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Nucleon tensor charges and electric dipole moments
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A symmetry-preserving Dyson-Schwinger equation treatment of a vector-vector contact interaction is
used to compute dressed-quark-core contributions to the nucleon o-term and tensor charges. The latter
enable one to directly determine the effect of dressed-quark electric dipole moments (EDMs) on neutron
and proton EDMs. The presence of strong scalar and axial-vector diquark correlations within ground-state
baryons is a prediction of this approach. These correlations are active participants in all scattering events
and thereby modify the contribution of the singly represented valence quark relative to that of the doubly
represented quark. Regarding the proton o-term and that part of the proton mass which owes to explicit
chiral symmetry breaking, with a realistic d-u mass splitting, the singly represented d quark contributes
37% more than the doubly represented u quark; and in connection with the proton’s tensor charges,
Oru, 6rd, the ratio 67d/éru is 18% larger than anticipated from simple quark models. Of particular note,
the size of d7u is a sensitive measure of the strength of dynamical chiral symmetry breaking; and 6rd
measures the amount of axial-vector diquark correlation within the proton, vanishing if such correlations

are absent.
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I. INTRODUCTION

In recent years a global approach to the description of
nucleon structure has emerged, one in which we may
express our knowledge of the nucleon in the Wigner
distributions of its basic constituents and thereby provide
a multidimensional generalization of the familiar parton
distribution functions (PDFs). The Wigner distribution is a
quantum mechanics concept analogous to the classical
notion of a phase space distribution. Following from such
distributions, a natural interpretation of measured observ-
ables is provided by construction of quantities known as
generalized parton distributions (GPDs) [1-8] and trans-
verse momentum-dependent distributions (TMDs) [9-15]:
GPDs are linked to a spatial tomography of the nucleon;
and TMDs allow for its momentum tomography. A new
generation of experiments aims to provide the empirical
information necessary to develop a phenomenology of
nucleon Wigner distributions.

At leading twist there are eight distinct TMDs, only three
of which are nonzero in the collinear limit; i.e., in the
absence of parton transverse momentum within the target,
k, = 0: the unpolarized (f;), helicity (g,;) and trans-
versity (h;r) distributions. In connection with the last
of these, one may define the proton’s tensor charges

(g=u,d,...)

sra = [ asiete) = [ astty) = b, (0

1550-7998,/2015/91(7)/074004(22)

074004-1
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which, as illustrated in Fig. 1, measures the light-front
number density of quarks with transverse polarization
parallel to that of the proton minus that of quarks with
antiparallel polarization; viz., it measures any bias in quark
transverse polarization induced by a polarization of the
parent proton. The charges 67¢ represent a close analogue
of the nucleon’s flavor-separated axial charges, which
measure the difference between the light-front number
density of quarks with helicity parallel to that of the proton
and the density of quarks with helicity antiparallel [16]. In
nonrelativistic systems the helicity and transversity distri-
butions are identical because boosts and rotations commute
with the Hamiltonian.

The transversity distribution is measurable using Drell-
Yan processes in which at least one of the two colliding
particles is transversely polarized [17], but such data is not
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FIG. 1 (color online). The tensor charge, Eq. (1), measures the
net light-front distribution of transversely polarized quarks inside
a transversely polarized proton.
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yet available. Alternatively, the transversity distribution is
accessible via semi-inclusive deep-inelastic scattering
using transversely polarized targets and also in unpolarized
ete™ processes, by studying azimuthal correlations
between produced hadrons that appear in opposing jets
(ete™ = h h,X). Capitalizing on these observations, the
transversity distributions were extracted through an analy-
sis of combined data from the HERMES, COMPASS and
Belle collaborations [18], and those distributions have been
used to produce an estimate of the proton’s tensor charges,
with the following flavor-separated results:

Sru=039101 5,d=-02510%, (2

at a renormalization scale {4, = 0.9 GeV. Given that the
tensor charges are a defining intrinsic property of the
nucleon, the magnitude of the errors in Eq. (2) is unsat-
isfactory. It is therefore critical to better determine Jru,
ord. Consequently, following upgrades at the Thomas
Jefferson National Accelerator Facility (JLab), it is antici-
pated [19] that experiments [20,21] in Hall-A (SoLID)
and Hall-B (CLAS12) will provide a far more precise
determination of the tensor charges.

Naturally, measurement of the transversity distribution
and the tensor charges will not reveal much about the strong
interaction sector of the Standard Model unless these
quantities can be calculated using a framework with a
traceable connection to QCD. This point is emphasized
with particular force by the circumstances surrounding the
pion’s valence-quark PDF. As reviewed elsewhere [22],
numerous authors suggested that QCD was challenged by
a PDF parametrization based on a precise zN Drell-Yan
measurement [23]. However, the appearance of nonpertur-
bative calculations within the framework of continuum
QCD [24,25] forced reanalyses of the cross section, with
the inclusion of next-to-leading-order evolution [26] and
soft-gluon resummation [27], so that now those claims
are known to be false and the pion’s valence-quark PDF
may be viewed as a success for QCD [28]. The compar-
isons between experiment and computations of the pion
and kaon parton distribution amplitudes and electro-
magnetic form factors have reached a similar level of
understanding [29,30].

Herein, therefore, we compute the proton tensor charges
using a confining, symmetry-preserving Dyson-Schwinger
equation (DSE) treatment of a single quark-quark inter-
action; namely, a vector @ vector contact interaction. This
approach has been proven useful in a variety of contexts,
which include meson and baryon spectra, and their electro-
weak elastic and transition form factors [31-41]. In fact, so
long as the momentum of the probe is smaller in magnitude
than the dressed-quark mass produced by dynamical chiral
symmetry breaking (DCSB), many results obtained in this
way are practically indistinguishable from those produced
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by the most sophisticated interactions that have thus far
been employed in DSE studies [42—45].

It is apposite to remark here that confinement and DCSB
are two key features of the Standard Model; and much of
the success of the contact-interaction approach owes to its
efficacious expression of these emergent phenomena. They
are explained in some detail elsewhere [42—45] so that here
we only make a few remarks.

Confinement may be expressed via dynamically driven
changes in the analytic structure of QCD’s propagators and
vertices. In fact, contemporary theory predicts that both
quarks and gluons acquire mass distributions, which are
large at infrared momenta (see, e.g., Refs. [46-51]). The
generation of these mass distributions leads to the emer-
gence of a length scale ¢~ 0.5 fm, whose existence is
evident in all modern studies of dressed-gluon and dressed-
quark propagators and which signals a marked change in
their analytic properties. In this realization, confinement is
a dynamical process that we implement in our treatment
of the contact interaction by employing a proper-time
regularization with the inclusion of an infrared cutoff.
This ensures the absence of quark production thresholds in
color singlet amplitudes via elimination of the associated
singularities [52].

DCSB is the source of more than 98% of the mass of
visible material in the Universe. It is very likely connected
intimately with confinement. However, whereas the nature
of confinement is still debated, DCSB is a theoretically
established nonperturbative feature of QCD [53], which has
widespread, measurable impacts on hadron observables,
e.g., Refs. [30,36,38,54-59], so that its expression in QCD
is empirically verifiable.

Apart from the hadron physics imperative, the value of
the nucleon tensor charges can be directly related to the
visible impact of a dressed-quark electric dipole moment
on neutron and proton EDMs [60]. Novel beyond-the-
Standard-Model (BSM) scalar operators may also conceiv-
ably be measurable in precision neutron experiments so that
one typically considers both the nucleon scalar and tensor
charges when exploring bounds on BSM physics [61].
The sum of the scalar charges of all active quark flavors
is simply the nucleon o-term, which we therefore also
compute herein.

Relying on material provided in numerous appendixes,
we provide a brief outline of our computational framework
in Sec. II: both the Faddeev equation treatment of the
nucleon and the currents which describe the interaction of a
probe with a baryon composed from consistently dressed
constituents. This presentation scheme enables us to
embark quickly upon the description and analysis of our
results for the scalar and tensor charges, Secs. III and 1V,
respectively. In Sec. V we use our results for the tensor
charges in order to determine the impact of valence-quark
EDMs on the neutron and proton EDMs. Section VI is an
epilogue.
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II. NUCLEON FADDEEV AMPLITUDE AND
RELEVANT INTERACTION CURRENTS

Our description of the nucleon’s dressed-quark core is
based on solutions of a Faddeev equation, which is illustrated
in Fig. 2 and detailed in Appendixes A and B. The approach
is grounded on the observation that in quantum field theory a
baryon appears as a pole in a six-point quark Green function.
The pole’s residue is proportional to the baryon’s Faddeev
amplitude, which is obtained from a Poincaré covariant
Faddeev equation that sums all possible quantum field
theoretical exchanges and interactions that can take place
between three dressed quarks [62].

The appearance of nonpointlike color-antitriplet quark +
quark (diquark) correlations within the nucleon is a
dynamical prediction of this framework [63]. These corre-
lations are nonpointlike, with the charge radius of a given
diquark being typically 10% larger than its mesonic
analogue [33]. Hence, diquarks are soft components within
baryons. As explained in Appendix B, the dominant
correlations in the nucleon are scalar (0") and axial-vector
(1) diquarks because, for example, they have the correct
parity and the associated mass scales are smaller than the
baryons’ masses [36]. Notably, evidence in support of
the presence of diquarks in the proton is accumulating
[35,56,59,64-70].

