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A symmetry-preserving Dyson-Schwinger equation treatment of a vector-vector contact interaction is
used to compute dressed-quark-core contributions to the nucleon σ-term and tensor charges. The latter
enable one to directly determine the effect of dressed-quark electric dipole moments (EDMs) on neutron
and proton EDMs. The presence of strong scalar and axial-vector diquark correlations within ground-state
baryons is a prediction of this approach. These correlations are active participants in all scattering events
and thereby modify the contribution of the singly represented valence quark relative to that of the doubly
represented quark. Regarding the proton σ-term and that part of the proton mass which owes to explicit
chiral symmetry breaking, with a realistic d-u mass splitting, the singly represented d quark contributes
37% more than the doubly represented u quark; and in connection with the proton’s tensor charges,
δTu, δTd, the ratio δTd=δTu is 18% larger than anticipated from simple quark models. Of particular note,
the size of δTu is a sensitive measure of the strength of dynamical chiral symmetry breaking; and δTd
measures the amount of axial-vector diquark correlation within the proton, vanishing if such correlations
are absent.
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I. INTRODUCTION

In recent years a global approach to the description of
nucleon structure has emerged, one in which we may
express our knowledge of the nucleon in the Wigner
distributions of its basic constituents and thereby provide
a multidimensional generalization of the familiar parton
distribution functions (PDFs). The Wigner distribution is a
quantum mechanics concept analogous to the classical
notion of a phase space distribution. Following from such
distributions, a natural interpretation of measured observ-
ables is provided by construction of quantities known as
generalized parton distributions (GPDs) [1–8] and trans-
verse momentum-dependent distributions (TMDs) [9–15]:
GPDs are linked to a spatial tomography of the nucleon;
and TMDs allow for its momentum tomography. A new
generation of experiments aims to provide the empirical
information necessary to develop a phenomenology of
nucleon Wigner distributions.
At leading twist there are eight distinct TMDs, only three

of which are nonzero in the collinear limit; i.e., in the
absence of parton transverse momentum within the target,
k⊥ ¼ 0: the unpolarized ðf1Þ, helicity ðg1LÞ and trans-
versity ðh1TÞ distributions. In connection with the last
of these, one may define the proton’s tensor charges
(q ¼ u; d;…)

δTq ¼
Z

1

−1
dxhq1TðxÞ ¼

Z
1

0

dx½hq1TðxÞ − hq̄1TðxÞ�; ð1Þ

which, as illustrated in Fig. 1, measures the light-front
number density of quarks with transverse polarization
parallel to that of the proton minus that of quarks with
antiparallel polarization; viz., it measures any bias in quark
transverse polarization induced by a polarization of the
parent proton. The charges δTq represent a close analogue
of the nucleon’s flavor-separated axial charges, which
measure the difference between the light-front number
density of quarks with helicity parallel to that of the proton
and the density of quarks with helicity antiparallel [16]. In
nonrelativistic systems the helicity and transversity distri-
butions are identical because boosts and rotations commute
with the Hamiltonian.
The transversity distribution is measurable using Drell-

Yan processes in which at least one of the two colliding
particles is transversely polarized [17], but such data is not
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FIG. 1 (color online). The tensor charge, Eq. (1), measures the
net light-front distribution of transversely polarized quarks inside
a transversely polarized proton.
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yet available. Alternatively, the transversity distribution is
accessible via semi-inclusive deep-inelastic scattering
using transversely polarized targets and also in unpolarized
eþe− processes, by studying azimuthal correlations
between produced hadrons that appear in opposing jets
(eþe− → h1h2X). Capitalizing on these observations, the
transversity distributions were extracted through an analy-
sis of combined data from the HERMES, COMPASS and
Belle collaborations [18], and those distributions have been
used to produce an estimate of the proton’s tensor charges,
with the following flavor-separated results:

δTu ¼ 0.39þ0.18
−0.12 ; δTd ¼ −0.25þ0.30

−0.10 ; ð2Þ

at a renormalization scale ζA ¼ 0.9 GeV. Given that the
tensor charges are a defining intrinsic property of the
nucleon, the magnitude of the errors in Eq. (2) is unsat-
isfactory. It is therefore critical to better determine δTu,
δTd. Consequently, following upgrades at the Thomas
Jefferson National Accelerator Facility (JLab), it is antici-
pated [19] that experiments [20,21] in Hall-A (SoLID)
and Hall-B (CLAS12) will provide a far more precise
determination of the tensor charges.
Naturally, measurement of the transversity distribution

and the tensor charges will not reveal much about the strong
interaction sector of the Standard Model unless these
quantities can be calculated using a framework with a
traceable connection to QCD. This point is emphasized
with particular force by the circumstances surrounding the
pion’s valence-quark PDF. As reviewed elsewhere [22],
numerous authors suggested that QCD was challenged by
a PDF parametrization based on a precise πN Drell-Yan
measurement [23]. However, the appearance of nonpertur-
bative calculations within the framework of continuum
QCD [24,25] forced reanalyses of the cross section, with
the inclusion of next-to-leading-order evolution [26] and
soft-gluon resummation [27], so that now those claims
are known to be false and the pion’s valence-quark PDF
may be viewed as a success for QCD [28]. The compar-
isons between experiment and computations of the pion
and kaon parton distribution amplitudes and electro-
magnetic form factors have reached a similar level of
understanding [29,30].
Herein, therefore, we compute the proton tensor charges

using a confining, symmetry-preserving Dyson-Schwinger
equation (DSE) treatment of a single quark-quark inter-
action; namely, a vector ⊗ vector contact interaction. This
approach has been proven useful in a variety of contexts,
which include meson and baryon spectra, and their electro-
weak elastic and transition form factors [31–41]. In fact, so
long as the momentum of the probe is smaller in magnitude
than the dressed-quark mass produced by dynamical chiral
symmetry breaking (DCSB), many results obtained in this
way are practically indistinguishable from those produced

by the most sophisticated interactions that have thus far
been employed in DSE studies [42–45].
It is apposite to remark here that confinement and DCSB

are two key features of the Standard Model; and much of
the success of the contact-interaction approach owes to its
efficacious expression of these emergent phenomena. They
are explained in some detail elsewhere [42–45] so that here
we only make a few remarks.
Confinement may be expressed via dynamically driven

changes in the analytic structure of QCD’s propagators and
vertices. In fact, contemporary theory predicts that both
quarks and gluons acquire mass distributions, which are
large at infrared momenta (see, e.g., Refs. [46–51]). The
generation of these mass distributions leads to the emer-
gence of a length scale ς ≈ 0.5 fm, whose existence is
evident in all modern studies of dressed-gluon and dressed-
quark propagators and which signals a marked change in
their analytic properties. In this realization, confinement is
a dynamical process that we implement in our treatment
of the contact interaction by employing a proper-time
regularization with the inclusion of an infrared cutoff.
This ensures the absence of quark production thresholds in
color singlet amplitudes via elimination of the associated
singularities [52].
DCSB is the source of more than 98% of the mass of

visible material in the Universe. It is very likely connected
intimately with confinement. However, whereas the nature
of confinement is still debated, DCSB is a theoretically
established nonperturbative feature of QCD [53], which has
widespread, measurable impacts on hadron observables,
e.g., Refs. [30,36,38,54–59], so that its expression in QCD
is empirically verifiable.
Apart from the hadron physics imperative, the value of

the nucleon tensor charges can be directly related to the
visible impact of a dressed-quark electric dipole moment
on neutron and proton EDMs [60]. Novel beyond-the-
Standard-Model (BSM) scalar operators may also conceiv-
ably be measurable in precision neutron experiments so that
one typically considers both the nucleon scalar and tensor
charges when exploring bounds on BSM physics [61].
The sum of the scalar charges of all active quark flavors
is simply the nucleon σ-term, which we therefore also
compute herein.
Relying on material provided in numerous appendixes,

we provide a brief outline of our computational framework
in Sec. II: both the Faddeev equation treatment of the
nucleon and the currents which describe the interaction of a
probe with a baryon composed from consistently dressed
constituents. This presentation scheme enables us to
embark quickly upon the description and analysis of our
results for the scalar and tensor charges, Secs. III and IV,
respectively. In Sec. V we use our results for the tensor
charges in order to determine the impact of valence-quark
EDMs on the neutron and proton EDMs. Section VI is an
epilogue.
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II. NUCLEON FADDEEV AMPLITUDE AND
RELEVANT INTERACTION CURRENTS

Our description of the nucleon’s dressed-quark core is
based on solutions of a Faddeev equation, which is illustrated
in Fig. 2 and detailed in Appendixes A and B. The approach
is grounded on the observation that in quantum field theory a
baryon appears as a pole in a six-point quark Green function.
The pole’s residue is proportional to the baryon’s Faddeev
amplitude, which is obtained from a Poincaré covariant
Faddeev equation that sums all possible quantum field
theoretical exchanges and interactions that can take place
between three dressed quarks [62].
The appearance of nonpointlike color-antitriplet quarkþ

quark (diquark) correlations within the nucleon is a
dynamical prediction of this framework [63]. These corre-
lations are nonpointlike, with the charge radius of a given
diquark being typically 10% larger than its mesonic
analogue [33]. Hence, diquarks are soft components within
baryons. As explained in Appendix B, the dominant
correlations in the nucleon are scalar (0þ) and axial-vector
(1þ) diquarks because, for example, they have the correct
parity and the associated mass scales are smaller than the
baryons’ masses [36]. Notably, evidence in support of
the presence of diquarks in the proton is accumulating
[35,56,59,64–70].
In order to determine the scalar and tensor charges of the

nucleon described by this Faddeev equation, the Q2 ¼ 0
values of three interaction currents are needed: elastic
electromagnetic, which determines the canonical normali-
zation of the nucleon’s Faddeev amplitude; scalar; and
tensor. The computation of these quantities is detailed in
Appendix C.

