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The simplest neutrino mass models based on A4 symmetry predict θ13 ¼ 0 at tree level, a value that
contradicts recent data. We study models that arise from the spontaneous breaking of an SO(3) symmetry to
its A4 subgroup, and find that such models can naturally accommodate a nonzero θ13 at tree level. Standard
Model charged leptons mix with additional heavy ones to generate a θ13 that scales with the ratio of the A4-
breaking to SO(3)-breaking scales. A suitable choice of energy scales hence allows one to reproduce the
correct lepton mixing angles. We also consider an alternative approach where we modify the alignment of
flavons associated with the charged lepton masses, and find that the effects on θ13 are enhanced by a factor
that scales as mτ=mμ.
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I. INTRODUCTION

For a long time, the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix UPMNS [1,2] was believed to be consistent
with the tribimaximal (TBM) mixing matrix [3]:

UTBM ¼

0
BBB@

ffiffi
2
3

q
1ffiffi
3

p 0

− 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

1ffiffi
6

p − 1ffiffi
3

p 1ffiffi
2

p

1
CCCA: ð1Þ

The pattern exhibited by the tribimaximal mixing matrix
seemed to suggest some underlying symmetry in the
lepton sector, thus motivating the development of lepton
models based on discrete flavor symmetries. One class of
models was based on the discrete group A4 [4–47] (see
Refs. [48–51] for reviews). The most basic implementation
of these A4 models comprise the Standard Model (SM)
leptons and Higgs, right-handed singlet neutrinos, as well
as two scalar flavons ϕ and ϕ0. These fields are assigned
into representations of A4, where the flavons, in particular,
are three-dimensional representations. The Lagrangian is
invariant under A4, but this symmetry is spontaneously
broken when the flavons acquire vacuum expectation
values (VEVs), thus generating mass terms for the leptons.
To reproduce the tribimaximal mixing at tree level, the
lepton mass matrices have to take specific forms, which
imply specific alignments hϕi ¼ ðv; v; vÞ and hϕ0i ¼
ðv0; 0; 0Þ for the flavon VEVs. Such alignments may be
explained by various UV completions based on supersym-
metry or extra dimensions [52–59].
The recent discovery of nonzero θ13 by the Daya Bay

[60] and RENO [61] experiments have thrown the tribi-
maximal mixing pattern into question. The current

experimental status of the elements of UPMNS is shown
in Table I. The best-fit value of jsinðθ13Þj for both
hierarchies is approximately 0.16, significantly different
from zero. This can be interpreted in two different ways, the
first being that there is really no symmetry behind the
lepton mixing (anarchy), and the second that there is a large
modification to tribimaximal mixing in the underlying
symmetry models.
In accordance with the second viewpoint, various ideas

have been proposed to modify the A4 models to reproduce a
nonzero θ13. One way is to consider higher-dimension
operators, which introduce correction terms to the mass
matrices of relative size given by v=Λ and v0=Λ (where Λ is
the cutoff scale) [50,59,63]. Another approach is to extend
the A4 model to include more flavons that contribute to the
lepton mass matrices [64–68]. Yet another avenue is to
introduce perturbations in the flavon sector that modify
their vacuum alignments and hence the form of the lepton
mass matrices [69–72]. Radiative corrections as a way to
generate nonzero θ13 have also been considered in
Refs. [73–77].
In this paper, we focus on a specific class of models

[78–80] that can be regarded as UV completions of certain
A4 models. These UV models are invariant under a
continuous symmetry group, for example SO(3), of which
A4 is a subgroup. This symmetry is spontaneously broken
to A4 by certain flavons that acquire a specific pattern of
VEVs, generating A4 models as effective low-energy
theories. In light of the recent measurements, it is worth
investigating how a nonzero θ13 can be accommodated in
such models.
An interesting observation is that such models actually

already predict θ13 to be nonzero even with the usual
vacuum alignment. SO(3)-based models in general require
additional heavy charged leptons to complete the SO(3)
representations the SM charged leptons belong to. While
the mixing between SM and heavy charged leptons is very
small, it is enough to modify the pattern of the light
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charged-lepton mass matrix, which breaks the tribimaximal
mixing pattern. The idea of modifying the charged-lepton
mass matrix to obtain a nonzero θ13 is certainly not new;
however, seldomhas the context been that ofmixing between
SMandheavy charged leptons. Thiswill be themain focus of
our work, using a model motivated by Ref. [79] as an
illustration. An interesting result is that the size of θ13 scales
with the ratio of theA4-breaking to SO(3)-breaking scales. In
other words, θ13 may reflect certain features of the UV
physics, rather than simply arising from some arbitrary
coefficients.
A secondway to obtain a nonzero θ13, with a clear parallel

in typicalA4 models, is to allow theVEVs to deviate from the
usual alignment that reproducesUTBM.An interesting feature
of this approach is the presence of an enhancement factor that
scales as mτ=mμ should the flavons involved be those
associated with the charged-lepton masses. In other words,
a small angular deviation of these flavons from the usual
alignment can give rise to a much larger θ13.
This paper is organized as follows. In Sec. II we provide

an overview of the SOð3Þ → A4 model of Ref. [79]. In
Sec. III we present our main results, where we demonstrate
that mixing of the SM charged leptons with heavy ones give
rise to a nonzero tree-level θ13, the size of which is related
to the ratio of scales. In Sec. IV, we discuss the second
approach of modifying the flavon alignment associated
with charged leptons and demonstrate the existence of the
enhancement factor. We summarize our work in Sec. V.
Details of the model and the numerical simulations are
given in the Appendices.

II. REVIEW OF THE SOð3Þ → A4 MODEL

A. Field content

We review a lepton model motivated by Ref. [79] where
a larger continuous flavor symmetry is spontaneously
broken to the A4 subgroup. The symmetries of this model
are the electroweak gauge symmetry SUð2ÞL ×Uð1ÞY as
well as a global SOð3ÞF. The fields and their representa-
tions are summarized in Table II.
For the lepton sector, the three SM left-handed SUð2ÞL

doublets ψ l form a 3 under SOð3ÞF. Among the three SM

charged right-handed SUð2ÞL singlets, ψe is a 1, while the
other two have been subsumed into a 5 denoted by ψm. In
doing so, we now have three extra charged right-handed
SUð2ÞL singlets from ψm, which we give large masses to by
introducing a charged left-handed SUð2ÞL singlet ψf that
form a 3. Finally we introduce three right-handed neutrinos
ψn which form a 3.
In the scalar sector, we have the SM Higgs,H, which is a

singlet of the flavor group, and four flavons ϕ, ϕ0, ϕ5, and T
which are 3, 3, 5 and 7 respectively. The flavon T is
responsible for the SOð3ÞF → A4 breaking, and is required
to be at least a 7 since that is the smallest representation of
SO(3) that can have an A4-invariant VEV. While ϕ and ϕ0
can be identified with the usual flavons in the minimal A4

model, the extra flavon ϕ5 is required here to prevent the
muon and tau from becoming degenerate. This degeneracy
is due to the right-handed muon and tau being part of the
same SOð3ÞF multiplet and hence sharing the same Yukawa
coupling with ϕ. An extra flavon ϕ5 in a different SOð3ÞF
representation from ϕ is needed to lift this degeneracy. (We
note that this degeneracy is actually also lifted by the block-
diagonalization process to be discussed later, but the
resulting mass differences are in general too small.)

