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We define and test CP-even and CP-odd partial differential widths for the process 7 — Kazv, assuming
that an intermediate heavy charged scalar contributes to the decay amplitude. Adopting a model-
independent approach, we use a Monte Carlo simulation in order to study the number of events needed to
recover information on the new physics from these observables. Our analysis of the CP-odd observables
indicates that the magnitude of f#p, which is related to the new-physics contribution, can be recovered
with an uncertainty smaller than 3% for 3 x 10° events. This number of events would also allow one to
retrieve certain parameters appearing in the Standard Model amplitude at the percent level. In addition, we
discuss the possibility of using the proposed observables to study specific models involving two Higgs
doublets, such as the aligned two-Higgs-doublet model. This analysis is undertaken within the context of
the upcoming super B-factories, which are expected to provide a considerably larger number of events than
that which was supplied by the B-factories. Moreover, a similar set of observables could be employed to

study other decay modes such as 7 — zzzv,, t - KKzv, and 7 - KKKv,.
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I. INTRODUCTION

With the discovery of a new boson H by the ATLAS [1]
and CMS [2] collaborations, it is now very important to
characterize this new particle in order to study the extent
to which its features are in agreement with those predicted
for the Higgs scalar within the Standard Model (SM). In
particular, the spin of this new boson and its couplings to
other particles have been carefully analyzed giving rise,
with a high degree of confidence, to the conclusion that it
has spin zero and that its couplings to the other particles are
linearly correlated with their masses (see Refs. [3,4] and
references therein). On the other hand, the possibility of an
enlarged scalar spectrum is also being tested. In particular,
from the high energy point of view, many searches for
charged Higgs bosons decaying via H — 7, have been
performed by ATLAS and CMS (see, for example,
Refs. [5-7]). These searches have found the data to be
consistent with the expected SM background and have set
limits on the branching ratio of top quark decays to a b
quark and a charged Higgs boson. The effects of the
presence of a charged Higgs boson can also be studied
indirectly by means of low energy observables defined, for
example, for leptonic and semileptonic decays involving
B,D*,D, Dy, K, and = mesons [8]. Such decays have been
widely studied at the B-factories by the Belle and BABAR
collaborations. Moreover, the fact that no new particle has
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been observed at the present time may suggest that the new-
physics (NP) scale is out of reach for the LHC. Indirect
searches for physics beyond the SM become particularly
important within this context.

Among the various processes that can receive contribu-
tions from a charged Higgs boson, the 7 lepton decays can
be used to derive constraints on the scalar and pseudoscalar
couplings of a charged scalar to fermions. The fact that
CP-violating effects are expected to be negligible within
the SM means that a study of CP-odd observables could
reveal the presence of contributions from a charged Higgs
boson, should the charged Higgs-fermion couplings violate
CP. Such an analysis has been carried out for the decay
7 — Krzv, in Ref. [9], where the presence of a charged
scalar contributing to the corresponding amplitude is
assumed and two types of CP-asymmetries are defined
in addition to the usual partial rate asymmetry. In the
present work, which extends the analysis of Ref. [9], we
focus on the same decay 7 - Kzzv,, with the main goal
being to define and test various CP-even and CP-odd
observables, on the one hand, and to study their sensitivity
to a NP contribution due to the presence of a charged scalar,
on the other. The decay under consideration, 7 - Kzzv,,
only involves a pseudoscalar coupling of a charged scalar to
the up and strange quarks, in contrast to 7 - Kzv,, for
instance, which exclusively probes the scalar coupling [10].
It is also worth noting that the simplest z decay with
AS =1 that probes the contribution arising from the
exchange of a charged scalar is v — Kv,. In fact, this
decay involves exactly the same pseudoscalar coupling as
7 — Kzzv, and then imposes constraints on it.

© 2015 American Physical Society
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For the analysis of the observables introduced below, we
use a large number of Monte Carlo simulated events. The
size of the Monte Carlo sample has been chosen within the
context of the upcoming super B-factories, which are
expected to significantly increase the luminosity as com-
pared to the B-factories. The aim of this analysis is to
provide insight into the number of events needed to extract
information about the NP contribution as well as about the
SM contributions, including the anomalous Wess-Zumino
(W-Z) term.

Although our primary focus in the present work is on a
model-independent treatment of charged-scalar contribu-
tions to r — Kzzv,, it is useful also to consider a specific
scenario. Many models include one additional Higgs dou-
blet, so that a charged Higgs is present. In particular, in the
so-called aligned two-Higgs-doublet model (A2HDM), an
alignment in flavor space of the Yukawa couplings of the two
scalar doublets is enforced, leading to the elimination of
flavor-changing neutral currents at tree level. This restrictive
choice results in a highly predictive phenomenology for this
model, which has been carefully explored (see Refs. [11-
13]). Of particular interest to us is not only the fact that the
A2HDM includes potential new sources of CP violation but
also that it imposes very restrictive constraints due to the
three-family universality of the proportionality constants
arising from the alignment in flavor space. The partial
differential widths studied in this work can be considered
as additional observables to test the A2ZHDM, specifically
within the context of the super B-factories, in which the
possibility of extracting these distributions from the data is
more plausible. In this paper we briefly discuss the useful-
ness of the proposed observables to probe the A2HDM.

The remainder of this paper is organized as follows. In
Sec. II we write down the expression for the differential
width for the decay = — K 2~ z"v, in terms of the
corresponding form factors, including both the NP and
SM contributions. By integrating the differential width
weighted by various angular functions, we define partial
differential widths in Sec. III. Section IV introduces a set
of CP-even and CP-odd observables derived from the
weighted partial widths. The parametrization for the form
factors, along with the set of reference values used later
for the event simulation, are summarized in Sec. V. The
analysis of the proposed CP-even and CP-odd observables
is included in Sec. VI. Finally, in Sec. VII the decay is
considered in the context of the A2ZHDM, and in Sec. VIII
some possibilities of testing the different assumptions used
during the paper are briefly discussed. We summarize the
main conclusions in Sec. IX. The Appendix contains some
details relevant for the statistical analysis.

II. DIFFERENTIAL WIDTH FOR 7~ - K 7 xn"v,

We start with the effective Hamiltonian that accounts for
the decay ©~ - K™z~ x v, within the SM,
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Gr . _ -
HEY =—2sin, Dy, (1=ys)7][57"(1=ys)u] +He., (1)

V2

where G is the Fermi constant and .. is the Cabibbo angle.
Possible NP effects due to a new charged scalar boson
contributing to the decay may be included by adding the
following terms to the effective Hamiltonian,

Gr . _ _ _ _
HY = —Lsin 6, 5o, (1 + y5)75u + npo.(1 + y5)75ysul

V2
+ H.c., (2)

where 7y and #5np are the scalar and pseudoscalar
couplings, respectively. The hadronic matrix element
= (K~ (p1)x~(p2)z" (p3)|57*(1 — y5)u|0) can be con-
veniently parametrized in terms of four form factors as

JH=[F(Q%51.5)(p1 = p3), + F2(Q%.51.52) (P2 — p3) | T
+iF3(0%.51,8)€"" p1, 2y p3s+ Fa(0.51.5,) 0%,

(3)

where Q" = (py +py + p3)s T =g - 0'Q"/ Q%
s1 = (pa + p3)* and s, = (p; + p3)? and where we adopt
the convention €y;,3 = +1, as in Refs. [9,14]. The func-
tions F| — F, are the form factors that arise from the
different possible decay chains. | and F, appear due to the
decay chains involving the K;(1270) and K,(1400) res-
onances, F5 is the anomalous Wess-Zumino term, and F, is
the scalar form factor, which is generally assumed to be
negligible for this decay since there is no pseudoscalar
resonance through which the decay can proceed [15]. The
axial vector form factors F| and F, give the dominant
contributions, while the anomalous vector form factor Fj
represents a subdominant contribution, as shown by
numerical estimates [10]. The NP contribution coming
from a scalar boson can be incorporated into the amplitude
through the shift Fy, — F, = F, + fynp/m, [9], where the
pseudoscalar form factor ff is defined as

fu= (K~ (p1)a~(p2)a" (p3)|575ul0). 4)

The starting point for our analysis will be the differential
width for the decay obtained from Eq. (25) in Ref. [9] after
integrating over the angle 8. The angle 6 is defined in the
rest frame of the tau; it is the angle between the direction of
the hadrons (“é”) in that frame and the direction of the tau

in the laboratory frame. Performing the integration, we
obtain
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+2(K;3)
+2(K3)
+2(K;)