III. σ-TERM

The contribution of a given quark flavor (q ¼ u; d;…) to
a nucleon’s σ-term is defined by the matrix element

σq ¼ mqhNðpÞjq̄1qjNðpÞi; ð3Þ

where jNðpÞi is the state vector of a nucleon with
four-momentum p. The σ-term is independent of the
renormalization scale used in the computation, even though

the individual pieces in the product on the right-hand side
(rhs) are not. As explained in Appendix E, the scale
appropriate to our symmetry-preserving regularization of
the contact interaction is ζH ≈M, where M is the dressed-
quark mass.
Our computed value of the nucleon’s σ-term is reported

in Eq. (C49); viz.,

σN ¼ σu þ σd ¼ m3.05 ¼ 21 MeV: ð4Þ

This result is consistent with that obtained using the
Feynman-Hellmann theorem in connection with the results
from which Ref. [34] was prepared. An interesting way to
expose this is to recall Eq. (B28), which states that our
analysis describes a nucleon that is 77% dressed quarkþ
scalar diquark and 23% dressed quarkþ axial-vector
diquark. In the isospin symmetric limit, which we typically
employ, it follows that

σN ¼ 0.77½σQ þ σqq0 � þ 0.23½σQ þ σqq1 � ð5Þ

¼ σQ þ 0.77σqq0 þ 0.23σqq1 ; ð6Þ

where

σQ ¼ m
∂M
∂m ¼ 9.6MeV; ð7aÞ

σqq0 ¼ m
∂mqq0

∂m ¼ 16 MeV; ð7bÞ

σqq1 ¼ m
∂mqq1

∂m ¼ 10 MeV; ð7cÞ

again computed using material in Ref. [34]. Inserting
Eqs. (7) into Eq. (6), one obtains σN ¼ 24 MeV.1

Apparently, so far as the contribution of explicit chiral
symmetry breaking to the mass of the nucleon’s dressed-
quark core is concerned, the contact-interaction nucleon is
a simple system. This analysis also shows that our
diagrammatic computational method is sound; and hence
Eq. (4) is the rainbow-ladder (RL) truncation2 prediction of
a vector ⊗ vector contact interaction treated in the Faddeev
equation via the static approximation. [Inclusion of meson-
baryon loop effects will increase the result in Eq. (4) by
approximately 15% [73].]
In addition, the fact that Eqs. (4) and (6) yield similar

results emphasizes the important role of diquark correla-
tions because if the nucleon were just a sum of three
massive, weakly interacting dressed quarks, then one would
haveFIG. 2. Poincaré covariant Faddeev equation. Ψ is the Faddeev

amplitude for a nucleon of total momentum P ¼ pq þ pd. The
shaded rectangle demarcates the kernel of the Faddeev equation;
single line: dressed-quark propagator; Γ: diquark correlation
(Bethe-Salpeter) amplitude; and double line: diquark propagator.
(See Appendixes A and B for details.)

1The origin of the 11% mismatch is explained in Sec. C 1 g.
2The rainbow-ladder truncation is the leading-order term in the

most widely used, global-symmetry-preserving DSE truncation
scheme [71,72].
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σ3MN ¼ 3σQ ¼ 29 MeV; ð8Þ

which is 21% too large.
Adopting a different perspective, we note that the value

in Eq. (4) is roughly one-half that produced by a Faddeev
equation kernel that incorporates scalar and axial-vector
diquark correlations in addition to propagators and inter-
action vertices that possess QCD-like momentum depend-
ence [73]. It compares similarly with the value inferred in a
recent analysis [74] of lattice-QCD results for octet baryon
masses in 2þ 1-flavor QCD:

σN ¼ 45� 6 MeV: ð9Þ

In order to understand the discrepancy, consider Eqs. (7).
The value of σQ matches expectations based on gap
equation kernels whose ultraviolet behavior is consistent
with QCD [73,75]. On the other hand, with such inter-
actions one typically finds σqq0 ≳ σqq1 ≳ σρ ¼ 25 MeV.
We therefore judge that Eq. (4) underestimates the physical
value of σN , and that the mismatch originates primarily in
the rigidity of the diquark Bethe-Salpeter amplitudes
produced by the contact interaction, which leads to weaker
m dependence of the diquark (and hence nucleon) masses
than is obtained with more realistic kernels.3 Notwith-
standing this, Eq. (4) is a useful benchmark, providing a
sensible result via a transparent method.
Further valuable information may be obtained from the

results in Appendix C 2 if one supposes that the ratio of
contact-interaction d- and u-quark contributions is more
reliable than the net value of σN . In this connection, note
that for a proton constituted as a weakly interacting system
of three massive dressed quarks in the isospin symmetric
limit

σ3MN;d

σ3MN;u
¼ 1

2
: ð10Þ

Comparing this with our computed value

σN;d

σN;u
¼ 0.65; ð11Þ

one learns that diquark correlations work to accentuate the
contribution of the singly represented valence quark to the
proton σ-term relative to that of doubly represented valence
quarks: the magnification factor is 1.3.
Let us take this another step and assume that σ̂N;u, σ̂N;d in

Appendix C 2 respond weakly to changes in m. This is
valid so long as solutions of the dressed-quark gap equation
satisfy

dM
dm

����
ðmuþmdÞ=2

≈
mu;md≪M dM

dm

����
mu;md

; ð12Þ

which is found to be a good approximation in all available
studies (see, e.g., Refs. [76,77]). One may then estimate the
effects of isospin symmetry violation owing to the differ-
ence between u- and d-quark current masses. Taking the
value of the mass ratio from Ref. [78], one finds

mu

md
¼ 0.48� 0.1 ⇒

mdσ̂N;d

muσ̂N;u
¼ 1.35þ0.47

−0.30 : ð13Þ

Alternatively, one might use the mass ratio inferred from a
survey of numerical simulations of lattice-regularized QCD
[79], in which case

mu

md
¼ 0.47� 0.04 ⇒

mdσ̂N;d

muσ̂N;u
¼ 1.38þ0.17

−0.14 : ð14Þ

We predict, therefore, that the d-quark contribution to that
part of the proton’s mass which arises from explicit chiral
symmetry breaking is roughly 37% greater than that from
the u quark. This value is commensurate with a contem-
poraneous estimate based on lattice QCD [80]. It is note-
worthy that if the proton were a weakly interacting system
of three massive dressed quarks, then Eq. (14) would yield
1.06þ0.13

−0.11 ; and hence one finds again that the presence
of diquark correlations within the proton enhances the
contribution of d quarks to the proton’s σ-term.

IV. TENSOR CHARGE

The tensor charge associated with a given quark flavor in
the proton is defined via the matrix element (q ¼ u; d;…)

hPðp; σÞjq̄σμνqjPðp; σÞi ¼ δTqūðp; σÞσμνuðp; σÞ; ð15Þ

where uðp; σÞ is a spinor and jPðp; σÞi is a state vector
describing a proton with momentum p and spin σ.4 With
δTu, δTd in hand, the isoscalar and isovector tensor charges
are readily computed:

gð0ÞT ¼ δTuþ δTd; gð1ÞT ¼ δTu − δTd: ð16Þ

Importantly, the tensor charge is a scale-dependent quan-
tity. Its evolution is discussed in Appendix F.
Our analysis of the proton’s tensor charge in a symmetry-

preserving RL truncation treatment of a vector ⊗ vector
contact interaction is detailed in Appendix C 3. At the
model scale, ζH, which is determined and explained in
Appendix E, we obtain the results in Table III, which
represent a parameter-free prediction: the current-quark

3Consider that if one uses σqq0 ¼ σqq1 ¼ 30 MeV, then
σN ≈ 40 MeV.

4In the isospin symmetric limit: δpTu ≔ δTu ¼ δnTd, δpTd ≔
δTd ¼ δnTu.
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mass and the two parameters that define the interaction
were fixed elsewhere [33], in a study of π- and ρ-meson
properties.
It is natural to ask for an estimate of the systematic error

in the values reported in Table III. As we saw in Sec. III, the
error might pessimistically be as much as a factor of 2.
However, that is an extreme case because, as observed in
the Introduction, one generally finds that our treatment
of the contact interaction produces results for low-
momentum-transfer observables that are practically indis-
tinguishable from those produced by RL studies that
employ more sophisticated interactions [31–41]. It is
therefore notable that analyses of hadron physics observ-
ables using the RL truncation and one-loop QCD renorm-
alization-group-improved (RGI) kernels for the gap and
bound-state equations produce results that are typically
within 15% of the experimental value [42]. We therefore
ascribe a relative error of 15% to the results in Table III so
that our predictions are

δTu δTd gð0ÞT gð1ÞT

ζH ≈ M 0.69ð10Þ −0.14ð2Þ 0.55ð8Þ 0.83ð12Þ :

ð17Þ
One means by which to check our error estimate is to

repeat the calculations described herein using a modern
RGI kernel [81] in the gap and bound-state equations. That
has not yet been done but one may nevertheless infer what
it might yield. Consider first Refs. [82], which compute the
dressed-quark-tensor vertex using a RL treatment of a
QCD-based kernel: one observes that the dressed-quark’s
tensor charge is markedly suppressed; namely, with a
QCD-based momentum-dependent kernel, a factor of
approximately one-half appears on the rhs of Eq. (C50).
This DCSB-induced suppression would tend to reduce the
values in Eq. (17). On the other hand, the use of a more
sophisticated momentum-dependent kernel in the bound-
state equations increases the amount of dressed-quark
orbital angular momentum in the proton, an effect apparent
in the reduction of the fraction of proton helicity carried by
dressed u and d quarks when one shifts from a contact-
interaction framework to a QCD-kindred approach [56,59].
Hence, the tensor charges are determined by two competing
effects, the precise balance amongst which can only be
revealed by detailed calculations.
In this context, however, it is worth noting that similar

DCSB-induced effects are observed in connection with gA,
the nucleon’s axial charge. The axial charge of a dressed-
quark is suppressed [16,83], owing to DCSB; but that is
compensated in the calculation of gA by dressed-quark
orbital angular momentum in the nucleon’s Faddeev wave
function, with the computed value of the nucleon’s axial
charge being 20% larger than that of a dressed quark. The
net effect is that a computation of gA using the framework
of Refs. [59] can readily produce a result that is within 15%

of the empirical value [16,42]. This suggests that our error
estimate is reasonable.
The predictions in Eq. (17) are quoted at the model scale,

whose value is explained in Appendix E. In order to make a
sensible comparison with estimates obtained in modern
simulations of lattice-regularized QCD, those results must
be evolved to ζ2 ¼ 2 GeV. We therefore list here the results
obtained under leading-order evolution to ζ2 ¼ 2 GeV,
obtained via multiplication by the factor in Eq. (F4):

δTu δTd gð0ÞT gð1ÞT

ζ2 0.55ð8Þ −0.11ð2Þ 0.44ð7Þ 0.66ð10Þ : ð18Þ

The error in Eq. (F4) does not propagate significantly into
these results.
Notably, the dominant contribution to δTu arises from

Diagram 1 (Fig. 4): tensor probe interacting with a dressed
u quark with a scalar diquark as the bystander. The tensor
probe interacting with the axial-vector diquark, with a
dressed quark as a spectator, Diagram 4 (Appendix C 3 c),
produces the next largest piece. However, that is largely
canceled by the sum of Diagrams 5 (Fig. 6) and 6
(Appendix C 3 d): a tensor probe causing a transition
between scalar- and axial-vector diquark correlations
within the proton while the dressed quark is a bystander.
It is a large negative contribution for both δTu and δTd:
indeed, owing to a significant cancellation between
Diagrams 2 (Appendix C 3 b) and 4 (Appendix C 3 c) in
the d-quark sector, which describe the net result from
quarkþ axial-vector diquark contributions, the sum of
Diagrams 5 (Fig. 6) and 6 (Appendix C 3 d) provides
almost the entire result for δTd.
A particularly important result is the impact of the

proton’s axial-vector diquark correlation. As determined
in Appendix C 3 f, with a symmetry-preserving treatment
of a contact interaction, δTd is only nonzero if axial-vector
diquark correlations are present. Significantly, in dynamical
calculations the strength of axial-vector diquark correla-
tions relative to scalar diquark correlations is a measure
of DCSB [36]. In the absence of axial-vector diquark
correlations [Eqs. (C73) and (F4)]

