
Electroweak corrections to the true muonium hyperfine splitting

Henry Lamm*

Physics Department, Arizona State University, Tempe, Arizona 85287, USA
(Received 16 February 2015; published 9 April 2015)

In contrast to other atomic systems, in true muonium (μþμ−) the leading-order Z boson corrections to the
hyperfine splitting are shown to be experimentally accessible in the near future. This contribution
(−109 MHz) constitutes a necessary contribution to a full Oðmα7Þ calculation of the true muonium
hyperfine splitting. This calculation would enable a number of possible solutions to the muon problem to
be constrained. Additionally, we compute the general expression for a pseudovector coupling to particle-
antiparticle bound states at leading order, including the annihilation channel.
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I. INTRODUCTION

The current state of flavor physics might be described
as having a “muon problem.” Several muon observables
have been shown to have varying levels of disagreement
with Standard Model calculations. In Table I are listed a
few of the most prominent signals that are in tension with
expectations.
A strong candidate for shedding light on the muon

problem is the bound state ðμþμ−Þ, dubbed “true muonium”
[5]. Simpler bound states like positronium ðeþe−Þ, hydro-
gen, and muonium ðμþe−Þ have attracted significant atten-
tion as testing grounds for precision QED studies [6] but are
limited in their beyond standard model (BSM) discovery
potential by either the small electron mass or large uncer-
tainties from unknown nuclear structure effects. In contrast,
true muonium has a much larger reduced mass, and its QCD
corrections are limited to the better-understood hadronic
vacuum polarization effects, due to its leptonic nature.
Unfortunately, true muonium has yet to be directly

observed. The first reason is the technical difficulty of
producing low-energy muon pairs, coupled with the bound
state’s short lifetime (τ ≈ 1 ps), which presents an interest-
ing challenge to experimenters. Numerous proposed pro-
duction channels have been discussed over the years in the
literature [7–16], but until recently, none has been seriously
developed. A second, more prosaic, reason true muonium
has been neglected is that, until the advent of the ðg − 2Þμ
anomaly, there was no apparent reason to expect that true
muonium would offer any novel physics compared to the
simpler, more easily produced bound states.
Currently, the Heavy Photon Search [17] experiment has

plans to search for true muonium [15], and Dimeson
Relativistic Atom Complex [18] has discussed the pos-
sibility of its observation in an upgraded run [19]. In both
situations, the true muonium could be traveling at relativ-
istic speeds, and it may be necessary to consider the effect
of this boost on the wave functions [20]. Once observed,

experiments focusing on precisely measuring the Lamb
shift and hyperfine splitting (HFS) would put strong
constraints on possible BSM solutions to the muon problem
[21–33].
Predictions for BSM models solving the muon problem

generically lead to corrections to the spectrum of true
muonium as large as Oð100 MHzÞ (e.g, Ref. [25]). This
size corresponds to Oðmα7Þ corrections to the true muo-
nium spectrum; therefore, we must first have a standard
model prediction of this level. Currently, the theoretical
predictions for the HFS in true muonium are known fully
to Oðmα5Þ [34–36]. Additionally, all corrections of order
Oðmα6Þ (see Ref. [37] and references within for a historical
review) and partial results for order Oðmα7Þ are known for
positronium [37–45]. With an exchange of the electron
mass for the muon mass, these results can be included in the
true muonium prediction, to yield the current theoretical
value of

ΔE1s
hfs ¼ 42330685ð800Þ MHz; ð1Þ

where only the uncertainty arising from model-dependent
hadronic effects [34] is included.
What remains of QED to be computed for true muonium

at Oðmα6Þ are corrections that do not occur in positronium
involving virtual electrons and hadrons. Without calculat-
ing all of these corrections, we would like some sense
of the uncertainty, δE6

hfsjμ, in the theoretical value. To do so
we make the following, rather gross, approximation. It is
known that electron vacuum polarization corrections are the
largest contribution from the work of Refs. [34–36] unique
to true muonium at Oðmα5Þ. We will use this fact to
estimate the unknown Oðmα6Þ corrections unique to true
muonium to be the complete Oðmα5Þ diagrams multiplied
by the photon polarization function, Πðq2Þ, that arises from
the electron vacuum polarization at momentum q2 ¼ 4m2

