. Under any
element of the group they transform accordingly
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UðΛ; aÞðjpijJλ; μ1μ2; γiÞ

¼ exp ð−ip0
μaμÞjp0i

�X
λ0
DJ

λ0;λðRÞjJλ0; μ1μ2; γi
�

ð4:3Þ

where p0 ¼ Λp, R ¼ Λ−1
p0 ΛΛp is a Wigner rotation [45,47]

and DJ
λ0;λðRÞ is the matrix representing the rotation R in the

irreducible representation of the rotation group correspond-
ing to spin J.
The intrinsic P-parity of single-particle states is defined

in their rest frame. Similarly, the intrinsic P-parity of the
angular helicity states is given by a relation in the center-of-
mass system [45,46]

Pðjp�ijJλ; μ1μ2; γiÞ
¼ η1η2ð−1ÞJ−s1−s2 jp�ijJλ;−μ1 − μ2; γi ð4:4Þ

where η1; η2 and s1; s2 are the parities and spins of the two
particles, respectively. The angular helicity states are parity
eigenstates only for two spinless particle states. However,
we can write any angular helicity state as a combination of
two states with opposite P-parities

jJλ; μ1μ2; γi ¼
1

2
ðjJλþ; μ1μ2; γi þ jJλ−; μ1μ2; γiÞ ð4:5Þ

where

jJλ�; μ1μ2; γi ¼ jJλ; μ1μ2; γi
� η1η2ð−1ÞJ−s1−s2 jJλ;−μ1 − μ2; γi: ð4:6Þ

The angular helicity states with a definite P-parity now
have a character of single-particle helicity states with
variable mass m and quantum numbers γ. We can refer
to these states as diparticle spin states. The general two-
particle helicity states are a coherent superposition of
diparticle spin states

jp1p2;μ1μ2;γi ¼
�
4m
q

�1
2jpijθϕ;μ1μ2;γi

¼
�
4m
q

�1
2
X
Jλ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jþ 1

4π

r
DJ

λ;μðϕ;θ;−ϕÞ

×
1

2
ðjpijJλþ;μ1μ2;γiþ jpijJλ−;μ1μ2;γiÞ:

ð4:7Þ

For two particles with spin the coherent state
ð4mq Þ

1
2jpijθϕ; μ1μ2; γi is an angular superposition of dipar-

ticle states that form parity doublets. For spinless particles
the diparticle states are parity singlets. An extension of this
spin formalism for three-particle helicity states was given
by Wick [48].

V. AMPLITUDES IN πN → ππN PROCESSES

A. Partial wave helicity amplitudes

We consider the pion creation process πaNb → π1π2Nd
with four-momenta pa þ pb ¼ p1 þ p2 þ pd. In the labo-
ratory system of the reaction the þz axis has the direction
opposite to the incident pion beam. The þy axis is
perpendicular to the scattering plane and has a direction
of ~pa × ~pc where pc ¼ p1 þ p2. The angular distribu-
tion of the produced dipion system is described by the
direction of π1 in the two-pion center-of-mass system and
its solid angle Ω ¼ θ;ϕ. The final state vector for the
noninteracting particles is

jp10ijp20ijpdχi ¼
�
4m
q

�1
2jpcijθϕ; 00ijpdχi

≡
�
4m
q

�1
2jpcpdijθϕ; χi ð5:1Þ

where χ is the recoil nucleon helicity, m is the invariant
mass m2 ¼ p2

c and q ¼ qðm2Þ is the π1 momentum in the
two-pion center-of-mass system. The helicity of the target
nucleon is ν. We have seen in Sec. IV that a state vector of
two noninteracting particles can be expressed as a coherent
superposition of diparticle helicity states with definite spin
and parity given by (4.7). For two pions μ1 ¼ μ2 ¼ 0 and
DJ

λ0ðϕ; θ;−ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π=ð2J þ 1Þp

YJ�
λ ðθ;ϕÞ [49]. The angu-

lar state jθϕ; χi can be expanded in terms of spherical
harmonics

jθϕ; χi ¼
X∞
J¼0

XJ
λ¼−J

YJ�
λ ðθ;ϕÞjJλ; χi: ð5:2Þ

The angular expansion of the S-matrix amplitudes
Sχ;0νðθϕÞ ¼ hθϕ; χjhpcpdjSjpapb; 0νi

Sχ;0νðθϕÞ ¼
X∞
J¼0

XJ
λ¼−J

YJ
λðθ;ϕÞSJλχ;0ν ð5:3Þ

defines partial wave S-matrix amplitudes

SJλχ;0νðpcpd; papbÞ ¼ hJλ; χjhpcpdjSjpapb; 0νi ð5:4Þ

of definite dipion spin. With Sχ;0ν ¼ ið2πÞ4δ4ðPf −
PiÞTχ;0ν the measured helicity amplitudes are defined by

Hχ;0νðs; t;m;θϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðm2ÞGðsÞ=FluxðsÞ

q
Tχ;0νðs; t;m;θϕÞ

ð5:5Þ

where s is the center-of-mass energy squared, t¼ðpc−paÞ2
is the four-momentum transfer squared, qðm2ÞGðsÞ is
the final state Lorentz invariant phase space [12] and
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FluxðsÞ is the incident particle flux. The angular expansion
of the production amplitudes (5.5) follows from (5.3)

Hχ;0νðθϕÞ ¼
X∞
J¼0

XJ
λ¼−J

YJ
λðθ;ϕÞHJ

λχ;0ν ð5:6Þ

whereHJ
λχ;0νðs; t; mÞ are partial wave helicity amplitudes of

definite dipion spin.

B. Constraints from conservation of P-parity

Since pion helicities μ1 ¼ μ2 ¼ 0 the two-pion angular
states jm; ~pci ⊗ jpJλ; 00ihave a character of single-particle
helicity states for any fixed invariant massm. The initial and
final states in these processes are both separable. The helicity
amplitudesHJ

λχ;0νðs; t; mÞ then describe two-body scattering
processes π− þ p → “Jðm2Þ”þ n where “Jðm2Þ” is the
dipion “particle”with spin J and massm. Describing strong
interactions, these amplitudes are expected to conserve
P-parity.
P-parity conservation in strong interactions imposes

constraints on two-body helicity amplitudes [45,47,50]

H−μc−μd;−μa−μb ¼ ηð−1Þμ0−μHμcμd;μaμb ð5:7Þ

where η ¼ ηaηbηcηdð−1Þscþsd−sa−sb and μ ¼ μa − μb,
μ0 ¼ μc − μd. The derivation of these constraints requires
that the initial and final states are both separable states of
single-particle helicity states and that the total angular
momentum is conserved in the reaction [45]. These con-
ditions are satisfied by the processes π−þp→ “Jðm2Þ”þn
and the helicity amplitudes HJ

λχ;0ν thus must satisfy the
parity constraints (5.28). From (4.4) we find that
ηππ ¼ ð−1ÞJ. The parity constraints for HJ

λχ;0ν then read

HJ
−λ−χ;0−ν ¼ ð−1ÞλþχþνHJ

λχ;0ν: ð5:8Þ

These parity constraints apply to all pion production
processes πN → ππN. The target nucleon and recoil
nucleon helicities ν and χ are defined in the s-channel
helicity system. The dipion helicity λ will be defined in the
t-channel helicity system [6,45,51].
Assuming that all pion isospin states behave as identical

particles in strong interactions the generalized Bose-
Einstein statistics requires I þ J ¼ even where I is the
dipion isospin [45]. As the result, the partial wave helicity
amplitudes with odd spins J vanish in reactions with two
identical pions in the final state and the π−πþ isospin states
are maximally entangled symmetric and antisymmetric Bell
states for even and odd isospin, respectively.

C. Nucleon helicity and transversity amplitudes
with definite t-channel naturality

The helicity amplitudes HJ
λχ;0ν are combinations of

helicity amplitudes with definite t-channel naturality η ¼
PS where P and S are the parity and the signature of
Reggeons exchanged in π− þ p → “Jðm2Þ”þ n [45]. The
natural and unnatural exchange amplitudes NJ

λþ;0� and
UJ

λþ;0� correspond to naturality η ¼ þ1 and η ¼ −1,
respectively. They are given for λ ≠ 0 by relations [50–52]

UJ
λþ;0� ¼ 1ffiffiffi

2
p ðHJ

λþ;0� þ ð−1ÞλHJ
−λþ;0�Þ

NJ
λþ;0� ¼ 1ffiffiffi

2
p ðHJ

λþ;0� − ð−1ÞλHJ
−λþ;0�Þ: ð5:9Þ

For λ ¼ 0 they are

UJ
0þ;0� ¼ HJ

0þ;0�; NJ
0þ;0� ¼ 0: ð5:10Þ

In (5.9) and (5.10) þ and − correspond to þ 1
2
and − 1

2

values of nucleon helicities. The unnatural exchange
amplitudes UJ

λþ;0− and UJ
λþ;0þ exchange π and a1 quantum

numbers in the t-channel, respectively, while the natural
exchange amplitudes NJ

λþ;0− and NJ
λþ;0þ both exchange a2

quantum numbers.
Amplitude analyses of measurements on polarized tar-

gets are best performed in terms of transversity amplitudes
with definite t-channel naturality [51]. In such measure-
ments the spin states of the target nucleon are described by
transversity τ with τ ¼ þ 1

2
≡ u and τ ¼ − 1

2
≡ d corre-

sponding to “up” and “down” orientations of the target spin
relative to the scattering plane [50,52]. Following Lutz and
Rybicki [51], we define mixed helicity-transversity ampli-
tudes with nucleon helicity replaced by nucleon trans-
versity

TJ
λτn;0τ

¼
X
χ;ν

D
1
2
�
τnχ

�
π

2
;
π

2
;−

π

2

�
eiπðχ−νÞHJ

λχ;0ν

×D
1
2
ντ

�
π

2
;
π

2
;−

π

2

�
: ð5:11Þ

Using the parity relations (5.8) for helicity amplitudes we
obtain

TJ
λu;0u ¼

1

2
ð1 − ð−1ÞλÞðHJ

λþ;0þ þ iHJ
λþ;0−Þ

TJ
λd;0d ¼

1

2
ð1 − ð−1ÞλÞðHJ

λþ;0þ − iHJ
λþ;0−Þ

−iTJ
λd;0u ¼

1

2
ð1þ ð−1ÞλÞðHJ

λþ;0þ þ iHJ
λþ;0−Þ

þiTJ
λu;0d ¼

1

2
ð1þ ð−1ÞλÞðHJ

λþ;0þ − iHJ
λþ;0−Þ: ð5:12Þ

STUDY OF πN → ππN PROCESSES ON … PHYSICAL REVIEW D 91, 074005 (2015)