In order to determine the scalar and tensor charges of the
nucleon described by this Faddeev equation, the Q> =0
values of three interaction currents are needed: elastic
electromagnetic, which determines the canonical normali-
zation of the nucleon’s Faddeev amplitude; scalar; and
tensor. The computation of these quantities is detailed in
Appendix C.

III. 6-TERM

The contribution of a given quark flavor (¢ = u, d, ...) to
a nucleon’s o-term is defined by the matrix element

(3)

where |N(p)) is the state vector of a nucleon with
four-momentum p. The o-term is independent of the
renormalization scale used in the computation, even though

o, =m,(N(p)|glg|N(p)),

FIG. 2. Poincaré covariant Faddeev equation. ¥ is the Faddeev
amplitude for a nucleon of total momentum P = p, + p,. The
shaded rectangle demarcates the kernel of the Faddeev equation;
single line: dressed-quark propagator; I': diquark correlation
(Bethe-Salpeter) amplitude; and double line: diquark propagator.
(See Appendixes A and B for details.)
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the individual pieces in the product on the right-hand side
(rhs) are not. As explained in Appendix E, the scale
appropriate to our symmetry-preserving regularization of
the contact interaction is {y &~ M, where M is the dressed-
quark mass.

Our computed value of the nucleon’s o-term is reported
in Eq. (C49); viz.,

oy =0, + 064 =m3.05 =21 MeV. (4)

This result is consistent with that obtained using the
Feynman-Hellmann theorem in connection with the results
from which Ref. [34] was prepared. An interesting way to
expose this is to recall Eq. (B28), which states that our
analysis describes a nucleon that is 77% dressed quark +
scalar diquark and 23% dressed quark + axial-vector
diquark. In the isospin symmetric limit, which we typically
employ, it follows that

(5)
(6)

oy =0.77og +6,] +0.23[6y +0,,]

=09+ 0.770,0 + 0.23aqq1,

where

oM
oo =mo = 9.6 MeV, (7a)

m

om
Oy = m— 1 = 16 MeV. (7b)

8mqq1

Og =M—p == 10 MeV, (7¢)

again computed using material in Ref. [34]. Inserting
Egs. (7) into Eq. (6), one obtains oy =24 MeV.'
Apparently, so far as the contribution of explicit chiral
symmetry breaking to the mass of the nucleon’s dressed-
quark core is concerned, the contact-interaction nucleon is
a simple system. This analysis also shows that our
diagrammatic computational method is sound; and hence
Eq. (4) is the rainbow-ladder (RL) truncation’ prediction of
a vector ® vector contact interaction treated in the Faddeev
equation via the static approximation. [Inclusion of meson-
baryon loop effects will increase the result in Eq. (4) by
approximately 15% [73].]

In addition, the fact that Eqs. (4) and (6) yield similar
results emphasizes the important role of diquark correla-
tions because if the nucleon were just a sum of three
massive, weakly interacting dressed quarks, then one would
have

'The origin of the 11% mismatch is explained in Sec. C 1 g.

The rainbow-ladder truncation is the leading-order term in the
most widely used, global-symmetry-preserving DSE truncation
scheme [71,72].
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M — 36, =29 MeV, (8)

which is 21% too large.

Adopting a different perspective, we note that the value
in Eq. (4) is roughly one-half that produced by a Faddeev
equation kernel that incorporates scalar and axial-vector
diquark correlations in addition to propagators and inter-
action vertices that possess QCD-like momentum depend-
ence [73]. It compares similarly with the value inferred in a
recent analysis [74] of lattice-QCD results for octet baryon
masses in 2 4 1-flavor QCD:

oy =45+ 6 MeV. (9)

In order to understand the discrepancy, consider Egs. (7).
The value of 6, matches expectations based on gap
equation kernels whose ultraviolet behavior is consistent
with QCD [73,75]. On the other hand, with such inter-
actions one typically finds 0,0 2 0,, 2 0, =25 MeV.
We therefore judge that Eq. (4) underestlmates the physical
value of oy, and that the mismatch originates primarily in
the rigidity of the diquark Bethe-Salpeter amplitudes
produced by the contact interaction, which leads to weaker
m dependence of the diquark (and hence nucleon) masses
than is obtained with more realistic kernels.” Notwith-
standing this, Eq. (4) is a useful benchmark, providing a
sensible result via a transparent method.

Further valuable information may be obtained from the
results in Appendix C2 if one supposes that the ratio of
contact-interaction d- and u-quark contributions is more
reliable than the net value of oy. In this connection, note
that for a proton constituted as a weakly interacting system
of three massive dressed quarks in the isospin symmetric
limit

ona _ 1 (10)
U}VA/{, 2°

Comparing this with our computed value

INd _ .65, (11)

ON.u

one learns that diquark correlations work to accentuate the
contribution of the singly represented valence quark to the
proton o-term relative to that of doubly represented valence
quarks: the magnification factor is 1.3.

Let us take this another step and assume that 6 ,,, 6 4 in
Appendix C2 respond weakly to changes in m. This is
valid so long as solutions of the dressed-quark gap equation
satisfy

3Consider that if one uses Cuqd = Ogq =30 MeV, then
oy =40 MeV.
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dM my, my<<M dM

~
~ d )
m my,,my

), (12)

my+mg)/2
which is found to be a good approximation in all available
studies (see, e.g., Refs. [76,77]). One may then estimate the
effects of isospin symmetry violation owing to the differ-
ence between u- and d-quark current masses. Taking the
value of the mass ratio from Ref. [78], one finds

e 2048401 == de_135+g;g (13)
my myon y

Alternatively, one might use the mass ratio inferred from a
survey of numerical simulations of lattice-regularized QCD
[79], in which case

" 0474004 = ™ de_138+gl‘Z (14)
my m,on

We predict, therefore, that the d-quark contribution to that
part of the proton’s mass which arises from explicit chiral
symmetry breaking is roughly 37% greater than that from
the u quark. This value is commensurate with a contem-
poraneous estimate based on lattice QCD [80]. It is note-
worthy that if the proton were a weakly interacting system
of three massive dressed quarks, then Eq. (14) would yield
1.06707; and hence one finds again that the presence
of diquark correlations within the proton enhances the
contribution of d quarks to the proton’s o-term.

IV. TENSOR CHARGE

The tensor charge associated with a given quark flavor in
the proton is defined via the matrix element (¢ = u,d, ...)

(P(p,0)|g30,,q|P(p, o)) = érqit(p,o)o,,u(p,o), (15)

where «(p, o) is a spinor and |P(p, o)) is a state Vector
describing a proton with momentum p and spin o. * With
Oru, 67d in hand, the isoscalar and isovector tensor charges
are readily computed:

N =sru+68:d, ¢ =6ru— 5. (16)
Importantly, the tensor charge is a scale-dependent quan-
tity. Its evolution is discussed in Appendix F.

Our analysis of the proton’s tensor charge in a symmetry-
preserving RL truncation treatment of a vector @ vector
contact interaction is detailed in Appendix C3. At the
model scale, {y, which is determined and explained in
Appendix E, we obtain the results in Table III, which
represent a parameter-free prediction: the current-quark

“In the isospin symmetric limit: 60u := S;u = 8%d, Shd =
Spd = Su.
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mass and the two parameters that define the interaction
were fixed elsewhere [33], in a study of z- and p-meson
properties.

It is natural to ask for an estimate of the systematic error
in the values reported in Table III. As we saw in Sec. III, the
error might pessimistically be as much as a factor of 2.
However, that is an extreme case because, as observed in
the Introduction, one generally finds that our treatment
of the contact interaction produces results for low-
momentum-transfer observables that are practically indis-
tinguishable from those produced by RL studies that
employ more sophisticated interactions [31-41]. It is
therefore notable that analyses of hadron physics observ-
ables using the RL truncation and one-loop QCD renorm-
alization-group-improved (RGI) kernels for the gap and
bound-state equations produce results that are typically
within 15% of the experimental value [42]. We therefore
ascribe a relative error of 15% to the results in Table III so
that our predictions are

oru ord Q(TO) Q(Tl)
ly~M 0.69(10) —0.14(2) 0.55(8) 0.83(12) )
(17)

One means by which to check our error estimate is to
repeat the calculations described herein using a modern
RGI kernel [81] in the gap and bound-state equations. That
has not yet been done but one may nevertheless infer what
it might yield. Consider first Refs. [82], which compute the
dressed-quark-tensor vertex using a RL treatment of a
QCD-based kernel: one observes that the dressed-quark’s
tensor charge is markedly suppressed; namely, with a
QCD-based momentum-dependent kernel, a factor of
approximately one-half appears on the rhs of Eq. (C50).
This DCSB-induced suppression would tend to reduce the
values in Eq. (17). On the other hand, the use of a more
sophisticated momentum-dependent kernel in the bound-
state equations increases the amount of dressed-quark
orbital angular momentum in the proton, an effect apparent
in the reduction of the fraction of proton helicity carried by
dressed u and d quarks when one shifts from a contact-
interaction framework to a QCD-kindred approach [56,59].
Hence, the tensor charges are determined by two competing
effects, the precise balance amongst which can only be
revealed by detailed calculations.