B. Lagrangian

We now assume the following terms in the Lagrangian
for the charged leptons and neutrinos:

Le ¼ −yeψ l
a H
Λ
ϕaψe − ymψ l

a H
Λ
ϕbψab

m − yTmψ l
a H
Λ
Tabcψbc

m

− y5mϵabcψ l
a H
Λ
ϕbd
5 ψcd

m − y0eψf
aϕaψe − y0mψf

aϕbψab
m

− yT0mψf
aTabcψbc

m − y50mϵabcψf
aϕbd

5 ψcd
m þH:c:; ð2Þ

Lν ¼ −Mψ c
n
aψa

n −
xν
Λ
ψ c
n
aψb

nϕ
0cTabc − yνψ l

aHcψa
n þ H:c:;

ð3Þ

TABLE II. Matter fields and the representations they transform
as under the gauge symmetry SUð2ÞL ×Uð1ÞY and global
symmetry SOð3ÞF. We have partitioned the fields into left-handed
leptons, right-handed leptons and scalars.

Field SUð2ÞL Uð1ÞY SOð3ÞF
ψ l 2 − 1

2
3

ψf 1 −1 3
ψe 1 −1 1
ψm 1 −1 5
ψn 1 0 3
H 2 1

2
1

ϕ 1 0 3
ϕ0 1 0 3
ϕ5 1 0 5
T 1 0 7

TABLE I. Current experimental status of the mixing angles in
UPMNS [62]. NH and IH stand for normal and inverted hierarchy
respectively.

Parameter Best fit 1σ range 3σ range

sin2ðθ12Þ (NH, IH) 0.307 0.291–0.325 0.259–0.359
sin2ðθ13Þ (NH) 0.0243 0.0216–0.0266 0.0169–0.0313
sin2ðθ13Þ (IH) 0.0242 0.0219–0.0267 0.0171–0.0315
sin2ðθ23Þ (NH) 0.386 0.365–0.410 0.331–0.637
sin2ðθ23Þ (IH) 0.392 0.370–0.431 0.335–0.663
δ (NH) 1.08π 0.77π − 1.36π −
δ (IH) 1.09π 0.83π − 1.47π −
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where a, b, and c are SOð3ÞF indices running from 1 to 3,
and Λ is the cutoff scale of the model. This Lagrangian is
not renormalizable and includes certain dimension-five
operators. These are required to give masses to the light
charged leptons, and to lift the degeneracy of the light
neutrinos.
There are other terms in the Lagrangian involving only

the scalars, of which we will just focus on the renormaliz-
able self-interactions of the flavon T:

VðTÞ¼−
μ2

2
TabcTabcþλ

4
ðTabcTabcÞ2þcTabcTbcdTdefTefa:

ð4Þ

It was shown in Ref. [79] that conditions on λ and c exist
such that VðTÞ has an A4-invariant minimum, which breaks
SOð3ÞF into its A4 subgroup. We then end up with an
effective nonminimal A4 model, with three more pairs of
left- and right-handed charged leptons, and one more
flavon ϕ5.
Before proceeding further, we acknowledge two issues

with the lepton Lagrangian. First, this is not the most
general Lagrangian consistent with the gauge and global
symmetries. Reference [79] proposed an auxiliary Z2

symmetry to forbid the excluded terms, but a careful check
shows that it does not work. Nonetheless, we have been
able to identify modified models that can reproduce the
same lepton mass matrices as this Lagrangian, the details of
which are provided in Appendix A. The second issue is that
since the flavons can acquire VEVs of different scales,
mass terms arising from higher-dimension operators need

not be smaller than those from lower-dimension ones,
especially if they contain multiple factors of the larger
VEVs. Therefore, the errors associated with truncation of
the Lagrangian can be significant. This issue will also be
addressed in Appendix A. For the rest of our work, we will
neglect both issues and continue to work with the given
Lagrangian to demonstrate the key ideas behind our
approach.

C. Lepton mass matrices and UPMNS

We assume that the flavons ϕ, ϕ5 and ϕ0 acquire VEVs
with the following alignments:

hϕi ¼

0
B@
v

v

v

1
CA; hϕ5i ¼

0
B@

0 v5 v5
v5 0 v5
v5 v5 0

1
CA; hϕ0i ¼

0
B@
v0

0

0

1
CA:

ð5Þ

We also assume that the VEVof T satisfies vT ≫ v; v0; v5,
in accordance to the picture of SOð3ÞF broken to A4. After
electroweak symmetry breaking, the Higgs boson H
acquires a VEV vH ¼ ð246= ffiffiffi

2
p Þ GeV, and we obtain

two 6 × 6 matrices: M6×6
l for the charged-lepton Dirac

masses and M6×6
ν for the neutrino Majorana masses.

In Ref. [79], the mixing between the SM and the new
charged leptons were considered to be small and hence
neglected. In that case, the leading mass matrix Ml for the
three light charged leptons is simply given by the upper-left
3 × 3 block of M6×6

l :

Ml ¼
vH
Λ

0
B@

yev ymvþ y5mv5ðω2 − ωÞ ymvþ y5mv5ðω − ω2Þ
yev ½ymvþ y5mv5ðω2 − ωÞ�ω ½ymvþ y5mv5ðω − ω2Þ�ω2

yev ½ymvþ y5mv5ðω2 − ωÞ�ω2 ½ymvþ y5mv5ðω − ω2Þ�ω

1
CA; ð6Þ

where ω ¼ e2πi=3. The charged-lepton masses can be obtained by diagonalizingMlðMlÞ† and taking the square root, and we
obtain

me ¼
����

ffiffiffi
3

p yevHv
Λ

����; mμ;mτ ¼
����

ffiffiffi
3

p ymvHv
Λ

� 3i
y5mvHv5

Λ

����: ð7Þ

We note that the Yukawas have to be fine-tuned to generate the correct charged-lepton masses. Therefore, this model does
not ameliorate the fine-tuning issue also present in minimal A4 models.1

The unitary transformation required to diagonalize MlðMlÞ† is

1Certain A4 models [51,52] resolve the fine-tuning issue by relegating the electron mass to higher-dimensional operators, through the
use of additional symmetries and flavons. While we do not show it here, an analogous approach can be adopted in our model to naturally
suppress ye. However, as we see later, this does not fully resolve the issue since subleading contributions from block diagonalization do
not scale with ye in general.
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Ul ¼
1ffiffiffi
3

p

0
B@

1 1 1

1 ω ω2

1 ω2 ω

1
CA: ð8Þ

It is important to note that Eq. (8) is a result of Ml taking
the form

Maligned ¼

0
B@

a b c

a bω cω2

a bω2 cω

1
CA; ð9Þ

where a, b and c are constants.
For the neutrino sector, the 6 × 6 Majorana mass matrix

