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A conventional approach to precision calculations of Higgs boson observables uses quark massesmc and
mb as inputs. However, quark masses are single numbers that hide a variety of low-energy data from which
they are extracted, and also hide the various sources of theoretical uncertainties and correlations with
additional input parameters such as αs. Higher-precision calculations, which are needed to give meaning to
future measurements, require more direct engagement with the low-energy data in a global analysis. We
present an initial calculation in this direction, which illustrates the procedure and reveals some of the theory
uncertainties that challenge subpercent determinations of Higgs boson partial widths.
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I. INTRODUCTION

The discovery of the Higgs boson [1,2] marks the
beginning of a new era for precision studies. Not only is
unprecedented precision achieved in Standard Model (SM)
calculations [3–6] with the knowledge of the Higgs boson
mass [7,8], but experimental data on a large number of
Higgs observables [9] allows us for the first time to
scrutinize the Higgs sector of the SM [10] and beyond
[11–13]. Any discrepancy between precision data and SM
predictions would be an indication of new physics.
Though not explicitly stated in the context of precision

Higgs analysis, an important role in this program is played
by low-energy observables, such as moments of eþe−
annihilation cross section and moments of semileptonic B
decay distributions. In fact, our knowledge of the charm
and bottom quark masses mQ (Q ¼ c; b), which are
important inputs of precision Higgs calculations, largely
comes from analyzing these low-energy data. This can be
seen from the fact that the Particle Data Group (PDG) [14]
average of the scale-invariant masses in the MS scheme [i.e.
solutions to mQðμÞ ¼ μ],

mcðmcÞ ¼ 1.275ð25Þ GeV; ð1Þ

mbðmbÞ ¼ 4.18ð3Þ GeV; ð2Þ

is dominated by mQ extractions from low-energy data.
These MS masses, as well as pole masses, have been used
in the literature to estimate the theoretical precision
achievable in precision Higgs calculations [10,15].
However, looking into the future, such indirect engage-

ment of low-energy observables in precision Higgs analysis
might be ultimately unsatisfactory. A large amount of low-
energy data has been highly processed to yield just two

numbers, as in Eqs. (1) and (2). It is not even clear whether
these numbers accurately reflect our knowledge of mQ
because the averaging involves mQ extractions, some of
which are apparently correlated due to similar data and/or
methods used. The error bars assigned to them contain
experimental uncertainties from many different measure-
ments, as well as theoretical uncertainties from calculating
many different quantities. In addition, a self-described
inflation of uncertainties by the PDG [16] is introduced
to account for underestimated systematic errors in some
mQ extractions [17]. Finally, Eqs. (1) and (2) do not retain
possible correlations between αsðmZÞ and the extracted
mQ. They are thus treated as independent inputs in
precision Higgs analysis, which is strictly speaking not
correct.
As we strive for the highest-precision calculation pos-

sible in order to match the percent (or even perhaps the
parts-per-mil) level of experimental precision achievable in
the foreseeable future,1 the rich information hidden in
Eqs. (1) and (2) should be revealed and the role of indivi-
dual low-energy observables emphasized. Conceivably, a
global χ2 fit would become more powerful in testing the
SM when low-energy observables sensitive to mQ as well
as Higgs observables are incorporated. The scale-invariant
masses mQðmQÞ would be then only inputs of the calcu-
lation. They are not considered as observables with

1Though precision measurements of Higgs observables,
especially the partial widths into cc̄ and bb̄ discussed in this
paper, are difficult at the LHC, such high precision is generally
believed to be achievable at the International Linear Collider, the
Future Circular Collider, and the Circular Electron Positron
Collider. For recent analyses, see e.g. Refs. [18–21]. We also
note that for the bb̄ channel the importance of a higher theory
precision is further emphasized by its relevance to the calculation
of the total widths and all branching ratios of the Higgs boson.
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experimental values and uncertainties but are parameters to
be tuned to minimize the χ2 function, where only true
observables are included.
In this paper we propose the idea of directly working