In this context, however, it is worth noting that similar
DCSB-induced effects are observed in connection with g,
the nucleon’s axial charge. The axial charge of a dressed-
quark is suppressed [16,83], owing to DCSB; but that is
compensated in the calculation of g, by dressed-quark
orbital angular momentum in the nucleon’s Faddeev wave
function, with the computed value of the nucleon’s axial
charge being 20% larger than that of a dressed quark. The
net effect is that a computation of g, using the framework
of Refs. [59] can readily produce a result that is within 15%
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of the empirical value [16,42]. This suggests that our error
estimate is reasonable.

The predictions in Eq. (17) are quoted at the model scale,
whose value is explained in Appendix E. In order to make a
sensible comparison with estimates obtained in modern
simulations of lattice-regularized QCD, those results must
be evolved to £, = 2 GeV. We therefore list here the results
obtained under leading-order evolution to {, =2 GeV,
obtained via multiplication by the factor in Eq. (F4):

Sru Srd g gy (18)
& | 055(8) —0.11(2) 0.44(7) 0.66(10)°

The error in Eq. (F4) does not propagate significantly into
these results.

Notably, the dominant contribution to dru arises from
Diagram 1 (Fig. 4): tensor probe interacting with a dressed
u quark with a scalar diquark as the bystander. The tensor
probe interacting with the axial-vector diquark, with a
dressed quark as a spectator, Diagram 4 (Appendix C 3 ¢),
produces the next largest piece. However, that is largely
canceled by the sum of Diagrams 5 (Fig. 6) and 6
(Appendix C3d): a tensor probe causing a transition
between scalar- and axial-vector diquark correlations
within the proton while the dressed quark is a bystander.
It is a large negative contribution for both d7u and 6rd:
indeed, owing to a significant cancellation between
Diagrams 2 (Appendix C3b) and 4 (Appendix C3c¢) in
the d-quark sector, which describe the net result from
quark + axial-vector diquark contributions, the sum of
Diagrams 5 (Fig. 6) and 6 (Appendix C3d) provides
almost the entire result for dd.

A particularly important result is the impact of the
proton’s axial-vector diquark correlation. As determined
in Appendix C3f, with a symmetry-preserving treatment
of a contact interaction, érd is only nonzero if axial-vector
diquark correlations are present. Significantly, in dynamical
calculations the strength of axial-vector diquark correla-
tions relative to scalar diquark correlations is a measure
of DCSB [36]. In the absence of axial-vector diquark
correlations [Eqs. (C73) and (F4)]

(0) (1)
Iy Iry

‘ Spqu bppd .
0.61(9) 0.61(9)°

(19)
& 0619) 0
i.e., Ord vanishes altogether and §7u is increased by 11%.
We expect that the influence of axial-vector diquark
correlations will be qualitatively similar in the treatment
of more sophisticated kernels for the gap and bound-state
equations. A hint in support of this expectation may be
drawn from the favorable comparison, depicted in Fig. 3,
between the predictions for o7u in Eq. (19), “5,” and the
result of Ref. [60], “6.” The latter employed a proton and
tensor current that suppressed but did not entirely eliminate
the contribution from axial-vector diquark correlations.
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FIG. 3 (color online). Flavor separation of the proton’s tensor
charge. “1”: illustration of anticipated accuracy in planned JLab
experiment [20], with central values based on Eq. (2); “2”: results
in Eq. (2), drawn from Ref. [18]; “3”: phenomenological estimate
in Ref. [84]; “4”: prediction herein, Eq. (18); “5”: result obtained
herein with omission of axial-vector diquark correlations,
Eq. (19); “6-13”: estimates from Refs. [60,85-91], respectively.
By way of context, we note that were the proton a weakly
interacting collection of three massive valence quarks described
by an SU(4)-symmetric spin-flavor wave function, then [91]
the quark axial and tensor charges are identical, so that
Sru =4/3 and 6;d = —1/3 at the model scale. These values
are located at “14.”

This same comparison also supports the verity of our error
estimate.

Additionally, it is valuable to note that the magnitude of
oru is a direct probe of the strength of DCSB and hence of
the strong interaction at infrared momenta. This could be
anticipated, e.g., from Egs. (C55), (C64), the expressions
for Diagrams 1 (Fig. 4) and 4 (Appendix C 3c), which
produce the dominant positive contributions to dru: both
show a strong numerator dependence on the dressed-quark
mass, M; and M/m > 1 is a definitive signal of DCSB.
To quantify the effect, we reduced oz in the gap and
Bethe-Salpeter equations by 20% and recomputed all
relevant quantities. This modification reduced the dressed-
quark mass by 33%: M = 0.368 - M_ = 0.246 GeV.
Combined with knock-on effects throughout all correla-
tions and bound-states, the 20% reduction in oz produces
[Table IV and Eq. (F4)]

ord Q(TO) g(TI)
-0.12 032 056

M — M_ oru
& 0.44

FIG. 4. Diagram 1: The probe interacts with a quark within the
proton and the 0T diquark is a bystander.
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» =t »

FIG. 5. Diagram 3: The probe interacts with the 0" diquark
within the proton and the dressed quark is a bystander.

p -t p

FIG. 6. Diagram 5: The probe is absorbed by a 0" diquark,
which is thereby transformed into a 1% diquark.

which expresses a 20% decrease in d7u. As we signaled, the
greatest impact of the cut in o and hence M is a reduction
in the size of the contributions from Diagrams 1 (Fig. 4) and
4 (Appendix C 3 c): the former describes the tensor probe
interacting with a dressed quark while a scalar diquark is a
spectator, and the latter involves a tensor probe exploring an
axial-vector diquark with a dressed-quark bystander.

As remarked in the Introduction, the tensor charge is a
defining intrinsic property of the proton and hence there is
great interest in its reliable experimental and theoretical
determination. In Fig. 3 we therefore compare our pre-
dictions with results from other analyses [60,84-91].
Evidently, of all available computations, our contact-
interaction predictions are in best agreement with the
phenomenological estimates in Eq. (2).

Another interesting point is highlighted by a comparison
between our predictions and the values obtained when
the proton is considered to be a weakly interacting
collection of three massive valence quarks described by
an SU(4)-symmetric spin-flavor wave function [91]:

5;U(4)u = 2e¢, and 5;U(4)d = ey, cf. our results, Eq. (17),
Sru = 0.52(2e,), 67d = 0.42(e,). The presence of diquark
correlations in the proton amplitude significantly sup-
presses the magnitude of the tensor charge associated with
each valence quark while simultaneously increasing the

ratio 6rd/Spu by approximately 20%.

V. ELECTRIC DIPOLE MOMENTS

In typical extensions of the Standard Model, quarks
acquire an EDM [92,93], i.e., an interaction with the photon
that proceeds via a current of the form:

dqq},Saﬁqu (21)

where Zlq is the quark’s EDM and here we consider
q = u,d. The EDM of a proton containing quarks which
interact in this way is defined as follows:
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(P(p.o)|TEM|P(p. o)) = dpiz(p. 0)yso,,1(p, o),
(22)

EI]PM(X) = auu(x)yﬁa;wu(x) + dda(x)}/SU;wd(x)' (23)

At this point it is useful to recall a simple Dirac-matrix
identity:

1

V50 = 5 EuapOaps (24)

using which one can write
1 - -
j;];:PM = E Euvap [dul’“’aﬁu + dddgaﬁd] . (25)

It follows that

(P(p.o)| T ™|P(p. o))

1 ~ ~ _
= 5 g;waﬁ[duéTu + ddéTd]u(p’ 0>0aﬁu’(p’ G) (26)

= [au(sTu + a(/iaTd]‘L_L(p’ 0')7/50”1,1,6(]7, O-)’ (27)

namely, the quark-EDM contribution to a proton’s EDM is
completely determined once the proton’s tensor charges are
known:

d, = d,6ru+ dsdrd. (28)

With emerging techniques, it is becoming possible to place
competitive upper limits on the proton’s EDM using
storage rings in which polarized particles are exposed to
an electric field [94].

An analogous result for the neutron is readily inferred.
In the limit of isospin symmetry,

(N(p.o)l|ao,,ulN(p.0)) = (P(p.0)|do,,d|P(p.0)).
(N(p.o)l|do,,dIN(p.0)) = (P(p.0)|io,,ulP(p.o)).
(29)

and hence
d, = d,Srd + dSru. (30)

Using the results in Eq. (17), we therefore have

d,=—0.14d, +0.69d,,  d,=0.69d, —0.14d,.

(31)

It is worth contrasting Eqgs. (31) with the results one
would obtain by assuming that the nucleon is merely a

PHYSICAL REVIEW D 91, 074004 (2015)

collection of three massive valence quarks described by
an SU(4)-symmetric spin-flavor wave function. Then, by
analogy with magnetic moment computations, a procedure
also made valid by Eq. (24),

~ 1~ 4~ ~ 4~ 1~
d,=—=d,+=d, d,=-d,—=d,, 32
n 3 u + 3 d P 3 3 d ( )
values which are roughly twice the size that we obtain.
The impact of our predictions for the scalar and tensor
charges on BSM phenomenology may be elucidated, e.g.,
by following the analysis in Refs. [61,95].

VI. CONCLUSION

We employed a confining, symmetry-preserving, Dyson-
Schwinger equation treatment of a vector @ vector contact
interaction in order to compute the dressed-quark-core
contribution to the nucleon o-term and tensor charges.
The latter enabled us to determine the effect of dressed-
quark electric dipole moments (EDMs) on the neutron and
proton EDMs.