3

— (K,) sin2f sinyIm(B,B%) + 2(K,) cos flm(B3B;;) }

where
G2sin’d, (m? — Q?)?
AQY) =L : 6
(@) 128(27)°  m}Q* ©
and
1 [~ .
(K,)E—/ K, sin 0d0 (7)
2 Jo

(and similarly for (K;)); the definitions of the K; and the K
may be found in Ref. [9]. As described in Ref. [9] (the
definitions therein are identical to those in Ref. [14]), # and
y are Euler angles relating two coordinate systems used to
specify the kinematics of the decay. Moreover, the func-
tions By — B, are linearly related to the form factors as
follows:

By = [F\(py — p3)* + Fa2(p> — p3)'] (8)
B, = (Fy = Fy)py )
By = F3\/ 0’ pip} (10)
342@[1744'%’713]- (11)

Note that the form factors F; and ff are potential sources
of strong phases and that the only possible weak phase
comes from the pseudoscalar coupling 7p. For future
reference, let us also define the quantity B,, which is
relevant for 71 decays,

B, = \/@[Fzrf'fH F

o
In fact, the differential width for the CP-conjugate decay

77 — K* 270, can be obtained by replacing B, by B, in
Eq. (5) since the only source of CP violation appears in By

(12)

(K1) + (K2)

(K1) + (K3) —
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1

5 (&) Beosp = 1/2] (31 + 18:P)

Wl

(K, (Beost - 1)/2] B3 + (Ky) B

sin?fcos 2y(|B;|* — |B,|?) + (K, )sin?f sin 2yRe(B; B;)
sin fsinyRe(BB%) + 2(K,) sin f cos yRe(B, B})

sin #cos yRe(B,B;) — 2(K,) sin #sinyRe(B,B;)

cos fSIm(B;B;) + (K ) sin 23 cos yIm(B, B)

(5)

through the coupling #p. For further details of the quantities
involved within this section, see Ref. [9].

III. WEIGHTED DIFFERENTIAL WIDTHS

We now define observables that exploit the angular
information that is available in the expression for the
differential width. To do so, we employ weighting func-
tions that allow us to isolate different contributions.
Inspection of Eq. (5) reveals that it depends on nine
different functions of the angles # and y. These functions
form an orthogonal set; the functions, and their normal-
izations, are shown in Table I. The orthogonality of the
functions means that different terms in Eq. (5) can be easily
isolated by performing angular integrations of the differ-
ential width weighted by these angular functions. Hence,
we can define nine weighted differential widths,

dr

ar,
dQ%ds,ds, / dQ?ds ds,dyd cos
i=1,..,9.

hi(y.p) sin pdfdy.
(13)

It is straightforward to perform the integrations in Eq. (13)
using the information from Table I. The results for the

TABLE 1. Angular weighting factors. The #;(y, ) functions
form an othogonal set. The normalization factors are given in the
third column.

i hily. B) [[Thi(r. B sin pdydp
1 1 4n

2 3cos?ff— 1 167/5

3 sin® ffcos 2y 167/15

4 sin® f sin 2y 167/15

5 sinf#siny 4rn/3

6 sinffcosy 4rn/3

7 cosf 4r/3

8 sin2f cosy 167/15

9 sin2fsiny 167/15
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TABLE II. Weighted partial widths for the 7z~ decay. The
related expressions for the CP-conjugate decay may be obtained
by replacing B, by B, everywhere it appears.

(dT;/dQ%ds,ds,)/A(Q?)

~.

1 G (K1) + (K2))(|B1* + |By|* + |B3|*) + (K2)|Ba|*
2 %< >(|B * + |By|* - 2|B5|*)

3 5 (K)(|B1|* = [B2]?)

4 %<K|>Re(BlB§)

5 % (K3)Re(BB;) — % (K,)Re(B,B})

6 3 (K3)Re(B,Bj) + 5 (Ky)Re(B, B})

7 5 (K3)Im(B, B3) + 5 (K»)Im(B3Bj)

8 % (f1>lm(B,B§)

9 — 15 (K1)Im(B, B

various weighted differential widths are shown in Table II.
The only weighted differential widths that include NP
contributions are those with i = 1,5, 6, and 7. Therefore,
the remaining observables are clearly CP even.

IV. OBSERVABLES

Since we are assuming that CP is violated via the
pseudoscalar coupling, the 7~ and 7" distributions are
not expected to be identical. There are in principle two
ways to proceed. The first is to analyze the observables in
Table II twice, once for the 7= decay and once for the 7+
decay. Another possibility is to perform an analysis
separately for the sum and the difference of the distribu-
tions. We will follow the latter approach, since it has the
advantage that the difference between the 7= and 7
distributions is sensitive to the presence of CP violation.
We define then the distributions

drj: 1 dFi dri
2 2 * 2 ’ (14)
dQ dS]dS2 dQ dS]dSZ dQ dS]dS2

where dl';/dQ%*ds ds, is obtained from dI';/dQ*ds,ds,
by the replacement B, — B, (or, equivalently, np = 1});
see Egs. (11) and (12). We note that the quantities
dr;/dQ*ds ds, and dT'; /dQ*ds,ds, are, by construction,
CP even and CP odd, respectively. As was noted above, the
only nonvanishing CP odd distributions are those with
i=1,5,6, and 7, because the remaining weighted differ-
ential widths do not include NP contributions (i.e., they are
independent of By).

Let us first consider the distributions with i = 1. After
projection onto Q?, s, or s,, the CP-even distribution with
i =1 gives the CP-average of the invariant mass distri-
butions, which are the distributions that are usually studied
in experimental analyses [10,16]. The corresponding
expression is obtained from Table II,

PHYSICAL REVIEW D 91, 073006 (2015)
dl—*+

g (G0 () ) (B84 B3P

B g, B (15)

The CP-odd distribution with i =1 is given by
dr'y (K>)

. 2 2
szdSIdS (Q ) (|B | |B4| )

2A<Q2><K2>%|F4fﬂnp|sin<54—5ﬂ>sin<¢ﬂ>,
(16)

where J, and oy denote the strong phases arising from the
SM scalar form factor F'4 and the pseudoscalar form factor
fr, respectively, and ¢y is the weak phase present in 7p.
The above expression is related to the well-known partial
rate asymmetry. As was noted in Ref. [9], the partial rate
asymmetry is expected to be doubly suppressed due to the
generally assumed smallness of F, and 5p. Expressions
for the remaining nonzero CP-even and CP-odd weighted
partial differential widths may be found in Table III, where
we have made use of the following definitions:

B( E%(B4+B4) \/@[F4+]%RC(WP)] (17)
Bi_)E%(B4—F) ff” (18)

Interestingly, from the definitions in Eqs. (17) and (18) and
the results in Table III, we note that it does not seem to be
possible to extract F, (by itself) from the data when
¢y # £r/2. In other words, there will always be an

TABLEIIl. CP-even (“+”) and CP-odd (“—") weighted partial
widths. Several of the CP-odd weighted partial widths are zero;
these have been omitted.

i(+) (dT} /dQ2ds, ds,) /A(Q%)
2(+) 2(R1)(1Bi[> + |Baf —2/B5P)
3(+) — 15 (K (|B1] = |B,)

4(+) %(Fl)Re(B B)

5(+) 2(R3)Re(BB3) — 2 (K,)Re(B3B,)
6(+) 2(K;)Re(B,B3) +§<K2>Re(B’fBi )
7(+) §(Ra)m(B, B3) = (K )m(855,)
8(+) 4 (K, )im(B, B)

9(+) —%<K1>Im(323fg)

5(-) ~2(K,)Re(B3BY)

6(-) 2(K,)Re(BB, )

7(-) -2(K,)Im(B;BY")
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admixture of fynR,' and it will not be possible to
distinguish them. However, if the coupling p were purely

imaginary, the factor Bff) would only depend on the scalar

form factor F, and then the CP-even observables with

i =15,6, and 7 would be useful for determining F’ f" .