δT1u δT1d gð0Þ
T1

gð1Þ
T1

ζ2 0.61ð9Þ 0 0.61ð9Þ 0.61ð9Þ ; ð19Þ

i.e., δTd vanishes altogether and δTu is increased by 11%.
We expect that the influence of axial-vector diquark
correlations will be qualitatively similar in the treatment
of more sophisticated kernels for the gap and bound-state
equations. A hint in support of this expectation may be
drawn from the favorable comparison, depicted in Fig. 3,
between the predictions for δTu in Eq. (19), “5,” and the
result of Ref. [60], “6.” The latter employed a proton and
tensor current that suppressed but did not entirely eliminate
the contribution from axial-vector diquark correlations.
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This same comparison also supports the verity of our error
estimate.
Additionally, it is valuable to note that the magnitude of

δTu is a direct probe of the strength of DCSB and hence of
the strong interaction at infrared momenta. This could be
anticipated, e.g., from Eqs. (C55), (C64), the expressions
for Diagrams 1 (Fig. 4) and 4 (Appendix C 3 c), which
produce the dominant positive contributions to δTu: both
show a strong numerator dependence on the dressed-quark
mass, M; and M=m ≫ 1 is a definitive signal of DCSB.
To quantify the effect, we reduced αIR in the gap and
Bethe-Salpeter equations by 20% and recomputed all
relevant quantities. This modification reduced the dressed-
quark mass by 33%: M ¼ 0.368 → M< ¼ 0.246 GeV.
Combined with knock-on effects throughout all correla-
tions and bound-states, the 20% reduction in αIR produces
[Table IV and Eq. (F4)]

M → M< δTu δTd gð0ÞT gð1ÞT

ζ2 0.44 −0.12 0.32 0.56
; ð20Þ

which expresses a 20% decrease in δTu. As we signaled, the
greatest impact of the cut in αIR and henceM is a reduction
in the size of the contributions from Diagrams 1 (Fig. 4) and
4 (Appendix C 3 c): the former describes the tensor probe
interacting with a dressed quark while a scalar diquark is a
spectator, and the latter involves a tensor probe exploring an
axial-vector diquark with a dressed-quark bystander.
As remarked in the Introduction, the tensor charge is a

defining intrinsic property of the proton and hence there is
great interest in its reliable experimental and theoretical
determination. In Fig. 3 we therefore compare our pre-
dictions with results from other analyses [60,84–91].
Evidently, of all available computations, our contact-
interaction predictions are in best agreement with the
phenomenological estimates in Eq. (2).
Another interesting point is highlighted by a comparison

between our predictions and the values obtained when
the proton is considered to be a weakly interacting
collection of three massive valence quarks described by
an SU(4)-symmetric spin-flavor wave function [91]:

δSUð4ÞT u ¼ 2eu and δSUð4ÞT d ¼ ed, cf. our results, Eq. (17),
δTu ¼ 0.52ð2euÞ, δTd ¼ 0.42ðedÞ. The presence of diquark
correlations in the proton amplitude significantly sup-
presses the magnitude of the tensor charge associated with
each valence quark while simultaneously increasing the
ratio δTd=δTu by approximately 20%.

V. ELECTRIC DIPOLE MOMENTS

In typical extensions of the Standard Model, quarks
acquire an EDM [92,93], i.e., an interaction with the photon
that proceeds via a current of the form:

~dqqγ5σμνq; ð21Þ
where ~dq is the quark’s EDM and here we consider
q ¼ u; d. The EDM of a proton containing quarks which
interact in this way is defined as follows:

FIG. 4. Diagram 1: The probe interacts with a quark within the
proton and the 0þ diquark is a bystander.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.5

0

0.5

1.

1.5

d
u

1 JLab 12 Projection
2 Anselmino et al.; 3 Bacchetta et al.
4 This Study: 0 & 1 ; 5 This Study: 0 only

FIG. 3 (color online). Flavor separation of the proton’s tensor
charge. “1”: illustration of anticipated accuracy in planned JLab
experiment [20], with central values based on Eq. (2); “2”: results
in Eq. (2), drawn from Ref. [18]; “3”: phenomenological estimate
in Ref. [84]; “4”: prediction herein, Eq. (18); “5”: result obtained
herein with omission of axial-vector diquark correlations,
Eq. (19); “6-13”: estimates from Refs. [60,85–91], respectively.
By way of context, we note that were the proton a weakly
interacting collection of three massive valence quarks described
by an SU(4)-symmetric spin-flavor wave function, then [91]
the quark axial and tensor charges are identical, so that
δTu ¼ 4=3 and δTd ¼ −1=3 at the model scale. These values
are located at “14.”

FIG. 5. Diagram 3: The probe interacts with the 0þ diquark
within the proton and the dressed quark is a bystander.

FIG. 6. Diagram 5: The probe is absorbed by a 0þ diquark,
which is thereby transformed into a 1þ diquark.
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hPðp; σÞjJ EDM
μν jPðp; σÞi ¼ ~dpūðp; σÞγ5σμνuðp; σÞ;

ð22Þ

where

J EDM
μν ðxÞ ¼ ~duūðxÞγ5σμνuðxÞ þ ~ddd̄ðxÞγ5σμνdðxÞ: ð23Þ

At this point it is useful to recall a simple Dirac-matrix
identity:

γ5σμν ¼
1

2
εμναβσαβ; ð24Þ

using which one can write

J EDM
μν ¼ 1

2
εμναβ½ ~duūσαβuþ ~ddd̄σαβd�: ð25Þ

It follows that

hPðp; σÞjJ EDM
μν jPðp; σÞi

¼ 1

2
εμναβ½ ~duδTuþ ~ddδTd�ūðp; σÞσαβuðp; σÞ ð26Þ

¼ ½ ~duδTuþ ~ddδTd�ūðp; σÞγ5σμνuðp; σÞ; ð27Þ

namely, the quark-EDM contribution to a proton’s EDM is
completely determined once the proton’s tensor charges are
known:

~dp ¼ ~duδTuþ ~ddδTd: ð28Þ

With emerging techniques, it is becoming possible to place
competitive upper limits on the proton’s EDM using
storage rings in which polarized particles are exposed to
an electric field [94].
An analogous result for the neutron is readily inferred.

In the limit of isospin symmetry,

hNðp; σÞjūσμνujNðp; σÞi ¼ hPðp; σÞjd̄σμνdjPðp; σÞi;
hNðp; σÞjd̄σμνdjNðp; σÞi ¼ hPðp; σÞjūσμνujPðp; σÞi;

ð29Þ

and hence

~dn ¼ ~duδTdþ ~ddδTu: ð30Þ

Using the results in Eq. (17), we therefore have

~dn ¼ −0.14~du þ 0.69~dd; ~dp ¼ 0.69~du − 0.14~dd:

ð31Þ

It is worth contrasting Eqs. (31) with the results one
would obtain by assuming that the nucleon is merely a

collection of three massive valence quarks described by
an SU(4)-symmetric spin-flavor wave function. Then, by
analogy with magnetic moment computations, a procedure
also made valid by Eq. (24),

~dn ¼ −
1

3
~du þ

4

3
~dd; ~dp ¼ 4

3
~du −

1

3
~dd; ð32Þ

values which are roughly twice the size that we obtain.
The impact of our predictions for the scalar and tensor

charges on BSM phenomenology may be elucidated, e.g.,
by following the analysis in Refs. [61,95].

VI. CONCLUSION

We employed a confining, symmetry-preserving, Dyson-
Schwinger equation treatment of a vector ⊗ vector contact
interaction in order to compute the dressed-quark-core
contribution to the nucleon σ-term and tensor charges.
The latter enabled us to determine the effect of dressed-
quark electric dipole moments (EDMs) on the neutron and
proton EDMs.
A characteristic feature of DSE treatments of ground-

state baryons is the predicted presence of strong scalar and
axial-vector diquark correlations within these bound states.
Indeed, in some respects the baryons can be viewed as
weakly interacting dressed-quarkþ diquark composites.
The diquark correlations are active participants in all
scattering events and therefore serve to modify the con-
tribution to observables of the singly represented valence
quark relative to that of the doubly represented quark.
Regarding our analysis of the proton’s σ-term, we

estimate that with a realistic d-u mass splitting, the singly
represented d quark contributes 37% more than the doubly
represented u quark to that part of the proton mass which
owes to explicit chiral symmetry breaking [Eqs. (13)
and (14)].
Our predictions for the proton’s tensor charges, δTu, δTd,

are presented in Eq. (18). In this case, compared to results
obtained in simple quark models, diquark correlations act
to reduce the size of δTu, δTd by a factor of 2 and increase
the ratio δTd=δTu by roughly 20%. Two additional obser-
vations are particularly significant. First, the magnitude of
δTu is a direct measure of the strength of DCSB in the
Standard Model, diminishing rapidly with the difference
between the scales of dynamical and explicit chiral sym-
metry breaking. Second, δTd measures the strength of
axial-vector diquark correlations in the proton, vanishing
with P1þ=P0þ , i.e., the ratio of axial-vector and scalar-
diquark interaction probabilities, which is also a measure
of DCSB.
Our analysis of the Faddeev equation employed a

simplifying truncation, viz., a variant of the so-called
static approximation. A natural next step is recalculation
of the tensor charges after eliminating that truncation.
Subsequently or simultaneously, one might also employ
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the approaches of Refs. [59,96] in order to obtain DSE
predictions with a more direct connection to QCD.
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APPENDIX A: CONTACT INTERACTION

Our treatment of the contact interaction begins with the
gap equation

SðpÞ−1 ¼ iγ · pþm

þ
Z

d4q
ð2πÞ4 g

2Dμνðp − qÞ λ
a

2
γμSðqÞ

λa

2
Γνðq; pÞ;

ðA1Þ

whereinm is the Lagrangian current-quark mass,Dμν is the
vector-boson propagator and Γν is the quark–vector-boson
vertex. We work with the choice

g2Dμνðp − qÞ ¼ δμν
4παIR
m2

G
; ðA2Þ

where mG ¼ 0.8 GeV is a gluon mass scale typical of the
one-loop renormalization-group-improved interaction
introduced in Ref. [81] and similar to that obtained in
numerical simulations of lattice-regularized QCD [97].
Notably, too, the fitted parameter αIR=π ¼ 0.93 is com-
mensurate with contemporary estimates of the zero-
momentum value of a running coupling in QCD [98,99].
Equation (A2) is embedded in a rainbow-ladder truncation
of the DSEs, which is the leading order in the most widely
used, global-symmetry-preserving truncation scheme
[71,72]. This means

Γνðp; qÞ ¼ γν ðA3Þ
in Eq. (A1) and in the subsequent construction of the
Bethe-Salpeter kernels.
One may view the interaction in Eq. (A2) as being

inspired by models of the Nambu–Jona-Lasinio type [100].
However, our treatment is atypical. Moreover, as noted in
the Introduction, one normally finds Eqs. (A2) and (A3)
produce results for low-momentum-transfer observables
that are practically indistinguishable from those produced

by more sophisticated interactions [31–41]. Using
Eqs. (A2) and (A3), the gap equation becomes

S−1ðpÞ ¼ iγ · pþmþ 16π

3

αIR
m2

G

Z
d4q
ð2πÞ4 γμSðqÞγμ; ðA4Þ

an equation in which the integral possesses a quadratic
divergence. When the divergence is regularized in a
Poincaré covariant manner, the solution is