A characteristic feature of DSE treatments of ground-
state baryons is the predicted presence of strong scalar and
axial-vector diquark correlations within these bound states.
Indeed, in some respects the baryons can be viewed as
weakly interacting dressed-quark + diquark composites.
The diquark correlations are active participants in all
scattering events and therefore serve to modify the con-
tribution to observables of the singly represented valence
quark relative to that of the doubly represented quark.

Regarding our analysis of the proton’s o-term, we
estimate that with a realistic d-u mass splitting, the singly
represented d quark contributes 37% more than the doubly
represented u quark to that part of the proton mass which
owes to explicit chiral symmetry breaking [Eqgs. (13)
and (14)].

Our predictions for the proton’s tensor charges, éru, ord,
are presented in Eq. (18). In this case, compared to results
obtained in simple quark models, diquark correlations act
to reduce the size of d;u, drd by a factor of 2 and increase
the ratio 67d/67u by roughly 20%. Two additional obser-
vations are particularly significant. First, the magnitude of
oru is a direct measure of the strength of DCSB in the
Standard Model, diminishing rapidly with the difference
between the scales of dynamical and explicit chiral sym-
metry breaking. Second, 6;d measures the strength of
axial-vector diquark correlations in the proton, vanishing
with Py+/Py+, i.e., the ratio of axial-vector and scalar-
diquark interaction probabilities, which is also a measure
of DCSB.

Our analysis of the Faddeev equation employed a
simplifying truncation, viz., a variant of the so-called
static approximation. A natural next step is recalculation
of the tensor charges after eliminating that truncation.
Subsequently or simultaneously, one might also employ
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the approaches of Refs. [59,96] in order to obtain DSE
predictions with a more direct connection to QCD.
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APPENDIX A: CONTACT INTERACTION

Our treatment of the contact interaction begins with the
gap equation
S(p)'=ir-p+m
dq , Al A4
——9g°D -q)=r.50q)=I,(q.p).
+ [ G Pulp =) 5 1,50) 5 Tula.p)
(A1)
wherein m is the Lagrangian current-quark mass, D, is the

vector-boson propagator and I',, is the quark—vector-boson
vertex. We work with the choice

dra
gzD/w(p - q) = 6;41/ ZIR ’
mg

(A2)

where mg = 0.8 GeV is a gluon mass scale typical of the
one-loop  renormalization-group-improved  interaction
introduced in Ref. [81] and similar to that obtained in
numerical simulations of lattice-regularized QCD [97].
Notably, too, the fitted parameter a;r/7 = 0.93 is com-
mensurate with contemporary estimates of the zero-
momentum value of a running coupling in QCD [98,99].
Equation (A2) is embedded in a rainbow-ladder truncation
of the DSEs, which is the leading order in the most widely
used, global-symmetry-preserving truncation scheme
[71,72]. This means

L(p.qa) =7, (A3)
in Eq. (Al) and in the subsequent construction of the
Bethe-Salpeter kernels.

One may view the interaction in Eq. (A2) as being
inspired by models of the Nambu—Jona-Lasinio type [100].
However, our treatment is atypical. Moreover, as noted in
the Introduction, one normally finds Egs. (A2) and (A3)
produce results for low-momentum-transfer observables
that are practically indistinguishable from those produced
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by more sophisticated interactions [31-41].
Egs. (A2) and (A3), the gap equation becomes

Using

167 a d*q
§-1 “ETR L A S(q)y,. (Ad
(p)=iy-p+m+ 3 e (27[)47@, (@), (A4)

an equation in which the integral possesses a quadratic
divergence. When the divergence is regularized in a
Poincaré covariant manner, the solution is

S(p)~' =iy -p+M, (AS)
where M is momentum independent and determined by
4aIR /oo 1
M= M dss ——. Ab
m 3rm Jo RETE (46)
We define Eq. (A4) by writing [52]
1 % 2
— = / dre~* (M) / dre~" M) (A7)
s+ M 0 2
—(s+M)2y _ ,—(s+M*)72
_e e ’ (AS)

s+ M?

where 7;,, are, respectively, infrared and ultraviolet
regulators. It is apparent from Eq. (A8) that a finite value
of 7;, = :1/A;, implements confinement by ensuring the
absence of quark production thresholds [101]. Since
Eq. (A2) does not define a renormalizable theory, then
A, =1/7,, cannot be removed but instead plays a
dynamical role, setting the scale of all dimensioned
quantities. Using Eq. (A7), the gap equation becomes

da
M=m+M_R - Cv(M?), (A9)
3am%
where
CY(w) = o[[(-1,012,) = T(~1,w72)], (A10)

with I'(a, y) being the incomplete gamma function.
At this point we also list expressions for the other
regularized integrals that we employ herein:

Ciw) = (1) D CM). (AT
SZ
D (w) = [edss e
=20*[(-2,w2,) - T (-2, w72)],  (A12)
) 3
Elu( ) [e ds ST Y
= 60*[[(-3, wrl,) = T'(-3, wrl)], (A13)
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_1d_2 iu

Gt ) = [ di=t s = 5w (A14)
siu S2
g2( ):/R:ds<s+(1))3
iu @ JZ iu
=Cl(w) - EWC (w), (A15)
)= [ ooy
= C"(w) = 20} () + C3' (). (Al6)
siu o st — Dt
Q4(0))—Ads7<s+w)3—1) (@)
—2wC" (@) + 30C (w) — oCi (w), (A17)
siu o SS _iuw_wiuw
) = [ ds s = E4(@) 200" )
+ 30*CY(w) — 40*C (@) + *CY(w),  (A1B)

where {G; = G;/(16a2), i =1,...,5}.

The parameters that specify our treatment of the contact
interaction were determined in a study of z- and p-meson
properties [33]; viz., aig /7 = 0.93 and (in GeV)

m = 0.007, A, =0.240 A, = 0905, (A19)
using which, Eq. (A9) yields
M = 0.368 GeV. (A20)

With the aim of exploring the impact of DCSB on our
results, herein we also consider results obtained with
ar/7 = 0.74, in which case

M — M_ = 0.246 GeV. (A21)

APPENDIX B: FADDEEV EQUATION

We describe the dressed-quark cores of the nucleon via
solutions of a Poincaré-covariant Faddeev equation [62].
The equation is derived following upon the observation that
an interaction which describes mesons also generates
quark-quark (diquark) correlations in the color-3 channel
[63]. The fidelity of the diquark approximation to the
quark-quark scattering kernel has been verified [67].

In RL truncation, the color-antitriplet diquark correla-
tions are described by a homogeneous Bethe-Salpeter
equation that is readily inferred from the analogous meson
equation; viz., following Ref. [63] and expressing the
diquark amplitude as

PHYSICAL REVIEW D 91, 074004 (2015)
F;q(k; P) = qu(k; P)CTHC, (B1)

with

{H' =il H? = =i’ H® = i}, € 0, = (H)

€16

(B2)
where {1>7} are Gell-Mann matrices, then
8 aR d*q
[y, (ki P) = 3wl Wywqq(q;l’)yw (B3)

where y,,(q;P) = S(q)T'y,(P)S(¢ — P) and T, is the
diquark Bethe-Salpeter amplitude, which is independent
of the relative momentum when using a contact
interaction [33].

Scalar and axial-vector quark-quark correlations are
dominant in studies of the nucleon:

. 1
19, (P) = iysE40(P) to s PF,0(P), (B4)

where Py} =0. These amplitudes
normalized:

are canonically

d4q + 0 +
P, = | G 8P g Sl + PTG P)S(a):

(B6)

and

2 d*q I+ 0 1+
P=u | G b P) 5 S+ PIThaa(P)S(a).

(B7)
AJ= % baryon is represented by a Faddeev amplitude

\I/ :\Ill +\IJ2+\I/3, (B8)
where the subscript identifies the bystander quark and, e.g.,
W, , are obtained from W5 by a cyclic permutation of all the
quark labels. We employ a simple but realistic representa-
tion of W. The spin- and isospin-} nucleon is a sum of scalar
and axial-vector diquark correlations:

U3 (pi i) = NY +NY, (B9)
with (p;, a;,7;) the momentum, spin and isospin labels of

the quarks constituting the bound state, and P = p; + p, +
p3 the system’s total momentum.
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The scalar diquark piece in Eq. (B9) is

Y]

+ (1
Ng (piaai’ri) = |:F0 (EP[IZ],K)]

x A (K)[S(¢; Pyu(P)]E,

a

(B10)

where the spinor satisfies Eq. (G4), with M the mass
obtained by solving the Faddeev equation, and it is also a
spinor in isospin space with ¢, = col(1, 0) for the charge-
one state and ¢_ = col(0, 1) for the neutral state; K = p; +
P2 = 1pqays Prz) = P1— P2 €= (=ppay +2p3)/3;

1

) 2
K= +mgq .

A" (K) (B11)

is a propagator for the scalar diquark formed from quarks 1
and 2, with m,, = the mass scale associated with this

correlation, and I is the canonically normalized Bethe-
Salpeter amplitude described above; and S, a 4 x 4 Dirac
matrix, describes the relative quark-diquark momentum
correlation.