μ.
While not perfect, the logic behind this estimate is
that insertion of electron loops into photon propagators
of Oðmα5Þ diagrams constitutes a large portion of the*hlammiv@asu.edu
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necessary corrections. This effect can estimated by the
polarization function evaluated at the average expected
momenta in the photon. For single annihilation photons,
this means q2 ≈ 4m2

μ photons and q2 ≈ α2m2
μ for exchange

photons. We will take the larger of these two. A final point
in our estimate is that, since the majority of Oðmα5Þ
contains two photon propagators, we should double the
energy shift,

δE6
hfsjμ ≈ 2Πð4m2

μÞΔE5
hfs ≈ 2

α

π

�
1

3
ln

�
4m2

μ

m2
e

�
− 5

9

�
ΔE5

hfs

≈ 1200 MHz; ð2Þ
where ΔE5

hfs was obtained in Ref. [34] and consists of
the sum of the mα5

π and mα5

π jμ terms in Table II. Regardless of
the accuracy of this estimate, these terms must be computed
to obtain Oð100 MHzÞ precision.
In this paper, we present a calculation of a novel

contribution to the true muonium HFS that arises from
the leading-order weak interactions, which scale as
Oðmα6Þ, and a more general expression for the leading
pseudovector contribution from a Z0 particle, which have
previously been considered as a BSM source in other
atomic systems [28–33].
Previous work on weak interactions in electronic

systems [54–59] has consistently found the effects to be
heavily suppressed. This can be understood through the
simple scaling associated with the weak interaction.
For electroweak couplings in atomic systems, the dimen-
sionless coupling constant is given by GFμ

2 where μ is the
reduced mass of the system. In bound states, the μ2 term
can be understood as arising partly from the wave function
at the origin jψð0Þj2 ¼ μ3α3=πn3 where n is the energy
level, and the remaining power of μ is needed for correct
energy dimension. Taking the known value of GF, we see
that the dimensionless constant can be expressed as
GFμ

2 ¼ 0.097μ2=M2
Z. From this result, an effective order

of α can be computed for each atomic system via

GFμ
2 ¼ 0.097

μ2

M2
Z
¼ αn: ð3Þ

The leading-order electroweak correction to electronic
systems should then be proportional to GFjψð0Þj2≃
GFm3

eα
3 ≃meα

8.4. The theoretical uncertainties for the

positronium, muonium, and hydrogen states are all far
larger than this.
This situation should be compared with that in true

muonium and muonic hydrogen, where the coupling instead
is proportional toGFm2

μ ≃ α3.2, leading to a naive prediction
of its effect on the HFS of ≃mμα

6.2. In muonic hydrogen,
this effect will be difficult to discern because of the
discrepancy in the proton radius and the unknown nuclear
effects that plague hydrogenic atoms. In contrast, the almost
purely QED atom of true muonium should offer a cleaner
opportunity to measure these electroweak effects. As stated
above, to see these effects, a number of QED contributions
of Oðmα6Þ and Oðmα7Þ need to be computed. Putting these
contributions together, a prediction for the HFS of true
muonium to 1 MHz precision should be possible.
In this work, we extend the previous work in Ref. [58] by

computing the leading-order energy shifts to HFS from
the exchange and annihilation of a pseudovector in QED
particle-antiparticle bound states, with special emphasis
on true muonium, the most viable candidate in which to
measure these effects in the near future. Numerical values
using the Z boson are reported. In Sec. II we review the
previous calculations for the exchange process, and in
Sec. III we compute the results for the annihilation channel.
We devote Sec. IV to discussing the total contribution and
conclude in Sec. V.