To study the observables presented above (Table III), we
have made various assumptions that tend to simplify the
analysis, in a manner similar to the approach that was
followed in Ref. [9]. First of all, note that the SM scalar
form factor F, is generally assumed to be small for
7 — Knarnv,, since there are no pseudoscalar resonances
that mediate this decay. Therefore, we will neglect this
contribution by setting F, = 0. Furthermore, we will
assume that f has a flat behavior over the phase space
(no Q?, sy, and s, dependence) and does not contain strong
phases. Thus, we set f7, = 0. Under these assumptions the
1(—) distribution is reduced to zero, as can be seen from
Eq. (16), while the 1(+) distribution becomes equal to the
usual (unweighted) differential width, as follows from
Egs. (11), (12), and (15). Finally, in order to simplify
and separate the analysis of the CP-even and CP-odd
observables, we perform the analysis with ¢ = 7/2. For

this particular value, Bgﬂ = 0, and the NP contribution is
removed from the CP-even observables [see Egs. (15) and
(17), as well as Table III]. To set an input value for the
quantity |fznp|, we follow the approach adopted in
Ref. [9], where it is assumed that the NP contribution to
the width is hidden in the experimental uncertainty of the
branching ratio. As shown there, the experimental uncer-
tainty is saturated for |fynp| = 17.9. Thus, we take this
value as a reference input. A few comments are in order at
this point:

(1) Asisnoted in Ref. [9], one way to obtain an estimate
of the order of magnitude of f is to compute F,
within the context of chiral perturbation theory
(see Ref. [15]) and then to relate fy to F, via the
quark equations of motion. The latter step yields
fu~Q?Fy/m;. A numerical study along these
lines, with kinematical variables sampled appropri-
ately over the relevant phase space, shows that
(Iful) ~ 14, with 76% of the values falling within
the range 7-21. Regarding the phase of f, one finds
(arg(f4)) =0.97x, so that |(Im(f4)) | <|(Re(f))].
Thus, it appears to be reasonable to assume that f
is real.

(2) The NP parameter |rp| should scale as m%,/M? due
to the charged scalar propagator, with my, and M
being the W and charged scalar masses, respectively.
If the charged scalar has electroweak couplings, it
would be reasonable to assume that np has a
magnitude not exceeding unity.

'From now on, we will use the superscripts R and / to denote
the real and imaginary parts of a quantity, respectively.

PHYSICAL REVIEW D 91, 073006 (2015)

(3) Combining the estimates from the above two com-
ments, we obtain |fy#np| ~ 14, which is similar to
our reference value |fz7p| = 17.9. As pointed out in
Ref. [9], however, this estimate may well have large
uncertainties due to the use of the quark equations of
motion; a more realistic assumption would probably
be to take |fy#p| to be in the range 1-10.

(4) The decay channel 7~ — K™y, also involves the
pseudoscalar coupling 7p, so that this process can in
principle be used to constrain the NP contribution to
7 — Krrzv,. It turns out, however, that the con-
straints derived from 7~ — K~ v, are very sensitive
to the values used for the strange quark mass and its
uncertainty. By performing a crude estimate that
takes into account the uncertainties of the K~ decay
constant, f -, and makes use of the quark equations
of motion, we obtain the constraint |75 < 0.364
(recall our assumption that ¢y = 7/2). We note
that this bound was derived by using the value
m; = 0.095 GeV. On the other hand, if the quark
mass is replaced by the meson mass, one finds
[nh| < 1.878. By combining these constraints with
the assumption that 1 < [fy| < 10, we obtain two
different bounds, namely |fynh| < 3.64 and
|famh| < 18.78. Therefore, the constraints provided
by the decay channel 7~ — K~ v, are not conclusive
enough to discard our input value.

In much of the analysis that follows, we set |fynp| = 17.9.
With the above comments in mind, however, we also
include some results for fynp = 1.79¢*/* in Sec. VI.

V. PARAMETRIZATION OF FORM FACTORS

We now introduce the parametrization of the form factors
F, — F3 appearing in the definitions of the quantities
B, — B; in the expression for the differential width [see
Egs. (5) and (8)—(10)]. We write the form factors in terms of
various Breit—Wigner functions in the following manner:

F](QZ,S],SQ)
2N 5 5
= T3F, [C - BW1270(Q%) + D - BW 1400(Q°)|BWg- (s55)
(19)
FZ(QZ’SDSZ)
N

=———[A-BWy0(0*) +B- BW1400(Q2)]T/()1)<51)

(20)
F3(Q2,SI,S2)
_ N 2 T/(JI)(Sl)‘FaBWK*(Sz)
_72\/5”2F§[BWK*(Q ) I ta . (21)
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The normalized Breit—-Wigner propagators for the
K(1270) and the K,(1400) appearing in the axial vector
form factors F; and F, are assumed to be [10]

2 .
—mKl + lmKHKl

2 2 . ’
Q% —my +img g,

BWK. (Qz) = (22)

where my and 'y, denote the mass and width for the
corresponding K state. The Breit-Wigner propagators for
the K* and p are taken to have energy-dependent widths
(see Refs. [10,17]),

2

—m
BWp(s) = R , 23
r(s) s —m% + iy/sTg(s) (23)
with
m3% [ p\3
[p(s)=T —R<—) , 24
els) =T (2 (24)
where

p=gmls= lmmplls = (m—mef] @9

1

:M [mlze_(ml+m2)2”m12€_(m1—m2)2]. (26)

Pr
In the above expressions, the decay of the resonance R to
two particles with masses m; and m, is assumed. For the
K*, a single resonance with an energy-dependent width is
assumed, while the expression for the p includes two
different resonances:

_ BW,(s1) 4+ BW,,(s;)
= 1+p '

T, (s1) (27)

To fix the reference values for the parameters A — D in
Egs. (19) and (20), we follow Ref. [10], where constraints
arising from the tabulated branching fractions of the K;
resonances are imposed. Regarding the parameters N and
N5 that regulate the contributions coming from the axial
and anomalous form factors, respectively, we apply the
criteria proposed in Ref. [9], in which 5% of the t — Kzav,
width is ascribed to the F; term and the remaining 95% to
the | and F, terms. For this computation, we have used
the value of the branching ratio B(r — Kzzv,) obtained in
Ref. [18], which is the most precise one at present (see
Refs. [16,19]). All the reference values related to the form
factors F'; — F used in our analysis are listed in Table I'V.
Among them, those corresponding to the form factors F;
and F, are based on Ref. [10]. We note that a more recent
and precise value for the mass and the width of the
K(1270) resonance obtained in Ref. [20] from a signal-
region fit for the channel B™ — J/wK atz~ is still in

PHYSICAL REVIEW D 91, 073006 (2015)

TABLE IV. Input values for the parameters entering in the
form factors F; — F3. The up table (a) lists the dimensionless
parameters, while the down table (b) shows the masses and
widths of the various resonances, along with the pion decay
constant (£ ).

Parameter Value
(a)
a -0.2
B ~0.145
A 0.944
B 0
C 0.195
D 0.266
N 1.4088
Nj3 1.4696
(b)
F, 93.3 MeV
mio70 1.254 GeV
F1270 0.26 GeV
mMy400 1.463 GeV
F1400 0.30 GeV
Mge 0.892 GeV
V'S 0.050 GeV
m, 0.773 GeV
T, 0.145 GeV
m, 1.370 GeV
r, 0510 GeV

agreement with the input value used here. For the form
factor F5, we follow Ref. [15], whereas for the p and p’
resonances, the input values are guided by Refs. [21,22].

VI. ANALYSIS

To study the proposed observables, we have performed
two different analyses. In the first we have tested the SM
hypothesis. In this case there are no CP-violating effects
present in this decay, and hence the CP-odd observables in
Table III are zero. In the second analysis, we have
performed various fits of the distributions arising from
all of the observables in Table III. Both analyses have been
implemented by using our own Monte Carlo (MC) gen-
erator to simulate several sets of events with different sizes.
The main goal of these two analyses is to estimate the
number of events needed to detect the presence of NP (in
the case of the SM test) and to extract the NP coupling
(in the case of the fit to the CP-odd observables).
Furthermore, the study of the CP-even observables aims
to extract information about the resonant structure of the
decay and, in particular, of the anomalous Wess-Zumino
contribution.

We have focused our analysis on a scenario in which the
NP parameter is assumed to be hidden in the experimental
uncertainty of the branching ratio. Hence, as mentioned
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(b) 0.03

'Simulated Dat'a A
Expected
p Reflection ---------- ]
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FIG. 1 (color online).

Plots of the differential widths dI'/dM, including the different contributions from the decay chains along with

the simulated data points obtained by using our MC generator. The |fy#p| curve displays the NP contribution.

above, we have set the input value for the NP contribution
to be 17.9¢7/2. To test the usefulness of the proposed
observables when the NP contribution is considerably
reduced, we have also performed an analysis of the CP-
odd observables in the case where fynp = 1.79¢7/4.