The axial-vector component in Eq. (B9) is

I

+ e
N (piai i) = |:tlF/ll <§P[12]§K>}

a
x Ay (K)[AL(Z: P)u(P)3.  (BI2)
where the symmetric isospin-triplet matrices are
t*zi(ro+r3) t0 = 7! t_zi(ro—ﬁ)
\/2 b b \/2 9
(B13)

and the other elements in Eq. (B12) are straightforward
generalizations of those in Eq. (B10) with, e.g.,

1 K,K
AL (K) = ——— <5 + £ ) (B14)
" K2 + mé‘]ﬁr - 5q1+

One can now write the Faddeev equation for W5:

Lk rece)]

B d¢ o[ S(&P)u(P)
__4/(2ﬂ)4M(k’f’P)[Ai(f;P)u(P)} (B13)
The kernel in Eq. (B15) is
oy | Mo (M)
M) = | (M), (M) D

with
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Moo =T (ky = €,4/2:€,)S" (g — ky)
x T (6, = kyy/2:—kyy)S(£,)AY (£,,). (B17)
where £, =7, k, =k, €,y = - + P, kyy = —k + P, the

superscript “T” denotes matrix transpose, I is defined in
Eq. (G9), and

(MOl)i = tf'l"f (kg = Cyq/2; qu)ST(qu — k)
x T (Cq = kgg/2s _qu)S(fq>A;1¢: (Z4q)-

(B18)
(M)l =T (ky = €4/ 2: € 4q)ST (£ 4q = o)
X TV (6, = kyy/2:—kyy)S(£,)AY (£,,).
(B19)
(M) = UT) (ky = €30/ 2:€40)ST(€ 4g = ko)t
X l;/l; (Cq —kgg/2s _qu)S(”ﬂq)A/I)Z(qu)‘
(B20)

The dressed-quark propagator is described in Sec. A and
the diquark propagators are given in Egs. (B11) and (B14),
so the Faddeev equation is complete once the diquark
Bethe-Salpeter amplitudes are computed from Eqs. (B3)—
(B7). However, we follow Ref. [34] and employ a sim-
plification of the kernel; viz., in the Faddeev equation, the
quark exchanged between the diquarks is represented as

2
ST(k) - I,

o (B21)

where gy = 1.18. This is a variant of the so-called “static
approximation,” which itself was introduced in Ref. [102]
and has subsequently been used in studying a range of
nucleon properties [103]. In combination with diquark
correlations generated by Eq. (A2), whose Bethe-Salpeter
amplitudes are momentum independent, Eq. (B21) generates
Faddeev equation kernels which themselves are momentum
independent. The dramatic simplifications which this pro-
duces are the merit of Eq. (B21). Nevertheless, we are
currently exploring the veracity of this truncation.

The general forms of the matrices S(Z; P) and AL(¢; P),
which describe the momentum-space correlation between
the quark and diquark in the nucleon, are described in
Refs. [104,105]. However, with the interaction described in
Sec. A augmented by Eq. (B21), they simplify greatly; viz.,

S(P) = s(P)1, (B22a)

lAl{l(P) = a{ (P)]/M}/S + iaé(P)ySP/u .] = +90’

(B22b)
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with the scalars s, a’i’z independent of the relative quark-

diquark momentum and P?> = —1.

The mass of the ground-state nucleon is then determined
by a 5 x 5 matrix Faddeev equation; viz., ¥ = KW, with
the eigenvector defined via

U(P)! = [s(P)af (P)a}(P)a; (P)ay(P)]. ~ (B23)
and the kernel (2. = £,/2)
K(P)
KW AKY, K, AKY%, KGO
10 11 11
AKY 0 ALK, 0 ALK,
— 10 11 11 11 11
- Ku]x éJrl(alal Ku]al éJrl(zqaz Kaluz ’
é—Kégs 0 é+I<clzial 0 %JrKclziaz
= Kclzgt éJrKizial Kzltial éJerlliaz Kclliaz -
(B24)

whose entries are given explicitly in Eqs. (B20) and (B21)
of Ref. [35]. Given the structure of the kernel, the
eigenvectors exhibit the pattern
af =—V24%, i=1,2. (B25)

Using the parameters and results described in connection
with Egs. (A19) and (A20), the diquark Bethe-Salpeter
equations produce the following diquark masses (in GeV)

Myqu0+ = 0.78, Myg1+ = 1.06, (B26)

and canonically normalized amplitudes:
qu()Jr =2.742, quO* = 0.314, E‘il]ﬁ = 1.302.
(B27)

With this input to the Faddeev equation, one obtains
[34-36] my =1.14 GeV and the following unit-
normalized eigenvector5

s(P) aj (P)
0.88 —0.38

AP) () AP
027 —0.065 0.046

As explained elsewhere [34-36], the mass is greater than
that determined empirically because our Faddeev equation
kernel omits resonant contributions, i.e., it does not contain
effects that may phenomenologically be associated with a
meson cloud. It is for this reason that our Faddeev equation
describes the nucleon’s dressed-quark core. Notably, meson

Squm, F 440" listed in Table I(A) of Ref. [35] are incorrect.
The values listed in Eq. (B27) were actually used therein.
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cloud effects typically work to reduce a hadron’s
mass [106].

Using the reduced coupling value described in connec-
tion with Eq. (A21), the diquark Bethe-Salpeter equations
produce the following diquark masses (in GeV)

Mmyq0+ = 0.70, Mmyqg+ = 0.98, (B29)

and canonically normalized amplitudes:
Eg 0+ = 2.165, Fq0+ = 0.139, E, 1+ = 1.093.
(B30)

With this input to the Faddeev equation, one obtains my =
1.02 GeV and the following unit-normalized eigenvector

s(P) af(P) a}(P)
088 —038 027

+ 0
a(p) @)
—0.065 0.046
Plainly, a 20% cut in the infrared value of the coupling
diminishes the strength of DCSB by 33%. This feeds into
reductions of the diquark Bethe-Salpeter amplitudes and a
10% cut in the nucleon mass. On the other hand, the
nucleon’s Faddeev amplitude, which describes its internal
structure, is almost unchanged. The same pattern is seen
in studies of the temperature dependence of nucleon
properties [39].

APPENDIX C: INTERACTION CURRENTS

In order to translate the diagrams drawn in this appendix
into formulas, it is helpful to bear the following points
in mind.

(1) In front of a closed fermion trace, i.e., a vertex, one
should, as usual, include a factor of (—1).

(2a) States entering a diagram are described by the
amplitudes

, 1
I9.(P)=7s (;qum +—y- Pquo+>, (Cla)

M
Tl (P) =iE 7). (Cl1b)
S(P) = sT, (Clc)

AL(P) = aly,ys + idbysP,. (C1d)

[N.B. in this appendix we have absorbed the “i” of

Egs. (B5) and (B22) into the labels F}];”(P) and AJ.]
(2b) States leaving a diagram are described by the

amplitudes
9. (—=P) =15 (;'qu0+

1+
F‘]Qﬂ

1
—M}/'PquOJr), (C2a)

(—P) = l.quIJr]/;, (C2b)

074004-11



PITSCHMANN et al.

S(=P) = s1 =:8, (C2c)
Al(=P) = dlysy, + idjysP,. (C2d)
In these equations,
A= 1Pu(P) PulP) =8, + P';Pl L ()
qq1*

(3) In the traces arising from a closed fermion loop, we
have e jN for charge form factors, where e, = %e, e, = g—‘e,
where e is the positron charge, and 2N for scalar and tensor
form factors. Note that N = 2 for diquark initial and final

states.

1. Electromagnetic current

In computing the charge form factor of any hadron, one
must employ the dressed-quark-photon vertex [107,108].
That vertex may be obtained by solving an inhomogeneous
Bethe-Salpeter equation whose unrenormalized form is
determined by the inhomogeneous term y,. The complete
solution for the contact-interaction’s vector vertex in RL
truncation can be found in Refs. [32,37], but that result is
not necessary herein because we only require the result at
Q? =0, which is fixed by the Ward identity. With the
contact interaction, that means

0’=0
Vi(0)™= "¢y,

where ¢, is the quark’s electric charge.

The Q? = 0 value of the elastic electromagnetic proton
current determines the canonical normalization of the
nucleon’s Faddeev amplitude [109]. Given the Faddeev
equation in Fig. 2, the complete result is obtained by
summing the six one-loop diagrams that we now describe.
There would be more diagrams if the interaction were
momentum dependent [109].

(C4)

a. Diagram 1—em

The first contribution is depicted in Fig. 4, which
translates into the following expression

er,lA+(p)yﬂA+(p)
Loa [
NS [
X S(¢ + p)ewy,S(€ + p)A” (=€)SA*(p)  (C5)

IZNM(p)sZAIdx(l —x)/%
{ir - (¢ +xp) = M}ey, {iy - (£ +xp) - M} A (p)
[ — x(1 = x)m} + (1 = x)M? + xm2,, |? p),

(Co)

PHYSICAL REVIEW D 91, 074004 (2015)

where here and hereafter we (often) suppress the parity-+
superscript on the diquark label, S is the scalar-diquark
piece of the Faddeev amplitude and N is the (as yet
undetermined) canonical normalization constant for the
Faddeev amplitude that ensures that the proton charge is
unity; i.e., @, = 1.