with low-energy observables in precision Higgs analysis. In
addition to the global fit perspective mentioned above, low-
energy observables can also play a role in identifying
individual sources of theoretical uncertainties in precision
Higgs calculations. This is conveniently done by eliminat-
ing mQðmQÞ from our input in favor of two low-energy
observables and recasting Higgs observables in terms of
these and other input observables. For this procedure to be
meaningful, the two observables chosen should be repre-
sentative of the large amount of low-energy data contrib-
uting to Eqs. (1) and (2), in the sense that mQ extracted
from them alone should be precise enough. In the language
of a global χ2 fit, the ideal choices would be two
observables that dominate the low-energy observables
contribution to χ2. In this regard, a reasonable, though
by no means exclusive, option would be to use the
moments Mc

1 and Mb
2 of the eþe− → QQ̄ inclusive cross

section, defined by

MQ
n ≡

Z
ds
snþ1

RQðsÞ; where RQ ≡ σðeþe− → QQ̄XÞ
σðeþe− → μþμ−Þ ;

ð3Þ
with the precise definition of RQ from experimental data
discussed in Ref. [22]. mcðmcÞ and mbðmbÞ reported in the
literature from analyzing these moments typically have
Oð10 MeVÞ uncertainties quoted [17,22–24]. For the
Higgs observables, we will focus on the partial widths
ΓH→cc̄ and ΓH→bb̄ and assess the level of precision we can
achieve in SM predictions for them. We will see that, with
direct contact made between these partial widths and the
low-energy moments, the vague notion of “uncertainties
from mQ” is decomposed into concrete sources of uncer-
tainties. In particular, parametric uncertainties from input
observables Mc

1, Mb
2 , and αsðmZÞ2 and perturbative

uncertainties due to missing higher-order corrections to
the moments can be exposed separately. We note that, while
the parametric uncertainties are currently expected to be
at the percent level, and are in principle reducible with
future data and more careful experimental extraction of the
moments, the perturbative uncertainties may represent a

bigger challenge due to lack of knowledge of the appro-
priate renormalization scales in the low-energy regime. It is
therefore worthwhile to further investigate theoretical as
well as experimental aspects of the low-energy observables
for the precision Higgs program to succeed.

II. INCORPORATING LOW-ENERGY
OBSERVABLES INTO A GLOBAL

PRECISION ANALYSIS

The strongest tests of the SM rely on comparing its
predictions across all accessible energy scales. By disen-
tangling the information contained in the charm and bottom
quark masses in the context of precision Higgs analysis, we
expose an interesting interplay between Higgs observables
and low-energy observables. The sensitivity tomQ that they
share in common suggests the inclusion of both in the
precision program.
An incomplete list of candidates for low-energy observ-

ables can be inferred from the mQ extraction literature and
includes low [17,22–24] and high [25–28] moments of RQ

mentioned above and their variants [29,30], moments of
lepton energy and hadron mass distributions of semilep-
tonic B decay [31–33], etc. We denote them collectively as
fÔlow

i g, with i running from 1 to the number of low-energy
observables we wish to incorporate into the analysis. All
these candidates should be carefully examined, and corre-
lations among them should be understood, so that the best
choices can be made for fÔlow

i g.
In the high-energy regime, the observables include, for

example, various partial widths, branching ratios, and
production cross sections of the Higgs boson. Let us call
them fÔhigh

i g. If not restricted to precision Higgs analysis,
one may even include in fÔhigh

i g the electroweak observ-
ables, such as the effective weak mixing angle, Z boson
partial widths, and forward-backward asymmetries in eþe−
annihilation at the Z pole. This will make the global
analysis even more powerful because the Higgs observ-
ables are sensitive to the same set of input observables as
the electroweak observables:

fÔin
k g≡ fmZ;GF; αðmZÞ; mt;αsðmZÞ; mHg: ð4Þ

Parenthetically we remark that the common practice of
treating the top quark mass mt as an input observable is
justified for present purposes. A more careful treatment of
mt, like what we do here withmc andmb, may be needed in
the future when precision measurements on the tt̄ threshold
are carried out at an eþe− collider.
Additional calculational inputs, which are not neces-

sarily of the observable type, include the charm and bottom
quark masses fmQðmQÞg≡ fmcðmcÞ; mbðmbÞg. There
may be other input parameters, which we denote collec-
tively by fpother

k g. Examples are the τ lepton mass, flavor
angles, and nonperturbative parameters (e.g. gluon con-
densate) involved in some low-energy observables.

2It should be noted that we will treat αsðmZÞ as both a
calculational input and an observable with a central value and
uncertainty. In principle one could treat αsðmZÞ as merely a
calculational parameter and let the observables that are highly
sensitive to the αsðmZÞ value be part of the global fit, analogous to
what we have done with mQðmQÞ. However, αsðmZÞ is one step
further removed from direct determination of H → bb̄, cc̄ partial
widths compared to mQðmQÞ, and so treating αsðmZÞ as both an
input parameter and (highly processed) observable is numerically
justified.
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Assuming the potentially complicated correlations among all the high- and low-energy observables will be understood in
time, we may ultimately subject all the observables to a global fit, by minimizing the χ2 function with respect to the inputs:

Calculation inputs∶ fIkg≡ fÔin
k g ∪ fmQðmQÞg ∪ fpother

k g; ð5Þ

Fit observables∶ fÔig≡ fÔin
i g ∪ fÔhigh

i g ∪ fÔlow
i g; ð6Þ

To minimize∶ χ2 ¼
X
ij

�
Ôth

i ðfIkgÞ − Ôexpt
i

�
V−1
ij

�
Ôth

j ðfIkgÞ − Ôexpt
j

�
: ð7Þ

Here “th” and “expt” denote theoretical and experimental
values, respectively, and V is the covariance matrix con-
taining uncertainties and correlations among observables.
The calculational inputs could just as well be chosen to be a
minimal set of Lagrangian parameters; however, it is most
convenient for our purposes to choose a combination of
observables and Lagrangian parameters as the minimal set
of calculational inputs.
Compared with the conventional approach where

low-energy data contribute indirectly via the averaged
fmQðmQÞg, our proposal of directly working with low-
energy observables allows appropriate treatment of all the
correlations and uncertainties. In particular, there is no
averaging over correlated mQ extractions, and the calcula-
tional inputs fmQðmQÞg and αsðmZÞ are no longer corre-
lated. Challenging as it is, such a global analysis is worth
further investigation. As a long-term goal for the precision
program, it will test our understanding of elementary
particle physics at an unprecedented level.
As a final remark in this section, the techniques

described above are to be employed in a rigorous test of
the SM. The resulting statistical test from the χ2 analysis is
for determining the likelihood of the compatibility of the
data with the SM hypothesis. It is straightforward to apply
these techniques to a slightly different model, which we call
the κSM, defined to be exactly the SM theory except that
each coupling of the Higgs boson to SM states has a free
parameter κi in front that is varied to fit the data (see e.g.
Refs. [11,34,35]). In that case, the χ2 analysis must include
these κi as extra input variables, and the resulting fit tests
the compatibility of the κSM theory with the data and, if
compatible, gives confidence intervals for the κi values.
Just as with the SM, at the next level of precision analysis
of the κSM, it is important to address the role of low-energy
observables that we study in this paper.