M6×6
ν can be block diagonalized, and the resulting upper-

left 3 × 3 block is identified with the mass matrixMν of the
three light neutrinos

Mν ¼ −y2νv2H

0
BBB@

− 1
M 0 0

0 − M
M2−x2νðv0vT=ΛÞ2

xνðv0vT=ΛÞ
M2−x2νðv0vT=ΛÞ2

0
xνðv0vT=ΛÞ

M2−x2νðv0vT=ΛÞ2 − M
M2−x2νðv0vT=ΛÞ2

1
CCCA:

ð10Þ

Note that this is exactly the seesaw mechanism, as Mν

becomes very small if the Majorana mass parameters M
and v0vT=Λ for ψn are much larger than vH. The light
neutrino masses can be obtained by diagonalizing Mν. We
choose the following assignment for the mass eigenvalues:

m1 ¼
���� y2νv2H
M þ xνðv0vT=ΛÞ

����; m2 ¼
���� y

2
νv2H
M

����;
m3 ¼

���� y2νv2H
M − xνðv0vT=ΛÞ

����: ð11Þ

Such an assignment can accommodate both normal and
inverted hierarchies, but the latter requires fine-tuning
between the magnitude and phase of the combination
xνv0vT=ðMΛÞ [59]. Therefore, for the rest of our work,
we will only focus on the normal hierarchy.
The unitary transformation required to diagonalizeMν is

Uν ¼ i

0
B@

0 1ffiffi
2

p 1ffiffi
2

p

1 0 0

0 1ffiffi
2

p − 1ffiffi
2

p

1
CA: ð12Þ

The PMNS matrix is then given by

UPMNS ¼ UlðUνÞ† ¼

0
BBB@

−i
ffiffi
2
3

q
−i 1ffiffi

3
p 0

i 1ffiffi
6

p −i 1ffiffi
3

p 1ffiffi
2

p

i 1ffiffi
6

p −i 1ffiffi
3

p − 1ffiffi
2

p

1
CCCA; ð13Þ

which can be brought into the form UTBM by redefining the
phases of ν1, ν2 and τ. Note that the tribimaximal mixing
pattern obtained above depends on Ul taking the form
Eq. (8). Any deviation ofMl fromMaligned would result in a
deviation of UPMNS from UTBM. We will exploit this fact in
the next section in order to generate a nonzero θ13. We also
note that Eq. (13) omits certain nonunitary matrix factors
which we show in Appendix B to be negligible.
We now briefly mention the masses of the heavy leptons,

which can be obtained from the corresponding full 6 × 6
mass matrices. The heavy charged-lepton masses are
typically of order yT0mvT, and the heavy neutrino masses
of order M ∼ xνv0vT=Λ. (We will demonstrate shortly that
M and xνv0vT=Λ are typically of the same scale.)

D. Energy scales

We can use our results for the light lepton masses to
obtain a rough picture of the energy scales in this model.
We first consider the neutrino masses given in Eq. (11). The
current experimental results are as follows [62]:

δm2 ≡m2
2 −m2

1 ¼ 7.54þ0.26
−0.22 × 10−5 eV2; ð14Þ

jΔm2j≡
����m2

3 −
m2

1 þm2
2

2

����
¼ 2.43þ0.06

−0.10ðNHÞ
2.42þ0.07

−0.11ðIHÞ
× 10−3 eV2: ð15Þ

Assuming normal hierarchy, we find that M ∼ xνv0vT=Λ∼
1015jyνj GeV, with neutrino masses m1 ∼ 6 meV, m2 ∼
10 meV and m3 ∼ 50 meV independent of yν. The fact that
M ∼ xνv0vT=Λ is not surprising since we require large
cancellations inM−xνv0vT=Λ to ensure thatm3 ≫ m1; m2,
as implied by the experimental results. This gives rise to the
following hierarchy of energy scales:

vH ∼ 100 GeV ≪
M
xν

∼
v0vT
Λ

≪ fv; v5; v0g ≪ vT ≪ Λ: ð16Þ

The charged-lepton masses provide further constraints
on the hierarchy. Since mτ ∼ 1 GeV, Eq. (7) implies that
fv; v5; v0g=Λ≳Oð10−3Þ so that the associated Yukawas
remain perturbatively small. This somewhat restricts the
ratio of symmetry-breaking scales ϵ≡ fv; v5; v0g=vT , if we
do not want the scales fv; v5; v0g, vT and Λ to be too close
to one another.

YUVAL GROSSMAN AND WEE HAO NG PHYSICAL REVIEW D 91, 073005 (2015)

073005-4



We now consider an example to illustrate the typical
energy scales involved. Assuming all Yukawas to be Oð1Þ,
we find that M ∼ 1015 GeV, fv; v5; v0g ∼ 1016 GeV,
vT ∼ 1018 GeV and Λ ∼ 1019 GeV. Other values can be
obtained by varying the Yukawas, although this is limited
by the requirement that the Yukawas remain perturbative.

III. EFFECTS OF MIXING IN THE
CHARGED-LEPTON SECTOR

A. Obtaining the light charged-lepton
mass-squared matrix

The tribimaximal mixing pattern of this model is the
result of the unitary matrix Ul that diagonalizes MlðMlÞ†
taking the form Eq. (8). This in turn requires the light

charged-lepton mass matrix Ml to take the form Maligned

given in Eq. (9). As we shall see below, subleading
corrections from block diagonalization modify the form
of Ml and hence lead to a nonzero θ13.
To obtain the exact form of MlðMlÞ† in the general case,

we start with the full 6 × 6mass matrixM6×6
l obtained from

the Lagrangian (2). We express M6×6
l in terms of 3 × 3

matrices A, B, C and D:

M6×6
l ≡

� vH
Λ A vH

Λ B

C D

�
; ð17Þ

where

A ¼

0
B@

yev ½ymvþ y5mv5ðω2 − ωÞ� ½ymvþ y5mv5ðω − ω2Þ�
yev ½ymvþ y5mv5ðω2 − ωÞ�ω ½ymvþ y5mv5ðω − ω2Þ�ω2

yev ½ymvþ y5mv5ðω2 − ωÞ�ω2 ½ymvþ y5mv5ðω − ω2Þ�ω

1
CA; ð18Þ

B ¼

0
B@

ymvþ 2yTmvT ymvþ y5mv5 −y5mv5
ymv 2yTmvT ymv

ymvþ y5mv5 þ yTmvT ymv − y5mv5 yTmvT

1
CA; ð19Þ

C ¼

0
B@

y0ev ½y0mvþ y50mv5ðω2 − ωÞ� ½y0mvþ y50mv5ðω − ω2Þ�
y0ev ½y0mvþ y50mv5ðω2 − ωÞ�ω ½y0mvþ y50mv5ðω − ω2Þ�ω2

y0ev ½y0mvþ y50mv5ðω2 − ωÞ�ω2 ½y0mvþ y50mv5ðω − ω2Þ�ω

1
CA; ð20Þ

D ¼

0
B@

y0mvþ 2yT0mvT y0mvþ y50mv5 −y50mv5
y0mv 2yT0mvT y0mv

y0mvþ y50mv5 þ yT0mvT y0mv − y50mv5 yT0mvT

1
CA: ð21Þ

We then block diagonalize M6×6
l ðM6×6

l Þ† and obtain MlðMlÞ† from the upper-left 3 × 3 block:

MlðMlÞ† ¼
v2H
Λ2

½AA† þ BB† − ðAC† þ BD†ÞðCC† þDD†Þ−1ðCA† þDB†Þ�: ð22Þ

We see that when we previously assumedMl to be given by
Eq. (6), we kept only the leading term v2HAA

†=Λ2.
We now examine the effects of the other terms. We first

note that A and C are both of the form Maligned. We further
define

E≡ B −
yTm
yT0m

D; ð23Þ

and the small parameter

ϵ≡Oðv=vTÞ ∼Oðv5=vTÞ: ð24Þ

Assuming all Yukawa couplings to be of the same order y,
we find that the scales of B and D are of order yvT, while
those of A, C and E are of order yv and hence ϵ smaller.
(We quantify the scale of a matrix by the characteristic size
of the eigenvalues). We can thus expand Eq. (22) in ϵ. To
the lowest nontrivial order we find that MlðMlÞ† is
factorizable with

Ml ¼
vH
Λ

ðA − BD−1CÞ ¼ vH
Λ

�
A −

yTm
yT0m

C − ED−1C

�
:

ð25Þ
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Since both A and C are of the formMaligned, so is any linear
superposition of them, and thus the first correction term
−ðyTm=yT0m ÞC does not give a nonzero θ13. The second
correction term −ED−1C, of order ϵ, is what generates
deviations ofMl fromMaligned. This in turn suggests that the
size of θ13 is also of order ϵ. In other words, θ13 reflects the
ratio of the A4-breaking to SOð3ÞF-breaking scales.

B. Amplification from nearly degenerate
mass eigenvalues

While the above analysis seems to suggest that θ13 ∼ ϵ,
there is actually a numerical factor that enhances the size of
θ13. From perturbation theory, the mixing angle between
two eigenvectors is given approximately by the ratio of the
small perturbation mixing them to the difference between
their eigenvalues. Our previous result of θ13 ∼ ϵ implicitly
assumes that the difference between mass eigenvalues are
of order mτ. However, in the actual charged-lepton mass
spectrum, me and mμ are nearly degenerate relative to mτ,
suggesting an enhancement in the mixing angle.
To illustrate this enhancement, it is useful to write

MlðMlÞ† in a different basis:

UlMlðMlÞ†ðUlÞ† ¼
v2H
Λ2

Ul

�
A −

yTm
yT0m

C

��
A −

yTm
yT0m

C

�†
ðUlÞ†

þ Δ ð26Þ

¼

0
B@
m2

a 0 0

0 m2
b 0

0 0 m2
c

1
CAþ

0
B@
Δ11 Δ�

21 Δ�
31

Δ21 Δ22 Δ�
32

Δ31 Δ32 Δ33

1
CA;

ð27Þ
where Ul takes the specific form given in Eq. (8) and

Δ≡ −
v2H
Λ2

Ul

��
A −

yTm
yT0m

C

�
C†ðD†Þ−1E†

þ ED−1C

�
A −

yTm
yT0m

C

�†�
U†

l ; ð28Þ

comes from the order-ϵ corrections in Eq. (25). In this basis,
θ13 is determined by how much the perturbation Δ changes
the zeroth-order eigenvector (1, 0, 0). From perturbation
theory, θ13 is roughly Δ21=ðm2

b −m2
aÞ or Δ31=ðm2

c −m2
aÞ,

whichever is larger.
Since the actual eigenvalues are given by the charged-

lepton masses, we assume the following sizes for the
zeroth-order eigenvalues:

m2
a ≲m2

μ; m2
b ∼m2

μ; m2
c ∼m2

τ : ð29Þ

The perturbation matrix Δ is of the scale Oðm2
cϵÞ, and so

naively we might expect Δ21=ðm2
b −m2

aÞ ∼Oðm2
τ ϵ=m2

μÞ
and Δ31=ðm2

c −m2
aÞ ∼OðϵÞ. This will imply that θ13 is

enhanced compared to the naive expectation ϵ by m2
τ=m2

μ.
However, as we show below, while indeed Δ31 ∼Oðm2

cϵÞ,
we instead find that Δ21 ∼OðmbmcϵÞ. This is due to
MlðMlÞ† being factorizable at a well-defined order in ϵ,
as we have demonstrated in Eq. (25). As a result,
Δ21=ðm2

b −m2
aÞ ∼Oðmτϵ=mμÞ, from which we conclude

that

θ13 ∼O

�
mτ

mμ
ϵ

�
: ð30Þ

Thus the size of θ13 is enhanced by a smaller factor
mτ=mμ.
We now explain why the factorizability of MlðMlÞ†

at a well-defined order in ϵ sets the sizes of Δ21 and
Δ31. In such a scenario, we expect UlMlðUlÞ† to be
given by

UlMlðUlÞ† ¼

0
B@

ma 0 0

0 mb 0

0 0 mc

1
CAþ ϵmcR ð31Þ

where R is an Oð1Þ matrix. Substituting this into
UlMlðMlÞ†ðUlÞ†, we find that

Δ ¼ ϵmc

0
B@

maR�
11 þmaR11 maR�

21 þmbR12 maR�
31 þmcR13

mbR�
12 þmaR21 mbR�

22 þmbR22 mbR�
32 þmcR23

mcR�
13 þmaR31 mcR�

23 þmbR32 mcR�
33 þmcR33

1
CA: ð32Þ

Therefore, we conclude that

Δ21 ¼ ϵmcðmbR�
12 þmaR21Þ ∼OðmbmcϵÞ; ð33Þ

Δ31 ¼ ϵmcðmcR�
13 þmaR31Þ ∼Oðm2

cϵÞ; ð34Þ

in agreement with our assertions above.
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A few points to note. First, the analysis above breaks
down when ϵ ≫ mμ=mτ, since this implies that the per-
turbation Δ21 ≫ m2

μ, in which case we also require the
zeroth-order eigenvalues m2

a, m2
b ≫ m2

μ so that large
cancellations can occur to give two small eigenvalues
m2

e and m2
μ. Second, as we shall see from the simulation

results in the next section, there are various “large” Oð1Þ
factors that we have not taken into account in our analysis,
so the exact θ13 may be a few times smaller than the
prediction above.