Applying the projection operator

1

P, = Ve (C7)
and performing the trace, one obtains
eQ,y = e,,./\/SQAl dx(1 —x) /(62147&;4
o 2+ 2(M + xmy)?
(2 —x(1 —x)m3, + (1 — x)M? + xm?, ]?
(C8)

- e, Ns? /1 dx(1 = x){Gy (x(x = 1)m3,
0

+ (1= x)M? 4 xm2, ) +2(M + xmy)?

x G (x(x = D)my + (1 —x)M?* + xmZ, )}, (C9)

where Gi'(w), G (w) are defined in Egs. (A14) and (A15),
respectively, and e, = %e. This expression evaluates to

€Qp’1 = DleuN

=0.0182622¢, N = 0.0121748eN . (C10)

b. Diagram 2—em

The second contribution is almost identical to that
depicted in Fig. 4: the only change being that in this
instance a 17 diquark is the bystander. However, owing to
isospin symmetry, which we assume herein, and Eq. (B25),
this term yields

€0, = (2e4+ e, )DIN

= (2e, + ¢,)0.00195845N =0, (C11)

where D) is the contribution obtained with a {ud}-diquark
spectator.

¢. Diagram 3—em

The third contribution is depicted in Fig. 5, which
represents the following expression:

eQ,3A (p)y, AT (p)

d*
(2m)*
X V(€ + p)A” (¢ + p)S(—£)SA* (p)

= NAH(p)S AY (¢ + p)

(C12)
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4
_ -2/\/A+(p)s%ldx(1 —x)/%
iy-(=¢+(1-x)p)-M
[ = x(1 = x)m% + (1 — x)m2, + xM?]?

x V(¢ + xp)A*(p). (C13)

qu

The vertex is given by (N = 2)

4
VO(P) = —2oN / (;’T;tr{s<q P/, S(q + PJ2)

9, (P)S(q = P/2)T,(~P)}

:2EON[)1dx(l—x)/(§47q)4

X tr{[iy “(q +xP) = Mly,lir - (¢ + xP) — M|

(C14)

, 1
X 75 (;quo ik PquO)

q+(x—1) ) — M|

X75< aq0 ~ }'PF >}

(> —x(1 —x)mZ, + M?*)™3, (C15)

where, again, e, = %e; and P is the incoming as well as the
outgoing momentum of the 0™ diquark, owing to our need
to only consider vanishing momentum transfer Q — 0, and

we choose P to be an on-shell momentum. Applying the
projector in Eq. (C7) and evaluating the trace, one obtains

EQP,::, = D3é0N
= 0.008733364¢,
= 0.00291112eN. (C16)
d. Diagram 4—em

The fourth contribution is almost identical to that
depicted in Fig. 5: the only change being that in this
instance the 1" diquark is probed, so that one has

eQ, A (p)y, AT (p)
d*¢
=N A (p)Ai(- ¢
> x) <p>/(2ﬂ) S+ p)
X VI, (€ + p)AL (€ + p)S(=£) A)(p)A* (p)

(C17)
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1
= —ZNZ At (p 1J’a + Lazpa)/ dx(1 —x)
je0,+ 0
x/ d*¢ iy-(-¢+(1-x)p)—-M
Q2r)* [2 = x(1 = x)m3, + (1 —x)m2, + xM?]?
X Poy (€ + xp)V., (& +xP)Pyy(¢ +xp)

X (a]ﬂ’ﬂ + iaéf’ﬁ)?sA+(P)~

(C18)

The vertex is (N = 2)

aﬂﬂ eN/

X Tygp(P)S (q—P/Z)FE,Za( P)}

_ 1 d4q
= —2é&.NE? dx(1 — /—
€jiNEgq, A x(1—x) (27)

x tr{[iy - (¢ + xP) = Mly,[iy - (q + xP) — M|
x v (P)liy - (g + (x = 1)P) = M]y,(P)}
X [¢* —x(1 —x)mg, + M?]73, (C20)

v Jt{S(g +P/2)y,S(q+ P/2)

(C19)

where, as noted above, &, = fe and &, = ‘3‘e and P is the
incoming as well as outgoing momentum of the 1 diquark.
Applying the projector in Eq. (C7) and evaluating the trace,
one obtains

eQp4 = (22, +29)DIN
= (2e, + &;)0.00090133N

= 0.002704e N, (C21)

where DY is the contribution from the {ud} diquark.

e. Diagram 5—em

This contribution is depicted in Fig. 6. In this case

QpseA(p)y, AT (p) =0, (C22)

because the vertex vanishes at zero momentum transfer, i.e.,

Vo = 0. (C23)

Consequently

0,5 =0. (C24)

f. Diagram 6—em

This is the conjugate contribution to that depicted in
Fig. 6, namely, a 1™ diquark absorbs the probe and is thereby
transformed into a 0" diquark. In a symmetry-preserving
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treatment of any reasonable interaction, this contribution is
identical to that produced by Diagram 5.

g. Current conservation

If a truly Poincaré invariant regularization is employed,
then one has Ward identities relating the charges in
Egs. (C10), (C21) and (C11), (C16)

D, = D3, DY = DY, (C25)
which ensure simple additivity of the quark and diquark
electric charges, and thereby guarantee a unit-charge
isospin = (+1/2) baryon through a single rescaling factor
[109], and a neutral isospin = (—1/2) baryon without fine-
tuning. Owing to the cutoffs we have introduced, however,
these identities are violated: Eq. (C10) cf. (C16), Eq. (C11)
cf. (C21). Following Ref. [35], we ameliorate this flaw by
enforcing the Ward identities:

D173 d D1’3 = (Dl + D3)/2 = 001350, (C26a)

D, 4 = Dy = 3(DY + DY) /2 = 0.00429. (C26b)
This corresponds to introducing a rescaling factor for each
of the diagrams involved: D; — x;D;, k;3 = D3/D 3,
k24 = D34/D, 4. Diagrams 5 and 6 are unaffected because
they are equal and do not contribute to a baryon’s charge.

h. Canonical normalization

The results computed from all diagrams considered in
connection with the proton’s charge are collected in Table I.
As noted above, the canonical normalization is fixed by
requiring

6
0, =Y 0pi=1, (C27)
i=1
from which it follows that
1
=——— =56.27. 2
N 0.01777 36.27 (C28)

TABLEI. Column 1: Summary of the results computed from all
diagrams considered in connection with the proton’s charge.
Column 2: Results scaled as described in Sec. C 1 g.

Qp.i/N Q;,I/N
Diagram 1 0.01217 0.0090
Diagram 2 0 0
Diagram 3 0.00291 0.00450
Diagram 4 0.00270 0.00426
Diagram 5 0
Diagram 6 0
Sum 0.0178 0.0178
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2. Scalar current

When computing the scalar charge of any hadron, one
must employ the dressed-quark-scalar vertex. That vertex,
too, is obtained by solving an inhomogeneous Bethe-
Salpeter equation: in this case, the unrenormalized form
is determined by the inhomogeneous term 1. The complete
solution for the contact-interaction’s scalar vertex in RL
truncation can be found in Refs. [37], and at Q% = 0 this
yields

1
Vi=—1f ———————1= 1371, (C29)
1 + 2% (2CF (M?) — CY(M?))

3amg,

where M is the dressed-quark mass in Eq. (A20).

As a check on this result, we note again that since the
vertex is only required at Q? = 0, one can appeal to a Ward
identity [110], which takes the form

0*=0_ OM
Vi@ =15 (C30)
when the contact interaction is used. Employing the results
from which Ref. [34] was prepared, this expression, too,
yields the numerical value in Eq. (C29).

The nucleon’s scalar charge is also known as the nucleon
o-term; and using our implementation of the contact
interaction, one need consider only relevant analogues of
the six diagrams described explicitly in Appendix C 1.
In this case, Diagrams 1-4 provide a nonzero contribution

and the complete result is obtained from the sum.

a. Diagram 1—scalar

This is the contribution produced by the scalar probe
interacting with a dressed quark while the 0" [ud] diquark
is a spectator:

41 A (p)TAT (p)

= N7A+<p)3/(;l%s(f+ p)

X VIS(¢ + p)A° (=£)SA* (p) (C31)
= 2NA* (p)s?
! d*¢
XA dx(1 —x)/(zT)4
{iy - (€ +xp) = M}Vi{iy - (€ + xp) - M} | .
NGEE —x)m%v+(ﬂl — xX)M? + xm?2, I A (p).
(C32)

where N% = k|, with k; defined in connection with
Egs. (C26), N given in Eq. (C28). Applying the projector

1
P=51. (C33)
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and evaluating the trace, one obtains

Bu1 =641 =0309, &4y =0. (C34)

It was plain from the outset that this diagram would only
produce a contribution to 6, ; because the d quark is
sequestered inside the scalar diquark.

b. Diagram 2—scalar

In this case we have the scalar probe interacting with the
dressed quark and the 17 diquarks being spectators:

&4, AT (P)TAY (p)
. 4
= N5A* (p)Aa(—p) /%S(f + p)Vy

X S(¢ + p)Agy (=€) A5 (p)A () (C35)

. . 1 4

— S (rslalya + iddp) [ ax(i =) [ %

iy - (¢ + xp) = MYVi{iy - (£ + xp) — M}
[fz—x(l—x)mN+(l—x)M2—|—xm l]3

X Pop(¢ = (1= x)p)(aiyy + iapy)rsAt(p).  (C36)

Applying the projector in Eq. (C33) and evaluating the
trace, one finds, owing to Eq. (B25),

Gun =6, = 00318, &4y =5, , = 0.0636 = 26,.,.