A. Monte Carlo simulation

To simulate the distribution in Eq. (5), we have con-
structed a Monte Carlo event generator by applying von
Neumann’s acceptance-rejection technique. Once a set of
events has been generated that is consistent with the
differential decay width, the different observables can be
obtained by using suitable estimators. By employing our
own event generator, we are able to include different
contributions to the differential decay width and to choose
their parametrization. Various sets of events have been
generated for the decay ©~ — K~z 7" v, and for its CP
conjugate, 7 — K*ztz"0,. The maximum number of
events was taken to be 3 x 10° for the case in which the
NP parameter fynp is equal to 17.9¢/2 and 10° for the
case with f,np = 1.79¢"7/*. Although the total number of
events in these simulations is beyond the scope of the B-
factories, it can be regarded as realistic within the context
of the upcoming super B-factories, which are expected to
increase the design luminosity by approximately 2 orders
of magnitude. In fact, the design luminosity at SuperKEKB

is 8x 10 cm™2s~!, and an integrated luminosity of
50 ab~! is expected [23]. Guided by the analysis performed
in Ref. [16] (which was based on data collected by the Belle
detector at KEKB) and taking into account the expected
integrated luminosity at SuperKEKB, we can estimate the
expected number of 7~ — K~ 7~z v, events. A conservative
estimate gives ~5 X 10°, which is above the maximum
number of events we have simulated for the present
analysis, 3 x 100.2

As was noted in Sec. IV, the pseudoscalar form factor has
been assumed to be real, and the SM scalar contribution has
been neglected; thus, we have taken ffi = F, = 0O asinputs
for the MC simulation. The input values related to the form
factors F'; — F5 are listed in Table IV. As a test of the
consistency of our event generator, the usual differential
width distributions have been extracted from a set of
1 x 10° simulated events. As can be seen from Fig. 1,
the simulated distributions are in agreement with those
obtained experimentally by the CLEO collaboration in
Ref. [10] and also with the expected distributions based on
numerical computations [9]. In addition to the contributions
involving the form factors F; and F,, the subdominant

’Even though the estimated number of events takes into
account the possible backgrounds as well as the detector effects
[23], these have not been considered during the present analysis.
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TABLE V. P-values corresponding to the observables 5(—) and 7(—). The number of events considered is given in the first column.

P-values
N, /100,000 dFS‘/sz drs/ds, drs/ds, dl“;/dQ2 drs /ds, drs/ds,
5 0.933 0.754 0.175 0.0086 0.168 0.057
10 0.675 0.361 0.0018 0.00015 0.044 0.00013
15 0.198 0.062 0.000015 1.15 x 1077 0.00033 427 x 1077
20 0.286 0.055 2.73 x 1077 2.78 x 10710 8.14 x 107° 9.76 x 10~

contribution from the W-Z term and the possible NP
contribution have been incorporated in the plots.

B. SM hypothesis test

The fact that the CP-odd observables 5(—),6(—), and
7(—) are zero if the NP contribution is absent (i.e., if
frnp = 0) allows for a test of the SM hypothesis by
performing a Pearson’s y*-test. To perform this test, we
calculate y?> for a particular observable j(—) and then
compute the quantity P;, which is the probability that the
hypothesis (the SM hypothesis in our case) would lead to a
x> value greater than the one actually obtained,

i= [ flzngdz, j=5.6.7.
%

2 __
A= )

Nuins |:dxl"/— (xi):| 2 P
Gi ’

i=1

(28)

In the above expressions, d, = d/dx with x = 02, 5,, 55,
Nins 1s the number of bins,’ f(z;ny) is the y? distribution
for n, degrees of freedom, and o*l(./ ) denotes the statistical
uncertainty in the ith bin for the observable j(—) (see
Appendix A). We remark that the values of the distributions
in the numerator of the expression for ;(? given in Eq. (28)
are extracted from the simulations. It is worth noting that
this test is based on the assumption that the SM contribu-
tion only includes strong phases and therefore the only
source of CP violation for the decay is a weak phase
present in the NP contribution. Hence, the test itself does
not depend on the particular value of the NP parameter,
even when its robustness actually does (as we will show
later). Tables V and VI show results of the SM hypothesis
test performed using the observables dI'5¢,/dx, with
different numbers of events, and taking fnp=17.9¢"/2.
As shown in Table VI, the SM test for the observable 6(—)
allows one to reject the SM hypothesis with as few as 10°
events. This is not the case for the other CP-odd observ-
ables, which are not useful for rejecting the null hypothesis
unless there are at least 5 x 10° events. In fact, one can use
this y? test to rank the various observables in terms of their

3For the entire analysis, we have used the conservative number
of 20 bins (see Ref. [16]).

sensitivity to the NP contribution. As is demonstrated by
the data in Tables V and VI, the most sensitive observable
appears to be the Q? projection of 6(—), which yields a P-
value of 2.4 x 10~ for 10° events. Therefore, the CP-odd
differential width 6(—) (mainly its Q* projection) provides
a suitable observable for rejecting the SM, since in the SM
no CP violation effect is expected for this decay. To analyze
the robustness of the test, we repeat the procedure with a
sample of 10° events for the scenario in which
fanp = 1.79¢/*. In this case the test seems to loose its
capability of rejection, even for the observable 6(—) (see
Table VII). The tiny NP contribution in this case makes
all three CP-odd observables compatible with zero, at least
for 10° events. This reveals that a larger set of events
(> 1 x 10 is needed for these observables to be useful
when the NP contribution is this small. However, this test
can be regarded as an interesting possibility within the
context of the upcoming super B-factories, for which a
conservative estimate of the expected number of events for
the mode 7~ — K~ 7~n" v, gives ~5 x 10%, as was already
mentioned in Sec. VI A.

TABLE VI. P-values for the observable 6(—). The number of
events is shown in the first column. Note that in this case fewer
events were included in the simulations than were used in the
previous table.

P-values
N /100,000 Tz /dQ> dl'g /ds, dl'g /ds,
1 0.000024 0.0076 0.013
2 127x107%  1.05x 107  1.25x107°
3 <107V 6.66 x 10716 3,55 x 1071
4 <107V <107V <107Y7
TABLE VII.  P-values corresponding to the observable 6(—) for
a NP contribution with £, = 1.79¢'%/%,

P-values

N.,/100, 000 dry /dQ? dl'g /ds, dlI'; /ds,
10 0.53 0.93 0.99
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C. Fitting procedure

We have performed several fits of the one-dimensional
distributions resulting from the projections of the observ-
ables listed in Table III onto Q?, s;, and s,. Only the
parameters appearing linearly in the expressions for the
form factors | and F,, namely A, B, C, and D, along with
the NP parameter, fy7p, have been taken into account as
possible fit parameters, although we have also tested the
possibility of recovering N3 (which provides information
regarding the Wess-Zumino contribution) from the fits.*
To construct the fitting function needed to apply the least-
squares method, we write each observable in terms of the
parameters 0 = (A, B, C, D, N5, fynh)’ as

dry i(£) 2 i(+)
ettt S ' ' 5

where the vectors ((*+) depend on the parameters 6 and are
listed in Table VIII. By projecting Eq. (29) onto x = Q?, s,
or §,, we obtain the corresponding expected value for the
ith projected partial differential width evaluated for the kth
bin of x:

dr'y () il
(45) ->ardfe. o

The matrices ¢’*) in the above expression have dimension
Niins X Né(otf)f with Ny;,s being the number of bins in the x
range and N’C(otf)t being the number of functions required to
express the observable i(+) in terms of the parameters 0
appearing in Eq. (29). The different matrices ¢/*) are
obtained by numerical integration of the appropriate
function fj-(i) (Q?,s1,5,). With the observables expressed

as in Eq. (30), we proceed in general to minimize the
quantity

Ry (ysim — P (9))?
>
j=1 J

70 = (31)

where the yj-im are the values for a given observable

extracted from the simulations, the yj'* are the

4Although the chosen fitting procedure does not take the
masses and widths of the resonances as free parameters (i.e., these
parameters are set to their reference values), we have also
performed the fits by varying the values for the main contributing
resonances K(1270) and K;(1400) within the uncertainties
reported in Ref. [10]. We have observed that these shifts tend
to worsen the fits, whereas the uncertainties do not change
significantly.

We note that the fitting procedure introduced in this section
could also be applied for the case ¢y # /2 by including the
parameter f7% in 6.