SðpÞ−1 ¼ iγ · pþM; ðA5Þ

where M is momentum independent and determined by

M ¼ mþM
4αIR
3πm2

G

Z
∞

0

dss
1

sþM2
: ðA6Þ

We define Eq. (A4) by writing [52]

1

sþM2
¼
Z

∞

0

dτe−τðsþM2Þ →
Z

τ2ir

τ2uv

dτe−τðsþM2Þ ðA7Þ

¼ e−ðsþM2Þτ2uv − e−ðsþM2Þτ2ir
sþM2

; ðA8Þ

where τir;uv are, respectively, infrared and ultraviolet
regulators. It is apparent from Eq. (A8) that a finite value
of τir ¼ ∶1=Λir implements confinement by ensuring the
absence of quark production thresholds [101]. Since
Eq. (A2) does not define a renormalizable theory, then
Λuv ≔ 1=τuv cannot be removed but instead plays a
dynamical role, setting the scale of all dimensioned
quantities. Using Eq. (A7), the gap equation becomes

M ¼ mþM
4αIR
3πm2

G
CiuðM2Þ; ðA9Þ

where

CiuðωÞ ¼ ω½Γð−1;ωτ2uvÞ − Γð−1;ωτ2irÞ�; ðA10Þ

with Γðα; yÞ being the incomplete gamma function.
At this point we also list expressions for the other

regularized integrals that we employ herein:

Ciun ðωÞ ¼ ð−1Þn ω
n

n!
dn

dωn C
iuðωÞ; ðA11Þ

DiuðωÞ ¼
Z
R
ds

s2

sþM2

¼ 2ω2½Γð−2;ωτ2uvÞ − Γð−2;ωτ2irÞ�; ðA12Þ

EiuðωÞ ¼
Z
R
ds

s3

sþM2

¼ 6ω3½Γð−3;ωτ2uvÞ − Γð−3;ωτ2irÞ�; ðA13Þ
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G
̬ iu
1 ðωÞ ¼

Z
R
ds

s
ðsþ ωÞ3 ¼

1

2

d2

dω2
CiuðωÞ; ðA14Þ

G
̬ iu
2 ðωÞ ¼

Z
R
ds

s2

ðsþ ωÞ3

¼ C̄iu1 ðωÞ −
ω

2

d2

dω2
CiuðωÞ; ðA15Þ

G
̬ iu
3 ðωÞ ¼

Z
R
ds

s3

ðsþ ωÞ3
¼ CiuðωÞ − 2Ciu1 ðωÞ þ Ciu2 ðωÞ; ðA16Þ

G
̬ iu
4 ðωÞ ¼

Z
R
ds

s4

ðsþ ωÞ3 ¼ DiuðωÞ

− 2ωCiuðωÞ þ 3ωCiu1 ðωÞ − ωCiu2 ðωÞ; ðA17Þ

G
̬ iu
5 ðωÞ ¼

Z
R
ds

s5

ðsþ ωÞ3 ¼ EiuðωÞ − 2ωDiuðωÞ

þ 3ω2CiuðωÞ − 4ω2Ciu1 ðωÞ þ ω2Ciu2 ðωÞ; ðA18Þ

where fGi ¼ G
̬

i=ð16π2Þ, i ¼ 1;…; 5g.
The parameters that specify our treatment of the contact

interaction were determined in a study of π- and ρ-meson
properties [33]; viz., αIR=π ¼ 0.93 and (in GeV)

m ¼ 0.007; Λir ¼ 0.240 Λuv ¼ 0.905; ðA19Þ

using which, Eq. (A9) yields

M ¼ 0.368 GeV: ðA20Þ

With the aim of exploring the impact of DCSB on our
results, herein we also consider results obtained with
αIR=π ¼ 0.74, in which case

M → M< ¼ 0.246 GeV: ðA21Þ

APPENDIX B: FADDEEV EQUATION

We describe the dressed-quark cores of the nucleon via
solutions of a Poincaré-covariant Faddeev equation [62].
The equation is derived following upon the observation that
an interaction which describes mesons also generates
quark-quark (diquark) correlations in the color-3̄ channel
[63]. The fidelity of the diquark approximation to the
quark-quark scattering kernel has been verified [67].
In RL truncation, the color-antitriplet diquark correla-

tions are described by a homogeneous Bethe-Salpeter
equation that is readily inferred from the analogous meson
equation; viz., following Ref. [63] and expressing the
diquark amplitude as

Γc
qqðk;PÞ ¼ Γqqðk;PÞC†Hc; ðB1Þ

with

fH1 ¼ iλ7; H2 ¼ −iλ5; H3 ¼ iλ2g; ϵc1c2c3 ¼ ðHc3Þc1c2 ;
ðB2Þ

where fλ2;5;7g are Gell-Mann matrices, then

Γqqðk;PÞ ¼ −
8π

3

αIR
m2

G

Z
d4q
ð2πÞ4 γμχqqðq;PÞγμ; ðB3Þ

where χqqðq;PÞ ¼ SðqÞΓqqðPÞSðq − PÞ and Γqq is the
diquark Bethe-Salpeter amplitude, which is independent
of the relative momentum when using a contact
interaction [33].
Scalar and axial-vector quark-quark correlations are

dominant in studies of the nucleon:

Γ0þ
qqðPÞ ¼ iγ5Eqq0ðPÞ þ

1

M
γ5γ · PFqq0ðPÞ; ðB4Þ

iΓ1þ
qqμðPÞ ¼ iγTμEqq1ðPÞ; ðB5Þ

where Pμγ
T
μ ¼ 0. These amplitudes are canonically

normalized:

Pμ ¼ 2tr
Z

d4q
ð2πÞ4 Γ

0þ
qqð−PÞ

∂
∂Pμ

Sðqþ PÞΓ0þ
qqðPÞSðqÞ;

ðB6Þ

and

Pμ ¼
2

3
tr
Z

d4q
ð2πÞ4 Γ

1þ
qqαð−PÞ

∂
∂Pμ

Sðqþ PÞΓ1þ
qqαðPÞSðqÞ:

ðB7Þ

A J ¼ 1
2
baryon is represented by a Faddeev amplitude

Ψ ¼ Ψ1 þΨ2 þΨ3; ðB8Þ

where the subscript identifies the bystander quark and, e.g.,
Ψ1;2 are obtained fromΨ3 by a cyclic permutation of all the
quark labels. We employ a simple but realistic representa-
tion ofΨ. The spin- and isospin-1

2
nucleon is a sum of scalar

and axial-vector diquark correlations:

Ψ3ðpi; αi; τiÞ ¼ N 0þ
3 þN 1þ

3 ; ðB9Þ

with ðpi; αi; τiÞ the momentum, spin and isospin labels of
the quarks constituting the bound state, and P ¼ p1 þ p2 þ
p3 the system’s total momentum.
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The scalar diquark piece in Eq. (B9) is

N 0þ
3 ðpi; αi; τiÞ ¼

�
Γ0þ
�
1

2
p½12�;K

��
τ1τ2

α1α2

× Δ0þðKÞ½Sðl;PÞuðPÞ�τ3α3 ; ðB10Þ

where the spinor satisfies Eq. (G4), with M the mass
obtained by solving the Faddeev equation, and it is also a
spinor in isospin space with φþ ¼ colð1; 0Þ for the charge-
one state and φ− ¼ colð0; 1Þ for the neutral state;K ¼ p1þ
p2 ¼ ∶pf12g, p½12� ¼ p1 − p2, l ≔ ð−pf12g þ 2p3Þ=3;

Δ0þðKÞ ¼ 1

K2 þm2
qq0þ

ðB11Þ

is a propagator for the scalar diquark formed from quarks 1
and 2, with mqq0þ the mass scale associated with this

correlation, and Γ0þ is the canonically normalized Bethe-
Salpeter amplitude described above; and S, a 4 × 4 Dirac
matrix, describes the relative quark-diquark momentum
correlation.
The axial-vector component in Eq. (B9) is

N 1þðpi; αi; τiÞ ¼
�
tiΓ1þ

μ

�
1

2
p½12�;K

��
τ1τ2

α1α2

× Δ1þ
μν ðKÞ½Ai

νðl;PÞuðPÞ�τ3α3 ; ðB12Þ

where the symmetric isospin-triplet matrices are

tþ ¼ 1p
2
ðτ0 þ τ3Þ; t0 ¼ τ1; t− ¼ 1p

2
ðτ0 − τ3Þ;

ðB13Þ

and the other elements in Eq. (B12) are straightforward
generalizations of those in Eq. (B10) with, e.g.,

Δ1þ
μν ðKÞ ¼ 1

K2 þm2
qq1þ

�
δμν þ

KμKν

m2
qq1þ

�
: ðB14Þ

One can now write the Faddeev equation for Ψ3:�
Sðk;PÞuðPÞ

Ai
μðk;PÞuðPÞ

�

¼ −4
Z

d4l
ð2πÞ4Mðk;l;PÞ

�
Sðl;PÞuðPÞ

Aj
νðl;PÞuðPÞ

�
: ðB15Þ

The kernel in Eq. (B15) is

Mðk;l;PÞ ¼
�

M00 ðM01Þjν
ðM10Þiμ ðM11Þijμν

�
; ðB16Þ

with

M00 ¼ Γ0þðkq − lqq=2;lqqÞSTðlqq − kqÞ
× Γ̄0þðlq − kqq=2;−kqqÞSðlqÞΔ0þðlqqÞ; ðB17Þ

where lq ¼ l, kq ¼ k, lqq ¼ −lþ P, kqq ¼ −kþ P, the
superscript “T” denotes matrix transpose, Γ̄ is defined in
Eq. (G9), and

ðM01Þjν ¼ tjΓ1þ
μ ðkq − lqq=2;lqqÞSTðlqq − kqÞ

× Γ̄0þðlq − kqq=2;−kqqÞSðlqÞΔ1þ
μν ðlqqÞ;

ðB18Þ

ðM10Þiμ ¼ Γ0þðkq − lqq=2;lqqÞSTðlqq − kqÞti
× Γ̄1þ

μ ðlq − kqq=2;−kqqÞSðlqÞΔ0þðlqqÞ;
ðB19Þ

ðM11Þijμν ¼ tjΓ1þ
ρ ðkq − lqq=2;lqqÞSTðlqq − kqÞti

× Γ̄1þ
μ ðlq − kqq=2;−kqqÞSðlqÞΔ1þ

ρν ðlqqÞ:
ðB20Þ

The dressed-quark propagator is described in Sec. A and
the diquark propagators are given in Eqs. (B11) and (B14),
so the Faddeev equation is complete once the diquark
Bethe-Salpeter amplitudes are computed from Eqs. (B3)–
(B7). However, we follow Ref. [34] and employ a sim-
plification of the kernel; viz., in the Faddeev equation, the
quark exchanged between the diquarks is represented as

STðkÞ → g2N
M

; ðB21Þ

where gN ¼ 1.18. This is a variant of the so-called “static
approximation,” which itself was introduced in Ref. [102]
and has subsequently been used in studying a range of
nucleon properties [103]. In combination with diquark
correlations generated by Eq. (A2), whose Bethe-Salpeter
amplitudes aremomentum independent, Eq. (B21) generates
Faddeev equation kernels which themselves are momentum
independent. The dramatic simplifications which this pro-
duces are the merit of Eq. (B21). Nevertheless, we are
currently exploring the veracity of this truncation.
The general forms of the matrices Sðl;PÞ andAi