074005-7



As a result of parity conservation the following amplitudes
vanish

TJ
λτ;0τ ¼ 0 λ ¼ even

TJ
λ−τ;0τ ¼ 0 λ ¼ odd: ð5:13Þ

Absorbing the inessential factors �i in front of TJ
λd;0u and

TJ
λu;0d in (5.12) into these amplitudes, the unnatural and

natural exchange transversity amplitudes are given for
λ ¼ even by

UJ
λ;τ ¼

1

2
ðTJ

λ−τ;0τ þ ð−1ÞλTJ
−λ−τ;0τÞ

NJ
λ;τ ¼

1

2
ðTJ

λ−τ;0τ − ð−1ÞλTJ
−λ−τ;0τÞ ð5:14Þ

and for λ ¼ odd by

UJ
λ;τ ¼

1

2
ðTJ

λτ;0τ þ ð−1ÞλTJ
−λτ;0τÞ

NJ
λ;τ ¼

1

2
ðTJ

λτ;0τ − ð−1ÞλTJ
−λτ;0τÞ: ð5:15Þ

For λ ¼ even the recoil nucleon transversity τn ¼ −τ. For
λ ¼ odd, τn ¼ þτ. Note that NJ

0;τ ¼ 0. From (5.14) and
(5.15) we find parity relations

UJ
−λ;τ ¼ þð−1ÞλUJ

λ;τ; NJ
−λ;τ ¼ −ð−1ÞλNJ

λ;τ: ð5:16Þ

It is useful to express transversity amplitudes UJ
λ;τ and

NJ
λ;τ in terms of unnatural and natural exchange helicity

amplitudes (5.9). Using (5.12) and (5.9) in (5.14) and
(5.15) we find

UJ
λ;u ¼

1ffiffiffi
2

p ðUJ
λþ;0þ þ iUJ

λþ;0−Þ

UJ
λ;d ¼

1ffiffiffi
2

p ðUJ
λþ;0þ − iUJ

λþ;0−Þ ð5:17Þ

NJ
λ;u ¼

1ffiffiffi
2

p ðNJ
λþ;0þ þ iNJ

λþ;0−Þ

NJ
λ;d ¼

1ffiffiffi
2

p ðNJ
λþ;0þ − iNJ

λþ;0−Þ: ð5:18Þ

VI. FINAL STATE DENSITY MATRIX
IN πN → ππN PROCESSES

A. Angular final state density matrix

The pion beam and nucleon target are prepared in an
initial state ρi ¼ ρiðπaÞ ⊗ ρiðNb; ~PÞ where ρiðπaÞ ¼
jpa0ihpa0j and

ρiðNb; ~PÞ ¼
X
νν0

ρbð~PÞνν0 jpbνihpbν
0j: ð6:1Þ

ρbð~PÞ is the target nucleon spin density matrix

ρbð~PÞ ¼
1

2
ð1þ ~P ~σÞ ð6:2Þ

where ~P ¼ ðPx; Py; PzÞ is the target polarization vector,

~σ ¼ ðσx; σy; σzÞ are Pauli matrices and Trðρbð~PÞÞ ¼ 1.

Following (3.5) the density matrix ρfð~PÞ of the final state
π1π2Nd reads

ρfð~PÞ ¼
X
χχ0

Z
dΦ3dΦ0

3hθϕ; χ; pcpdjSρiSþjp0
cp0

d; θ
0ϕ0; χ0i

× jpcpd; θϕ; χihθ0ϕ0; χ0; p0
cp0

dj ð6:3Þ

where we have used the phase space relation [45]

dΦ3 ¼
d3 ~p1

2E1

d3 ~p2

2E2

d3 ~p3

2E3

¼ q
4m

d4pcdΩ
d3~p3

2E3

¼ dΦ3dΩ

ð6:4Þ

in the completeness relation (3.2). We shall use the

projection of ρfð~PÞ into an angular state ρfðpcpd; θϕ; ~PÞ
with definite final state momenta

ρfðpcpd; θϕ; ~PÞ ¼
X
χχ0

ρfðpcpd; θϕ; ~PÞχχ0jχihχ0j: ð6:5Þ

In the following we suppress the momentum labels in the
initial and final helicity states. The density matrix elements
are given by the S-matrix evolution law

ρfðθϕ; ~PÞχχ0 ¼
X
νν0

hθϕ; χjSj0νiρbð~PÞνν0 h0ν0jSþjθϕ; χ0i:

ð6:6Þ

With Sχ;0ν ¼ hθϕ; χjSj0νi ¼ ið2πÞ4δ4ðPf − PiÞTχ;0ν we
get

ρfðθϕ; ~PÞχχ0 ¼ ρ0fðθϕ; ~PÞχχ0 ðVTÞð2πÞ4δ4ðPf − PiÞ ð6:7Þ

where ρ0fðθϕ; ~PÞ is expressed in terms of transition ampli-
tudes Tχ;0ν and where we have used the conventional
approach to deal with a square of δ-functions [47] with
V and T being total volume and time confining the
interactions to be taken in the limit V; T → ∞.
According to the Born rule, the probability of πaNbðνÞ →
π1π2NdðχÞ is given by

MILOSLAV SVEC PHYSICAL REVIEW D 91, 074005 (2015)

074005-8



dPχ;0ν ¼ jSχ;0νj2
Yd
n¼1

d3 ~pn

2En

¼ jTχ;0νj2dLipsðPi; p1; p2; pdÞðVTÞ: ð6:8Þ

Here Pi ¼ pa þ pb is the total four-momentum and the
Lorentz invariant phase space dLips ¼ qðm2ÞGðsÞdmdtdΩ
where GðsÞ is the energy dependent part of the phase space
[12]. The probability per unit volume, unit time and per
target particle is dσχ;0ν ¼ dPχ;0ν=ðVTFluxðsÞÞ and the
differential cross section reads

dσχ;0ν
dtdmdΩ

¼ qðm2ÞGðsÞ
FluxðsÞ jTχ;0νj2: ð6:9Þ

Applying formally the same procedure to every bilinear

term Sχ;0νS�χ0;0ν0 of ρfðθϕ; ~PÞ we can define a differential
cross-section matrix

dσ
dtdmdΩ

¼ qðm2ÞGðsÞ
FluxðsÞ ρ0fðθϕ; ~PÞ≡ ρfðθϕ; ~PÞ ð6:10Þ

where we have redefined the final state density matrix

ρfðθϕ; ~PÞ to read

ρfðθϕ; ~PÞχχ0 ¼
X
νν0

Hχ;0νðθϕÞρbð~PÞνν0H�
χ0;0ν0 ðθϕÞ: ð6:11Þ

The redefined transition amplitudes Hχ;0νðs; t; m; θϕÞ are
given by (5.5) in Sec. V.

B. Recoil nucleon polarization

To discuss the structure of the angular final state density
matrix (6.12) we first note a useful result from quantum
state tomography [3]. An arbitrary density matrix ρ of n
qubits can be expanded in a form

ρ ¼
X
~v

�
1

2n

�
Trðσv1 ⊗ σv2 ⊗ � � � ⊗ σvnρÞσv1

⊗ σv2 ⊗ � � � ⊗ σvn ð6:12Þ
where the sum is over the vectors ~v ¼ ðv1; v2;…; vnÞ with
entries chosen from the set σj; j ¼ 0; 1; 2; 3 of Pauli
matrices and σ0 ¼ 1. The traces in (6.12) represent average
values of spin correlations. The final density matrix
ρfðθϕ; ~PÞ is a single qubit density matrix corresponding
to spin 1

2
of the recoil nucleon. It can be written in the

form (6.12)

ρfðθϕ; ~PÞ ¼
1

2
ðI0ðθϕ; ~PÞσ0 þ ~Iðθϕ; ~PÞ~σÞ ð6:13Þ

where the traces Ijðθϕ; ~PÞ¼Trðσjρfðθϕ; ~PÞÞ;j¼0;1;2;3
represent measurable intensities of angular distributions.
The density matrix can be written in an equivalent form in
the recoil nucleon helicity basis jχihχ0j

ρfðθϕ; ~PÞ ¼
 

I0ðθϕ; ~PÞ þ I3ðθϕ; ~PÞ; I1ðθϕ; ~PÞ − iI2ðθϕ; ~PÞ
I1ðθϕ; ~PÞ þ iI2ðθϕ; ~PÞ; I0ðθϕ; ~PÞ − I3ðθϕ; ~PÞ

!
: ð6:14Þ

Introducing the recoil nucleon polarization vector ~Qðθϕ; ~PÞ
using a relation [50,52]

~Iðθϕ; ~PÞ≡ ~Qðθϕ; ~PÞI0ðθϕ; ~PÞ ð6:15Þ

we can write

ρfðθϕ; ~PÞ ¼
1

2
ð1þ ~Qðθϕ; ~PÞ~σÞI0ðθϕ; ~PÞ

¼ ρdð ~QÞI0ðθϕ; ~PÞ ð6:16Þ

where ρdð ~QÞ ¼ 1
2
ð1þ ~Q ~σÞ is the recoil nucleon spin

density matrix. The polarization vector ~Q ¼ ðQ1; Q2; Q3Þ
is defined in the rest frame of the recoil nucleon. It has a
transverse component Q2 that is perpendicular to the
scattering plane in the direction of the y axis. The transverse

componentQ1 is perpendicular to the direction of the recoil
nucleon in the scattering plane. The longitudinal compo-
nent Q3 is along the direction of its motion.
Equation (6.16) is our principal result. It shows that the

purity of the final state ρfðθϕ; ~PÞ is controlled entirely by

the recoil nucleon polarization ~Qðθϕ; ~PÞ which we shall
relate in the following to partial wave transversity ampli-
tudes under the assumption of P-parity conservation.

C. Angular intensities in terms
of density matrix elements

To measure the final state density matrix (6.13) requires
measurements of angular intensities the measurement of
which is further reduced to the measurements of density
matrix elements in terms of amplitudes. Using the target
nucleon spin density matrix (6.2) in the expression (6.11)
we can write the matrix elements of ρfðθϕ; ~PÞ in terms of
components of target polarization
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ρfðθϕ; ~PÞχχ0 ¼ ρuðθϕÞχχ0 þ PxρxðθϕÞχχ0
þ PyρyðθϕÞχχ0 þ PzρzðθϕÞχχ0 ð6:17Þ

where the subscript u stands for the unpolarized target
~P ¼ 0. The polarization components of density matrix
elements in (6.17) are given by (6.11)

ρkðθϕÞχχ0 ¼
1

2

X
νν0

Hχ;0νðθϕÞðσkÞνν0H�
χ0;0ν0 ðθϕÞ ð6:18Þ

where k ¼ u; x; y; z and σu ≡ σ0. Using (5.6) for Hχ;0νðθϕÞ
their angular expansion reads

ρkðθϕÞχχ0 ¼
X
Jλ

X
J0λ0

ðRkÞJ
1
2
;J01

2

λχ;λ0χ0Y
J
λðθ;ϕÞYJ0�

λ0 ðθ;ϕÞ ð6:19Þ

where

ðRkÞJ
1
2
;J01

2

λχ;λ0χ0 ¼
1

2

X
νν0

HJ
λχ;0νðσkÞνν0HJ0�

λ0χ0;0ν0 : ð6:20Þ

Using the decomposition (6.17) for ρfðθϕ; ~PÞ we find a

decomposition for the intensities Ijðθϕ; ~PÞ in (6.13) in
terms of components of the target polarization

Ijðθϕ; ~PÞ ¼ Trðσjρfðθϕ; ~PÞÞ
¼ IjuðθϕÞ þ PxI

j
xðθϕÞ þ PyI

j
yðθϕÞ þ PzI

j
zðθϕÞ
ð6:21Þ

where the components IjkðθϕÞ, j ¼ 0; 1; 2; 3 and k ¼
u; x; y; z are given by traces