PHYSICAL REVIEW D 91, 073006 (2015)

TABLE VIIL. List of the vectors ¢**) appearing in Eq. (30)
expressed in terms of the parameters in 6.

i(+) ¢

2(+) (C*,D*,CD, A%, B*,AB,AC,BC,AD, BD, N?)
3(+) (C?,D?,CD, A% B%,AB,AC, BC,AD, BD)
4(+) (C?,D?,CD, A%, B>, AB,AC,BC,AD, BD)
5(+) (N3C,N3D, N3A, N3B)

6(+) (N3C,N3D, N3A, N3B)

7(+) (CA,CB, DA, DB)

8(+) (N5C,N3D,N5A, N3B)

9(+) (N5C,N3D, N;A,N;B)

5(_) (fH”/;JC’ .fH’//;’DufH’];’A’fH’ﬂJB)
6(-) (fH’ﬁDC’ fHﬂfJD, fH”lfJAJCH’ﬁDB)
7(_) (fH'ﬂDNs)

corresponding expected values obtained by using the fitting
function defined above, and the o; are the statistical
uncertainties associated with the simulation process (see
Appendix A). We note that different choices of the
parameters in @ with respect to which y?(8) is minimized
have been tested. The various resulting fits will be

described in the following sections.

D. Fit results

We present now the results obtained by fitting the
CP-odd as well as the CP-even observables (see
Table III). We consider these two sets of observables
separately. In the case of the CP-odd observables, we
regard the NP parameter f57p as the unique free parameter
and fix the remaining parameters to their input values. In
the case of the CP-even observables we focus on extracting
information about the remaining parameters, A, B, C, D,
and N;, from our simulated data. This approach is
facilitated by the assumptions mentioned in Sec. IV, namely
that F4=f4, =0 and ¢, = 7/2. Under these assumptions,
the CP-even observables in Table III do not depend on
the NP contribution, and hence the input value for the
parameter fy#7p is not involved in the analysis of these
observables.

1. CP-odd observables

To recover the NP parameter f7, from the CP-odd
observables, we perform a least-squares fit by fixing the
parameters A, C, and D to their input values and setting the
parameter B to zero. The results obtained for two data sets

®Note that fp is involved in the CP-even observable “1(+)”
which is not included in Table III. Note also that, in the more
general case in which ¢, # 7/2, the CP-even observables 5,6,
and 7 contain NP contributions, but these are added to the
dominant SM contribution. By way of contrast, the NP con-
tributions are dominant for the CP-odd observables in the sense
that these observables are zero if fynp = 0 (since there is no
weak phase in F).

073006-9



NICOLAS MILEO, KEN KIERS, AND ALEJANDRO SZYNKMAN PHYSICAL REVIEW D 91, 073006 (2015)

TABLEIX. Best fit values for the parameter f;7}, obtained from the CP-odd observables with a set of 5 x 10° events. The input value
for the NP parameter was set at fynh = 17.9. The difference between the best fit value and the input value, |A(fynbh)| =

\fanh — funbl, is included.

Ngy =5 x 10°
dry /dQ? Fanb |A(funp)] dr'; /ds, Fanh |A(funp)] dr'; /ds; Fanh |A(fup)]
5 28 £ 11 0.90 5 21 £8 0.40 5 19+5 0.20
6 17+1 0.90 6 18+1 0.1 6 171 0.9¢
7 20+ 4 0.5¢0 7 17 +4 0.20 7 19 +4 0.3¢

TABLE X. Best fit values for the parameter £} obtained from the CP-odd observables with a set of 3 x 10° simulated events. The
difference |A(funb)| = |funh — fanb| is included.

N, =3 x 10°
a7 /dQ* ol Al dTi/dsc g AGanb) dTi/ds pon A
5 18 £5 0.026 5 2243 1.40 5 18 +2 0.05¢
6 17.6 £ 0.4 0.80 6 18.0 £ 0.5 0.20 6 174 +£0.5 1.00
7 17+2 0.5¢ 7 15+2 1.5¢ 7 172 0.5¢

TABLE XI. Best fit values for the parameter f 5/ obtained from the observable 6(—) by using a set of 10° simulated events with an
input value fnp = 1.79¢"/* (so that fynh = 1.27).

N, =1 x 10°
dr7/dQ> g AGFamb)| dUT/dse o Afanb)| dUT/dss pon A
6 1.94+0.6 1.16 6 1.84+0.8 0.7¢ 6 1.7 +0.8 0.5¢

(with different numbers of events) for the case fynh = 17.9
are displayed in Tables IX and X.” The best fit value for
funh» is more than 2.5¢ away from zero for all of the
CP-odd observables and is more compatible with the input
value than with zero. Moreover, this is the case even when
the number of events in the simulation is 5 x 10°. As
was the case for the SM test proposed in the previous
section, the observable 6(—) appears to be more precise
than the other CP-odd observables (judging by the smaller
statistical uncertainty that it yields for the estimated
parameter). As can be seen from the comparison between
Tables IX and X, the statistical uncertainties are reduced by
approximately 50% when the number of events in the
simulation is increased from 5 x 10° to 3 x 10°. We have
also performed a least-squares fit using the set of 10° events
with fynp = 1.79¢/*. In this case the best values obtained
from the fit to the observables 5(—) and 7(—) become
compatible with zero and have large statistical uncertain-
ties, whereas the observable 6(—) is still the most precise

"In the tables in this and the next sections, the difference
between the best fit value and the input value for each observable
is given in units of its respective statistical uncertainty, although
we use the same symbol o everywhere.

073006-

one, giving best fit values that are more than 2¢ away
from zero and that recover the input value fynh =
1.79sin(z/4) = 1.27 even though the uncertainties are
larger than those we obtain with fn, = 17.9¢"*/? using
a set of 10° events.® The results for the three projections of
the observable 6(—) are shown in Table XI.

Both the results obtained from the least-squares fit and
the SM test indicate the utility of using the observable 6(—)
as a tool for investigating CP-odd NP effects. On the one
hand, the SM test shows this observable’s power to reject
the SM hypothesis if there is actually a CP-violating
contribution; on the other hand, the least-squares fit
demonstrates how this observable can be used to recover
the input value of the NP parameter. It is interesting to
consider why the 6(—) observable is so much more
sensitive to CP violation than are the other two CP-odd
observables that we have considered. This sensitivity
arises from the dependence of the CP-odd observables
on the quantities B;. As is evident in Table III, the 7(—)
observable is doubly suppressed due to the smallness

¥For the case with Ffunp = 17.9¢"7/? we only display results
obtained using 5 x 10° and 3 x 10° events, although we have also
performed similar fits using sets of events of different sizes.

10



PROBING SENSITIVITY TO CHARGED SCALARS ...

of the W-Z and the NP contributions. Similarly, comparison
of the 5(—) and 6(—) observables indicates that the
latter exhibits a larger magnitude (and hence greater
sensitivity to NP) because it depends on the quantity
B, whereas the former depends on B,; numerical study
has shown that the magnitude of B; tends to be larger than
that of B, within the allowed ranges of Q?,s,, and s,.
The above results are based on the assumption that fy
has no Q2, sy, or s, dependence. It is important to note,
however, that a nontrivial dependence on the kinematical
variables could appear due to the presence of final state
interactions. The functional form of f, is unknown at
present. Having said this, it is instructive to adopt a simple
functional form for f in order to test how the 6(—)
distributions are modified. For the purpose of illustration,
let us reconsider the expression for f derived from the
quark equations of motion, f ~ (Q*/m,)F,, where F, is
assumed to be a constant. To set a reference value for |F],
the expression derived in Ref. [15] within the context of
chiral perturbation theory has been used. A numerical
analysis similar to that discussed in Sec. IV gives (|F,|) ~
0.54 GeV™! and O({Im(F,))) < O((Re(Fy))). We set
F, =0.54 GeV~' and add a normalization factor in the
expression for f, N, so that the experimental uncertainty
of the branching ratio is again saturated by the NP

PHYSICAL REVIEW D 91, 073006 (2015)

contribution. By taking ¢y = z/2 we find the value
Nlnp| =1.71. Hence,  |funp|=N(Q*/m)Fylnp|=
1.71x0.54GeV~1(Q?/m,)=0.92GeV~! (Q?/m). Figure 2
shows plots of the 6(—) distributions for the case fynh =
17.9 (blue solid line) along with the specific case
presented above in which f, depends linearly on Q2
(red dashed line). These distributions have been obtained
numerically and normalized to the total width of the
7 (Fop)-

As can be seen from the plots, the 6(—) distributions
arising from the two approaches are comparable. On the
one hand, the order of magnitude of each projection
remains the same in both cases. On the other hand, the
maxima of the distributions do not change significantly
from one approach to the other. Based on these facts, it
would be reasonable to expect that the number of events
needed for recovering the NP parameter from the 6(—)
distributions in the case |fy#p| = 17.9 would also be
enough for the case |fynp| o« Q% In this sense, the
presence of a linear Q% dependence in fj should not spoil
the sensitivity of the 6(—) distributions to the NP con-
tribution with respect to the case in which |f| is assumed
to be a flat function. Hence, this specific case shows that
the proposed observables could be useful even when there
is a non-trivial dependence of || on Q?, s, and s,.
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FIG. 2 (color online).