II. EXCHANGE OF Z BOSON

Calculations have existed for many years for the absolute
value of the contribution from the t-channel exchange of a
single Z boson to atomic systems [54,55,57], but the correct
sign for this effect was unclear. In Ref. [58], the author
resolved the issue, with the conclusion that the effect in
hydrogen is positive, while in muonium it is negative due to
the antiparticle nature of μþ. In Ref. [59] the HFS for other
light muonic atoms was calculated, but the case of true
muonium was conspicuously left untouched. Following
Ref. [58], we write the leading-order Lagrangian for the
neutral weak interaction as

Lint ¼ ḡ L̄ γμT3LZμ; ð4Þ
where ḡ ¼ g= cos θW , and the weak left-handed spinor
isodoublet L is defined using the convention

L ¼ 1þ γ5
2

ψ : ð5Þ

While the Z boson has a vector component, this is further
suppressed by a factor 1 − 4 sin2 θW. Therefore, we will
neglect its contribution in this work. Generalizing the
exchange correction result of Ref. [58] for any particle-
antiparticle bound state to the HFS, we obtain

ΔEx
hfsðnÞ ¼ − 2GFffiffiffi

2
p ðZαÞ3

πn3
μ3; ð6Þ

TABLE I. Set of prominent muon signals that have disagree-
ments with theoretical expectations.

Observable Discrepancy Ref.

ðg − 2Þμ 2.9σ [1]
rP from μ−pþ 7σ [2]
Bþ → Kþμþμ− 2.6σ [3]
h → μτ 2.5σ [4]
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where Z is the charge of the particle. Replacing the reduced
mass byml=2 and taking Z ¼ 1, we have that the correction
to lepton-antilepton bound states is

ΔEx
l;hfsðnÞ ¼ − GF

4
ffiffiffi
2

p m3
l α

3

πn3
: ð7Þ

In a similar way, we may write the energy shift for a new Z0
boson in the exchange channel as

ΔEx;Z0
l;hfsðnÞ ¼ − g2

32M2
Z0

m3
l α

3

πn3
; ð8Þ

where g is the new axial vector coupling between Z0 and the
leptons.

III. ANNIHILATION VIA VIRTUAL Z BOSON

For the true muonium and positronium systems, there is
an additional diagram coming from the Z boson annihila-
tion channel. Following Ref. [58], we find that the
scattering amplitude for this process is given by

ḡ2T3ð2ÞT3ð1Þ
4

v̄ð2Þγ5γμuð1Þūð1Þγμγ5vð2Þ
ð2mÞ2 −M2

z
; ð9Þ

where T3ðiÞ is the weak isospin of particle or antiparticle i.
An additional minus sign occurs due to the relative sign in
the weak neutral current of the antiparticle compared to the
particle. This expression can be Fierz reordered to yield

ḡ2T3ð2ÞT3ð1Þ
16½ð2mÞ2−M2

z �
× ½4v̄ð2Þvð2Þūð1Þuð1Þþ2v̄ð2Þγμvð2Þūð1Þγμuð1Þ
−2v̄ð2Þγ5γμvð2Þūð1Þγμγ5uð1Þ−4v̄ð2Þγ5vð2Þūð1Þγ5uð1Þ�:

ð10Þ

To simplify this expression, we take the nonrelativistic limit
(pi → 0), divide by the relativistic normalization

ffiffiffiffiffiffiffi
2m

p
for

each spinor, and integrate over an s-state wave function to
get the wave function squared at origin, multiplied by
constants. It is important to note that for pseudovectors with
MZ0 ≤ ml there are corrections that arise from the Yukawa-
like interaction that depend onMZ0r where r is the radius of
the atom. We will take the assignments of weak isospin for
the antiparticle to be T3ð2Þ ¼ −1=2 and for the particle to
be T3ð1Þ ¼ 1=2. From this, we have the expression

hψ jΔHZjψi ¼
ḡ2

16½ð2mÞ2 −M2
Z�
jψð0Þj2

�
1 − σ2 · σ1

2

�
:

ð11Þ
Noting that hS2i ¼ h3þσ2·σ1

2
i, we can rewrite the expectation

value of the spins. Using the nonrelativistic value for

jψð0Þj2 given in Sec. I and evaluating this Hamiltonian
for the difference between the singlet and triplet state,
h2 − S2i ¼ 2, we have

ΔEa
hfs ¼

ḡ2

8½ð2mÞ2 −M2
Z�
μ3α3

πn3
: ð12Þ

For the case of a general Z0 boson, this is the final
expression to consider after appropriate variable exchanges.
It is interesting to note that for MZ0 ≈ ð2mÞ2 this term will
dominate over the exchange term. This may potentially lead
to stronger constraints on BSM pseudovectors for this mass
range than those found for positronium in Ref. [29].
In contrast, for the real electroweak Z boson, we can safely
approximate ð2mÞ2 −M2

Z ≈ −M2
Z. Using the definition that

ḡ from Sec. II and the relations g2 ¼ 4πα= sin2 θW , we have

ΔEa
hfs ¼ − 1

8

4πα

sin2θWcos2θWM2
Z

μ3α3

πn3
: ð13Þ

Using the relation between the massive boson masses
MW ¼ MZ cosðθWÞ gives

ΔEa
hfs ¼ − 1

8

4πα

sin2θWM2
W

μ3α3

πn3
: ð14Þ

Finally, using the relation GF=
ffiffiffi
2

p ¼ 4πα=8M2
W sin2ðθwÞ

and that the lepton mass is related to the reduced mass
by μ ¼ ml=2, we reach

ΔEa
hfs ¼ − GF

8
ffiffiffi
2

p m3
l α

3

πn3
: ð15Þ

Comparing this to Eq. (7), we see that the annihilation
channel increases the electroweak correction by 50%.

IV. TOTAL CONTRIBUTION

Summing Eqs. (8) and (12), we find that the total
pseudovector contribution to the hyperfine splitting of true
muonium or positronium is

ΔEZ0
l;hfsðnÞ ¼

�
− g2

4M2
Z0
þ g2

8½ð2mÞ2 −M2
Z0 �
�
m3

l α
3

8πn3
: ð16Þ

Taking instead Eqs. (7) and (15) for the specific case of
the electroweak Z boson,

ΔEZ
l;hfs ¼ − 3GF

8
ffiffiffi
2

p m3
l α

3

πn3
: ð17Þ

Using our approximate value of GFm2
μ ≃ α3.2, we find that

as predicted this correction does naively scale as Oðmμα
6Þ.

Closer inspection of the actual numerical coefficient reveals
that this contribution is comparable in size to the Oðmμα

7Þ.
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For these particle-antiparticle bound states, the leading-

order HFS is given by ΔEð0Þ
hfs ¼ 7

12
α4ml. As a fraction of

the leading order, we have corrections to true muonium of
the size

ΔEZ
μ;hfs ¼ −2.58 × 10−6Eð0Þ

μ;hfs ð18Þ

and that the total shift is −109 MHz. This correction has
been included in Table II, which gives the current state of
the theoretical predictions.

V. CONCLUSION

In conclusion, upcoming experiments present for the first
time the strong possibility to detect and measure the
properties of true muonium. These results will allow for
strong discrimination of BSM explanations for the muon
problem. To theoretically differentiate these models, one

will need a precision of Oð100 MHzÞ for the hyperfine
splitting of true muonium.
In this paper, we have presented a subleading, but

perhaps surprisingly large, correction from the electroweak
interaction that needs to be accounted for in order to
achieve the required precision. We have additionally
computed the leading-order correction due to a general
Z0 boson. Further work remains to compute the more
standard QED effects to higher order and to dramatically
reduce the model-dependent uncertainties in the hadronic
loops.
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