IjkðθϕÞ ¼ Trχ;χ0 ððσjÞχ0χρkðθϕÞχχ0 Þ: ð6:22Þ

The component intensities IjkðθϕÞ have angular expansions
arising from these traces

IjkðθϕÞ ¼
X
Jλ

X
J0λ0

ðRj
kÞJJ

0
λλ0 Y

J
λðθ;ϕÞYJ0�

λ0 ðθϕÞ ð6:23Þ

where the un-normalized dipion density matrix elements
ðRj

kÞJJ
0

λλ0 are traces over recoil nucleon helicities

ðRj
kÞJJ

0
λλ0 ¼ Trχ;χ0 ððσjÞχ0χðRkÞJ

1
2
;J01

2

λχ;λ0χ0 Þ: ð6:24Þ

Expressed in terms of partial wave helicity amplitudes they
read

ðRj
kÞJJ

0
λλ0 ¼

1

2

X
χχ0

X
νν0

ðσjÞχ0χHJ
λχ;0νðσkÞνν0HJ0�

λ0χ0;0ν0 : ð6:25Þ

Combining (6.19) and (6.23) in (6.14) we can express the
density matrix elements (6.20) in terms of density matrix
elements (6.25) for each k ¼ u; x; y; z

ðRkÞJ
1
2
;J01

2

λþ;λ0þ ¼ ðR0
kÞJJ

0
λλ0 þ ðR3

kÞJJ
0

λλ0

ðRkÞJ
1
2
;J01

2

λþ;λ0− ¼ ðR1
kÞJJ

0
λλ0 − iðR2

kÞJJ
0

λλ0

ðRkÞJ
1
2
;J01

2

λ−;λ0þ ¼ ðR1
kÞJJ

0
λλ0 þ iðR2

kÞJJ
0

λλ0

ðRkÞJ
1
2
;J01

2

λ−;λ0− ¼ ðR0
kÞJJ

0
λλ0 − ðR3

kÞJJ
0

λλ0 : ð6:26Þ

D. Constraints on angular intensities
from P-parity conservation

Conservation of P-parity in strong interactions is
encoded in the angular expansion of the angular final state
density matrix by imposing parity relations on the partial
wave helicity amplitudes. Relabeling the summations in
(6.23) and combining in the sum (6.23) the terms with
inverted Jλ and J0λ0 we can write the sum (6.23) for each
k ¼ u; y; x; y and j ¼ 0; 1; 2; 3 as the sum of four terms

1

4

X
Jλ

X
J0λ0

½RJJ0
λλ0 Y

J
λY

J0�
λ0 þ RJ0J

λ0λY
J0
λ0Y

J�
λ

þ RJJ0
−λ−λ0Y

J
−λY

J0�
−λ0 þ RJ0J

−λ0−λY
J0
−λ0Y

J�
−λ�: ð6:27Þ

Using the Hermiticity of the density matrix

ðRj
kÞJ

0J
λ0λ ¼ ðRj

kÞJJ
0�

λλ0 ð6:28Þ

and a relation for spherical harmonics YL
−Mðθ;ϕÞ ¼

ð−1ÞMðYL
Mðθ;ϕÞÞ� the sum of terms in (6.27) takes the

form

½þ2ReðRJJ0
λλ0 þ ð−1Þλþλ0RJJ0�

−λ−λ0 ÞReðYJ
λY

J0�
λ0 Þ

− 2ImðRJJ0
λλ0 − ð−1Þλþλ0RJJ0�

−λ−λ0 ÞImðYJ
λY

J0�
λ0 Þ�: ð6:29Þ

Parity relations (5.8) for the partial wave helicity ampli-
tudes HJ

λχ;0ν imply parity relations for the density matrix
elements

ðRj
kÞJJ

0
λλ0 ¼ þð−1Þλþλ0 ðRj

kÞJJ
0

−λ−λ0 ð6:30Þ

for ðk;jÞ¼ðu;0Þ;ðy;0Þ;ðu;2Þ;ðy;2Þ;ðx;1Þ;ðz;1Þ;ðx;3Þ;ðz;3Þ
and

ðRj
kÞJJ

0
λλ0 ¼ −ð−1Þλþλ0 ðRj

kÞJJ
0

−λ−λ0 ð6:31Þ

for ðx; 0Þ; ðz; 0Þ; ðx; 2Þ; ðz; 2Þ; ðu; 1Þ; ðy; 1Þ; ðu; 3Þ; ðy; 3Þ.
Using these symmetry relations in (6.29) the components

IjkðθϕÞ of the dipion angular distribution Ijðθϕ; ~PÞ mea-
sured on polarized target take the form
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IjkðθϕÞ ¼
X
Jλ

X
J0λ0

ðReRj
kÞJJ

0
λλ0 ReðYJ

λðθϕÞYJ0�
λ0 ðθϕÞÞ ð6:32Þ

for ðk;jÞ¼ðu;0Þ;ðy;0Þ;ðu;2Þ;ðy;2Þ;ðx;1Þ;ðz;1Þ;ðx;3Þ;ðz;3Þ
and

IjkðθϕÞ ¼ −
X
Jλ

X
J0λ0

ðImRj
kÞJJ

0
λλ0 ImðYJ

λðθϕÞYJ0�
λ0 ðθϕÞÞ

ð6:33Þ

for ðx; 0Þ; ðz; 0Þ; ðx; 2Þ; ðz; 2Þ; ðu; 1Þ; ðy; 1Þ; ðu; 3Þ; ðy; 3Þ.
The elements ðImRj

kÞJJ
0

λλ0 in the group (6.32) and

ðReRj
kÞJJ

0
λλ0 in the group (6.33) are not observable as the

result of parity conservation.
Because of the angular properties of Y1

λðθϕÞ, the three
elements ðRj

kÞ0000, ðRj
kÞ1100 and ðRj

kÞ1111 in (6.32) are not
independent in π−p → π−πþn but appear in two indepen-
dent combinations

ðRj
kÞSP ≡ ðRj

kÞ0000 þ ðRj
kÞ1100 þ 2ðRj

kÞ1111;
ðRj

kÞPP ≡ ðRj
kÞ1100 − ðRj

kÞ1111:
ð6:34Þ

What are usually measured in actual experiments are
normalized density matrix elements ðρjkÞJJ

0
λλ0 defined by

ðRj
kÞJJ

0
λλ0 ¼

d2σ
dtdm

ðρjkÞJJ
0

λλ0 ð6:35Þ

where

d2σ
dtdm

≡
Z

dΩI0uðθϕÞ ¼
X
Jλ

ðR0
uÞJJλλ ¼ 1

2

X
Jλ

X
χ;ν

jHJ
λχ;0νj2

ð6:36Þ

is the integrated intensity of ππ production measured on an
unpolarized target.
We have expressed the density matrix elements ðRj

kÞJJ
0

λλ0 in
terms of transversity amplitudes UJ

λ;τ and NJ
λ;τ. The results

are given in Table I and agree with Ref. [51]. The
normalization of the amplitudes is given by the trace (6.36)

d2σ
dtdm

¼
X
J;λ≥0

X
τ

jUJ
λ;τj2 þ jNJ

λ;τj2: ð6:37Þ

VII. UNITARY EVOLUTION CONSTRAINTS
IN πN → ππN PROCESSES

A. Constraints on angular intensities

The initial πN state is in a pure state only when the target
nucleon is in a pure spin state. The target nucleon spin

density matrix has the form ρbð~PÞ ¼ 1
2
ð1þ ~P ~σÞ where

~P ¼ ðPx; Py; PzÞ is the target polarization vector. The target
is in a pure state if and only if j~Pj2 ¼ 1 [3] or, equivalently,

detðρbð~PÞÞ ¼ 1 − P2
x − P2

y − P2
z ¼ 0. This condition can

be written in the form

Xz
m;n¼u

ηmnPmPn ¼ 0 ð7:1Þ

where Pu ¼ 1 and ηmn ¼ diagðþ1;−1;−1;−1Þ is the
Minkowski metric. In modern polarized targets the density

matrix ρbð~PÞ is a mixed state with j~Pj2 < 1 that can be
varied by using external magnetic fields to rotate the

polarization vector ~P into any desired direction [50]. For
~P ¼ 0 the target is unpolarized. The pure states define a
Bloch sphere within which are located the mixed states.
As shown in (6.16), the normalized final state density

matrix is equal to the recoil nucleon spin density matrix

ρdð ~QÞ ¼ 1
2
ð1þ ~Q ~σÞ. The final ππN state is therefore in a

pure state if and only if j ~Qj2 ¼ 1 or, in terms of the
intensities (6.15), if and only if ðI0Þ2 − ðI1Þ2 − ðI2Þ2−
ðI3Þ2 ¼ 0. Using the decomposition (6.21) this last con-
dition takes the form

Xz
m;n¼u

AmnPmPn ¼ 0 ð7:2Þ

where

TABLE I. Density matrix elements expressed in terms of
nucleon transversity amplitudes with definite t-channel naturality.
The spin indices JJ0 which always go with helicities λλ0 have
been omitted in the amplitudes. The coefficients ηλ ¼ 1 for λ ¼ 0

and ηλ ¼ 1=
ffiffiffi
2

p
for λ ≠ 0.

ðR0
uÞJJ0λλ0

ηληλ0 ½Uλ;uU�
λ0;u þ Nλ;uN�

λ0;u þ Uλ;dU�
λ0;d þ Nλ;dN�

λ0;d�
ðR0

yÞJJ0λλ0
ηληλ0 ½Uλ;uU�

λ0;u þ Nλ;uN�
λ0;u − Uλ;dU�

λ0;d − Nλ;dN�
λ0;d�

ðR0
xÞJJ0λλ0

−iηληλ0 ½Uλ;uN�
λ0;d þ Nλ;uU�

λ0;d − Uλ;dN�
λ0;u − Nλ;dU�

λ0;u�
ðR0

zÞJJ0λλ0
ηληλ0 ½Uλ;uN�

λ0;d þ Nλ;uU�
λ0;d þ Uλ;dN�

λ0;u þ Nλ;dU�
λ0;u�

ðR2
uÞJJ0λλ0

−ηληλ0 ½Uλ;uU�
λ0;u − Nλ;uN�

λ0;u − Uλ;dU�
λ0;d þ Nλ;dN�

λ0;d�
ðR2

yÞJJ0λλ0
−ηληλ0 ½Uλ;uU�

λ0;u − Nλ;uN�
λ0;u þUλ;dU�

λ0;d − Nλ;dN�
λ0;d�

ðR2
xÞJJ0λλ0

iηληλ0 ½Uλ;uN�
λ0;d − Nλ;uU�

λ0;d þUλ;dN�
λ0;u − Nλ;dU�

λ0;u�
ðR2

zÞJJ0λλ0
−ηληλ0 ½Uλ;uN�

λ0;d − Nλ;uU�
λ0;d − Uλ;dN�

λ0;u þ Nλ;dU�
λ0;u�

ðR1
uÞJJ0λλ0

−iηληλ0 ½Uλ;uN�
λ0;u − Nλ;uU�

λ0;u − Uλ;dN�
λ0;d þ Nλ;dU�

λ0;d�
ðR1

yÞJJ0λλ0
−iηληλ0 ½Uλ;uN�

λ0;u − Nλ;uU�
λ0;u þUλ;dN�

λ0;d − Nλ;dU�
λ0;d�

ðR1
xÞJJ0λλ0

−ηληλ0 ½Uλ;uU�
λ0;d − Nλ;uN�

λ0;d þUλ;dU�
λ0;u − Nλ;dN�

λ0;u�
ðR1

zÞJJ0λλ0
−iηληλ0 ½Uλ;uU�

λ0;d − Nλ;uN�
λ0;d − Uλ;dU�

λ0;u þ Nλ;dN�
λ0;u�

ðR3
uÞJJ0λλ0

ηληλ0 ½Uλ;uN�
λ0;u þ Nλ;uU�

λ0;u þ Uλ;dN�
λ0;d þ Nλ;dU�

λ0;d�
ðR3

yÞJJ0λλ0
ηληλ0 ½Uλ;uN�

λ0;u þ Nλ;uU�
λ0;u − Uλ;dN�

λ0;d − Nλ;dU�
λ0;d�

ðR3
xÞJJ0λλ0

−iηληλ0 ½Uλ;uU�
λ0;d þ Nλ;uN�

λ0;d − Uλ;dU�
λ0;u − Nλ;dN�

λ0;u�
ðR3

zÞJJ0λλ0
ηληλ0 ½Uλ;uU�

λ0;d þ Nλ;uN�
λ0;d þ Uλ;dU�

λ0;u þ Nλ;dN�
λ0;u�
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Amn ¼
X3
j¼1