Plots of the distributions obtained from the observable 6(—) for |fy7p| = 17.9 (blue solid line) and |fynp| =

0.92 GeV~!(Q?/m,) (red dashed line). In the panels (a), (b), and (c), the projections onto Q?, s, and s, are displayed, respectively. The

distributions are normalized to the total width of the 7.
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TABLE XII.  Fit results for the parameter A obtained from the CP-even observables 2(+) — 7(+) using a sample of 3 x 10° simulated
events. The input value for the simulation was taken to be A = 0.944. The difference |AA| = |A — A| is also displayed.
Ney =3 x 10°

arf/do? A |AA| dr;/ds, A |AA]| dr; /ds, A |AA|
2 0.95 +0.01 0.60 2 0.94 +0.01 0.40 2 0.94 +0.02 0.20
3 0.92 +0.01 240 3 0.91 +0.01 340 3 0.91 +£0.02 1.70
4 0.93 +0.02 0.7¢ 4 0.94 +0.01 0.40 4 0.94 +0.02 0.20
5 0.949 £ 0.008 0.60 5 0.947 £ 0.006 0.60 5 0.942 £+ 0.006 0.30
6 0.91 +£0.03 1.1 6 0.92 +0.02 1.20 6 0.92 +0.02 1.20
7 0.94 +0.01 0.40 7 0.942 + 0.008 0.36 7 0.948 + 0.005 0.80

2. CP-even observables

In this section we focus on CP-even observables. We
will discuss the results arising from the observables 2(+) —
9(+) and then, separately, those arising from the 1(+)
distribution, due to its preferential treatment in previous
analyses [10,16].

To test the power of the method, we first performed a fit
with the parameters A, C, D, and N3 unconstrained and B
set to zero. In this case, we observe that the correlation
between the parameters, as well as the standard deviations,
are very large and the outputs of the fit for the different
parameters are far away from the input values. To address
these issues, we have adopted a modified fit procedure,
in which the parameters C and D are constrained by the
branching fractions into the K*z final state from the
K,(1270) and K,(1400), respectively (see Ref. [10]). In
addition, we keep the parameters B and N5 fixed to their
input values, B=0 and N; = 1.4696, respectively.
Accordingly, we have minimized the distributions only
with respect to the parameter A. The results of the fit for
3 x 10° events are tabulated in Table XII. Before we
discuss the results in Table XII, we note that the 8(+)
and 9(+) distributions extracted from the set of 3 x 10°
simulated events are consistent with zero to within their
statistical uncertainties [which are determined using
Eq. (A2)]. As a result, no conclusive information can be
obtained from these observables with this number of
events. For this reason we do not include results from
these observables in the table. Turning now to the observ-
ables 2(+) — 7(+), we notice that for these observables
the input value is recovered in all cases with uncertainties
smaller than 3%; furthermore, the three projections of 5(+)
and the s, , projections of 7(+) are the most precise, with
uncertainties smaller than 1%.

We turn now to a consideration of the observable 1(+).
All of the projections of this observable are positive
distributions that are more than two orders of magnitude
larger than those arising from the other CP-even observ-
ables. Since the absolute statistical uncertainties are similar
for all of the CP-even distributions, the 1(+) distributions
end up having considerably reduced relative statistical
uncertainties compared to those for the other CP-even

distributions. Therefore, we have analyzed this distribution
in a different manner, allowing A, N3, and fy#p to float as
free parameters. Although the best fit point obtained from
the fit to the 1(+) distribution is in good agreement with the
corresponding input values, and the standard deviations are
smaller than those associated with the other observables,
there are certain disadvantages in the use of this distribution
for extracting the value of fy#p. First of all, it is important
to note that the fact that the distribution appears to be
sensitive to the NP contribution arises exclusively from
the input value that we have used for the NP parameter.
More precisely, as outlined above, the NP parameter has
been set to a value such that it saturates the experimental
uncertainty, which includes both statistical and systematic
sources. This experimental uncertainty is higher than the
uncertainty associated with extracting the distributions
from the simulations, which is purely statistical.
Moreover, the statistical uncertainty that we have used in
our analysis is smaller than the statistical uncertainties in
the experiments since we are using a larger number of
events for our simulation. Therefore, in our analysis, the
NP contribution exceeds the statistical uncertainties of the
simulated 1(+) distribution, leading to a best fit value for
frunp essentially incompatible with zero. This observation
is supported by the fact that, when we carry out the same fit
using the set of events simulated with fy7, = 1.79¢"7/4,
we obtain a best fit value in agreement with zero. Moreover,
the computation of the correlation matrix for both sets of
events shows that there are significant correlations between
the fit parameters. Furthermore, the least-squares function
that we minimize exhibits several local minima that are
not far enough from the global minimum to distinguish
them if the precise input values are not known beforehand.
It is worth noting that this sort of problem is absent when
we fit the CP-odd observables in order to obtain the single
NP parameter.9 Lastly, note that under the assumptions
used in this work one would not be able to extract any

This could arise from the fact that, for the observable 1(+),
the y? is a quartic function of the input parameters, whereas for
the CP-odd observables it is a quadratic function of the NP
parameter.
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TABLE XIII.

PHYSICAL REVIEW D 91, 073006 (2015)

Results for N from fits to the 5(+) and 6(+) distributions with a set of 3 x 10° simulated events. The fit has been

performed by fixing the parameters A, C, and D to their input values. The input value for N3 was 1.4696.

N,, =3 x 10°
dr} /> 2 ANS|ary s N, NS ary s, 2 AN,
5 1.45+0.05 0.40 5 1.45+£0.05 0.40 5 1.49 £0.05 0.4c
6 1.3£0.2 0.9¢ 6 1.5+0.2 0.20 6 1.5£0.2 0.20

information about the NP weak phase from the analysis of
the 1(+) distribution because its dependence on the NP
parameter enters as the squared modulus of B, and B,,
which are proportional to |17p| under our assumption that
F4 =0 [see Egs. (11), (12), and (15)]. Even if F4 # 0, the
dependence on the NP parameter would be mixed in a
complicated way with the dependence on the SM scalar
form factor F,, preventing their disentanglement. We
remark that the inability to distinguish the NP contribution
from the SM contribution is common to all the CP-even
observables, while it is absent in the case of the CP-odd
observables.

Several of the CP-even observables are in principle
sensitive to the parameter N3 (which fixes the contribution
of the anomalous Wess-Zumino term). However, as was
noted above, the 8(+) and 9(+) distributions are con-
sistent with zero, even with the maximum number of
events that we have simulated. This spoils the sensitivity of
these observables to the parameter N;. An alternative is to
use the observables 5(+) and/or 6(+4) with the parameters
A,C, and D fixed to their input values. With these
parameters fixed in this way, the 5(+) and 6(+) distri-
butions depend only on N;. Of course, when experimental
data are used instead of simulated events, the input values
will be unknown. In this case, one could use the other
observables to estimate the parameter A first; then C and D
could be obtained by applying constraints arising from the
tabulated branching fractions of the K; resonances (see
Egs. (8)—(10) in Ref. [10]). The results for N5 obtained
from the 5(+) and 6(+) distributions are shown in
Table XIII for a simulation using 3 x 10° events. Both
observables allow one to recover the parameter N;. The
observable 5(+), however, is the more precise of the two;
its uncertainties are smaller than 4%, while those asso-
ciated with the 6(+) distribution are of order 15%. Hence,

TABLE XIV. Main results for the 6(—) observable obtained in
Sec. VI by using various sets of simulated events with

|funp| = 17.9.

SM hypothesis test
P-value Ney

Least-squares fit

Distribution N, Fit value for fynh

drs /dQ? 105  0.000024 3 x 10° 17.6 £ 0.4
drg /ds, 10°  0.0076 3 % 10° 180+0.5
dry /ds, 10° 0.013 3 % 10° 17.44+0.5

the observable 5(+) appears to be the most appropriate
observable for implementing the proposed strategy to
extract information about the anomalous Wess-Zumino
contribution.