νðl;PÞ,
which describe the momentum-space correlation between
the quark and diquark in the nucleon, are described in
Refs. [104,105]. However, with the interaction described in
Sec. A augmented by Eq. (B21), they simplify greatly; viz.,

SðPÞ ¼ sðPÞ1; ðB22aÞ

iAj
μðPÞ ¼ aj1ðPÞγμγ5 þ iaj2ðPÞγ5P̂μ; j ¼ þ; 0;

ðB22bÞ
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with the scalars s, ai1;2 independent of the relative quark-

diquark momentum and P̂2 ¼ −1.
The mass of the ground-state nucleon is then determined

by a 5 × 5 matrix Faddeev equation; viz., Ψ ¼ KΨ, with
the eigenvector defined via

ΨðPÞT ¼ ½sðPÞaþ1 ðPÞa01ðPÞaþ2 ðPÞa02ðPÞ�; ðB23Þ

and the kernel (k� ¼ �p
2)

KðPÞ

¼

2
6666664

K00
ss k−K01

sa1 K01
sa1 k−K01

sa2 K01
sa2

k−K10
a1s 0 kþK11

a1a1 0 kþK11
a1a2

K10
a1s kþK11

a1a1 K11
a1a1 kþK11

a1a2 K11
a1a2

k−K10
a2s 0 kþK11

a2a1 0 kþK11
a2a2

K10
a2s kþK11

a2a1 K11
a2a1 kþK11

a2a2 K11
a2a2

3
7777775
;

ðB24Þ

whose entries are given explicitly in Eqs. (B20) and (B21)
of Ref. [35]. Given the structure of the kernel, the
eigenvectors exhibit the pattern

aþi ¼ −
ffiffiffi
2

p
a0i ; i ¼ 1; 2: ðB25Þ

Using the parameters and results described in connection
with Eqs. (A19) and (A20), the diquark Bethe-Salpeter
equations produce the following diquark masses (in GeV)

mqq0þ ¼ 0.78; mqq1þ ¼ 1.06; ðB26Þ

and canonically normalized amplitudes:

Eqq0þ ¼ 2.742; Fqq0þ ¼ 0.314; Eqq1þ ¼ 1.302:

ðB27Þ

With this input to the Faddeev equation, one obtains
[34–36] mN ¼ 1.14 GeV and the following unit-
normalized eigenvector5

sðPÞ aþ1 ðPÞ a01ðPÞ aþ2 ðPÞ a02ðPÞ
0.88 −0.38 0.27 −0.065 0.046

: ðB28Þ

As explained elsewhere [34–36], the mass is greater than
that determined empirically because our Faddeev equation
kernel omits resonant contributions, i.e., it does not contain
effects that may phenomenologically be associated with a
meson cloud. It is for this reason that our Faddeev equation
describes the nucleon’s dressed-quark core. Notably, meson

cloud effects typically work to reduce a hadron’s
mass [106].
Using the reduced coupling value described in connec-

tion with Eq. (A21), the diquark Bethe-Salpeter equations
produce the following diquark masses (in GeV)

mqq0þ ¼ 0.70; mqq1þ ¼ 0.98; ðB29Þ

and canonically normalized amplitudes:

Eqq0þ ¼ 2.165; Fqq0þ ¼ 0.139; Eqq1þ ¼ 1.093:

ðB30Þ
With this input to the Faddeev equation, one obtains mN ¼
1.02 GeV and the following unit-normalized eigenvector

sðPÞ aþ1 ðPÞ a01ðPÞ aþ2 ðPÞ a02ðPÞ
0.88 −0.38 0.27 −0.065 0.046

: ðB31Þ

Plainly, a 20% cut in the infrared value of the coupling
diminishes the strength of DCSB by 33%. This feeds into
reductions of the diquark Bethe-Salpeter amplitudes and a
10% cut in the nucleon mass. On the other hand, the
nucleon’s Faddeev amplitude, which describes its internal
structure, is almost unchanged. The same pattern is seen
in studies of the temperature dependence of nucleon
properties [39].

APPENDIX C: INTERACTION CURRENTS

In order to translate the diagrams drawn in this appendix
into formulas, it is helpful to bear the following points
in mind.
(1) In front of a closed fermion trace, i.e., a vertex, one

should, as usual, include a factor of ð−1Þ.
(2a) States entering a diagram are described by the

amplitudes

Γ0þ
qqðPÞ ¼ γ5

�
iEqq0þ þ 1

M
γ · PFqq0þ

�
; ðC1aÞ

Γ1þ
qqμðPÞ ¼ iEqq1þγ

T
μ ; ðC1bÞ

SðPÞ ¼ s1; ðC1cÞ

Aj
μðPÞ ¼ aj1γμγ5 þ iaj2γ5P̂μ: ðC1dÞ

[N.B. in this appendix we have absorbed the “i” of
Eqs. (B5) and (B22) into the labels Γ1þ

qqμðPÞ and Aj
μ.]

(2b) States leaving a diagram are described by the
amplitudes

Γ0þ
qqð−PÞ ¼ γ5

�
iEqq0þ −

1

M
γ · PFqq0þ

�
; ðC2aÞ

Γ1þ
qqμð−PÞ ¼ iEqq1þγ

T
μ ; ðC2bÞ

5Eqq0þ , Fqq0þ listed in Table I(A) of Ref. [35] are incorrect.
The values listed in Eq. (B27) were actually used therein.
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Sð−PÞ ¼ s1 ¼ ∶S̄; ðC2cÞ

Aj
μð−PÞ ¼ aj1γ5γμ þ iaj2γ5P̂μ: ðC2dÞ

In these equations,

γTμ ¼ γνPμνðPÞ; PμνðPÞ ¼ δμν þ
PμPν

m2
qq1þ

: ðC3Þ

(3) In the traces arising from a closed fermion loop, we
have ējN̄ for charge form factors, where ē0 ¼ 1

3
e, ēþ ¼ 4

3
e,

where e is the positron charge, and 2N̄ for scalar and tensor
form factors. Note that N̄ ¼ 2 for diquark initial and final
states.

1. Electromagnetic current

In computing the charge form factor of any hadron, one
must employ the dressed-quark-photon vertex [107,108].
That vertex may be obtained by solving an inhomogeneous
Bethe-Salpeter equation whose unrenormalized form is
determined by the inhomogeneous term γμ. The complete
solution for the contact-interaction’s vector vertex in RL
truncation can be found in Refs. [32,37], but that result is
not necessary herein because we only require the result at
Q2 ¼ 0, which is fixed by the Ward identity. With the
contact interaction, that means

Vq
μðQÞ ¼Q2¼0

eqγμ; ðC4Þ
where eq is the quark’s electric charge.
The Q2 ¼ 0 value of the elastic electromagnetic proton

current determines the canonical normalization of the
nucleon’s Faddeev amplitude [109]. Given the Faddeev
equation in Fig. 2, the complete result is obtained by
summing the six one-loop diagrams that we now describe.
There would be more diagrams if the interaction were
momentum dependent [109].

a. Diagram 1—em

The first contribution is depicted in Fig. 4, which
translates into the following expression

eQp;1ΛþðpÞγμΛþðpÞ

¼ NΛþðpÞS̄
Z

d4l
ð2πÞ4

× Sðlþ pÞeuγμSðlþ pÞΔ0þð−lÞSΛþðpÞ ðC5Þ

¼ 2NΛþðpÞs2
Z

1

0

dxð1 − xÞ
Z

d4l
ð2πÞ4

×
fiγ · ðlþ xpÞ −Mgeuγμfiγ · ðlþ xpÞ −Mg
½l2 − xð1 − xÞm2

N þ ð1 − xÞM2 þ xm2
qq0 �3

ΛþðpÞ;

ðC6Þ

where here and hereafter we (often) suppress the parity-þ
superscript on the diquark label, S is the scalar-diquark
piece of the Faddeev amplitude and N is the (as yet
undetermined) canonical normalization constant for the
Faddeev amplitude that ensures that the proton charge is
unity; i.e., Qp ¼ 1.
Applying the projection operator

Pμ ¼
1

2
γμ; ðC7Þ

and performing the trace, one obtains

eQp;1 ¼ euN s2
Z

1

0

dxð1 − xÞ
Z

d4l
ð2πÞ4

×
l2 þ 2ðM þ xmNÞ2

½l2 − xð1 − xÞm2
N þ ð1 − xÞM2 þ xm2

qq0 �3
ðC8Þ

→ euN s2
Z

1

0

dxð1 − xÞfGiu
2 ðxðx − 1Þm2

N

þ ð1 − xÞM2 þ xm2
qq0Þ þ 2ðM þ xmNÞ2

× Giu
1 ðxðx − 1Þm2

N þ ð1 − xÞM2 þ xm2
qq0Þg; ðC9Þ

where Giu
1 ðωÞ, Giu

2 ðωÞ are defined in Eqs. (A14) and (A15),
respectively, and eu ¼ 2

3
e. This expression evaluates to

eQp;1 ¼ D1euN

¼ 0.0182622euN ¼ 0.0121748eN : ðC10Þ

b. Diagram 2—em

The second contribution is almost identical to that
depicted in Fig. 4: the only change being that in this
instance a 1þ diquark is the bystander. However, owing to
isospin symmetry, which we assume herein, and Eq. (B25),
this term yields

eQp;2 ¼ ð2ed þ euÞD0
2N

¼ ð2ed þ euÞ0.00195845N ¼ 0; ðC11Þ

where D0
2 is the contribution obtained with a fudg-diquark

spectator.

c. Diagram 3—em

The third contribution is depicted in Fig. 5, which
represents the following expression:

eQp;3ΛþðpÞγμΛþðpÞ

¼ NΛþðpÞS̄
Z

d4l
ð2πÞ4 Δ

0þðlþ pÞ

× V0
μðlþ pÞΔ0þðlþ pÞSð−lÞSΛþðpÞ ðC12Þ
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¼ −2NΛþðpÞs2
Z

1

0

dxð1 − xÞ
Z

d4l
ð2πÞ4

×
iγ · ð−lþ ð1 − xÞpÞ −M

½l2 − xð1 − xÞm2
N þ ð1 − xÞm2

qq0 þ xM2�3
× V0

μðlþ xpÞΛþðpÞ: ðC13Þ

The vertex is given by (N̄ ¼ 2)