IjmI
j
n − I0mI0n: ð7:3Þ

The purity condition (7.2) must hold true for all polariza-

tion vectors ~P which satisfy the purity condition (7.1) and
for all values of the kinematic variables s; t; m; θ;ϕ. The
intensities Ijk do not depend on the components Pm of the
polarization vector because the S-matrix amplitudes do not
depend on the target polarization vector. With all terms Amn
independent of the polarization vector, the condition (7.2) is
not an independent quadratic form in PmPn on the entire
Bloch sphere but must coincide with the condition (7.1).
That happens if and only if Amn ¼ ηmnZðs; t; m; θϕÞ which
implies that Z ¼ Auu. Unitary evolution then imposes 9
independent constraints

Amn ¼ ηmnAuu: ð7:4Þ

Explicitly, the unitary evolution constraints on angular
intensities read

X3
j¼1

ðIjuÞ2 þ ðIjkÞ2 ¼ ðI0uÞ2 þ ðI0kÞ2 ð7:5Þ

for Akk ¼ −Auu, k ¼ x; y; z,

X3
j¼1

IjuI
j
k ¼ I0uI0k ð7:6Þ

for Auk ¼ 0, k ¼ x; y; z and

X3
j¼1

IjmI
j
n ¼ I0mI0n ð7:7Þ

for Amn ¼ 0, m; n ¼ x; y; z and m ≠ n. The three
constraints (7.5) are equivalent to three constraints

X3
j¼1

ðIjmÞ2 − ðIjnÞ2 ¼ ðI0mÞ2 − ðI0nÞ2 ð7:8Þ

for Amm − Ann ¼ 0, m; n ¼ x; y; z and m ≠ n. The
constraints (7.5) and (7.6) can be combined to read

X3
j¼1

ðIju � IjkÞ2 ¼ ðI0u � I0kÞ2 ð7:9Þ

for k ¼ x; y; z. These last constraints (7.9) are identical to

conditions j ~Qj2 ¼ 1 for special pure initial states with
polarizations Pk ¼ �1.
Mixed target spin states evolve into mixed recoil nucleon

spin states. The conditions (7.1) and (7.2) change to read

Xz
m;n¼u

ηmnPmPn > 0 ð7:10Þ

Xz
m;n¼u

AmnPmPn > 0 ð7:11Þ

implying the same constraints (7.4) as in the case of the
pure states. The conditions (7.11) also exclude the pos-
sibility that Amn ¼ 0 for all m; n which is allowed by (7.2).

B. Constraints on parity conserving nucleon
transversity amplitudes

We looked for constraints on parity conserving trans-
versity amplitudes implied by the unitarity constraints (7.2)
on angular intensities using the expressions for ðRj

kÞJJ
0

λλ0

given in Table I and the parity relations (6.30) and (6.31) in
the angular expansions of the intensities (6.32) and (6.33).
We found that the combined constraints (7.9) for k ¼ y
corresponding to Ayy ¼ −Auu and Auy ¼ 0 and the con-
straints Axz ¼ 0 and Axx ¼ Azz are unconditional identities.
In the Appendix we show that the constraint Axx ¼ −Auu
holds true if and only if at least one of the following two
constraints on the transversity amplitudes holds true

X
J;λ≥0

X
K;μ>0

ηλημξλξμImðUJ
λuN

K�
μd ÞReYJ

λðΩÞImYK
μ ðΩÞ¼0

X
J0;λ0≥0

X
K0;μ0>0

ηλ0ημ0ξλ0ξμ0ImðUJ0�
λ0dN

K0
μ0uÞReYJ0

λ0 ðΩÞImYK0
μ0 ðΩÞ¼0

ð7:12Þ

for all Ω ¼ θ;ϕ and all s; t; m. The constraints Aux ¼
0; Auz ¼ 0; Axy ¼ 0; Ayz ¼ 0 are identities provided that
both these constraints hold true. In (7.12) ηλ ¼ 1; ξλ ¼ 1

for λ ¼ 0 and ηλ ¼ 1ffiffi
2

p ; ξλ ¼ 2 for λ > 0.

The constraints (7.12) imply constraints on the trans-
versity amplitudes

ImðUJ
λτN

K�
μ−τÞ ¼ 0 ð7:13Þ

that must hold true for all values of Jλ; Kμ; τ at all values of
kinematic variables s; t; m. To prove (7.13) we recall that at
any dipion mass there is a finite number of contributing
partial waves with J ≤ JmaxðmÞ so that the sums (7.12) are
truncated. Let N be the number of the contributing terms.
We can select N different values of Ωi; i ¼ 1; N trans-
forming (7.12) into a pair of N linear homogeneous
equations for the unknown N terms given by the lhs of
(7.13). We can select the values of Ωi such that the
determinant of each system is nonzero which ensures that
the unknown terms ðImðUJ

λτN
K�
μ−τÞÞi; i ¼ 1; N must all

vanish.
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C. Unitary phases and their self-consistency

For amplitudes with nonvanishing moduli the conditions
(7.13) imply unitary relative phases between the amplitudes
UJ

λτN
K�
μ−τ

ΦðUJ
λτÞ − ΦðNK�

μ−τÞ ¼ 0;�π;�2π: ð7:14Þ

Keeping NK�
μ−τ or UJ

λτ fixed, this condition implies unitary
relative phases also between amplitudes UJ

λτU
J0�
λ0τ and

NK
μτNK0�

μ0τ

ΦðUJ
λτÞ − ΦðUJ0�

λ0τ Þ ¼ 0;�π;�2π

ΦðNK
μτÞ − ΦðNK0�

μ0τ Þ ¼ 0;�π;�2π: ð7:15Þ

We shall refer to such S-matrix amplitudes as unitary
amplitudes. It follows from (7.14) and Table I that all
elements R0

z ¼ R2
z ¼ 0 so that the intensities I0z ¼ I2z ¼ 0.

The relative phases of all S-matrix amplitudes must
satisfy a phase condition

ΦðAÞ − ΦðBÞ ¼ ðΦðAÞ − ΦðCÞÞ þ ðΦðCÞ − ΦðBÞÞ
ð7:16Þ

for any triad of amplitudes A;B;C. As a result the relative
unitary phases cannot be arbitrary but must form a self-
consistent set satisfying (7.16). In addition, the relative
phases must be in full accord with all measured interference
terms. To build up such a self-consistent set we must start
with the relative phases of S and P-wave amplitudes. For
dipion masses m≲ 980 MeV the S − P interference terms
require

ΦðU1
0τÞ − ΦðU0

0τÞ ¼ ΦðLτÞ − ΦðSτÞ ¼ 0 ð7:17aÞ

ΦðU1
0τÞ − ΦðU1

1τÞ ¼ ΦðLτÞ − ΦðUτÞ ¼ þπ ð7:17bÞ

ΦðU1
1τÞ − ΦðU0

0τÞ ¼ ΦðUτÞ − ΦðSτÞ ¼ −π ð7:17cÞ

wherewe have introduced an alternate notation for theS- and
P-wave amplitudes that will be used in the following
sections. These unitary phases define unitary phases in (7.14)

ΦðU0
0τÞ − ΦðN1

1−τÞ ¼ ΦðSτÞ − ΦðN−τÞ ¼ 0 ð7:18aÞ

ΦðU1
0τÞ − ΦðN1

1−τÞ ¼ ΦðLτÞ − ΦðN−τÞ ¼ 0 ð7:18bÞ

ΦðU1
1τÞ − ΦðN1

1−τÞ ¼ ΦðUτÞ − ΦðN−τÞ ¼ −π: ð7:18cÞ

In Table II we present an example of a complete set of self-
consistent unitary phases arising from these initial unitary
phases. The relative phases involving D-wave and higher
spin waves are hypothetical since the corresponding inter-
ference terms have not yet been directlymeasured. In Table II
we define the relative phase

ω ¼ ΦðSdÞ − ΦðSuÞ ¼ −ðΦðNdÞ − ΦðNuÞÞ: ð7:19Þ

VIII. TEST OF THE UNITARY EVOLUTION LAW

A. Unitary amplitude analysis of the S- and P-wave
subsystem at small t

For dipion masses m≲ 1080 MeV and momentum
transfers jtj≲ 0.20 ðGev=cÞ2 the S- and P-waves dominate
the π−p → π−πþn process. Using Table I, the measured
spin density matrix elements R0

u and R0
y organize into two

groups of observables ak;τ; k ¼ 1; 6 corresponding to target
nucleon transversity τ ¼ u and τ ¼ d. Their expressions in
terms of transversity amplitudes in the notation introduced
in the previous section are given in Table III together with
the expressions for the measured elements R0

x. Omitting the
subscript τ for the sake of brevity, we find from Table III

jSj2 ¼ a1 þ a2 − 3jLj2 ð8:1aÞ

jUj2 ¼jLj2 − 1

2
ða2 þ a3Þ ð8:1bÞ

TABLE II. Self-consistent relative phases ΦðAÞ − ΦðBÞ in bilinear products AB� of unitary amplitudes A ¼ UJ
0τ; U

J
λτ; N

K
1τ; N

K
μτ and

B ¼ UJ0
0τ0 ; U

J0
λ0τ0 ; N

K0
1τ0 ; N

K0
μ0τ0 where λ; λ0 > 0 and μ; μ0 > 1. The superscripts J; J0 and K;K0 go with subscripts 0; λ; 0; λ0 and 1; μ; 1; μ0,

respectively. The phase ω ¼ ΦðSdÞ − ΦðSuÞ.
AB� U�

0u U�
λ0u N�

1d N�
μ0d U�

0d U�
λ0d N�

1u N�
μ0u

U0u 0 π 0 π −ω −ωþ π −ω −ωþ π
Uλu −π 0 −π 0 −ω − π −ω −ω − π −ω
N1d 0 π 0 π −ω −ωþ π −ω −ωþ π
Nμd −π 0 −π 0 −ω − π −ω −ω − π −ω
U0d ω ωþ π ω ωþ π 0 π 0 π
Uλd ω − π ω ω − π ω −π 0 −π 0
N1u ω ωþ π ω ωþ π 0 π 0 π
Nμu ω − π ω ω − π ω −π 0 −π 0
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jNj2 ¼jLj2 − 1