C. Verifying the results via simulation

To verify the above results, we compute the exact tree-
level UPMNS for two large collections of random parameter
sets C1 and C2. Details of how they are generated are
provided in Appendix C1. The mass eigenvalues for
parameter sets in C1 are unconstrained, whereas those in
C2 are required to have the correct charged-lepton mass
ratios. We note that only a very small fraction of random
parameter sets satisfies the conditions for C2, a consequence
of the charged-lepton mass fine-tuning.
Figure 1(a) shows the value of sinðθ13Þ against

supfv=vT; v5=vTg for C1, which in general agrees with
the expectation that θ13 ∼OðϵÞ. Since no conditions have
been imposed on the mass ratios, all three mass eigenvalues
are typically of the same order of magnitude and hence
there is no significant amplification effect.
Figure 1(b) shows the value of sinðθ13Þ against

supfv=vT; v5=vTg for C2. While we still have θ13 ∝ OðϵÞ,
the proportionality constant is now about five times that
of C1. Since the eigenvalues of C2 are now of the correct
ratios, we attribute the larger proportionality constant to the

amplification effect, although the amplification is smaller
than our original prediction due to “large” Oð1Þ factors
that we have neglected in our analysis. We hence conclude
that the experimental best-fit value of j sinðθ13Þj≃ 0.16
corresponds to the ratio of symmetry-breaking scales
ϵ ∼ 0.05.

D. Compatibility with experimental constraints

We now discuss whether this model can satisfy the
experimental constraints on lepton masses and mixing
angles. We first consider lepton masses. As we have shown
in Sec. II D, the measured neutrino mass differences δm2

and jΔm2j are certainly compatible with the model pro-
vided that M ∼ xνv0vT=Λ. We have also demonstrated that
the correct charged-lepton mass spectrum can be repro-
duced in Sec. III C, although significant fine-tuning is
required.
We now focus on the mixing angles. A major concern is

that corrections that reproduce the measured θ13 might also
affect the other mixing angles θ12 and θ23 to the extent that
they no longer remain compatible with experimental
observations. In particular, many models predict the same
size of corrections to θ12 and θ13, in which case a large θ13
will imply a large correction to θ12.
Figure 2 shows plots of sinðθ12Þ and sinðθ23Þ against

sinðθ13Þ, using parameter sets from C2 and zoomed into the
regions around sinðθ13Þ ∼ 0.15. We see that for a large
sinðθ13Þ ∼ 0.15, sinðθ12Þ is fairly evenly distributed
between 0.45 and 0.7, with about 25% of the points within
the 3σ range, as opposed to a bimodal distribution peaked at
the two extremes. We hence conclude that corrections to
θ12 need not be of the same size as θ13, and so this model

FIG. 1 (color online). Graphs of sinðθ13Þ against supfv=vT; v5=vTg for two collections (a) C1 and (b) C2 of random parameter sets.
Various lines have been included for reference. Both graphs demonstrate the linear dependence predicted in our analysis. Collection C2
has a charged-lepton mass spectrum much closer to the actual hierarchy than C1, as a result of which the constant of proportionality is
significantly enhanced by the amplification effect.
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can be made compatible with all three experimental mixing
angles.

IV. MODIFYING THE FLAVON
VACUUM ALIGNMENT

In this section, we consider the idea of changing the
alignments of the flavon VEVs to obtain a nonzero θ13. In
particular, we focus on flavons associated with the charged-
lepton masses, and show that the effects on θ13 are
enhanced by a factor that scales with mτ=mμ. We assume
that the corrections discussed in the previous section
are not important, e.g. when ϵ is extremely small,2 so that
Ml ∝ A. With a modified alignment, A is no longer given
by Eq. (18). In particular, it is not of the form Maligned and

hence a nonzero θ13 can be generated. We do not attempt to
explain the origin of the modified alignment, and will just
focus on the consequence of such a modification.
In general, the relative alignments between all the

flavons can be varied. However, we can illustrate most
of the important features by just varying the alignment
of hϕi:

hϕi ¼
ffiffiffi
3

p
v

0
BB@

sinðaÞ cosðbÞ
sinðaÞ sinðbÞ

cosðaÞ

1
CCA: ð35Þ

We recover the original alignment when a ¼ arcsinð ffiffiffiffiffiffiffiffi
2=3

p Þ
and b ¼ π

4
. With this alignment we now have

A ¼
ffiffiffi
3

p
0
BBB@

yevsacb ymvsacb þ y5mv5ffiffi
3

p ðω2 − ωÞ ymvsacb þ y5mv5ffiffi
3

p ðω − ω2Þ
yevsasb ymvsasbωþ y5mv5ffiffi

3
p ð1 − ω2Þ ymvsasbω2 þ y5mv5ffiffi

3
p ð1 − ωÞ

yevca ymvcaω2 þ y5mv5ffiffi
3

p ðω − 1Þ ymvcaωþ y5mv5ffiffi
3

p ðω2 − 1Þ

1
CCCA ð36Þ

where sx ≡ sin x and cx ≡ cos x. The angle between the original and modified alignment, which we denote as χ, can be
thought of as the small parameter in this approach. At first glance, we might expect the size of θ13 to be given by χ. However,
the near degeneracy ofme andmμ relative tomτ again comes into play, and so θ13 is amplified by a factor ofOðmτ=mμÞ. As
discussed in Sec. III B, the amplification is notOðm2

τ=m2
μÞ sinceMlðMlÞ† is obviously factorizable at awell-defined order in χ.

As an aside, it is not particularly difficult to perform a parameter scan to find values of VEVs, Yukawas and alignment
angles that generate the correct mass spectrum and mixing angles. A useful observation is that the relation

FIG. 2 (color online). Graphs of sinðθ12Þ and sinðθ23Þ against sinðθ13Þ. The error ellipses for the mixing angles are roughly derived
from the 1σ to 3σ ranges in Ref. [62].

2Actually even for very small ϵ, the zeroth-order approximation is really Ml ¼ vH
Λ ðA − yTm

yT0m
CÞ. However, since A and C are of the

same form, this is equivalent to a different choice of Yukawas for A inMl ¼ vH
Λ A. Henceforth, for notational simplicity, we ignore the C

correction.
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m2
e þm2

ν þm2
τ ¼ Tr½MlðMlÞ†�

¼ 3
v2Hv

2

Λ2
ðjyej2 þ 2jymj2Þ þ 18

v2Hv
2
5

Λ2
jy5mj2;
ð37Þ

is independent of the alignment, hence allowing us to
reduce the number of parameters by one. However, such a
scan is not very useful, since the effects of block diago-
nalization discussed in the previous section are expected to
be significant given the constraints on the hierarchy of
energy scales. Therefore, we will only focus on demon-
strating the enhancement effects.
We compute the tree-levelUPMNS for four large collections

of random parameter sets C3, C4, C5 and C6. Details of their
generation are provided in Appendix C 2. The collections
differ in the conditions imposed on the ratio of mass
eigenvalues: no conditions have been imposed on C3, so

the mass eigenvalues are typically of the same order, while
the correct mass ratios have been imposed on C4. The
conditions on mass ratios m2

μ=m2
τ and m2

e=m2
τ have been

(unphysically) modified to be ten times smaller in C5, and
100 times smaller inC6. In otherwords, themass ratiomτ=mμ

relevant to the enhancement effect is larger in C5 and even
more so in C6.
Figure 3 shows the graphs of sinðθ13Þ against χ for all

four collections. Just as in Sec. III C, we observe an
enhancement effect in C4 relative to C3, although it is
smaller than the predicted enhancement of mτ=mμ due to
large Oð1Þ factors that we have not taken into account.
Nonetheless, the graphs for C5 and C6 clearly demonstrate
that the enhancement factor scales as mτ=mμ, in agreement
with our predictions.
To conclude, we have demonstrated that modifying the

alignment of flavons associated with charged-lepton

FIG. 3 (color online). Graphs of sinðθ13Þ against the change in flavon alignment χ for collections (a) C3, (b) C4, (c) C5 and (d) C6. The
collections differ in the conditions imposed on the ratio of mass eigenvalues.
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masses give rise to a nonzero θ13, with an enhancement
factor that scales as mτ=mμ. This enhancement may be
applicable to a large class of A4 models since the only
feature we have alluded to beyond the minimal A4 model
are the additional mass terms involving v5, which can be
easily reproduced with an additional A4 flavon.