V0
μðPÞ ¼ −ē0N̄

Z
d4q
ð2πÞ4 trfSðqþ P=2ÞγμSðqþ P=2Þ

× Γ0þ
qqðPÞSðq − P=2ÞΓ̄0þ

qqð−PÞg ðC14Þ

¼ 2ē0N̄
Z

1

0

dxð1 − xÞ
Z

d4q
ð2πÞ4

× tr

�
½iγ · ðqþ xPÞ −M�γμ½iγ · ðqþ xPÞ −M�

× γ5

�
iEqq0 þ

1

M
γ · PFqq0

�
× ½iγ · ðqþ ðx − 1ÞPÞ −M�

× γ5

�
iEqq0 −

1

M
γ · PFqq0

�	
× ðq2 − xð1 − xÞm2

qq0 þM2Þ−3; ðC15Þ

where, again, ē0 ¼ 1
3
e; and P is the incoming as well as the

outgoing momentum of the 0þ diquark, owing to our need
to only consider vanishing momentum transfer Q → 0, and
we choose P to be an on-shell momentum. Applying the
projector in Eq. (C7) and evaluating the trace, one obtains

eQp;3 ¼ D3ē0N

¼ 0.008733364ē0N

¼ 0.00291112eN : ðC16Þ

d. Diagram 4—em

The fourth contribution is almost identical to that
depicted in Fig. 5: the only change being that in this
instance the 1þ diquark is probed, so that one has

eQp;4ΛþðpÞγμΛþðpÞ

¼ N
X
j∈0;þ

ΛþðpÞAj
αð−pÞ

Z
d4l
ð2πÞ4 Δ

1þ
αα0 ðlþ pÞ

× Vj
α0μβ0 ðlþ pÞΔ1þ

β0βðlþ pÞSð−lÞAj
βðpÞΛþðpÞ

ðC17Þ

¼ −2N
X
j∈0;þ

ΛþðpÞγ5ðaj1γα þ iaj2p̂αÞ
Z

1

0

dxð1 − xÞ

×
Z

d4l
ð2πÞ4

iγ · ð−lþ ð1 − xÞpÞ −M
½l2 − xð1 − xÞm2

N þ ð1 − xÞm2
qq1 þ xM2�3

× Pαα0 ðlþ xpÞVj
α0μβ0 ðlþ xpÞPβ0βðlþ xpÞ

× ðaj1γβ þ iaj2p̂βÞγ5ΛþðpÞ: ðC18Þ

The vertex is (N̄ ¼ 2)

Vj
αμβðPÞ ¼ −ējN̄

Z
d4q
ð2πÞ4 trfSðqþ P=2ÞγμSðqþ P=2Þ

× Γ1þ
qqβðPÞSðq − P=2ÞΓ̄1þ

qqαð−PÞg ðC19Þ

¼ −2ējN̄E2
qq1

Z
1

0

dxð1 − xÞ
Z

d4q
ð2πÞ4

× trf½iγ · ðqþ xPÞ −M�γμ½iγ · ðqþ xPÞ −M�
× γTβ ðPÞ½iγ · ðqþ ðx − 1ÞPÞ −M�γTαðPÞg
× ½q2 − xð1 − xÞm2

qq1 þM2�−3; ðC20Þ

where, as noted above, ē0 ¼ 1
3
e and ēþ ¼ 4

3
e, and P is the

incoming as well as outgoing momentum of the 1þ diquark.
Applying the projector in Eq. (C7) and evaluating the trace,
one obtains

eQp;4 ¼ ð2ēþ þ ē0ÞD0
4N

¼ ð2ēþ þ ē0Þ0.00090133N
¼ 0.002704eN ; ðC21Þ

where D0
4 is the contribution from the fudg diquark.

e. Diagram 5—em

This contribution is depicted in Fig. 6. In this case

Qp;5eΛþðpÞγμΛþðpÞ ¼ 0; ðC22Þ

because the vertex vanishes at zero momentum transfer, i.e.,

Vμα ¼ 0: ðC23Þ

Consequently

Qp;5 ¼ 0: ðC24Þ

f. Diagram 6—em

This is the conjugate contribution to that depicted in
Fig. 6, namely, a 1þ diquark absorbs the probe and is thereby
transformed into a 0þ diquark. In a symmetry-preserving
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treatment of any reasonable interaction, this contribution is
identical to that produced by Diagram 5.

g. Current conservation

If a truly Poincaré invariant regularization is employed,
then one has Ward identities relating the charges in
Eqs. (C10), (C21) and (C11), (C16)

D1 ¼ D3; D0
2 ¼ D0

4; ðC25Þ
which ensure simple additivity of the quark and diquark
electric charges, and thereby guarantee a unit-charge
isospin ¼ ðþ1=2Þ baryon through a single rescaling factor
[109], and a neutral isospin ¼ ð−1=2Þ baryon without fine-
tuning. Owing to the cutoffs we have introduced, however,
these identities are violated: Eq. (C10) cf. (C16), Eq. (C11)
cf. (C21). Following Ref. [35], we ameliorate this flaw by
enforcing the Ward identities:

D1;3 → D1̄3 ¼ ðD1 þD3Þ=2 ¼ 0.01350; ðC26aÞ

D2;4 → D2̄4 ¼ 3ðD0
2 þD0

4Þ=2 ¼ 0.00429: ðC26bÞ

This corresponds to introducing a rescaling factor for each
of the diagrams involved: Di → κiDi, κ1;3 ¼ D1̄3=D1;3,
κ2;4 ¼ D2̄4=D2;4. Diagrams 5 and 6 are unaffected because
they are equal and do not contribute to a baryon’s charge.

h. Canonical normalization

The results computed from all diagrams considered in
connection with the proton’s charge are collected in Table I.
As noted above, the canonical normalization is fixed by
requiring

Qp ¼
X6
i¼1

Qp;i ¼ 1; ðC27Þ

from which it follows that

N ¼ 1

0.01777
¼ 56.27: ðC28Þ

2. Scalar current

When computing the scalar charge of any hadron, one
must employ the dressed-quark-scalar vertex. That vertex,
too, is obtained by solving an inhomogeneous Bethe-
Salpeter equation: in this case, the unrenormalized form
is determined by the inhomogeneous term 1. The complete
solution for the contact-interaction’s scalar vertex in RL
truncation can be found in Refs. [37], and at Q2 ¼ 0 this
yields

Vq
1 ¼

1

1þ 4αIR
3πm2

G
ð2Ciu1 ðM2Þ − CiuðM2ÞÞ 1 ¼ 1.371; ðC29Þ

where M is the dressed-quark mass in Eq. (A20).
As a check on this result, we note again that since the

vertex is only required at Q2 ¼ 0, one can appeal to a Ward
identity [110], which takes the form

V1ðQÞ ¼Q2¼0
1
∂M
∂m ðC30Þ

when the contact interaction is used. Employing the results
from which Ref. [34] was prepared, this expression, too,
yields the numerical value in Eq. (C29).
The nucleon’s scalar charge is also known as the nucleon

σ-term; and using our implementation of the contact
interaction, one need consider only relevant analogues of
the six diagrams described explicitly in Appendix C 1.
In this case, Diagrams 1–4 provide a nonzero contribution
and the complete result is obtained from the sum.

a. Diagram 1—scalar

This is the contribution produced by the scalar probe
interacting with a dressed quark while the 0þ ½ud� diquark
is a spectator:

σ̂q;1ΛþðpÞ1ΛþðpÞ

¼ N κ
1Λ

þðpÞS̄
Z

d4l
ð2πÞ4 Sðlþ pÞ

× Vq
1Sðlþ pÞΔ0þð−lÞSΛþðpÞ ðC31Þ

¼ 2N κ
1Λ

þðpÞs2

×
Z

1

0

dxð1 − xÞ
Z

d4l
ð2πÞ4

×
fiγ · ðlþ xpÞ −MgVq

1fiγ · ðlþ xpÞ −Mg
½l2 − xð1 − xÞm2

N þ ð1 − xÞM2 þ xm2
qq0 �3

ΛþðpÞ;

ðC32Þ
where N κ

1 ¼ κ1N , with κ1 defined in connection with
Eqs. (C26), N given in Eq. (C28). Applying the projector

P ¼ 1

2
1; ðC33Þ

TABLE I. Column 1: Summary of the results computed from all
diagrams considered in connection with the proton’s charge.
Column 2: Results scaled as described in Sec. C 1 g.

Qp;i=N Qκ
p;i=N

Diagram 1 0.01217 0.0090
Diagram 2 0 0
Diagram 3 0.00291 0.00450
Diagram 4 0.00270 0.00426
Diagram 5 0
Diagram 6 0
Sum 0.0178 0.0178
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and evaluating the trace, one obtains

σ̂u;1 ¼ σ̂q;1 ¼ 0.309; σ̂d;1 ¼ 0: ðC34Þ

It was plain from the outset that this diagram would only
produce a contribution to σ̂u;1 because the d quark is
sequestered inside the scalar diquark.

b. Diagram 2—scalar

In this case we have the scalar probe interacting with the
dressed quark and the 1þ diquarks being spectators:

σ̂qj;2Λ
þðpÞ1ΛþðpÞ

¼ N κ
2Λ

þðpÞAj
αð−pÞ

Z
d4l
ð2πÞ4 Sðlþ pÞVq

1

× Sðlþ pÞΔ1þ
αβð−lÞAj

βðpÞΛþðpÞ ðC35Þ

¼ 2N κ
2Λ

þðpÞγ5ðaj1γα þ iaj2p̂αÞ
Z

1

0

dxð1 − xÞ
Z

d4l
ð2πÞ4

×
fiγ · ðlþ xpÞ −MgVq

1fiγ · ðlþ xpÞ −Mg
½l2 − xð1 − xÞm2

N þ ð1 − xÞM2 þ xm2
qq1 �3

× Pαβðl − ð1 − xÞpÞðaj1γβ þ iaj2p̂βÞγ5ΛþðpÞ: ðC36Þ

Applying the projector in Eq. (C33) and evaluating the
trace, one finds, owing to Eq. (B25),

σ̂u;2 ¼ σ̂q0;2 ¼ 0.0318; σ̂d;2 ¼ σ̂qþ;2
¼ 0.0636 ¼ 2σ̂u;2:

ðC37Þ

c. Diagram 3—scalar

The third diagram describes the scalar probe interacting
with the 0þ ½ud� diquark and the dressed quark acting
merely as an onlooker:

σ̂q;3ΛþðpÞ1ΛþðpÞ

¼ N κ
3Λ

þðpÞS̄
Z

d4l
ð2πÞ4 Δ

0þðlþ pÞ

× V0
1ðlþ pÞΔ0þðlþ pÞSð−lÞSΛþðpÞ ðC38Þ

¼ −2N κ
3s

2

Z
1

0

dxð1 − xÞ
Z

d4l
ð2πÞ4 Λ

þðpÞ

×
½iγ · ð−lþ ð1 − xÞpÞ −M�V0

1ðlþ xpÞΛþðpÞ
½l2 − xð1 − xÞm2

N þ ð1 − xÞm2
qq0 þ xM2�3 :

ðC39Þ

The vertex is given by (N̄ ¼ 2)

V0
1ðPÞ ¼ −2N̄

Z
d4q
ð2πÞ4 trfSðqþ P=2ÞVq

1Sðqþ P=2Þ

× Γ0þ
qqðPÞSðq − P=2ÞΓ̄0þ

qqð−PÞg ðC40Þ

¼ 4N̄
Z

1

0

dxð1 − xÞ
Z

d4q
ð2πÞ4 tr

�
½iγ · ðqþ xPÞ −M�

× Vq
1½iγ · ðqþ xPÞ −M�γ5

�
iEqq0 þ

1

M
γ · PFqq0

�

× ½iγ · ðqþ ðx − 1ÞPÞ −M�γ5
�
iEqq0 −

1

M
γ · PFqq0

�	
× ðq2 − xð1 − xÞm2

qq0 þM2Þ−3: ðC41Þ

Applying the projector in Eq. (C33) and evaluating the
trace, one obtains

σ̂u;3 ¼
σ̂q;3
2

¼ 1.0419 ¼ σ̂d;3: ðC42Þ

d. Diagram 4—scalar

The fourth diagram describes the scalar probe interacting
with a 1þ fuug or fudg diquark where the dressed quark
acts merely as an onlooker:

σ̂qj;4Λ
þðpÞ1ΛþðpÞ ¼ N κ

4Λ
þðpÞAj

αð−pÞ

×
Z

d4l
ð2πÞ4Δ

1þ
αα0 ðlþ pÞV1

α0β0 ðlþ pÞ

× Δ1þ
β0βðlþ pÞSð−lÞAj

βðpÞΛþðpÞ
ðC43Þ

¼ −2N κ
4Λ

þðpÞγ5ðaj1γα þ iaj2p̂αÞ
Z

1

0

dxð1 − xÞ

×
Z

d4l
ð2πÞ4

iγ · ð−lþ ð1 − xÞpÞ −M
½l2 − xð1 − xÞm2

N þ ð1 − xÞm2
qq1 þ xM2�3

× Pαα0 ðlþ xpÞV1
α0β0 ðlþ xpÞPβ0βðlþ xpÞ

× ðaj1γβ þ iaj2p̂βÞγ5ΛþðpÞ: ðC44Þ

The vertex is given by (N̄ ¼ 2)

V1
αβðPÞ ¼ −2N̄

Z
d4q
ð2πÞ4 trfSðqþ P=2ÞVq

1Sðqþ P=2Þ

× Γ1þ
qqβðPÞSðq − P=2ÞΓ̄1þ

qqαð−PÞg ðC45Þ

¼ −4N̄E2
qq1

Z
1

0

dxð1 − xÞ
Z

d4q
ð2πÞ4 trf½iγ · ðqþ xPÞ

−M�Vq
1½iγ · ðqþ xPÞ −M�γTβ ½iγ · ðqþ ðx − 1ÞPÞ

−M�γTαg½q2 − xð1 − xÞm2
qq1 þM2�−3 ðC46Þ
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→ 16MN̄E2
qq1V

q
1PαβðPÞ

Z
1

0

dxð1 − xÞ

× ðM2 − xðx − 2Þm2
qq1ÞGiu

1 ðxðx − 1Þm2
qq1 þM2Þ;

ðC47Þ

where P is again both the incoming and outgoing momen-
tum of the 1þ diquark.
Applying the projector in Eq. (C33) and evaluating the

trace, one finds

σ̂u;4 ¼
σ̂q0;4
2

þ σ̂qþ;4
¼ 0.465; σ̂d;4 ¼

σ̂q0;4
2

¼ 0.0938:

ðC48Þ

e. Proton σ-term

The results obtained from all diagrams considered in
connection with the proton’s scalar charge are collected in
Table II. The proton σ-term is

σN ¼ m
X6
i¼1

½σ̂u;i þ σ̂d;i� ¼ 21.33 MeV: ðC49Þ

In the isospin symmetric limit, the neutron σ-term is
identical.

3. Tensor current

When computing the tensor charge of any hadron, one
must employ the dressed-quark-tensor vertex. However, as
explained elsewhere [34], any dressing of the tensor vertex
must depend linearly on the relative momentum [111]
and such dependence is impossible using a symmetry-
preserving regularization of a vector ⊗ vector contact
interaction. Hence, in our case, the quark-tensor vertex
is unmodified from its bare form, viz.,

Vq
μν ¼ σμν: ðC50Þ

Naturally, when computing the proton’s tensor charge
using our implementation of the contact interaction, one
need only consider relevant analogues of the six diagrams

described explicitly in Appendix C 1. In this case, Diagrams
1,2,4,5,6 provide nonzero contributions. Diagram 3 yields
zero because Poincaré invariance entails that a scalar diquark
cannot possess a tensor charge.

a. Diagram 1—tensor

As usual, we first consider the case of the tensor probe
interacting with the dressed quark and the 0þ ½ud� diquark
being a spectator:

δ1qΛþðpÞσμνΛþðpÞ ¼ N κ
1Λ

þðpÞS̄
Z

d4l
ð2πÞ4 Sðlþ pÞσμν

× Sðlþ pÞΔ0þð−lÞSΛþðpÞ
ðC51Þ

¼ 2N s2
Z

1

0

dxð1 − xÞ
Z

d4l
ð2πÞ4 Λ

þðpÞfiγ · ðlþ xpÞ

−Mgσμνfiγ · ðlþ xpÞ −MgΛþðpÞ
× ½l2 − xð1 − xÞm2

N þ ð1 − xÞM2 þ xm2
qq0 �−3: ðC52Þ

Applying the projector

Pμν ¼
1

12
σμν; ðC53Þ

and evaluating the trace, one obtains

δ1q¼2N 1s2
Z

1

0

dxð1−xÞ
Z

d4l
ð2πÞ4

×
ðMþxmNÞ2

½l2−xð1−xÞm2
Nþð1−xÞM2þxm2

qq0 �3
ðC54Þ

→ 2N s2
Z

1

0

dxð1 − xÞðM þ xmNÞ2

× Giu
1 ðxðx − 1Þm2

N þ ð1 − xÞM2 þ xm2
qq0Þ; ðC55Þ

where Giu
1 ðωÞ is defined in Eq. (A14). As a result we find

δT1u ¼ δ1q ¼ 0.581; δT1d ¼ 0: ðC56Þ

b. Diagram 2—tensor

When the tensor probe interacts with the dressed quark
and the 1þ diquarks are spectators, one has

δ2qjΛþðpÞσμνΛþðpÞ

¼ N κ
2Λ

þðpÞAj
αð−pÞ

Z
d4l
ð2πÞ4 Sðlþ pÞσμν

× Sðlþ pÞΔ1þ
αβð−lÞAj

βðpÞΛþðpÞ ðC57Þ

TABLE II. Summary of the results computed from all diagrams
considered in connection with the proton’s scalar charge.

σ̂u σ̂d σ [MeV]

Diagram 1 0.309 0 2.163
Diagram 2 0.032 0.063 0.666
Diagram 3 1.042 1.042 14.587
Diagram 4 0.465 0.094 3.914
Diagram 5 0 0 0
Diagram 6 0 0 0
Total result 1.85 1.20 21.33

PITSCHMANN et al. PHYSICAL REVIEW D 91, 074004 (2015)

074004-16



¼ 2N κ
2Λ

þðpÞγ5ðaj1γα þ iaj2p̂αÞ
Z

1

0

dxð1 − xÞ
Z

d4l
ð2πÞ4

×
fiγ · ðlþ xpÞ −Mgσμνfiγ · ðlþ xpÞ −Mg
½l2 − xð1 − xÞm2

N þ ð1 − xÞM2 þ xm2
qq1 �3

× Pαβðl − ð1 − xÞpÞðaj1γβ þ iaj2p̂βÞγ5ΛþðpÞ: ðC58Þ

Applying the projector in Eq. (C53) and evaluating the
resulting trace, one finds, owing to Eq. (B25):

δT2d ¼ δ2qþ ¼ 2δ2q0 ¼ −0.0359 ¼ 2δT2u: ðC59Þ

c. Diagram 4—tensor

The next nonzero contribution arises from the tensor
probe interacting with a 1þ fuug or fudg diquark where
the dressed quark acts merely as an onlooker:

δ4qjΛþðpÞσμνΛþðpÞ
¼ N κ

4Λ
þðpÞAj

αð−pÞ

×
Z

d4l
ð2πÞ4Δ

1þ
αα0 ðlþ pÞV2

α0μνβ0 ðlþ pÞ

× Δ1þ
β0βðlþ pÞSð−lÞAj

βðpÞΛþðpÞ ðC60Þ

¼ −2N κ
4Λ

þðpÞγ5ðaj1γα þ iaj2p̂αÞ

×
Z

1

0

dxð1 − xÞ
Z

d4l
ð2πÞ4

×
iγ · ð−lþ ð1 − xÞpÞ −M

½l2 − xð1 − xÞm2
N þ ð1 − xÞm2

qq1 þ xM2�3
× Pαα0 ðlþ xpÞV2

α0μνβ0 ðlþ xpÞ
× Pβ0βðlþ xpÞðaj1γβ þ iaj2p̂βÞγ5ΛþðpÞ: ðC61Þ

The vertex is (N̄ ¼ 2)

V2
αμνβðPÞ ¼ −2N̄

Z
d4q
ð2πÞ4 trfSðqþ P=2ÞσμνSðqþ P=2Þ

× Γ1þ
qqβðPÞSðq − P=2ÞΓ̄1þ

qqαð−PÞg ðC62Þ

¼ −4N̄E2
qq1

Z
1

0

dxð1 − xÞ
Z

d4q
ð2πÞ4 tr½½iγ · ðqþ xPÞ

−M�σμν½iγ · ðqþ xPÞ −M�γTβ
× ½iγ · ðqþ ðx − 1ÞPÞ −M�γTα �
× ½q2 − xð1 − xÞm2

qq1 þM2�−3 ðC63Þ

→ 16iMN̄E2
qq1ðPαμðPÞPβνðPÞ − PανðPÞPβμðPÞÞ

×
Z

1

0

dxð1 − xÞfðM2 − xðx − 2Þm2
qq1ÞGiu

1 ðωÞ

þ Giu
2 ðxðx − 1Þm2

qq1 þM2Þg; ðC64Þ

where P is the incoming and outgoing momentum of the
1þ diquark, and Giu

1 ðωÞ, Giu
2 ðωÞ are defined in Eqs. (A14)

and (A15). Applying the projector in Eq. (C53) and
evaluating the resulting trace, one finds

δT4u ¼ δ4q0
2

þ δ4qþ ¼ 0.292;

δT4d ¼ δ4q0
2

¼ 0.0589:
ðC65Þ

d. Diagram 5—tensor

This is the contribution to the tensor charge arising when
a scalar diquark absorbs the tensor probe and is thereby
transformed into a 1þ diquark. Naturally, in a symmetry
preserving treatment of any reasonable interaction, this
contribution is identical to that produced by Diagram 6.
Concretely, one has

δ5qΛþðpÞσμνΛþðpÞ

¼ N κ
5Λ

þðpÞA0
αð−pÞ

Z
d4l
ð2πÞ4Δ

1þ
αβðlþ pÞV10

βμνðlþ pÞ

× Δ0þðlþ pÞSð−lÞSΛþðpÞ ðC66Þ

¼ −2N κ
5Λ

þðpÞγ5ða01γα þ ia02p̂αÞ
Z

1

0

dx
Z

1

0

dyy
Z

d4l
ð2πÞ4

× ½iγ · ð−lþ ypÞ −M�V10
βμνðlþ ð1 − yÞpÞ

× Pαβðlþ ð1 − yÞpÞsΛþðpÞ½l2 þ yðy − 1Þm2
N

þ xym2
qq1 þ ð1 − xÞym2

qq0 þ ð1 − yÞM2�−3: ðC67Þ

The transition vertex is V10
βμνðP;PÞ where (N̄ ¼ 2)