2
ða2 − a3Þ ð8:1cÞ

jLj2 ¼ a4a5=ða6ΓÞ ð8:1dÞ

where

Γ ¼ cosðΦðLÞ − ΦðSÞÞ cosðΦðLÞ − ΦðUÞÞ
cosðΦðUÞ − ΦðSÞÞ ¼ 1: ð8:2Þ

For all m below 1080 MeV a5 < 0. For m below 980 Mev
a4 > 0 and a6 < 0. These signs yield the phases (7.17) and
(7.18). For m above 980 MeV a4;d and a6;d change signs
prompting a change in relative phases

ΦðLdÞ − ΦðSdÞ ¼ þπ ð8:3aÞ

ΦðLdÞ − ΦðUdÞ ¼ þπ ð8:3bÞ

ΦðUdÞ − ΦðSdÞ ¼ 0 ð8:3cÞ

and

ΦðSdÞ − ΦðNuÞ ¼ −π ð8:4aÞ

ΦðLdÞ − ΦðNuÞ ¼ 0 ð8:4bÞ

ΦðUdÞ − ΦðNuÞ ¼ −π: ð8:4cÞ

The mixed sets of phases (7.17), (7.18) and (8.3), (8.4) for
τ ¼ u and τ ¼ d, respectively, still define a self-consistent
set of relative phases. In all cases Γ ¼ 1 so that the
amplitudes jLj2, and consequently all amplitudes in (8.1)
as well, have a unique solution for both transversities. With
a4 ¼ jLjjSj and a5 ¼ �jLjjUj we find from (8.1)

a2 ¼ −a1 þ 3jLj2 þ a24
jLj2

a3 ¼ þa1 − jLj2 − a24 þ 2a25
jLj2 : ð8:5Þ

These variables thus are not independent and must be
calculated during the analysis and tested for their being
within the error volume of the data.

B. Unique solution for unitary amplitudes

The amplitude analysis was carried out using a
Monte Carlo method to search for physical solutions of
amplitudes within the error volume of the data. The data
were sampled using 10 million sampling data points. Initial
analysis was unconstrained by fits to R0

x data and was
followed by constrained analyses with fits to R0

x data
constrained by 1, 3 and 5 standard deviations.
The unique solution for the moduli from the uncon-

strained analysis is shown in Figs. 1 and 2. The transversity
“up” amplitudes are suppressed while the transversity
“down” amplitudes dominate with a pronounced ρ0ð770Þ
peak. The data clearly require ρ0ð770Þ in both S-wave
amplitudes. There is a gap of no solution for masses 920–
980 MeV in the f0ð980Þmass region suggesting the unitary
phases are not compatible with ρ0ð770Þ − f0ð980Þ mixing
in the P-wave amplitude jLdj2 seen in the data in the
previous analysis with nonunitary phases [13].
To test the rotational symmetry, and thus Lorentz

symmetry, of the resonance production dynamics we need
information on transversity amplitudes Hλ

τ with definite
dipion helicity λ ¼ 0;�1. The transverse amplitudes Uτ

and Nτ are a mix of transverse amplitudes with helicities

TABLE III. Measured spin observables for the S- and P-wave
subsystem in terms of nucleon transversity amplitudes. The signs
þ and − correspond to τ ¼ u and τ ¼ d, respectively. The
superscripts J ¼ 0; 1 are omitted. Real parts ReR0

k; k ¼ u; y
and imaginary parts ImR0

x are understood. The density matrix
elements with subscripts SP and PP are defined by Eqs. (6.41).

a1;τ ¼ 1
2
ððR0

uÞSP � ðR0
yÞSPÞ ¼ jSτj2 þ jLτj2 þ jUτj2 þ jNτj2

a2;τ ¼ ðR0
uÞPP � ðR0

yÞPP ¼ 2jLτj2 − jUτj2 − jNτj2
a3;τ ¼ ðR0

uÞ1−1 � ðR0
yÞ1−1 ¼ jNτj2 − jUτj2

a4;τ ¼ 1
2
ððR0

uÞ0s � ðR0
yÞ0sÞ ¼ jLτjjSτj cosðΦðLτÞ − ΦðSτÞÞ

a5;τ ¼ 1ffiffi
2

p ððR0
uÞ01 � ðR0

yÞ01Þ ¼ jLτjjUτj cosðΦðLτÞ − ΦðUτÞÞ
a6;τ ¼ 1ffiffi

2
p ððR0

uÞ1s � ðR0
yÞ1sÞ ¼ jUτjjSτj cosðΦðUτÞ − ΦðSτÞÞ

r1 ¼
ffiffiffi
2

p ðR0
xÞs1 ¼ −ReðSuN�

dÞ þ ReðNuS�dÞ
r2 ¼

ffiffiffi
2

p ðR0
xÞ01 ¼ −ReðLuN�

dÞ þ ReðNuL�
dÞ

r3 ¼ ðR0
xÞ−11 ¼ þReðUuN�

dÞ − ReðNuU�
dÞ

0

1

2

3

4

5 |Su|2 |Sd|2

0
2
4
6
8

 10
 12
 14
 16
 18
 20
 22

 0.6  0.7  0.8  0.9 1  1.1

|Lu|2

 0.6  0.7  0.8  0.9 1  1.1

|Ld|2

FIG. 1. S-wave and P-wave transversity amplitudes jSτj2 and
jLτj2 from unitary amplitude analysis.

MILOSLAV SVEC PHYSICAL REVIEW D 91, 074005 (2015)

074005-14



λ ¼ �1 and are thus not suitable to test the symmetry. From
(5.9) we find

H�1
τ ¼ 1ffiffiffi

2
p ðUτ � NτÞ: ð8:6Þ

Their partial wave intensities can be calculated from the
data on polarized target

IðHτÞ ¼ jHþ1
τ j2 þ jH−1

τ j2 ¼ jUτj2 þ jNτj2: ð8:7Þ

In Fig. 3 we show the shape of the resonant peaks of jUτj2
and jNτj2. At half height the width of the jUdj2 peak is
∼100 MeV while that of jNdj2 is ∼180 MeV. This differ-
ence arises from the interference terms of amplitudes H�1

d

jUdj2 ¼
1

2
ðIðHdÞ þ PðHdÞÞ

jNdj2 ¼
1

2
ðIðHdÞ − PðHdÞÞ ð8:8Þ

where PðHdÞ ¼ 2ReðHþ1
d H−1�

d Þ ¼ jUdj2 − jNdj2. The fig-
ure shows the resonant shape of intensities IðHτÞ. At half
height the width of IðHdÞ is ∼150 MeV—the proper width
of ρ0ð770Þ found also in the λ ¼ 0 amplitude jLdj2. These
results support the rotational/Lorentz symmetry of the
resonance production dynamics.

C. Test of the unitary solution: Predictions for R0
x

With unique moduli and unique phases (7.18) and (8.4),
the unitary solution makes unique predictions for the
measured elements R0

x given in Table III. For each sampling

with a physical solution we calculated the elements R0
u, R0

y

and R0
x. For these predicted values we calculated the

corresponding value of χ2. From the distribution of
the χ2 values we calculated their range of values and the
average in each mass bin. From these average values of χ2

we calculated its bin-averaged χ2 for each observable. In
the case of R0

u and R0
y we further reduced the result to a

more manageable average over the corresponding elements
labeled χ2ðhR0

uiÞ and χ2ðhR0
yiÞ, respectively. The goodness

of the predictions is evaluated by (1) the number of empty
mass bins with no physical solutions out of the total of
25 bins, (2) the average number of “pass” events (i.e.
physical solutions) per bin, (3) the values of χ2ðhR0

uiÞ
and χ2ðhR0

yiÞ, and (4) the bin average values of χ2 of
the observables R0

x labeled χ2ððR0
xÞs1Þ, χ2ððR0

xÞ01Þ
and χ2ððR0

xÞ−11Þ.
Table IV presents the results for 3 predictions. The first

two predictions correspond to χ2 of R0
x data constrained in

each mass bin to within 3 and 5 standard deviations for each
sampling with a physical solution for the moduli. The third
prediction is the result of unconstrained analysis with no
such constraints on χ2 to R0

x data. All predictions for R0
u and

R0
y have a good χ2. However, the first two predictions suffer

from the large number of empty bins with no solution and a
negligible number of constrained physical solutions in the
remaining bins. The third prediction suffers from a very
broad range of χ2 values for R0

x data in each bin and from
very large bin-averaged values. This χ2 value is particularly
large for the S-wave observable ðR0

xÞs1. We must conclude
that the unitary solution is excluded by the R0

x data by at
least 5 standard deviations.
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FIG. 2. P-wave transversity amplitudes jUτj2 and jNτj2 from
unitary amplitude analysis.
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FIG. 3. The test of rotational/Lorentz symmetry of resonance
production dynamics in π−p → π−πþn in amplitude analysis
with unitary phases.
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D. The effect of dipion D-waves
on a unique unitary solution

Measurements of πN → ππN do not measure the
spin density matrix (SDM) elements ðR0

kÞJJ
0

λλ0 directly.
Measurements on unpolarized targets measure moments
tLM and measurements on polarized targets add moments pL

M
and rLM [24,51,53]. The moments tLM; p

L
M; r

L
M are expressed

in terms of ðR0
uÞJJ0λλ0 ; ðR0

yÞJJ0λλ0 ; ðR0
xÞJJ0λλ0 , respectively. Only the

moments tLM and pL
M with L ≤ 2 involve S- and P-wave

SDM elements but they also include S −D- and P −D-
wave interference SDM elements. D-wave SDM elements
contribute only to moments tLM and pL