III. RECASTING HIGGS OBSERVABLES IN
TERMS OF LOW-ENERGY OBSERVABLES

To investigate sources of theoretical uncertainties in
calculating the Higgs observables, it is helpful to recast
them in terms of a set of input observables without invoking
a global fit. In the simplest case, suppose all the observables

under consideration are insensitive to fpother
k g. We choose

two low-energy observables: Ôlow
1 , Ôlow

2 . By inverting the
functions

Ôlow
1 ¼ Ôlow

1 ½fÔin
k g; fmQðmQÞg�;

Ôlow
2 ¼ Ôlow

2 ½fÔin
k g; fmQðmQÞg�; ð8Þ

we express the quark masses in terms of Ôlow
1 , Ôlow

2 :

mcðmcÞ ¼ mcðmcÞ½fÔin
k g; Ôlow

1 ; Ôlow
2 �;

mbðmbÞ ¼ mbðmbÞ½fÔin
k g; Ôlow

1 ; Ôlow
2 �: ð9Þ

fmQðmQÞg can then be eliminated from the calculation of
the Higgs observables,

Ôhigh
i ¼Ôhigh

i ½fÔin
k g;fmQðmQÞg�¼Ôhigh

i ½fÔin
k g;Ôlow

1 ;Ôlow
2 �;
ð10Þ

and we have achieved the goal of recasting Higgs observ-
ables in terms of low-energy input observables Ôlow

1 , Ôlow
2 .

From Eq. (10) it is clear that the precision in the SM
prediction for the Higgs observables will benefit from
improved knowledge of mQ, which ultimately comes from
better measurements of the low-energy observables.
Our choices for the low-energy input observables,

Ôlow
1 ; Ôlow

2 ¼ Mc
1;M

b
2; ð11Þ

require only a slight generalization of the simple formalism
above. We will take into account an additional input, the
gluon condensate, as fpother

k g in the case of Mc
1, but its

contribution allows for a simplified treatment. In fact, the
simplicity of the analysis is our main motivation for
choosing these moments as inputs rather than other low-
energy observables which lead to similar level of precision
in the extracted mQ. For example, if we were to use
semileptonic B meson decay observables (see e.g.
Refs. [31–33]), more input parameters in fpother

k g will
show up, including flavor angles and four nonperturbative
parameters. Also, the low moments (MQ

n with n ≤ 4)
chosen here are computationally more straightforward than
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the high moments (n ≥ 10; see e.g. Refs. [25–28]). The
former can be calculated conveniently in the relativistic
theory, while a nonrelativistic effective theory treatment is
needed for the latter. In addition, since the calculation
involves MS quark masses, there is no need for introducing
other mass schemes. Potentially large uncertainties asso-
ciated with mass scheme conversion (e.g. from pole or
kinetic masses to MS masses), which is needed for some
other methods, can thus be avoided. We also note that the
approach of extracting mQ from the low moments was
recently recast by the lattice QCD community [36–38], and
future development in this direction may shed light on the
precision Higgs program [39].
To calculate MQ

n , one applies quark-hadron duality [40]
to relate the moments MQ

n to vector current correlators,

MQ
n ¼ 12π2

n!

�
d
dq2

�
n
ΠQðq2Þjq2¼0; where ð12Þ

ðq2gμν − qμqνÞΠQðq2Þ ¼ −i
Z

d4xeiq·xh0jTjμðxÞj†νð0Þj0i;
ð13Þ

with jμ being the electromagnetic current of Q. ΠQ can be
calculated as an operator product expansion,

MQ
n ¼ ðQQ=ð2=3ÞÞ2

ð2mQðμÞÞ2n
X
i;j

C̄ðjÞ
n;iðnfÞ

�
αsðμÞ
π

�
i
lnj

mQðμÞ2
μ2

þMQ;np
n ; ð14Þ

whereQQ is the electric charge of quarkQ. As one can see,
the values of these moments depend on the quark masses, a
fact that QCD sum rules practitioners use to extract quark
masses (for reviews, see Refs. [41,42]). The two terms in
Eq. (14) come from perturbation theory and nonperturba-
tive condensates, respectively. The perturbative part is
known up to Oðα3sÞ [43], while the gluon condensate
contribution, which dominates MQ;np