We conclude this section by summarizing, in Table XIV,
the main results obtained for the 6(—) observable. Of the
various observables proposed in this work, the 6(—)
distribution shows the most promise for detecting CP-
odd NP effects in 7 — Kzzav,.

VIL 7 - Kzzav, WITHIN THE ALIGNED 2HDM

So far we have analyzed the decay v — Kzzv, in a
model-independent framework, in which the NP effects are
incorporated by adding the contribution of a charged scalar
boson that couples to fermions in a “nonstandard” manner
(i.e., the couplings are not suppressed by the masses of the
light quarks [9]). In this section we consider the proposed
analysis in the context of a particular model of NP. Many
NP models extend the SM scalar sector by adding a second
scalar doublet so that the scalar spectrum contains a
charged boson. A particular example of such a model is
the so-called aligned two-Higgs-doublet model [11]. In the
A2HDM, an alignment between Yukawa coupling matrices
leads to the elimination of the nondiagonal neutral cou-
plings that would lead to tree-level flavor-changing neutral
currents.

The Yukawa Lagrangian corresponding to the charged
Higgs boson in the A2ZHDM can be written in terms of the
fermion mass eigenstates as [11,12]

V2

£ = _7H+{ﬁ[ngMd73R —,M,VP.]d+¢vMPrl}

+H.c, (32)

where M, , are the diagonal mass matrices, V 1is the

Cabibbo-Kobayashi-Maskawa (CKM) matrix, » is the

Higgs vacuum expectation value, and Pp; = liz"‘ are

the chirality projection operators. The proportionality
parameters ¢/(f = u, d,[) are arbitrary complex numbers
and give rise to new sources of CP violation.

From Eq. (32) we see that within the A2HDM the
effective couplings ¢#4' and ¢%%' appearing in the

corresponding effective Hamiltonian are given by [11]
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Gudal _ Mg, M augal _ _ . «MaM o ag
A Susi me O SOl g (33)

Moreover, given the three-family universality of the pro-
portionality parameters ¢y, the following relations are
satisfied:

qudal qudal

gL — mquml gR — quml (34)
q q l/ 9 q/ q/ l/ .

gLu d qu my gRu d mq; mpy

In our case, the relations between the couplings 17p g defined
in Eq. (2) and those introduced in Eq. (33) are given by

s + 1y i n,m,
2 5 S _P = gt =6 i and
’7; B nP UsT _* * mgi;
= KT = = GuS] 7+ (35)
2 "M

where the last equalities hold only within the A2HDM.
Owing to the m,, suppression, ¢;°* can be neglected, and the
relations in Eq. (35) reduce to

mgm;
M2

UST*

np = —9g

=cig (36)

The above expression, along with the second relation in

Eq. (34), implies that observables from other systems

involving the couplings gq“q" will provide constraints

for the pseudoscalar coupling 7p, which can be used in
turn to obtain predictions for the observables proposed in
Sec. IV. In this case, the observables we have proposed
could be useful for testing the A2HDM.

Let us now consider an example that will illustrate how
outside constraints can be used to make testable predictions
in 7 —» Kznzav,. In this example we will focus on the
observable 6(—), which happens to be much more sensitive
to CP violation than the other proposed observables, as was
discussed in Sec. VI D 1. The phenomenology derived from
the A2HDM has been studied extensively (see for example
Refs. [11,13]). In particular, the constraints obtained by
combining the information from various semileptonic and
leptonic decays have been discussed in Refs. [11,12].
Hence, guided by Ref. [12], and assuming that 1 < |fy| <
10 and that fL, =0, we derive the (model-dependent)

constraints —0.01 < f an," < 0.01. It should be noted that
in this case we are considering an arbitrary weak phase ¢y,
in contrast with our analysis in Sec. VI, in which the
analysis was restricted to ¢y = n/2,7/4. To test the
A2HDM, the 6(—) distributions extracted from the data
can be compared to the corresponding allowed region
arising from the very restrictive bound mentioned above.
Since we are using simulated events instead of experimen-
tal data, we will make use of the 6(—) distributions
extracted from our simulations. In particular, we will use
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the distributions associated with the NP parameter choice
fanp = 1.79¢7/*, instead of those associated with
funp = 17.9¢%/2, since the former parameter choice is
closer to the range obtained from the A2ZHDM. In addition,
we note that this parameter choice is compatible with the
constraints derived in a model-independent manner from
the decay 7 — Kv, (assuming that f4, =0 and that
1 < |fy| < 10), regardless of whether one uses the quark
or meson mass to determine the bound. The projection onto
s, of the observable 6(—) is displayed in Fig. 3 along with
the prediction derived from the A2HDM. We consider only
the s, projection because it tends to have the largest
magnitude for this observable. Inspection of Fig. 3 reveals
that the distribution lies outside the A2HDM prediction
only in the third and fourth bins, with the deviations being
smaller than 26 and almost 1o, respectively. However, as
was already shown in Sec. VID I, when we perform a
least-squares fit to this distribution with 7% as the unique
free parameter, we obtain the value 1.74+0.8 (see
Table XI), which is more than 20 away from the range
allowed for this parameter within the A2HDM
(| fumb| < 0.01). Although such a deviation would cast
doubt on the A2HDM in an experimental setting, it would
not be enough to completely reject the model. Thus, for a
NP parameter fynh two orders of magnitude above the
range predicted by the A2HDM, more than 10° events
would be needed for the observable 6(—) to be useful in
probing this model. A similar observation holds for the
case of the SM, since in that case the 6(—) distribution is
simply zero and is thus contained within the range allowed
for the A2HDM. In fact, the situation here is similar to the
situation that was considered in Secs. VIB and VID 1,

X

oy

(=}
&

20 —4— Simulated Data

[ A2HDM

-
o

-
o

o

(1/T) x dTy/ds, (GeV?)
o

ﬂ ++ S5 S —

|111111111111l1111|1

0.5 15 2 2.5
s, (GeV?)

FIG. 3 (color online).  Projection onto s, of the observable 6(—)
extracted from a set of 10° events along with the corresponding
allowed region within the A2HDM. The data in the simulation
correspond to the NP parameter choice fynp = 1.79¢7/*. Note
that the plot of the allowed region assumes that the parameters
associated with the form factors (A, B, etc.) have zero uncertainty.
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where it was noted that more than 10° events were required
to use the 6(—) distribution as a tool for distinguishing
between the SM and a NP scenario with |fg#7p| = 1.79.

Finally, we emphasize that the allowed region indicated
in Fig. 3 assumes that the pseudoscalar form factor f is a
constant function of the phase space variables and that its
imaginary part is zero. To perform a more realistic study of
the A2HDM within the context of the observables dis-
cussed in this work, these assumptions would need to be
tested carefully. In Sec. VIII we comment on some
possibilities for testing these assumptions.

VIII. TEST OF ASSUMPTIONS

As has been mentioned in previous sections, various
assumptions have been made while performing the analysis
in this work. Some of these assumptions could in principle
be tested by using the proposed observables. In this section
we describe how one could test two assumptions that have
been made regarding the pseudoscalar form factor fp,
namely, that it is a flat function of 02, sy, and s, and that it
does not contain strong phases (i.e., that f%, is zero).

From the observables 5(—) and 6(—) in Table III, we
have the relations

5= Caem) V2

2
R E— _BR |
szdsldS2 2>erIP

2 o 2
- (3a@®) Y ) it o0
ary (2 =\ VO
d0%ds,ds; —(gA(Q2)<K2>TTBf>f§M¢[D

2
v Gae®) Y n) iy o9

T

where we recall that the quantities B|, B,, and (K,) depend
on the kinematical variables Q?, s, and s,. By projecting
Egs. (37) and (38) onto x = 02,51, 5,, we can forma 2 x 2
matrix equation,

(drg/dx):<al —b1><f;1’7;>> (39)
dl'g /dx —a, by [ )’

where the quantities a; and b, are the projections onto x of
the two functions appearing inside the parentheses in
Eq. (37), while a, and b, arise from the two functions
in Eq. (38). Of course, these quantities are functions of x.
Also, we note that we need to assume that fz has no
dependence on the kinematical variables other than x in

order to derive Eq. (39). By inverting Eq. (39), we obtain
the relations
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1 drs dr;
e =————(by—>+ b —2 40
futtp a1by — b, ( 27y + 0y dx (40)
1 drs dry
R, [ _ s 6 41
frtp a1by — arb, (az I +a dx)’ (41)

from which we find

[l bydls/dx + bdlg /dx (42)
/& aydl's /dx + a,dTg /dx’

Since we are assuming that there is no Q2 s;, or s,
dependence in fy, the right-hand side of Eq. (40) as well
as of Eq. (41) must be constant over the range of x. Therefore,
by extracting the distributions d,I'5¢ from the data and
obtaining the quantities a, ,, by, numerically for each bin
in the x range, the assumption regarding the flatness of f (as
a function of Q2, 51, and s,) can be tested. On the other hand,
under the assumption that f has no strong phase, the left-
hand side of Eq. (42) vanishes, so that the significance of the
deviations from zero of the quantity appearing on the right-
hand side can be used to test this assumption.