M with L ¼ 0; 3; 4.
There are D − F interference terms in moments with
L ¼ 3; 4. Explicit formulas for tLM in terms of SDM
elements are given in Ref. [54]. The observables ak;τ; k ¼
1; 6 and rl;l ¼ 1; 3 in Table III thus include, in general,
also D-wave contributions.
Below the KK̄ threshold for m < 980 MeV the D-wave

moments with L ¼ 3; 4 are very small compared to the S-
and P-wave moments with L ¼ 1; 2 with an exception of t31
near 600–800 MeV (Fig. 14 of Ref. [54]). Since this
observation holds true in all other measurements of
π−πþ and πþπ− production, it is a common conclusion
that for dipion masses m < 980 MeV at low t S- and
P-wave amplitudes dominate and D-wave amplitudes can
be neglected [6–16].
Form > 980 MeV at low t [from the f0ð980Þ resonance]

there is a sudden increase in the moments with L ¼ 3; 4 and
the D-waves can no longer be neglected. Measurements on
polarized targets in fact enable us to determine the D-wave
amplitudes (intensities) from 980–1600 MeV in 20 MeV
bins. In the mass range 980 < m < 1080 MeV theD-wave
amplitudes are still relatively small compared to theP-wave
which enables us to make a crude approximation of the
S- and P-wave dominance even in this mass range. Figure 1
in Ref. [8] shows that the ratio of the D-wave intensities to
the sum of the S- and P-wave intensities is 0.37 at 990MeV
and 0.47 at 1070 MeV. Since it is not possible to determine
an exact analytical solution for the D-wave amplitudes

in terms of the measured polarization data certain approx-
imations must be made in these analyses.
There are five D-wave transversity amplitudes: three

unnatural exchange amplitudesD0
τ ; DU

τ ; D2U
τ with helicities

λ ¼ 0; 1; 2 and two natural exchange amplitudes DN
τ ; D2N

τ

with helicities λ ¼ 1; 2. The observables ak;τ; k ¼ 1; 6 and
rl;l ¼ 1; 3 can be written in the form

ak;τ ¼ ck;τ þ dk;τ þ ek;τ

rl ¼ rlðSPÞ þ rlðDÞ ð8:9Þ
where the ck;τ are the S- and P-wave terms given in
Table III, dk;τ are D-wave terms involving D-wave ampli-
tudes with λ ≤ 1 and ek;τ are terms involving λ ¼ 2

amplitudes. Similarly, rlðSPÞ involve only the S- and P-
wave terms given in Table III and rlðDÞ include D-waves.
The expressions for dk;τ; ek;τ; rlðDÞ in terms of the trans-
versity amplitudes are given in Refs. [24,53].
We wish to quantify the effect of the D-waves on the

unitary amplitude analysis, both constrained and uncon-
strained. In our new analysis we shall neglect the smallest
D-wave amplitudes D2U and D2N and set ek;τ ¼ 0. For all
relative phases we assume the consistent unitary phases
given in Table II with the modifications (8.3) and (8.4). For
the moduli jD0

τ j; jDU
τ j; jDN

τ j we shall use a series of
estimates obtained as follows to study the response of
the unitary amplitudes.
For dipion masses m > 980 MeV we know the D-wave

intensities IðAÞ ¼ jAuj2 þ jAdj2, A ¼ D0; DU;DN from the
amplitude analysis of the CERNmeasurement [8]. We have
linearly extrapolated these intensities from their values
I2ðAÞ at m2 ¼ 990 MeV to value I1ðAÞ ¼ TI2ðAÞ at m1 ¼
590 MeV where the fraction T defines the slope parameter.
The extrapolated intensities at mass m are

IðA;mÞ ¼ TI2ðAÞ þ
ð1 − TÞI2ðAÞ
m2 −m1

ðm −m1Þ: ð8:10Þ

Below 980 MeV there is a fairly constant ratio of
the moduli jAuj2∶jAdj2 ≈ 1∶3 for all S- and P-wave
amplitudes. Using this ratio we have reconstructed the
moduli of the D-wave amplitudes from the intensities

jAuðmÞj2 ¼ 0.25IðA;mÞF
jAdðmÞj2 ¼ 0.75IðA;mÞF ð8:11Þ

where the factor F accounts for the sudden decrease of
D-wave moments below 980 MeV. We varied the slope
parameter T in the range from 0.05 to 0.75 to estimate the
D-wave amplitudes below 980 MeV. Above 980 MeV we
have used the amplitudes (8.11) calculated from the
measured intensities of the analysis [8]. The analysis
was performed for F ¼ 1.00 and for F ¼ 0.50. We
have used the conversion factor 0.109 μb=20 MeV ¼
1000 Events=20 MeV to convert the units of Ref. [8] to
units of Ref. [54] used in our analysis.

TABLE IV. Three sets of predictions of unitary amplitude
analysis with χ2 for R0

x data constrained to within 3σ, 5σ and
unconstrained. The notation is as defined in the text. The
sampling size is 10 million data points.

Prediction 3σ 5σ No constraint

Empty bins 11 of 25 9 of 25 5 of 25
Pass/bin 1 1 144, 227
χ2ðhR0

uiÞ 0.329 0.349 0.352
χ2ðhR0

yiÞ 0.316 0.329 0.383
χ2ððR0

xÞs1Þ 0.891 1.278 6.494
χ2ððR0

xÞ01Þ 0.718 0.737 3.762
χ2ððR0

xÞ−11Þ 0.689 0.681 2.156
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To accommodate the interference terms between the
D-wave amplitudes and S- or P-wave amplitudes we used a
form of a perturbation theory. Our code first calculated the
unitary analysis assuming ck;τ ¼ ak;τ and, independently,
the extrapolation of the D-wave amplitudes. The resulting
S- and P-wave amplitudes were used to calculate the terms
dk;τ. Then new “perturbed” ck;τ ¼ ak;τ − dk;τ were used to
calculate new unitary S- and P-wave amplitudes to see their
response to the presumed absence of the D-waves in the
new parameters ck;τ.

The results for the critical amplitude jSdj2 from the
unconstrained analysis with F ¼ 1.00 at T ¼ 0.05, 0.30,
0.50, 0.75 are shown in Fig. 4. There are no physical
solutions for m > 800 MeV and for m < 700 MeV for
T ¼ 0.50 and T ¼ 0.75while there is only a little change in
the ρ0ð770Þ mass region at all T. These results suggest that
the D-wave contribution is overestimated in this unitary
amplitude analysis which motivates us to consider the
case F ¼ 0.50.
The results for the critical amplitude jSdj2 from the

unconstrained analysis with F ¼ 0.50 at T ¼ 0.05, 0.30,
0.50, 0.75 are shown in Fig. 5. Apart from an increase of
empty bins from 5 to 8–11 at masses away from the ρ0ð770Þ
mass, this amplitude shows only a very weak response to
D-waves at all T. In particular, there is no change in the
presence of the ρ0ð770Þ resonance in the S-wave.
Table V quantifies the responses of the unitary analysis

with F ¼ 0.50 constrained by 5σ fits to the data on SDM
elements R0

x and of the analysis unconstrained by such fits.
In the unconstrained analysis there is a modest improve-
ment in χ2 for ðR0

xÞs1 but which remains still too high. The
constrained analysis has a higher number of empty bins at
all T than the constrained analysis without D-waves and a
similarly negligible number of physical solutions per bin.
On this basis we conclude that the unitary solution is
excluded at the 5σ level with or without the D-wave
contributions in the input data.

IX. EVIDENCE FOR THE QUANTUM
ENVIRONMENT AND ITS PURE DEPHASING

INTERACTION WITH PARTICLE SCATTERING
PROCESSES

A. The hypothesis of the quantum environment

In the Introduction we have put forward a hypothesis that
the physical Universe includes a quantum environment
which interacts with some particle scattering and decay
processes. To be consistent with the conservation laws of
the Standard Model this new interaction must be a pure

TABLE V. Four sets of predictions of unitary amplitude
analysis including dipion D-waves D0; DU;DN assuming F ¼
0.50 with χ2 for R0

x data constrained to within 5σ and uncon-
strained for parameters T ¼ 0.05 and T ¼ 0.75. The notation is
as defined in the text. The sampling size is 10 million data points.

Prediction 5σ 5σ No constraint No constraint

T 0.05 0.75 0.05 0.75
Empty bins 12 of 25 14 of 25 8 of 25 11 of 25
Pass/bin 1 106 121 190 80 498
χ2ðhR0

uiÞ 0.379 0.380 0.351 0.370
χ2ðhR0

yiÞ 0.360 0.365 0.383 0.394
χ2ððR0

xÞs1Þ 1.776 1.379 5.112 4.501
χ2ððR0

xÞ01Þ 0.966 1.024 3.948 3.643
χ2ððR0

xÞ−11Þ 0.830 0.641 2.452 2.601
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FIG. 4. Response of the amplitude jSdj2 to D-wave amplitudes
in unitary analysis assuming F ¼ 1.00.
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FIG. 5. Response of the amplitude jSdj2 to D-wave amplitudes
in unitary analysis assuming F ¼ 0.50.
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dephasing interaction of the produced S-matrix final state
ρfðSÞ with quantum states ρðEÞ of the environment. It
manifests itself by modifying (dephasing) the phases of the
S-matrix amplitudes in a nonunitary evolution of the
produced final state ρfðSÞ to the observed final state
ρfðOÞ given by the Kraus representation.
The most general form of Kraus representation reads

ρfðOÞ ¼
XM
k¼1

AkρfðSÞAþ
k : ð9:1Þ

In quantum theory the nonunitary evolution law (9.1) can
be always derived from a unitary coevolution of the initial
quantum system Si with a quantum environment E by
tracing out the environment in the joint final state
ρfðSf; EÞ. The unitary evolution is given by

ρfðSf; EÞ ¼ UρðEÞ ⊗ ρðSiÞUþ ð9:2Þ

where the quantum state(s) of the environment are
described by the density matrix [17,53]

ρðEÞ ¼
XM
m;n

pmnðEÞjemihenj: ð9:3Þ

Here jemi; m ¼ 1;M are M orthonormal eigenstates
describing the interacting degrees of freedom of the
environment. Their number is limited by the dimensions
of the Hilbert spaces [3]

M ¼ dimHðEÞ ≤ dimHðSiÞ dimHðSfÞ: ð9:4Þ

Assuming the conservation of the quantum numbers of the
states jemi by the evolution operator

hekjUjemi ¼ δkmhekjUjeki ¼ δkmVk ð9:5Þ
the trace ρðSfÞ ¼ TrEρfðSf; EÞ reads

ρðSfÞ ¼
XM
k¼1

pkkVkρðSiÞVþ
k : ð9:6Þ

In particle scattering processes we use the notation ρðSiÞ ¼
ρiðSÞ and ρðSfÞ ¼ ρfðOÞ.
Given (9.1) we can always enlarge the Hilbert space

HðSiÞ to HðEÞ ⊗ HðSiÞ with dimHðEÞ ¼ M, define a
unitary evolution of this system and recover (9.6) as a trace
over the “quantum environment” HðEÞ. Given (9.6) we
always recover (9.1) with the replacement

ffiffiffiffiffiffiffi
pkk

p
Vk ≡ Ak: ð9:7Þ

The two forms of the nonunitary evolution are equivalent
provided M satisfies (9.4). The quantum environment can
be either an ancillary nonphysical (mathematical) quantum

environment, or it can be a real physical quantum envi-
ronment [3]. Any interaction of a physical environment
with a quantum system is described by (9.6).

B. The evidence for a pure dephasing nonunitary
evolution in πN → ππN

The existence of a physical quantum environment and its
pure dephasing interaction with particle scattering is
supported by the following chain of evidence for the
nonunitary evolution in πN → ππN processes and its
dephasing character. We assume the nonunitary evolution
law (9.1) without a reference to quantum environment but
the evidence applies equally well for the nonunitary
evolution law (9.6) assuming interaction with the quantum
environment.

1. The observed amplitudes are not S-matrix amplitudes

Amplitude analysis of the S- and P-wave subsystem with
unitary relative phases yields a unique solution from the
data on the observables R0

u and R0
y which fails to fit

the experimental data on the observables R0
x at the 5σ

level. The moduli of the transversity amplitudes in this
analysis are nearly identical to the moduli found in
amplitude analyses without unitary phases. There is there-
fore only one reason for this failure: the unitary relative
phases. This means that the partial wave amplitudes
describing the CERN data cannot be the S-matrix ampli-
tudes and must have nonunitary phases.