n , has been calculated

to next-to-leading order [44]. Note that the coefficients C̄ðjÞ
n;i

are functions of nf, the number of active quark flavors. The
common choices are nf ¼ 4 for Q ¼ c and nf ¼ 5 for
Q ¼ b. These are also the numbers of active quark flavors
assumed for αsðμÞ and mQðμÞ in Eq. (14). αsðmZÞ is
defined for nf ¼ 5 and should be matched to the four-flavor
effective coupling at the bottom quark threshold before
being used in Eq. (14) for Mc

n. In our calculations the
matching is done assuming 4.2 GeV for both the threshold
scale and mbðmbÞ, but all the results are found to be
insensitive to the details of threshold matching.
mQðμÞ are usually extracted by comparing the theoretical

calculation with experimental data for MQ
n (see

Refs. [17,22] for technical details). Normally the lowest

momentMc
1 is taken for the charm quark so as to suppress

the nonperturbative contribution to the subpercent level
[17,22,45]. For the bottom quark, the gluon condensate
can be safely neglected at the present level of precision
[22], and the second moment Mb

2 is preferred due to
large experimental uncertainty in Mb

1 . We also neglect
Oðm2

c=m2
bÞ terms in Mb

2 , not explicitly written out in
Eq. (14), which constitute a tiny contribution [22].
It is pointed out in Ref. [17] that the scales at which mQ

and αs are renormalized should be considered independ-
ently to avoid bias in the uncertainty estimate. Eq. (14) then
should be generalized to

MQ
n ¼ ðQQ=ð2=3ÞÞ2

ð2mQðμmÞÞ2n
X
i;a;b

Cða;bÞ
n;i ðnfÞ

�
αsðμαÞ

π

�
i

× lna
mQðμmÞ2

μ2m
lnb

mQðμmÞ2
μ2α

þMQ;np
n : ð15Þ

The coefficients in this equation Cða;bÞ
n;i can be readily

derived from C̄ðjÞ
n;i via renormalization group (RG) equa-

tions, and numerical results for nf ¼ 4 can be found in
Ref. [17]. Due to unknown Oðα4sÞ terms, the calculated
MQ

n exhibit dependence on both μm and μα. Scale
dependence is a general feature of finite-order perturbative
calculations and should be considered with care in estimat-
ing theoretical uncertainties. We have more to say on
this below.
WithmQðμmÞ, αsðμαÞ related tomQðmQÞ, αsðmZÞ via RG

equations, Eq. (15) matches the general form of Eq. (8),
with αsðmZÞ being the only relevant element in fÔin

k g.
There are additional inputs μm, μα, and MQ;np

n . So in our
case, Eq. (8) is modified as

Mc
1 ¼ Mc

1½αsðmZÞ; mcðmcÞ; μcm; μcα;Mc;np
1 �; ð16Þ

Mb
2 ¼ Mb

2½αsðmZÞ; mbðmbÞ; μbm; μbα�; ð17Þ

where we have neglected Mb;np
2 . As mentioned above, the

nonperturbative contribution has been claimed to be neg-
ligible for the bottom quark. We have checked this in the
case of Mb

2 , where the contribution from Mb;np
2 is below

0.1%, which should be compared to the experimental
uncertainty of Mb

2 of about 1%. Treating Mc;np
1 and

mcðmcÞ as independent inputs, which we will justify later,
and focusing on the Higgs boson partial widths to cc̄ and
bb̄ as examples of fÔhigh

i g, we have, in place of Eqs. (9)
and (10),

mcðmcÞ ¼ mcðmcÞ½αsðmZÞ;Mc
1; μ

c
m; μcα;M

c;np
1 �; ð18Þ

mbðmbÞ ¼ mbðmbÞ½αsðmZÞ;Mb
2; μ

b
m; μbα�; ð19Þ
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ΓH→cc̄ ¼ ΓH→cc̄½fÔin
k g; mcðmcÞ; μcH�

¼ ΓH→cc̄½fÔin
k g;Mc

1; μ
c
m; μcα; μcH;M

c;np
1 �; ð20Þ

ΓH→bb̄ ¼ ΓH→bb̄½fÔin
k g; mbðmbÞ; μbH�

¼ ΓH→bb̄½fÔin
k g;Mb

2; μ
b
m; μbα; μbH�; ð21Þ

where μcH, μ
b
H collectively denote other renormalization

scales involved in the calculation of the partial widths.
These are nevertheless not the only scale dependences for
the partial widths in such an analysis. The residual scale
dependences of the low-energy observables are seen to
propagate into the extracted quark masses and constitute
part of the uncertainties in mQðmQÞ. These uncertainties
eventually propagate into the calculations of Higgs observ-
ables and are reflected in the μm, μα dependences in
Eqs. (20) and (21). Note also that in the second equalities
in Eqs. (20) and (21) the αsðmZÞ dependence in the partial
widths has been changed to account for the correlation with
mQðmQÞ reflected in Eqs. (18) and (19).
Equations. (20) and (21) represent the final results of the

exercise of recasting Higgs observables in terms of low-
energy observables, with the information contained in
mQðmQÞ fully resolved. They will be used in the next
section to investigate the theoretical uncertainties in these
partial widths.
To close this section, we remark on the treatment of

Mc;np
1 . The known terms read [44]

Mc;np
1 ¼ hαsπ G2i

ð2mpole
c Þ6

�
−16.042 − 168.07

αsðμÞ
π

þOðα2sÞ
�
;

ð22Þ

where hαsπ G2i is the gluon condensate. The commonly used
value in the context of charm quark mass extraction is
derived from τ decay data [46]:

Dαs
π
G2

E
¼ 0.006� 0.012 GeV4: ð23Þ

In addition to the imprecise knowledge of hαsπ G2i, we note
two other sources of uncertainties in Mc;np

1 . First, it is
argued in Refs. [17,45] that Mc;np

1 should be expressed in
terms of the pole mass rather than the MS mass in order to
have a stable αs expansion. We agree with this argument but
note that the use of the pole mass may introduce further
ambiguities. For example, if one tries to calculate the pole
mass from the MS mass, the result will be very sensitive to
the loop order. Second, considerable uncertainty is intro-
duced by the μ dependence of the bracket in Eq. (22), since
the Oðα2sÞ terms are not known. This renormalization scale
is not necessarily related to μα or μm in the perturbation
theory contributions [the first term in Eq. (15)]. All these

uncertainties and ambiguities will dilute any conceivable
correlation between Mc;np

1 and mcðmcÞ, justifying our
treatment of them as independent inputs. In our analysis
the following value for Mc;np

1 will be assumed:

Mc;np
1 ¼ −0.0001þ0.0006

−0.0014 GeV−2: ð24Þ

The central value corresponds to hαsπ G2i ¼ 0.006 GeV4,

mpole
c ¼ 1.7 GeV, and μ ¼ 3 GeV in Eq. (22). The errors

are very conservatively estimated by taking the extreme
values mpole

c ¼ 1.4 GeV, μ ¼ 1 GeV, and varying hαsπ G2i
in the range in Eq. (23). Even with the extreme values
considered, Mc;np

1 is still a subpercent-level contribution
to Mc

1 ∼ 0.2 GeV−2.

IV. THEORETICAL UNCERTAINTIES
OF HIGGS PARTIAL WIDTHS

It is clear from Eqs. (20) and (21) that there are two types
of uncertainties in the calculation of the Higgs partial
widths. Parametric uncertainty results from imprecise
knowledge of the input parameters, including the input
observables (Mc