Another possibility arises from the analysis of the zero-
crossing points for the various distributions. Under the
assumptions mentioned above, namely that f%, = 0 and
that its functional dependence on the kinematical variables
is flat, the zero-crossing points for the CP-odd distributions
are independent of the value of the NP parameter fy7p.
Thus, the numerical prediction of these zero-crossing
points and the comparison with the distributions obtained
from the data can also be used to test these two assump-
tions.'® To illustrate this, let us consider the observable
6(—) (see Fig. 2). Projecting this distribution separately
onto 02, sy, and s, and performing a numerical computa-
tion of the corresponding zero-crossing points yields
the values Q% ~ 1.85609 GeV?, s, ~0.55633 GeV?, and
s, ~0.85142 GeV?, respectively. On the other hand, analy-
sis of the distributions associated with a set of 3 x 10°
events yields the values (see Fig. 4)

0% = 1.86 £ 0.04 GeV?, s; = 0.56 +0.03 GeV?,
s, = 0.84 +0.04 GeV?, (43)

which are in good agreement with the expected values.
Thus, with 3 x 10° events, it appears that one could use the
zero-crossing points of the CP-odd distributions to test the
assumptions regarding f that were noted above. With

"®Here we are taking the parameters related to the resonance
structure of the decay to be fixed to their input values. In fact, the
position of the zero-crossing points depends not only on the two
assumptions we are testing but also on these input values. In this
sense, the analysis of the zero-crossing points could also be useful
for studying these parameters.
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FIG. 4 (color online).  Projection onto s; of the observable 6(—),
obtained by using a set of 3 x 10% simulated events. The zero-
crossing point can be clearly extracted from the plot with an
uncertainty given by the size of the bins (s; = 0.56 4+ 0.03 GeV?).

fewer than 3 x 10° events, however, the zero-crossing point
test would start to lose its effectiveness.

IX. CONCLUSIONS

In this paper we have proposed and tested various CP-
even and CP-odd observables for the decay = — Kzzv, by
adding the contribution of a NP charged scalar to the
corresponding amplitude within a model-independent
approach. The various observables that we have proposed
are defined in Eq. (14) (see also Tables I and III). These
observables are distributions that have been partially inte-
grated over phase space, using weighting functions to pick
out various terms from the original expression for the
differential width [see Eq. (5)]. The resulting distributions
are functions of three invariant mass squared variables, 02,
s;, and s,, and they depend on the NP contribution in
different ways. Throughout much of the text, we have
denoted the various distributions by “i(£)” (i = 1,...,9),
where the “+” designation refers to whether the distribution
is even (“+”) or odd (“=") under CP. For the numerical
analysis, we have used simulated events generated through
our own event generator, with the maximum number of
simulated events being 3 x 10°.

Among the various observables that we have proposed,
the 6(—) distribution is the most sensitive to the NP
contribution. On the one hand, for a sizeable NP contri-
bution (|fz7p| ~ 17.9), we have found that this observable
is useful for testing the SM hypothesis, even for 1 x 10°
events. On the other hand, the results of the fits show
that this observable allows one to recover the NP
parameter with the highest precision, with the uncertainties
being <6% and <3% for 5 x 10° and 3 x 10° simulated
events, respectively. More interestingly, the capability of
the observable 6(—) to recover the NP parameter is not
spoiled when the size of the NP contribution is reduced.
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Regarding the CP-even observables that we study in this
paper, we have found that the 5(+) distribution and the s, ,
projections of the 7(+) distribution show the most promise
for recovering the parameter A, which is related to the
weight of the resonant contributions. Additionally, consid-
ering that the 8(+) and 9(+) distributions extracted from
the set of 3 x 10° simulated events are consistent with zero
to within their statistical uncertainties, we have shown that
the observable 5(+) is the most suitable alternative for
extracting information about the anomalous Wess-Zumino
term once the other parameters related to the various
resonances have been measured.

The results involving the CP-odd observables have been
derived under the assumptions that f4, =0 and that its
functional dependence on the kinematical variables is flat.
The same assumptions have been made for the CP-even
observables, but in that case, we have also assumed that
F, = 0. The possibilities for testing some of these assump-
tions by using the observables defined in this paper have
been discussed in Sec. VIIL

We have also studied the decay 7 — Kzzv, within the
context of the A2ZHDM and have found that the observables
that we have defined may be used to test this model. In
particular, we have focused on the s, projection of the
differential width 6(—), comparing the range allowed by
the A2HDM to that predicted by our simulation, adopting
the NP parameter choice |fy#7p| = 1.79. Using a simula-
tion with 10° events, we have found that the best fit value
for fn% obtained from the distribution is in disagreement
(by more than 20) with the range predicted for the
A2HDM. With the NP parameter choice |fynp| = 17.9
and the same number of events, the disagreement between
the two scenarios is much greater, and one would be able to
distinguish decisively between them.

We note that a similar set of observables could be
defined in order to analyze other decay modes such as
T o r v, K K'zv,and 7 - K"K'K v,
and their CP-conjugated decays. In fact, precise measure-
ments of the branching ratios for these decays have already
been obtained at the B-factories (see Refs. [16,18] for
example).

An experimental analysis of the observables we have
analyzed in this paper could be useful not only for
extracting information about the resonance structure of
the decay 7 — Kzzv, but also for obtaining additional
constraints on the NP pseudoscalar coupling. Moreover,
with the higher luminosity expected for the upcoming super
B-factories, the number of events anticipated for the decay
7 — Kzzv, would be enough to exploit the information
provided by the proposed observables.
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APPENDIX: STATISTICAL UNCERTAINTIES

In this appendix we summarize some results regarding
statistical uncertainties associated with the distributions
considered in this work.

The estimator that we have used to extract the projections
onto Q% s, and s, of the weighted partial differential
widths from the simulated events is given by

1 dr; N h;
_ ! = 'R . ,
th dx (XO) Nev Ax ° Krrv,

(A1)

where ‘3;" (xo) denotes the projection onto x = Q?, s, s, of
the ith weighted partial width evaluated at xy; N is the
number of events within the bin (xo — Ax/2, xo + Ax/2);
h; is the sample mean of the angular function h;(y, ) (see
Table I) in the bin; and N, is the total number of simulated
events. We note that the presence of the branching ratio
(B kzm,) arises from the fact that we have normalized the
observables to the total decay width (I').

To estimate the statistical error associated with dI';/dx,

we use error propagation in Eq. (A1), taking into account
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the standard deviations of the number of events in a given
bin, N, and of the sample mean, /;. The expression that we
obtain for the jth bin is given by

BT—)K}[T[I/T \/E
Uj:Tx\/]V_ev(O'hi—f—<hi>\/1—lj),

(A2)

where 6;, = \/(h?) — (h;)* is the standard deviation of h;
computed for the jth bin, /; is the probability for a given
event to lie within that bin, and (h?) and (h;) denote the
mean values of h? and h;, respectively, which are
calculated, again, for the jth bin. In general, for all the
observables, the dominant contribution arises from
the standard deviation of the angular function, o), , while
the second term in Eq. (A2) is negligible. The unique
exception is the observable with i = 1, for which ¢, =0
(due to the fact that h;(a, ) = 1—see Table I), so that
the second term is the dominant one. Actually, this second
term computed for the observable dI';/dx turns out to be
comparable to the first contribution obtained for any
of the remaining observables (dT';/dx,i=2,...,9).
Therefore, the statistical uncertainties ¢; are of the same
order of magnitude for all of the weighted partial widths
(i=1,...,9). Of course, the order of magnitude of the
uncertainty in Eq. (A2) changes from one bin to another
and from one projection to another (x = Q2, s, or s,).
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