2. Nonunitary evolution is involved in the
πN → ππN processes

All previous amplitude analyses of the S- and P-wave
subsystem in π−p → π−πþn at 17.2 GeV=c [6–15] and at
1.78 GeV=c [16] as well as in πþn → πþπ−p at 5.98 and
11.85 GeV=c [10–12] found nonunitary relative phases
ΦLS, ΦLU and ΦUS. The analyses [6–9] and the extension
[55] of recent analyses Refs. [13,15] included the data on
R0
x in their fits. The analyses of the S,P,D and S,P,D,F

subsystems yield nonunitary relative phases at higher
dipion masses and momentum transfers [7–9]. Recent
amplitude analysis of π−p → π0π0n at 18.3 GeV=c also
found nonunitary phases [56]. The contrast between the
predicted unitary relative phases and the observed nonuni-
tary phases presents unambiguous evidence for a dephasing
nonunitary evolution involved in the πN → ππN.

3. The nonunitary evolution evolves the produced final
state ρf ðSÞ into the observed state ρf ðOÞ

The evidence for this claim comes from two independent
features of the observed amplitudes.

(i) In Ref. [24] we present a survey of S-wave moduli
and intensities from all amplitude analyses of the
five measurements of π−p → π−πþn and πþn →
πþπ−p on polarized targets. All these analyses
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provide remarkably consistent evidence for a rholike
state in the S-wave of these processes which is not
seen in the π−p → π0π0n amplitude analysis of the
high statistics measurement at 18.3 GeV=c [56]. In
Ref. [15] we identify this rholike state with ρ0ð770Þ
resonance indicating a ρ0ð770Þ − f0ð980Þ spin
mixing in the S- and P-wave subsystem. As is the
case with ρ0ð770Þ − ωð782Þ isospin mixing, the
ρ0ð770Þ − f0ð980Þ spin mixing requires a spin
mixing interaction. Since there is no spin mixing
interaction in the Standard Model, this nonstandard
interaction must originate in the nonunitary evolu-
tion involved in the π−N → π−πþN processes.

(ii) The analyses [13,15] established that the mass and
the width of the ρ0ð770Þ resonance Breit-Wigner
peak observed in all P-wave amplitudes do not
depend on its helicity λ as required by the rotational/
Lorentz symmetry of the S-matrix. These results are
similar to the results of the unitary analysis shown
in Fig. 3.

These two findings imply that the resonance production
and the spin mixing have separate dynamical origins. There
is no reason to assume that the production process is
described by anything other than the S-matrix dynamics.
While the observed amplitudes reveal nonunitary spin
mixing, they are also consistent with the Lorentz symmetric
S-matrix dynamics and its unitary evolution law. This is
possible if and only if the nonunitary evolution evolves the
produced final state ρfðSÞ into the observed final state
ρfðOÞ as described by the Kraus representation (9.1) or
(9.6). The dephasing nonunitary evolution is then a final
state evolution described by the amplitudes of the Kraus
operators.

4. The nonunitary evolution is a pure
dephasing evolution

We now show that the nonunitary evolution is a pure
(nondissipative) dephasing evolution. Suppose such is not
the case and the evolution is dissipative. As the result of the
exchange of the four-momentum of the final state particles
with the environment there is no conservation of the total
four-momentum. As a result the measured four-momenta of
the two produced pions will no longer be able to generate
the Breit-Wigner shape of produced resonances in the
observed amplitudes. There is also a breakdown of
the conservation of the total angular momentum due to
the exchange of angular momentum with the environment
leading to the breaking of rotational and Lorentz symmetry
by the produced resonances. The observed mass and the
width of the distorted resonance like ρ0ð770Þ will depend
on its helicity, contrary to the observations. We must
conclude that the nonunitary evolution (9.1) or (9.6) is a
pure dephasing evolution that leaves all four-momenta of
the final state particles intact.

C. Evidence for a physical quantum environment

The hypothesis of the existence of the quantum envi-
ronment is validated (A) by the necessity to explain the
physical origin of the nonunitary evolution as a physical
process and (B) by identifying the quantum environment as
a component of dark matter in a plausible model.

1. The nonunitary evolution as a physical process

A nonunitary evolution of a quantum system described
by (9.1) by itself does not necessarily require an interaction
of the system with a physical environment. The chief
difference between the nonunitary evolution law (9.1) and
(9.6) is that the Kraus operators Ak in (9.1) describe only
the nonunitary evolution of the quantum system. In this
form Kraus operators lack any other physical meaning and
there is no physical limit on their numberM. As well in this
case the nonunitary evolution has no explicit physical
origin. In contrast the Kraus operators Vk in (9.6) describe
both the nonunitary evolution of the system and its
interaction with the environment which gives them a clear
physical meaning. In this case the nonunitary evolution is
generated by the interaction of the quantum system with the
quantum environment.
The observed non-S-matrix amplitudes are a result of the

nonunitary evolution law given by (9.1) or (9.6) and carry
information about a new physics beyond the Standard
Model. The nonunitary phases and spin mixing are gen-
erated by the Kraus operators Ak or Vk and are specific
signatures of this new physics. We expect that the new
physics originates in a new physical process, not in abstract
operators like Ak that lack a clear physical meaning and
whose number M is not physically restricted. This is
particularly desirable in the case of the ρ0ð770Þ −
f0ð980Þ spin mixing which implies spontaneous violation
of rotational/Lorentz symmetry in the observed S- and P-
wave amplitudes [17]. We expect such an important new
physical effect to have a new physical origin.
The experimental evidence presented in the preceding

section does not distinguish between the nonunitary evo-
lution law (9.1) without a reference to quantum environ-
ment and the nonunitary evolution law (9.6) generated by
the interaction of the final state ρfðSÞ with the quantum
environment. However, when we impose the condition
(9.4) on the dimensionM then the nonunitary evolution law
(9.1) is entirely equivalent to the nonunitary law (9.6) and
we are free to describe the nonunitary evolution as an
interaction of the system with a quantum environment. This
enables us to identify the new physical process and its new
physics with the new pure dephasing interaction with the
environment.
In the sequel paper [17] we show that the consistency of

the pure dephasing interaction with the symmetries and
conservation laws of the Standard Model in πN → ππN
processes requires that it be a dipion spin mixing inter-
action. Its effect is the mixing of S-matrix partial wave
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amplitudes with different spins to form new observable
partial wave amplitudes. The theory predicts ρ0ð770Þ −
f0ð980Þ spin mixing in the S- and P-wave amplitudes in
π−p → π−πþn in excellent qualitative agreement with the
experimental results [13,15]. Quantitative agreement with
the CERN data is presented in the new analysis using a spin
mixing mechanism [53]. The consistency of this new
interaction with the Standard Model also supports the
necessity for a physical process behind the nonunitary
evolution and thus for a physical quantum environment.
Kraus operators must inform us about such a new

process. They can only do so if they are interpreted as
matrix elements Vk ¼ hekjUjeki describing a coevolution
of the state ρfðSÞwith the physical quantum environment in
terms of its interacting degrees of freedom. What also
distinguishes (9.6) from (9.1) is the explicit presence of the
information about the quantum environment in (9.6) in
terms of the probabilities pkk; k ¼ 1;M. As a result the
nonunitary evolution law must take the form (9.6) gen-
erated by a physical pure dephasing interaction of the
produced state ρfðSÞ with the quantum state ρðEÞ of the
environment.

2. Physical nature of the quantum environment:
Dark matter

The necessary and sufficient condition for the quantum
environment to be a real physical environment is that its
interacting degrees with the quantum system be physical
interacting degrees of freedom, not ancillary ones. Then the
pure dephasing interaction of the quantum system with the
quantum environment will be also a real physical inter-
action. To validate the hypothesis of the existence of the
quantum environment we need to identify the physical
degrees of freedom of the environment which will also
identify the process that generates the nonunitary evolution.
The consistency of the pure dephasing interaction with

the particle Standard Model suggests that the quantum
environment has a universal presence in the Universe
which manifests itself in astrophysical observations.
Astrophysical observations provide convincing evidence
for the existence of dark matter and dark energy which are
omnipresent environments in the Universe. Dark matter is
characterized by nonstandard interactions with baryonic
matter. The quantum environment is characterized by
mixed quantum states ρðEÞ given by (9.3) where the
eigenstates jemi describe its interacting degrees of freedom.
The pure dephasing interaction is also a nonstandard
interaction between the produced states ρfðSÞ and the
quantum states ρðEÞ. In this aspect there is an obvious
similarity between the dark matter and the quantum
environment.
It is our conjecture that the quantum states ρðEÞ are

particles of a distinct component of cold dark matter and
that the pure dephasing interactions are its interactions with
baryonic matter. The eigenstates jeki could represent some

new physical interacting degrees characterizing this com-
ponent of dark matter and its nonstandard interactions with
baryonic matter. But particle physics already knows of
physical eigenstates with nonstandard interactions: neu-
trino mass eigenstates. In Ref. [53] we find that the
dimension M ¼ 4. This provides a specific physical moti-
vation to identify the four eigenstates jemi with the four
neutrino mass eigenstates jmki including the new presumed
light mass eigenstate jm4i. We refer to the mixed states
ρðEÞ as dark neutrinos. In contrast the three active
neutrinos νe; νμ; ντ of the Standard Model and the new
light sterile neutrino νs are pure states. All neutrinos engage
in dephasing interactions and form the quantum environ-
ment. The light sterile neutrino background can be inter-
preted as hot dark matter.
Hot dark neutrinos were created in dephasing inter-

actions of all flavor neutrinos with a variety of scattering
processes in the early Universe and then redshifted to form
warm and then a late cold component of cold dark matter.
A careful analysis of the formation of galactic and large
scale structures in the Universe indicates that most dark
matter should be cold or warm at the onset of the galaxy
formation when the temperature of the Universe was about
1 keV. At these temperatures dark neutrinos still formed a
hot dark matter and thus can account for only a part of the
dark matter. A possible candidate for warm dark matter is a
sterile neutrino with mass 7.1 keV produced via lepton-
number driven Mikheev-Smirnov-Wolfenstein resonant
conversion of active neutrinos near or at the big bang
nucleosynthesis epoch [57,58]. These sterile neutrinos are
predicted to have a two-photon x-ray radiative decay at
3.55 keV [59,60]. An emission line at 3.55–3.57 keV was
recently detected in the x-ray spectrum of galaxy clusters in
two independent observations [61,62]. These results sug-
gest a multicomponent neutrino structure of dark matter
with dark neutrinos being one such component.
Interpreting the quantum environment as a component of

dark matter endows it with a physical and material identity.
The nonunitary evolution is generated by the interaction of
the produced final states ρfðSÞ with the cold dark neutrino
component of dark matter and the light sterile and active
neutrino backgrounds. We elaborate on this model of the
quantum environment in Ref. [53].