(C37)

c. Diagram 3—scalar

The third diagram describes the scalar probe interacting
with the 0% [ud] diquark and the dressed quark acting
merely as an onlooker:

3T (P)IAT(p)

— NSAY( )5/ 2)4A0*f+ »)

CVO(E 4 p)AY (£ 4 p)S(-)SA(p)  (C38)
2 [! 'z .
= —2N%s A dx(l—x)/(2”)4A (p)
liy - (=¢ + (1 = x)p) = MV (¢ + xp)A™ (p)
(€% — x(1 — x)m% + (l—x)m O—|—xM2} ’
(C39)

The vertex is given by (N = 2)

PHYSICAL REVIEW D 91, 074004 (2015)

(e = 28 [ Elisia + p/2ViSta+2/2)

x 9. (P)S(q — P/2)[Y,(-P)}

:4N/01dx(1—x)/(;ﬂ#;tr{[iy-(q—i—xP)—M]

) 1
X V%[W (g + xP) — M]ys <1qu0 + My . PquO>

(C40)

iy (q+ (= 10P) = Ml (1B, = 7 PP, ) |

< (q% = x(1 = x)mgy, + M?)~>. (C41)

Applying the projector in Eq. (C33) and evaluating the
trace, one obtains

Bus = %3 = 1.0419 = 5,5. (C42)

d. Diagram 4—scalar

The fourth diagram describes the scalar probe interacting
with a 17 {uu} or {ud} diquark where the dressed quark
acts merely as an onlooker:

A*(p)TIA*(p) = NSA* (p) Al(=p)
X i AL (¢ V(¢
[ G At + Vi€ 5 1)

x Al (€ + p)S(=£) Al (p)A*(p)
(C43)

011 4

. . 1
— 2NN (p)rslafr, + iabpa) [ dx(1 =
0
a*¢ iy-(=¢+(1-x)p)—-M
(2n)* [¢* (1= x)mg Myq, + xMP
X Poy (2 + xp)V/ﬂ,(f + xp)Pys(¢ + xp)

—x(1 —x)m3 +

X (aly/; + iazi)/;)y5A+(p). (C44)

The vertex is given by (N = 2)

1 _
Sy

X Tyqp(P)S (q = P/2)0}4(=P)}

——4NE§q1A dx(1 x)/

— MVi{liy - (q + xP) — My} [1
— Mlyi}

Ltr{S(q + P/2)VIS(q + P/2)

(C45)

str{[iy - (g +xP)

v (g+(x=-1)P)

[¢*> —x(1 - x)m,zmI + M?)3 (C46)
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TABLE II. Summary of the results computed from all diagrams
considered in connection with the proton’s scalar charge.

6, 64 o [MeV]
Diagram 1 0.309 0 2.163
Diagram 2 0.032 0.063 0.666
Diagram 3 1.042 1.042 14.587
Diagram 4 0.465 0.094 3914
Diagram 5 0 0 0
Diagram 6 0 0 0
Total result 1.85 1.20 21.33

991

1
— 16MNE2, VIP45(P) /0 dx(1 - x)

X (M? = x(x—2)m qql)glu(x(x — 1)m? my, + M?),
(C47)

where P is again both the incoming and outgoing momen-
tum of the 17 diquark.

Applying the projector in Eq. (C33) and evaluating the
trace, one finds

A

O-% 4

ud — )

Q>

6
= 0.465, as = ‘;’4 = 0.0938.
(C48)

+ ‘1+4

e. Proton o-term

The results obtained from all diagrams considered in
connection with the proton’s scalar charge are collected in
Table II. The proton o-term is

6
Z 8ui+ 64 =21.33 MeV. (C49)

In the isospin symmetric limit, the neutron o-term is
identical.

3. Tensor current

When computing the tensor charge of any hadron, one
must employ the dressed-quark-tensor vertex. However, as
explained elsewhere [34], any dressing of the tensor vertex
must depend linearly on the relative momentum [111]
and such dependence is impossible using a symmetry-
preserving regularization of a vector @ vector contact
interaction. Hence, in our case, the quark-tensor vertex
is unmodified from its bare form, viz.,

Vi, =0, (C50)

Naturally, when computing the proton’s tensor charge
using our implementation of the contact interaction, one
need only consider relevant analogues of the six diagrams

PHYSICAL REVIEW D 91, 074004 (2015)

described explicitly in Appendix C 1. In this case, Diagrams
1,2,4,5,6 provide nonzero contributions. Diagram 3 yields
zero because Poincaré invariance entails that a scalar diquark
cannot possess a tensor charge.

a. Diagram 1—tensor

As usual, we first consider the case of the tensor probe
interacting with the dressed quark and the 0" [ud] diquark
being a spectator:

4
51aA* (P)o A (p) = NEAH ()3 / %sw .

x S(Z + p)AY (=£)SAT(p)

(C51)

_2Ns%ldx(1—x)/ T N ()i

(27)*
—- M}o, iy - (€ +xp)

—M}AT(p)
x [ = x(1 = x)m} + (1 =x)M?* +xm2,]73.  (C52)

(€ + xp)

Applying the projector

1

Pﬂl’ = EO'”U,

(C53)

and evaluating the trace, one obtains

B 5 ! : /d4f
519=2Ns A dx(1—x) 2n)

(M+me)2
X
(% —x(1=x)m% + (1 —x)M? + xm?

(C54)

3
qqo]

- 2Ns? /1 dx(1 — x)(M + xmy)?
0

x Gl (x(x = 1)m% + (1 = x)M?* + xm (C55)

qQO)
where Gi'(w) is defined in Eq. (A14). As a result we find
(STll/l = 51q = 0581,

Sp1d = 0. (C56)

b. Diagram 2—tensor

When the tensor probe interacts with the dressed quark
and the 17 diquarks are spectators, one has

62q;A"(P)ou AT (p)
= NI () Au-p) [ S S(E + o

S(¢ + p)ALy (=) Aj(p)A* (p) (C57)
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) o 1 d*¢
= AN (p)ys(alya + idkpa) / dx(1 — x) / o

{ir - (¢ +xp) — M}o, {iy - (¢ + xp) - M}
(€% — x(1 — x)m% + (1 — x)M? + xm?

X Paﬂ(l’p -

3
qql]

(1- x)P)(a]ﬂ’ﬁ + ia'éf?/)')VsAJr(P)- (CS8)

Applying the projector in Eq. (C53) and evaluating the
resulting trace, one finds, owing to Eq. (B25):

5T2d = 52q+ = 252Q0 = —0.0359 = 25]"214. (ng)

c. Diagram 4—tensor

The next nonzero contribution arises from the tensor
probe interacting with a 17 {uu} or {ud} diquark where
the dressed quark acts merely as an onlooker:

84q; A (p)o, AT (p)
= N5A*(p) Al(-p)
d*¢
X / 7Dy (€ + PV (€ + p)

(27)
x AL (€ + p)S(=€) A (p)A* (p)

(C60)

_2N§A+ (p)YS (ﬂ{}’a + i(léﬁa)

1 d*¢
XA dx(1 —x) W
y-(=¢+(1—=x)p)—-M
[£? —x(l —x)my + (1 —x)mg, + xM?]?

X Paa/(f + xp)v ’”yﬂ’(l’ﬂ + Xp)

x Pyy(¢ + xp)(@yp + idspy)rsAt (p).

(C61)
The vertex is (N = 2)

% Y A S(g+P/2
am/ﬂ( (2 )4 UMD (q—|_ / )

xT1,(P)S(q = P/2)Tha(—P)}

tr{S(q + P/2)

(C62)

= —ANE?

1 4
- M]le{iy ’ (CI + XP) - M]YﬂT

x [ir - (g + (x = 1)P) = Mlyg]
X [q* = x(1 —x)mg, + M*]™

(C63)

— 16iMNE2, (Po,(P)Ps,(P) = Py, (P)Pp,(P))

q(h(

X/ dx(1 = x){(M? = x(x = 2)m qql)glu()

0
+ G (x(x — )mqql + M?)}, (Co4)
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where P is the incoming and outgoing momentum of the
1" diquark, and Gi'(w), GY'(w) are defined in Eqs. (A14)
and (A15). Applying the projector in Eq. (C53) and
evaluating the resulting trace, one finds

5
Spau = 290 4 5,4, = 0292,

(C65)

54%

Spad = 2210 — 0.0589.

d. Diagram 5—tensor

This is the contribution to the tensor charge arising when
a scalar diquark absorbs the tensor probe and is thereby
transformed into a 17 diquark. Naturally, in a symmetry
preserving treatment of any reasonable interaction, this
contribution is identical to that produced by Diagram 6.
Concretely, one has

3sqA* (p)o, AT (p)
4
— N5 (p)A-p) | (‘jﬂf
x AY (£ + p)S(=£)SA*(p)

Al (¢ + p)Vio, (€ + p)

(C66)
Coa s [1 1 ¢

= =2NEAT(p)rs(ady, + iadp,) / dx / dyy / I
0 0 (27[)

x iy - (=¢ +yp) =MV (£ + (1 -y)p)
X Pos(2 + (1 =y)p)sAt(p)[£* + y(y — 1)mj
+ (1= y)M?)