V. DISCUSSION AND CONCLUSION

Having discussed the two approaches of obtaining a
nonzero θ13, there remain various issues that we did not
touch on and are worth further investigation. First, we have
not addressed one shortcoming of the model originally
mentioned in Ref. [79]. This is the issue of Goldstone
bosons when the global SOð3ÞF symmetry is broken, and
the issue of mixed anomalies involving Uð1ÞY should we
gauge the SOð3ÞF symmetry to eat these Goldstone bosons.
However, the variety of modified models in Appendix A
suggests that it should be possible to introduce additional
heavy leptons to address the issue of anomalies, and yet
suppress their mass couplings to the existing leptons using
auxiliary symmetries.
Second, our analysis so far is only at the classical level.

We have yet to consider the running of parameters down to
the electroweak scale [73–77,81–88]. Nonetheless, since
our neutrino mass spectrum is not quasidegenerate, the
classical results should hold as a first approximation.
Last is the issue of fine-tuning of the charged-lepton

masses. In the minimal A4 model, this can be resolved by
modifying the model to give naturally small electron
Yukawas. In the SOð3ÞF → A4 model however, sup-
pressing particular Yukawas does not guarantee the correct
mass hierarchy, since the subleading corrections from block
diagonalization can significantly affect the small eigenval-
ues. Still, we have demonstrated with our simulation in
Sec. III C that small electron masses can be achieved,
although the small fraction of successful parameter sets
imply that specific relations between the Yukawas are
required. Unfortunately, the exact forms of these relations
are far from obvious, hence obscuring any UV explanation
of the fine-tuning.
To conclude, the SOð3ÞF → A4 model of Ref. [79] is the

UV completion of an effective A4 model with the purpose
of reproducing the tribimaximal mixing pattern in UPMNS.
However, due to mixing between heavy and SM charged
leptons, we find that the model actually predicts a nonzero
θ13, with the size of θ13 being a measure of the ratio of the
A4-breaking to SOð3ÞF-breaking scales. We have also
shown that this model can reproduce both the measured
light lepton spectrum and the mixing angles, and is hence
compatible with experimental observations. Nonetheless,
there exist various unattractive aspects of the model, in
particular the fine-tuning of the charged-lepton eigenvalues
and the need for an auxiliary symmetry on top of the
original SOð3ÞF symmetry. We hope to resolve these issues
in a future work.
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APPENDIX A: MODIFIED MODELS WITH
SIMILAR SM LEPTON PHENOMENOLOGY

1. Overview

As pointed out in Sec. II B, there are two issues with the
Lagrangian given by Eqs. (2) and (3). First, it is not the
most general one consistent with SUð2ÞL ×Uð1ÞY gauge
and global SOð3ÞF symmetries. Second, it is not clear
whether the truncation of the Lagrangian is consistent with
our hierarchy of scales. As an example, we have omitted
dimension-six terms like −ψ l

aψbc
m ϵbdeHTadfTcef=Λ2 while

keeping dimension-five terms like−ψ l
aψab

m Hϕb=Λ, both of
which contribute to the Dirac mass of ψ l by an amount
∼vHv2T=Λ2 and ∼vHv=Λ respectively. However, since
fv; v5; v0g ≪ vT ≪ Λ, it is not immediately clear that
the former is necessarily smaller than the latter, unless
we impose the additional restriction that vT=Λ ≪
fv; v5; v0g=vT .
It turns out that both issues can be addressed if we

modify the model to include an auxiliary Zn symmetry and
a Zn flavon S. The modified model is designed to reproduce
the same lepton mass matrices as the original Lagrangian.
The auxiliary Zn symmetry forbids lower-dimension terms
otherwise allowed by the gauge and SOð3ÞF symmetry that
would have changed the mass matrices, as well as certain
higher-dimension terms (such as those quadratic in T) that
if neglected, would have led to large truncation errors. The
flavon S is a gauge and SOð3ÞF singlet, the VEVof which is
related to the neutrino Majorana mass parameter M.
Two versions of modified models are discussed below,

the main difference being the effective size of yν in the
original Lagrangian, and hence the neutrino seesaw scale.

2. Model 1: Z8, with typical seesaw scale

We assign the following Z8 representations to the matter
fields: Note that ϕ0 and S have to be

Field ψ l ψf ψe ψm ψn H ϕ ϕ0 ϕ5 S T

Z8 rep. ei
π
4 ei

π
4 e−i

3π
4 e−i

3π
4 ei

π
4 þ1 −1 þi −1 −i −1

complex fields since they are in complex Z8 representations.
For the charged-lepton sector, since Dirac masses for ψ−

f
and ψ−

l are generated by operators that are at least
dimension four and five respectively, with the latter always
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requiring a Higgs field, it is natural to use these minimum
criteria as the truncation scheme. The most general
Lagrangian turns out to be same as the original Le
given in Eq. (2). The higher-dimension terms we have
neglected are given heuristically [with coefficients and
SO(3) indices suppressed] by

Lh:o:
e ∼ −

1

Λ
ðψfψeϕ

0S� þ ψfψmϕ
0ϕ0 þ � � �Þ

−
1

Λ2
ðψ lψeHϕ0S� þ ψ lψmHϕ0ϕ0 þ � � �

þ ψfψeTTT þ ψfψmTTT þ � � �Þ

−
1

Λ3
ðψ lψeHTTT þ ψ lψmHTTT þ � � �Þ

− � � � þ H:c: ðA1Þ

We note that terms like −ψfψmTT=Λ that may lead to large
truncation errors (if neglected) are explicitly forbidden by
the Z8 symmetry.
We now discuss the neutrino sector. Neutrino Dirac

masses are generated by operators that are at least dimen-
sion four and always require a Higgs field. While neutrino
Majorana masses can be generated by dimension-four
operators, we also allow dimension-five operators that
can potentially give comparable contributions as a result
of the hierarchy of scales. With the above as the truncation
scheme, the neutrino Lagrangian is then given by

Ll:o:
ν ¼ Ll:o:ðoldÞ

ν þ Ll:o:ðnewÞ
ν , where

Ll:o:ðoldÞ
ν ¼ −xSνSψ c

n
aψa

n − xν
1

Λ
ψ c
n
aψb

nϕ
0cTabc

− yνψ l
a ~Hψa

n þ H:c:;