X. A PHYSICAL INTERPRETATION OF
THE UNITARY AND NONUNITARY

RELATIVE PHASES

It follows from the unitary conditions (7.14) and (7.15)
that all unnatural exchange amplitudes UJ

λτ as well as all
natural exchange amplitudes NJ

λτ share the same absolute
phase up to an integer multiple of π

ΦðUJ
λτÞ ¼ ΦðSτÞ þ πnðUJ

λτÞ
ΦðNJ

λτÞ ¼ ΦðNτÞ þ πnðNJ
λτÞ: ð10:1Þ
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The unitary relative phases thus imply that if there is a
resonance at mass mR in a partial wave with J ¼ JR, then
all contributing partial waves will have the same resonant
phase near mR. Mathematically, this does not necessarily
imply that any of the partial waves with J ≠ JR must
resonate and show a resonant peak or a dip since the
nonresonant moduli can still have resonant phases.
Although the conditions (7.13) appear to allow such
resonance mixing, it is excluded by the symmetries of
the S-matrix.
The S-matrix amplitudes have a general form

UJ
λτ ¼ expΦðSτÞ½ð−1ÞnðUJ

λτÞjUJ
λτj þ i0�

NJ
λτ ¼ expΦðNτÞ½ð−1ÞnðNJ

λτÞjNJ
λτj þ i0�: ð10:2Þ

The phases ΦðSτÞ and ΦðNτÞ are functions of energy s,
momentum transfer t and dipion massm. Near the resonant
massmR the phases give rise to the usual form of the partial
wave amplitudes AJR

λτ with J ¼ JR in terms of Breit-Wigner
amplitudes aJRBWðmÞ and a complex background BJR

λτ

AJR
λτ ¼ hπ−πþ; JRλjTjR; λiaJRBWðmÞhR; λτnjTj0τi þ BJR

λτ

ð10:3Þ

where R is the resonance and T is the transition matrix
which describes the production and subsequent decay of
the resonance R in the partial wave amplitude AJR

λτ . The
production and decay processes respect the conservation
laws of the Standard Model within the amplitude AJR

λτ .
The unitary relative phases of the S-matrix amplitudes

and the nonunitary relative phases of the observed ampli-
tudes may have a simple and interesting physical inter-
pretation. Consider complex standing waves on a string of
the length L

ynðx; tÞ ¼ AnðxÞ cosðωntÞ ¼ an expðiknxÞ cosðωntÞ
ð10:4Þ

arising from the superposition of two complex waves

ynðx; tÞ ¼ an exp iðknx − ωntÞ þ an exp iðknxþ ωntÞ
ð10:5Þ

where the integer n ≥ 1. With the wavelength λn ¼ n=2L
the wave number kn ¼ 2π=λn ¼ πn=L. With tension F and
linear mass density of the string μ the angular frequency
ωn ¼ ðn=2LÞ ffiffiffiffiffiffiffiffiffi

F=μ
p

. The amplitude an may depend on ωn.
The real part Reynðx; tÞ and the imaginary part Imynðx; tÞ
correspond to standing waves on the string open and closed
at both ends, respectively,

Reynðx; tÞ ¼ an cosðknxÞ cosðωntÞ
Imynðx; tÞ ¼ an sinðknxÞ cosðωntÞ: ð10:6Þ

At the far end x ¼ L the phase of the standing wave is given
by Φn ¼ knL ¼ nπ. At x ¼ L the relative phases of the
standing waves are

Φn − Φm ¼ ðn −mÞπ ¼ 0;�π;�2π;… ð10:7Þ
and their wave functions ynðL; tÞ are

ynðL; tÞ ¼ cosðωntÞ½ð−1ÞnjAnðLÞj þ i0�: ð10:8Þ
A vibrating string in a vacuum (an empty space) does not
generate sound waves. In a medium the vibrating string
generates sound waves of the frequency ωn but the sound
waves are no longer standing waves. As a result two sound
waves with frequencies ωn and ωm will no longer have a
relative phase ðn −mÞπ as the wavelength changes in the
medium. The relative phases will change for the sound
waves in the medium.
The unitary relative phases of the S-matrix partial wave

amplitudesUJ
λτ andN

J
λτ have the same relative phases as the

vibrating string at x ¼ L. We can write (10.2) for UJ
λτ in

the form

ReUJ
λτ ¼ cosΦðSτÞ½ð−1ÞnðUJ

λτÞjUJ
λτj þ i0�

ImUJ
λτ ¼ sinΦðSτÞ½ð−1ÞnðUJ

λτÞjUJ
λτj þ i0� ð10:9Þ

and similarly for NJ
λτ. The comparison of (10.9) and (10.8)

suggests the real and imaginary parts of these partial wave
amplitudes are both akin to complex standing waves on
strings open and closed at both ends. This similarity
suggests to consider the S-matrix partial wave amplitudes
as representations of some kind of complex dynamical
(vibrational) modes confined to a finite dynamical region of
a transient compound state. The modes are associated with
the produced partial waves jpcpd; Jλ; τi. In empty space
these partial waves propagate without a change leaving the
S-matrix amplitudes intact. In the presence of a quantum
environment the propagating partial waves jpcpd; Jλ; τi are
modified by the environment. This results in the modifi-
cation of the S-matrix partial wave amplitudes into the
observed partial wave amplitudes with the ensuing non-
unitary relative phases. The quantum environment is
responsible not only for the generation of the nonunitary
phases but also for the observed ρ0ð770Þ − f0ð980Þmixing
[17,24,53].

XI. CONCLUSIONS AND OUTLOOK

We have presented a spin formalism that allowed us to
construct the full final state density matrix ρfðSÞ in πN →
ππN processes in S-matrix theory. We have shown that the
unitary evolution law imposes specific constraints on the
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relative phases of the transversity amplitudes UJ
λτ and NJ

μτ.
The contrast between these predicted phases and the
observed phases in all amplitude analyses of the pion
production process presents an apparent violation of the
unitary evolution law. Previous attempts to test unitary
evolution law were framed as the test of the quantum
mechanics itself. The central idea of this work is that an
apparent violation of the unitary evolution law does not
signal the breakdown of quantum theory. Rather it is
unambiguous evidence for a nonunitary evolution of the
produced final state ρfðSÞ to the observed final state ρfðOÞ
generated by a new interaction of the state ρfðSÞ with a
quantum environment. To render the production mecha-
nism accessible to experimental observation and to be
consistent with the Standard Model this new interaction
must be a pure dephasing interaction. This new nonstand-
ard dynamics represents a new physics beyond the
Standard Model.
We identify the quantum environment with dark neu-

trinos which form a distinct component of dark matter. This
interpretation endows the quantum environment with a
physical and material identity which connects it to the
physics of the dark sector of the Universe. Parts of the
quantum environment are also the active and light sterile

neutrino backgrounds. We elaborate on this model of the
quantum environment in Ref. [53].
The spin formalism developed in this work and its

consequences for the unitary phases of partial wave
amplitudes apply equally well to a number of other meson
production processes such as KN → KπN, πN → πKΛ,
K̄N → ππΛ and others. These processes could be measured
on polarized target and the measurements with Λ would
also allow measurements of recoil Λ polarization by its
weak decays. Modern polarized targets reach high values of
polarization and enable us to select an arbitrary direction of
the polarization vector [50]. Such experiments would
provide new and independent tests of the unitary evolution
law and advance our understanding of the quantum
environment and its pure dephasing interactions with
particle scattering processes.

APPENDIX: PROOF OF THE UNITARY
EVOLUTION CONSTRAINTS ON PARITY

CONSERVING TRANSVERSITY AMPLITUDES

The unitary evolution constraints (7.12) on parity con-
serving transversity amplitudes follow from the constraint
Axx ¼ −Auu which we can write in the form

ðI1xÞ2 þ ðI3xÞ2 þ ðI2uÞ2 − ðI0uÞ2 ¼ −ðI1uÞ2 − ðI3uÞ2 − ðI2xÞ2 þ ðI0xÞ2: ðA1Þ

Expansions of the intensities involve ReðYJ
λY

J0�
λ0 Þ and ImðYJ

λY
J0�
λ0 Þ on the lhs and rhs of (A1), respectively. Using the

expressions for Rj
k in Table I in the intensities (6.32) and (6.33), relabeling of some terms, parity relations (5.16), and a

relation for spherical harmonics YL
−Mðθ;ϕÞ ¼ ð−1ÞMðYL

Mðθ;ϕÞÞ�, the intensities on the lhs of (A1) read

I1x ¼ −2
X
J;λ≥0

X
J0;λ0≥0

ηληλ0 ðξλξλ0ReðUJ
λuU

J0�
λ0dÞReYJ

λReY
J0
λ0 − 4ReðNJ

λuN
J0�
λ0dÞImYJ

λ ImYJ0
λ0 Þ

I3x ¼ þ2
X
J;λ≥0

X
J0;λ0≥0

ηληλ0 ðξλξλ0 ImðUJ
λuU

J0�
λ0dÞReYJ

λReY
J0
λ0 þ 4ImðNJ

λuN
J0�
λ0dÞImYJ

λ ImYJ0
λ0 Þ

I2u ¼
X
J;λ≥0

X
J0;λ0≥0

ηληλ0 ðξλξλ0 ðReðUJ
λuU

J0�
λ0uÞ − ReðUJ

λdU
J0�
λ0dÞÞReYJ

λReY
J0
λ0 − 4ðImðNJ

λuN
J0�
λ0uÞ − ImðNJ

λdN
J0�
λ0dÞÞImYJ

λ ImYJ0
λ0 Þ

I0u ¼
X
J;λ≥0

X
J0;λ0≥0

ηληλ0 ðξλξλ0 ðReðUJ
λuU

J0�
λ0uÞ þ ReðUJ

λdU
J0�
λ0dÞÞReYJ

λReY
J0
λ0 þ 4ðImðNJ

λuN
J0�
λ0uÞ þ ImðNJ

λdN
J0�
λ0dÞÞImYJ

λ ImYJ0
λ0 Þ ðA2Þ

where ηλ ¼ 1; ξλ ¼ 1 for λ ¼ 0 and ηλ ¼ 1ffiffi
2

p ; ξλ ¼ 2 for λ > 0. Using these expressions the lhs of (A1) reads

A ¼ −16
X
J;λ≥0

X
J0;λ0≥0

X
K;μ>0

X
K0;μ0>0

Cλλ0;μμ0 ðReðUJ
λuU

J0�
λ0uN

K
μuNK0�

μ0u Þ þ ReðUJ
λdU

J0�
λ0dN

K
μdN

K0�
μ0d Þ

þ 2ReðUJ
λuN

K�
μd U

J0�
λ0dN

K0
μ0uÞÞReYJ

λReY
J0
λ0 ImYK

μ ImYK0
μ0 ðA3Þ

where Cλλ0;μμ0 ¼ ηληλ0ημημ0ξλξλ0ξμξμ0 and where we used some relabeling of dipion spins and helicities and the identities
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X
J;λ≥0

X
J0;λ0≥0

ηληλ0ξλξλ0 ImðUJ
λτU

J0�
λ0τ ÞReYJ

λReY
J0
λ0 ¼ 0

X
K;μ>0

X
K0;μ0>0

ημημ0ξμξμ0 ImðNK
μτNK0�

μ0τ ÞImYK
μ ImYK0

μ0 ¼ 0: ðA4Þ

After a similar procedure the rhs of (A1) can be brought to the form

B ¼ Aþ 16
X
J;λ≥0

X
J0;λ0≥0

X
K;μ>0

X
K0;μ0>0

Cλλ0;μμ04ImðUJ
λuN

K�
μd ÞImðUJ0�

λ0dN
K0
μ0uÞReYJ

λ ImYK
μ ReYJ0

λ0 ImYK0
μ0 : ðA5Þ

Since A ¼ B Eq. (A5) immediately implies the conditions (7.12).
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