+ xymg, + (1 —x)ym, (C67)

The transition vertex is Vﬂ”y(P, P) where (N = 2)

Vi (P, P') = =2N / 2tr{S(g + P, S(q+ P)

x T0q(P)S(q )r;;,x P')} (C68)

= 4iNE,,,

1
dx
0

ldyy
0
x tr{[iy - (g + yP' — xyP) — Mo,
x[iy-(g=(1=y)P' + (1 —xy)P) — M|
X ¥s (iquO +$}' . Pqu0>
x [iy- (¢ —(1=y)P' —xyP)—Mly;(P')}
X (q* = (1 =x)y(1 = y)mgy —x(1 —x)y*mg, +M?*)~,

(C69)

where P and P’ are the incoming and outgoing momenta of
the diquarks, respectively. (Some details about the on-shell
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TABLE III. Summary of results computed from all diagrams
considered in connection with the proton’s tensor charge. They
represent values at the model scale, {y ~ M, described in
Appendix E.

PHYSICAL REVIEW D 91, 074004 (2015)

TABLE IV. Summary of results computed from all diagrams
considered in connection with the proton’s tensor charge using
input based on o /7 = 0.74, quoted at the model scale, {y ~ M,
described in Appendix E.

Sru Srd g gy Sru Srd g gy
Diagram 1 0.581 0 0.581 0.581 Diagram 1 0.495 0 0.495 0.495
Diagram 2 —-0.018 —-0.036 —-0.054 0.018 Diagram 2 —-0.020 —-0.039 —0.059 0.020
Diagram 3 0 0 0 0 Diagram 3 0 0 0 0
Diagram 4 0.292 0.059 0.351 0.233 Diagram 4 0.236 0.047 0.283 0.189
Diagram 5 + 6 —-0.164 —-0.164 -0.329 0 Diagram 5 + 6 —-0.160 —-0.160 —-0.319 0
Total result 0.691 —0.141 0.550 0.832 Total result 0.551 —0.151 0.400 0.703

procedure can be found in Appendix D.) Applying the
projector in Eq. (C53), evaluating the resulting trace and
combining the result with that from Diagram 6, one finds
= —0.164.

Or 546U = Or506d = 045 (C70)

e. Proton tensor charge

The results obtained from all diagrams considered in
connection with the proton’s tensor charges are collected in
Table III. Notably, the values of the tensor charges depend
on the renormalization scale associated with the tensor
vertex. This is discussed in Appendix F.

f. Proton tensor charge—scalar diquark only

It is interesting to consider the impact of the axial-vector
diquark on the tensor charges. This may be exposed by
comparing the results in Table III with those obtained when
the axial-vector diquark is eliminated from the nucleon. We
implement that suppression by using the following nucleon
Faddeev amplitude:

s(P) a(P)

100 0 0 (€71)

and then repeating the computations in Appendix C 1

and C 3. Naturally, in this case only Diagrams 1 and 3

can possibly yield nonzero contributions to any quantity.
Recomputing the canonical normalization, we obtain

1
Ny= 0.0174

= 57.50, (C72)

which is 2% larger than the complete result in Eq. (C28).
Regarding the tensor charges, Diagram 3 also vanishes in

this instance so that the net result is simply that produced by
Diagram 1:

o W
Ot Opyd Gy Gy (C73)
0765 0 0.765 0.765

Comparison with Table III shows that with a symmetry-
preserving treatment of a vector @ vector contact

interaction, the d-quark contribution to the proton’s tensor
charge is only nonzero in the presence of axial-vector
diquark correlations and these correlations reduce the
u-quark contribution by 10%.

g. Proton tensor charge—reduced DCSB

In order to expose the effect of DCSB on the tensor
charges, we repeated all relevant calculations above begin-
ning with the value of o used to produce Eq. (A21) and
thereby obtained the results listed in Table IV.

APPENDIX D: ON-SHELL CONSIDERATIONS
FOR THE TRANSITION DIAGRAMS

For the practitioner it will likely be helpful here to
describe our treatment of the denominator that arises when
using a Feynman parametrization to compute the transition
diagrams. Namely, one has

1 1 1
P/)Z M2 (q -I—P) —|—M2 q2 +M2
1

1
=2 dyy{(g+ (1 =y)P' + xyP)?

(=]
><
N

+ (1= y)yP? + xy(1 — xy)P?

—2(1 —y)xyP' - P+ M?*}73. (D1)

At this point, a shift of the integration variable ¢ — g —
(I —y)P' = xyP yields
1 1
2/ dX/ dyy{q® + (1 = y)yP” + xy(1 — xy)P*
0 0
—2(1 = y)xyP'- P+ M*}73. (D2)

Next, we employ on-shell relations, which for Diagram 5
are given by

n_ 2 2 2
P = —myq, P7 = —myq,.

(D3)

Then, since Q> = (P' = P)* = P>+ P> -2P' - P =0:
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2 2
Mg, T Myq,

P-P=-
2

(D4)

Hence, the Feynman integral associated with Diagram 5 is

/ dx/ dyy{q* = (1 = x)y(1 = y)mg,,

x(1—x)y*m 5‘10 + M?}3.

(Ds)

Diagram 6 is obtained via m,, <>m

990 991"

APPENDIX E: MODEL SCALE

In modern studies of QCD’s gap equation, which use
DCSB-improved kernels and interactions that preserve
the one-loop renormalization group behavior of QCD,
the dressed-quark mass is renormalization point invariant.
As in QCD, however, the current-quark mass is not.
Therefore, in quoting a current-quark mass in Eq. (A19),
a question immediately arises: to which scale, {5, does this
current-quark mass correspond?

As noted in Appendix A, the contact interaction does not
define a renormalizable theory and the scale {y should
therefore be part of the definition of the interaction. We
define { so as to establish contact between the current-
quark mass in Eq. (A19) and QCD.

Current-quark masses in QCD are typically quoted at a
scale of {, =2 GeV. A survey of available estimates
indicates [78]

m,(£>) +my($r)
2

m($r) = =3553.  (ED)
and this value compares well with that determined from a
compilation of estimates using numerical simulations of
lattice-regularized QCD [79]:

my (4’2) + md<§2)
2

m(¢y) = =34+02. (E2)

On the other hand, we have determined an average value of
the u- and d-quark masses appropriate to our interaction
that is m({y) =m =7 MeV.

The scale dependence of current-quark masses in QCD is
expressed via

o le@ - ®

where a,({) is the running coupling and y,, =12/
(33 —2ny), with n, the number of active fermion flavors,
is the mass anomalous dimension. Plainly, the running
current-quark mass increases as the scale is decreased.

Using the one-loop running coupling, with ny =4 and
Agcp = 0.234 GeV [81], then
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m(Cy) ~2m(l,) for ¢y =039+0.02GeV, (E4)

and thus we have determined the model scale. Given the
arguments in Refs. [22,28,112], the outcome {y ~ M is
both internally consistent and reasonable. (We use the one-
loop expression owing to the simplicity of our framework.
Employing next-to-leading-order evolution leads simply to
a 25% increase in {y with no material phenomenological
differences.)

APPENDIX F: SCALE DEPENDENCE
OF THE TENSOR CHARGE

While the values of the tensor charges are gauge and
Poincaré invariant, they depend on the renormalization
scale, £, employed to compute the dressed inhomogeneous
tensor vertex

[ (ks Q:¢) = S1(k; Q:8)o,, + ... (F1)

at zero total momentum, Q = 0. (k is the relative momen-
tum.) The renormalization constant Z;(¢, A) is the factor
required as a multiplier for the Bethe-Salpeter equation
inhomogeneity, in order to achieve S;(k*=¢%;
0=00) =1

At one-loop order in QCD [113],

Ouws

T, (k: Q: Cf >>Aocn [as(é'o)

(@)
where 5y = (—=1/3)y,,. The pointwise behavior of

[, (k; Q = 0;{) is illustrated in Ref. [82].
Equation (F2) entails

] Nk 0:00).  (F2)

€)

C»AQCD aS(f:%) r
. @

and hence that 6¢g decreases as { increases. It follows, for
example and in connection with our analysis, that

5Q(Cz)
5q(Cw)

with {y drawn from Eq. (E4).

=0.794 + 0.015, (F4)

APPENDIX G: EUCLIDEAN CONVENTIONS

In our Euclidean formulation,

4
Pra=>_ pi (G1)
i=1
i
{ywyu} =2 /41/7 =Yu 0w :E[}/w 7/1/]; (G2)
trb/SYyyyypyn} = _4€/4up0’ €1234 = 1. (G3)
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A positive energy spinor satisfies

w(P,s)(iy-P+M)=0
=(iy-P+M)u(P,s), (G4)

where s = j:% is the spin label. The spinor is normalized,

w(P,s)u(P,s) =2M, (G5)
and may be expressed explicitly:
Xs
w(P,s) =VM— i8( sp ) (Go)
M—ieXs
with € = iV P> + M2,
“(o)
X+ = 0)
0
Xo= (1) (G7)

PHYSICAL REVIEW D 91, 074004 (2015)

For the free-particle spinor, (P, s) = «(P,s)'y,.
The spinor can be used to construct a positive energy
projection operator:

(G8)

A charge-conjugated Bethe-Salpeter
obtained via

amplitude is

[(k; P) = C'T'(=k; P)TC, (G9)

where “T” denotes a transposing of all matrix indices
and C = y,y, is the charge conjugation matrix, C' = —C.
We note that

C'yiC=—y,.

[C.ys] =0. (G10)
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