V10
βμνðP; P0Þ ¼ −2N̄

Z
d4q
ð2πÞ4 trfSðqþ P0ÞσμνSðqþ PÞ

× Γ0þ
qqðPÞSðqÞΓ̄1þ

qqβð−P0Þg ðC68Þ

¼ 4iN̄Eqq1

Z
1

0

dx
Z

1

0

dyy
Z

d4q
ð2πÞ4

× trf½iγ · ðqþ yP0 − xyPÞ−M�σμν
× ½iγ · ðq− ð1− yÞP0 þ ð1− xyÞPÞ−M�

× γ5

�
iEqq0 þ

1

M
γ ·PFqq0

�
× ½iγ · ðq− ð1− yÞP0 − xyPÞ−M�γTβ ðP0Þg
× ðq2 − ð1− xÞyð1− yÞm2

qq1 − xð1− xÞy2m2
qq0 þM2Þ−3;

ðC69Þ
where P and P0 are the incoming and outgoing momenta of
the diquarks, respectively. (Some details about the on-shell
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procedure can be found in Appendix D.) Applying the
projector in Eq. (C53), evaluating the resulting trace and
combining the result with that from Diagram 6, one finds

δT;5þ6u ¼ δT;5þ6d ¼ δq5 ¼ −0.164: ðC70Þ

e. Proton tensor charge

The results obtained from all diagrams considered in
connection with the proton’s tensor charges are collected in
Table III. Notably, the values of the tensor charges depend
on the renormalization scale associated with the tensor
vertex. This is discussed in Appendix F.

f. Proton tensor charge—scalar diquark only

It is interesting to consider the impact of the axial-vector
diquark on the tensor charges. This may be exposed by
comparing the results in Table III with those obtained when
the axial-vector diquark is eliminated from the nucleon. We
implement that suppression by using the following nucleon
Faddeev amplitude:

sðPÞ aþ1 ðPÞ a01ðPÞ aþ2 ðPÞ a02ðPÞ
1.0 0 0 0 0

; ðC71Þ

and then repeating the computations in Appendix C 1
and C 3. Naturally, in this case only Diagrams 1 and 3
can possibly yield nonzero contributions to any quantity.
Recomputing the canonical normalization, we obtain

N
1
¼ 1

0.0174
¼ 57.50; ðC72Þ

which is 2% larger than the complete result in Eq. (C28).
Regarding the tensor charges, Diagram 3 also vanishes in

this instance so that the net result is simply that produced by
Diagram 1:

δT1u δT1d gð0Þ
T1

gð1Þ
T1

0.765 0 0.765 0.765
: ðC73Þ

Comparison with Table III shows that with a symmetry-
preserving treatment of a vector ⊗ vector contact

interaction, the d-quark contribution to the proton’s tensor
charge is only nonzero in the presence of axial-vector
diquark correlations and these correlations reduce the
u-quark contribution by 10%.

g. Proton tensor charge—reduced DCSB

In order to expose the effect of DCSB on the tensor
charges, we repeated all relevant calculations above begin-
ning with the value of αIR used to produce Eq. (A21) and
thereby obtained the results listed in Table IV.

APPENDIX D: ON-SHELL CONSIDERATIONS
FOR THE TRANSITION DIAGRAMS

For the practitioner it will likely be helpful here to
describe our treatment of the denominator that arises when
using a Feynman parametrization to compute the transition
diagrams. Namely, one has

1

ðqþ P0Þ2 þM2

1

ðqþ PÞ2 þM2

1

q2 þM2

¼ 2

Z
1

0

dx
Z

1

0

dyyfðqþ ð1 − yÞP0 þ xyPÞ2

þ ð1 − yÞyP02 þ xyð1 − xyÞP2

− 2ð1 − yÞxyP0 · PþM2g−3: ðD1Þ

At this point, a shift of the integration variable q → q −
ð1 − yÞP0 − xyP yields

2

Z
1

0

dx
Z

1

0

dyyfq2 þ ð1 − yÞyP02 þ xyð1 − xyÞP2

− 2ð1 − yÞxyP0 · PþM2g−3: ðD2Þ

Next, we employ on-shell relations, which for Diagram 5
are given by

P02 ¼ −m2
qq1 ; P2 ¼ −m2

qq0 : ðD3Þ

Then, since Q2 ≡ ðP0 − PÞ2 ¼ P02 þ P2 − 2P0 · P ¼ 0:

TABLE III. Summary of results computed from all diagrams
considered in connection with the proton’s tensor charge. They
represent values at the model scale, ζH ≈M, described in
Appendix E.

δTu δTd gð0ÞT gð1ÞT

Diagram 1 0.581 0 0.581 0.581
Diagram 2 −0.018 −0.036 −0.054 0.018
Diagram 3 0 0 0 0
Diagram 4 0.292 0.059 0.351 0.233
Diagram 5þ 6 −0.164 −0.164 −0.329 0
Total result 0.691 −0.141 0.550 0.832

TABLE IV. Summary of results computed from all diagrams
considered in connection with the proton’s tensor charge using
input based on αIR=π ¼ 0.74, quoted at the model scale, ζH ≈M,
described in Appendix E.

δTu δTd gð0ÞT gð1ÞT

Diagram 1 0.495 0 0.495 0.495
Diagram 2 −0.020 −0.039 −0.059 0.020
Diagram 3 0 0 0 0
Diagram 4 0.236 0.047 0.283 0.189
Diagram 5þ 6 −0.160 −0.160 −0.319 0
Total result 0.551 −0.151 0.400 0.703
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P0 · P ¼ −
m2

qq0 þm2
qq1

2
: ðD4Þ

Hence, the Feynman integral associated with Diagram 5 is

2

Z
1

0

dx
Z

1

0

dyyfq2 − ð1 − xÞyð1 − yÞm2
qq1

− xð1 − xÞy2m2
qq0 þM2g−3: ðD5Þ

Diagram 6 is obtained via mqq0↔mqq1 .

APPENDIX E: MODEL SCALE

In modern studies of QCD’s gap equation, which use
DCSB-improved kernels and interactions that preserve
the one-loop renormalization group behavior of QCD,
the dressed-quark mass is renormalization point invariant.
As in QCD, however, the current-quark mass is not.
Therefore, in quoting a current-quark mass in Eq. (A19),
a question immediately arises: to which scale, ζH, does this
current-quark mass correspond?
As noted in Appendix A, the contact interaction does not

define a renormalizable theory and the scale ζH should
therefore be part of the definition of the interaction. We
define ζH so as to establish contact between the current-
quark mass in Eq. (A19) and QCD.
Current-quark masses in QCD are typically quoted at a

scale of ζ2 ¼ 2 GeV. A survey of available estimates
indicates [78]

mðζ2Þ ¼
muðζ2Þ þmdðζ2Þ

2
¼ 3.5þ0.7

−0.2 ; ðE1Þ

and this value compares well with that determined from a
compilation of estimates using numerical simulations of
lattice-regularized QCD [79]:

mðζ2Þ ¼
muðζ2Þ þmdðζ2Þ

2
¼ 3.4� 0.2: ðE2Þ

On the other hand, we have determined an average value of
the u- and d-quark masses appropriate to our interaction
that is mðζHÞ ≔ m ¼ 7 MeV.
The scale dependence of current-quark masses in QCD is

expressed via

mðζ0Þ
mðζÞ ¼

�
αsðζ0Þ
αsðζÞ

�
γm
; ðE3Þ

where αsðζÞ is the running coupling and γm ¼ 12=
ð33 − 2nfÞ, with nf the number of active fermion flavors,
is the mass anomalous dimension. Plainly, the running
current-quark mass increases as the scale is decreased.
Using the one-loop running coupling, with nf ¼ 4 and

ΛQCD ¼ 0.234 GeV [81], then

mðζHÞ ≈ 2mðζ2Þ for ζH ¼ 0.39� 0.02 GeV; ðE4Þ
and thus we have determined the model scale. Given the
arguments in Refs. [22,28,112], the outcome ζH ≈M is
both internally consistent and reasonable. (We use the one-
loop expression owing to the simplicity of our framework.
Employing next-to-leading-order evolution leads simply to
a 25% increase in ζH with no material phenomenological
differences.)

APPENDIX F: SCALE DEPENDENCE
OF THE TENSOR CHARGE

While the values of the tensor charges are gauge and
Poincaré invariant, they depend on the renormalization
scale, ζ, employed to compute the dressed inhomogeneous
tensor vertex

Γμνðk;Q; ζÞ ¼ S1ðk;Q; ζÞσμν þ…; ðF1Þ
at zero total momentum, Q ¼ 0. (k is the relative momen-
tum.) The renormalization constant ZTðζ;ΛÞ is the factor
required as a multiplier for the Bethe-Salpeter equation
inhomogeneity, σμν, in order to achieve S1ðk2 ¼ ζ2;
Q ¼ 0; ζÞ ¼ 1.
At one-loop order in QCD [113],

Γμνðk;Q; ζÞ ¼ζ2≫Λ2
QCD

�
αSðζ20Þ
αSðζ2Þ

�
ηT
Γμνðk;Q; ζ0Þ; ðF2Þ

where ηT ¼ ð−1=3Þγm. The pointwise behavior of
Γμνðk;Q ¼ 0; ζÞ is illustrated in Ref. [82].
Equation (F2) entails

δqðζÞ ¼ζ2≫Λ2
QCD

�
αSðζ20Þ
αSðζ2Þ

�
ηT
δqðζ0Þ; ðF3Þ

and hence that δq decreases as ζ increases. It follows, for
example and in connection with our analysis, that

δqðζ2Þ
δqðζHÞ

¼ 0.794� 0.015; ðF4Þ

with ζH drawn from Eq. (E4).

APPENDIX G: EUCLIDEAN CONVENTIONS

In our Euclidean formulation,

p · q ¼
X4
i¼1

piqi; ðG1Þ

fγμ; γνg ¼ 2δμν; γ
†
μ ¼ γμ; σμν ¼

i
2
½γμ; γν�; ðG2Þ

tr½γ5γμγνγργσ� ¼ −4ϵμνρσ; ϵ1234 ¼ 1: ðG3Þ
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A positive energy spinor satisfies

ūðP; sÞðiγ · PþMÞ ¼ 0

¼ ðiγ · PþMÞuðP; sÞ; ðG4Þ

where s ¼ � 1
2
is the spin label. The spinor is normalized,

ūðP; sÞuðP; sÞ ¼ 2M; ðG5Þ
and may be expressed explicitly:

uðP; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M − iE

p  
χs
~σ·~P

M−iE χs

!
; ðG6Þ

with E ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~P2 þM2

p
,

χþ ¼
�
1

0

�
;

χ− ¼
�
0

1

�
: ðG7Þ

For the free-particle spinor, ūðP; sÞ ¼ uðP; sÞ†γ4.
The spinor can be used to construct a positive energy

projection operator:

ΛþðPÞ ≔
1

2M

X
s¼�

uðP; sÞūðP; sÞ

¼ 1

2M
ð−iγ · PþMÞ: ðG8Þ

A charge-conjugated Bethe-Salpeter amplitude is
obtained via

Γ̄ðk;PÞ ¼ C†Γð−k;PÞTC; ðG9Þ

where “T” denotes a transposing of all matrix indices
and C ¼ γ2γ4 is the charge conjugation matrix, C† ¼ −C.
We note that

C†γTμC ¼ −γμ;

½C; γ5� ¼ 0: ðG10Þ
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