Ll:o:ðnewÞ
ν ∼ −

1

Λ
ðψ c

nψnϕ
0ϕþ ψ c

nψnϕ
0ϕ5Þ þ H:c: ðA2Þ

The higher-dimension terms that we have neglected are

Lh:o:
ν ∼ −

1

Λ2
ðψ lψnHTT þ � � � þ ψ c

nψnSTT þ � � �Þ
− � � � þ H:c: ðA3Þ

When the flavon S gains a VEV vS, if we identify xSνvS
with M, Ll:o:ðoldÞ

ν then generates the same neutrino mass
matrix as the original Lagrangian. Therefore, the largest
contributions that we have omitted from our original mass

matrix come from Ll:o:ðnewÞ
ν and Lh:o:

ν . Note that Ll:o:ðoldÞ
ν

cannot be eliminated through a different implementation of
auxiliary symmetries without significantly modifying the
charged-lepton mass matrix.
We now analyze the fractional errors in both the charged-

lepton and neutrino mass matrices as a result of the various
omitted contributions discussed above. For simplicity, we
assume that all the Yukawas of terms that contribute to the

same mass type, omitted or otherwise, are of the same
order. As a result, the Yukawas (heuristically denoted as y)
cancel out in the fractional errors, which we summarize in
the table below. Note that we have defined ϵT ≡ vT=Λ.

Mass types Smallest
contributions
included

Largest
contributions

omitted

Fractional
error

ψ−
l , Dirac y vHv

Λ supfy vHv2

Λ2 ; y vHv3T
Λ3 g supfϵϵT ; ϵ

2
T
ϵ g

ψ−
f , Dirac yv supfy v2

Λ ; y v3T
Λ2g supfϵϵT ; ϵ

2
T
ϵ g

Neutrino,
Dirac

yvH y vHv2T
Λ2

ϵ2T

Neutrino,
Majorana

y vvT
Λ y v2

Λ
ϵ

Wewant all fractional errors to be smaller than ϵ so that the
omitted contributions generate smaller corrections to θ13
than what we have discussed in Sec. III. Except for neutrino
Majorana masses, this can be achieved by choosing a
hierarchy where ϵT < ϵ. For neutrino Majorana masses,
fine-tuning may be required to suppress the Yukawas asso-
ciated with the omitted contributions to reduce the fractional
errors. We have not taken into account any enhancement
effects which may ameliorate or exacerbate the fine-tuning.

3. Model 2: Z8, with lower seesaw scale

In this model, we assign different Z8 representations to
the matter fields.

Field ψ l ψf ψe ψm ψn H ϕ ϕ0 ϕ5 S T

Z8 rep. −1 −1 þ1 þ1 ei
π
4 þ1 −1 þi −1 ei

3π
4 −1

Again, we note that ϕ0 and S have to be complex fields. The
charged-lepton Lagrangian is the same as the one in the previous
model. For the neutrino sector, since neutrino Dirac masses
now only arise at dimension five, the truncation scheme is
modified accordingly. The neutrino Lagrangian is given by

Ll:o:
ν ¼ Ll:o:ðoldÞ

ν þ Ll:o:ðnewÞ
ν , where

Ll:o:ðoldÞ
ν ¼ −xSν

1

Λ
S2ψ c

n
aψa

n − xν
1

Λ
ψc
n
aψb

nϕ
0cTabc

− y0ν
1

Λ
Sψ l

a ~Hψa
n;

Ll:o:ðnewÞ
ν ∼ −

1

Λ
ðψc

nψnϕ
0ϕþ ψc

nψnϕ
0ϕ5Þ þ H:c: ðA4Þ

The higher-dimension terms that we have neglected are

Lh:o:
ν ∼ −

1

Λ2
ðψc

nψnS�S�T þ ψc
nψnϕ

0�TT þ � � �Þ

−
1

Λ3
ðψ lψnHSTT þ � � �Þ − � � � þ H:c: ðA5Þ

When the flavon S gains a VEV vS, if we identify xSνv2S=Λ

withM and y0νvS=Λwith yν,L
l:o:ðoldÞ
ν then generates the same

neutrino mass matrix as the original Lagrangian, but with yν
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naturally suppressed by vS=Λ. This allows for a seesaw scale
M that is roughly 2 orders of magnitude lower than usual.
The fractional errors for the different mass types are

given in the table below. Again the preferred hierarchy is
one where ϵT < ϵ, and fine-tuning is still required to
suppress the Yukawas associated with neutrino Majorana
mass contributions that have been omitted.

Mass types Smallest
contributions
included

Largest
contributions

omitted

Fractional
error

ψ−
l , Dirac

vHv
Λ supfvHv2Λ2 ; vHv

3
T

Λ3 g supfϵϵT ; ϵ
2
T
ϵ g

ψ−
f , Dirac v supfv2Λ ; v

3
T

Λ2g supfϵϵT ; ϵ
2
T
ϵ g

Neutrino,
Dirac

vH
ffiffiffiffiffiffi
vvT

p
Λ

vH
ffiffiffiffiffiffi
vvT

p
v2T

Λ3
ϵ2T

Neutrino,
Majorana

vvT
Λ supfv2Λ ; vv

2
T

Λ2 g supfϵ; ϵTg

APPENDIX B: NONUNITARY FACTORS
IN UPMNS

In this appendix, we discuss the origin of nonunitary
factors mentioned in Sec. II and why they turn out to be
negligible. The charged-current weak interaction acts
between the left-handed SM charged leptons and neutrinos,
both of which are linear combinations of light and heavy
mass eigenstates. UPMNS characterizes this interaction
between only the light mass eigenstates.
We define 6 × 6 unitary matricesU6×6

l;full andU
6×6
l;full that are

required to fully diagonalize M6×6
l ðM6×6

l Þ† and M6×6
ν :

U6×6
ν;fullM

6×6
ν ðU6×6

ν;fullÞT ¼

0
BBBBBBBBB@

m1 0 0 0 0 0

0 m2 0 0 0 0

0 0 m3 0 0 0

0 0 0 m10 0 0

0 0 0 0 m20 0

0 0 0 0 0 m30

1
CCCCCCCCCA
;

ðB1Þ

U6×6
l;fullM

6×6
l ðM6×6

l Þ†ðU6×6
l;fullÞ†

¼

0
BBBBBBBBB@

m2
e 0 0 0 0 0

0 m2
μ 0 0 0 0

0 0 m2
τ 0 0 0

0 0 0 m2
e0 0 0

0 0 0 0 m2
μ0 0

0 0 0 0 0 m2
τ0

1
CCCCCCCCCA
; ðB2Þ

where 0 indicates a heavy lepton. We can write U6×6
l;full and

U6×6
l;full in terms of 3 × 3 blocks as shown here:

U6×6
l;full ¼

�Ul;full U0
l;full

U00
l;full U000

l;full

�
; U6×6

ν;full ¼
�Uν;full U0

ν;full

U00
ν;full U000

ν;full

�
:

ðB3Þ

UPMNS is then given by

UPMNS ¼ Ul;fullðUν;fullÞ†: ðB4Þ

Since the 3 × 3 blocks are nonunitary in general, we expect
the same for UPMNS.
It is perhaps more illustrative to regard the diagonaliza-

tion as a two-step process, which we demonstrate here with
the neutrino sector. We define a 6 × 6 unitary matrix U6×6

ν;bd
that is required to block diagonalize M6×6

ν :

U6×6
ν;bdM

6×6
ν ðU6×6

ν;bdÞT ¼
�
Mν 0

0 Mν0

�
; ðB5Þ

where Mν and Mν0 are the 3 × 3 Majorana mass matrices
for the light and heavy neutrinos. Again we can write U6×6

ν;bd

in terms of 3 × 3 blocks:

U6×6
ν;bd ¼

�Uν;bd U0
ν;bd

U00
ν;bd U000

ν;bd

�
: ðB6Þ

LetUν be the3×3 unitarymatrix required to diagonalizeMν:

UνMνðUνÞT ¼

0
B@

m1 0 0

0 m2 0

0 0 m3

1
CA: ðB7Þ

We can then show that

Uν;full ¼ UνUν;bd: ðB8Þ
In other words, Uν;full can be decomposed into a unitary
factor associated with the diagonalization of Mν, and a
nonunitary factor associated with the block diagonalization
ofM6×6

ν . Applying a similar two-step process to the charged-
lepton sector gives us the factorization

Ul;full ¼ UlUl;bd: ðB9Þ
UPMNS is then given by

UPMNS ¼ UlUl;bdðUν;bdÞ†ðUνÞ†: ðB10Þ

This expression differs fromEq. (13) by the nonunitary factor
Ul;bdðUν;bdÞ† associated with the block-diagonalization proc-
ess. However, we can show that Ul;bd and ðUν;bdÞ† deviate

from the identity matrix by terms of order Oðv2HΛ2Þ and Oðv2HM2Þ
respectively. Based on the energy scales in Eq. (16), these are
exceedingly small deviations. Hence, their effects on UPMNS
are negligible and UPMNS can be considered to be unitary.

YUVAL GROSSMAN AND WEE HAO NG PHYSICAL REVIEW D 91, 073005 (2015)

073005-12



APPENDIX C: GENERATION OF RANDOM
PARAMETER SETS

In this appendix, we discuss how we generate the various
collections of random parameter sets used in the
simulations.

1. C1 and C2

The collections C1 and C2 are used in Fig. 1. In each
collection, the VEV vT is a log flat random variable
between 1016 and 1019 GeV, while v and v5 are uniform
random variables between 1015 and 1016 GeV.
In C1, which consists of 20 000 sets, all eight charged-

lepton Yukawas are simply Oð1Þ uniform random complex
variables, with real and imaginary parts between −3 and 3.
In C2, we want to restrict the parameter sets to only those
that produce the correct charged-lepton mass ratios. Ideally,
we would like to use the same definitions of random
variables as C1, and simply reject the parameter sets that fail
the cut. However, the very small measure of the allowed
parameter space makes this computationally prohibitive, so
we instead adopt an alternative procedure for C2 which we
outline below.
First, we define two new uniform random complex

variables α1 and α2 of magnitudes Oð 1
1000

Þ and Oð 1
10
Þ

respectively, that satisfy the relations

y0e ¼
yT0m
yTm

ðye − α1Þ; ðC1Þ

y50m ¼ yT0m
yTm

y5m þ yT0m
yTm

iffiffiffi
3

p v
v5

�
ym −

yTm
yT0m

y0m

�
ð1 − α2Þ: ðC2Þ

Instead of generating all eight charged-lepton Yukawas
randomly, we now generate only six of them (excluding y0e
and y50m), together with α1 and α2. y0e and y50m are then
obtained from the relations above. Since we still want all
Yukawas to be Oð1Þ, we discard the parameter set should
the resulting y0e and y50m not be Oð1Þ. We also discard
parameter sets where the mass spectra do not satisfy 10−3 ≤
m2

μ=m2
τ ≤ 10−2 and 10−8 ≤ m2

e=m2
τ ≤ 10−6. Only param-

eter sets that satisfy both conditions are included in C2.
Second, we notice that parameter sets that satisfy the

conditions tend to be concentrated around very small
supfv=vT; v5=vTg. Since we want to study θ13 over a
large range of ϵ, we generate 10 000 parameter sets
(satisfying the conditions) for vT a log flat random variable
between 1016 and 1019 GeV, 6000 sets for vT between 1016

and 1018 GeV and 4000 sets for vT between 1016 and
1017.5 GeV. This ensures that the combined 20 000 sets in
C2 span a useful range of supfv=vT; v5=vTg that we can
work with.

Finally, we explain the motivation behind Eqs. (C1) and
(C2). From Eq. (25), the zeroth-order term of Ml is
vH
Λ ðA − yTm

yT0m
CÞ. This has eigenvalues

ma ¼
ffiffiffi
3

p vH
Λ

����yev − yTm
yT0m

y0ev
����;

mb;mc ¼
vH
Λ

����
ffiffiffi
3

p �
ym −

yTm
yT0m

y0m

�
v� 3i

�
y5m −

yTm
yT0m

y50m

�
v5

����:
ðC3Þ

Equations (C1) and (C2) hence ensure that the zeroth-order
eigenvalues satisfy the mass-ratio conditions. Nonetheless,
we note that only a very small fraction of random parameter
sets generated this way end up being included in C2. The
reason is that subleading corrections to the small eigen-
values from block diagonalization can be much larger than
the zeroth-order small eigenvalues themselves, especially
for larger values of supfv=vT; v5=vTg. As a result, the
mass-ratio conditions may be violated.

2. C3, C4, C5 and C6

The collections C3, C4, C5 and C6 are used in Fig. 3. The
random parameters of interest are the VEVs v and v5, the
Yukawas ye, ym and y5m, and the changes δa and δb from
the original values of a and b. In all four collections, the
VEVs are uniform random variables between 1015 and
1016 GeV. For δa and δb, we first simulate the deviation
angle χ as a log flat random variable between 10−4 and
10−1. Since χ2 ≃ ðδaÞ2 þ 2ðδbÞ2=3, we simulate δa as a
uniform random variable between −χ and χ, and then
derive δb using δb ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðχ2 − ðδaÞ2Þ=2

p
, with the signs

randomly generated.
The differences between the four collections lie in the

Yukawas, since the size of the Yukawas is directly related to
the size of the mass eigenvalues. For C3, all Yukawas are
simply Oð1Þ uniform random complex variables, with real
and imaginary parts between −3 and 3. For C4, we generate
ye and ym as Oð 1

1000
Þ and Oð1Þ random complex variables.

We also first generate aOð0.1Þ random complex variable α,
from which y5m is derived using the relation

y5m ¼ −
iffiffiffi
3

p v
v5

ymð1 − αÞ: ðC4Þ

These choices are made to increase the likelihood of the
eigenvalues satisfying the correct mass ratio. For C5 and C6,
the procedures are similar to that of C4, except that ye and α
are further reduced to increase the likelihood of satisfying
the (unphysical) smaller mass ratios.
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