1, M
b
2 , and those in fÔin

k g) and the non-
perturbative parameterMc;np

1 . The experimental values and
errors of the input observables are

Mc
1 ¼ 0.2121ð20Þð30Þ GeV−2 ½17�; ð25Þ

Mb
2 ¼ 2.819ð27Þ × 10−5 GeV−4 ½45�; ð26Þ

αsðmZÞ ¼ 0.1185ð6Þ ½14�; ð27Þ

mH ¼ 125.7ð4Þ GeV ½14�; ð28Þ

mt ¼ 173.21ð51Þð71Þ GeV ½14�; ð29Þ

mZ ¼ 91.1876ð21Þ GeV ½14�; ð30Þ

αðmZÞ ¼ 1=127.940ð14Þ ½14�; ð31Þ

GF ¼ 1.1663787ð6Þ × 10−5 GeV−2 ½14�: ð32Þ

For Mc
1 and mt, the two experimental uncertainties are

statistical and systematic, respectively. There is an addi-
tional systematic uncertainty in Mb

2 associated with the
prescriptions used in extracting moments from data. This is
discussed in Ref. [45], and we adopt “option A” in that
paper because, among the three options considered there, it
appears to yield the most consistent results for mQðmQÞ
across different moments.
Perturbative uncertainty, on the other hand, is associated

with unknown higher-order terms in perturbation theory
calculations and leads to residual dependence of calculated
observables on the renormalization scales. When the partial
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widths are recast in terms of Mc
1 and Mb

2 as in Eqs. (20)
and (21), multiple scales enter. μH comes from the
calculation of the Higgs boson decay. The associated
perturbative uncertainty has been studied in the literature;
see e.g. Ref. [10] where it is found to be small compared
with parametric uncertainty. Here we focus on μm, μα,
which originate from the calculation of the low-energy
observables Mc

1, M
b
2 [see Eqs. (15)–(17)]. Their contri-

bution to the total theoretical uncertainty will be singled out
below by setting all input parameters to their central values
in Eqs. (24)–(32) and setting μH ¼ mH.
We study the perturbative uncertainty from μm, μα in two

steps. First, mQðμmÞ are calculated by iteratively solving
Eq. (15) following the procedure explained in Ref. [17],
from which mQðmQÞ are derived. We use the RUNDEC

package [47] for RG running and threshold matching to the
highest loop order implemented in the package. Second,
the partial widths ΓH→cc̄, ΓH→bb̄ are calculated using the
expansion formulas in Ref. [10]. The results of both steps
are shown in Fig. 1 as contour plots in the μm-μα plane.3

They correspond to Eqs. (18)–(21) with other inputs fixed.
These plots illustrate the propagation of μm, μα dependence
from low-energy moments calculations to Higgs partial
widths.
To estimate the perturbative uncertainty, a common

practice is to identify a characteristic scale of the process

FIG. 1. Contours ofmcðmcÞ (top-left),mbðmbÞ (bottom-left) in GeV, and ΓH→cc̄ (top-right), ΓH→bb̄ (bottom-right) in MeV in the μm-μα
plane. These plots demonstrate Eqs. (18)–(21) with all other inputs fixed. The unlabeled contours represent decreasing values toward the
top-left corner in steps of 0.01 GeV, 0.005 GeV, 0.002 MeV, 0.005 MeV, respectively.

3The numerical difference between our mcðmcÞ contour plot
and Fig. 6(c) in Ref. [17] is due to the inputMc

1 and αsðmZÞ used,
and to a lesser extent the treatment of Mc;np

1 .
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of interest and vary the renormalization scale within a factor
of 2 around that scale. For example, μH has been varied
from mH=2 to 2mH in Ref. [10]. However, this method is
not directly applicable to μm and μα, since MQ

n receive
contributions from all energy scales as evident in Eq. (3).
One might guess from qualitative features of RQðsÞ that the
characteristic scale should be Oð2mQÞ, the masses of
quarkonium resonances. But due to the relatively large
value of αs in the low-energy regime, the exact number, and
hence the range in which we choose to vary μm, μα can
greatly affect the result of our uncertainty estimates. This is
already clear from Fig. 1, where ΓH→cc̄ and ΓH→bb̄ are seen
to exhibit rapid variation in the low − μm regime.
Lacking an optimal method to estimate the perturbative

uncertainty, we refrain from giving exact numbers but
instead aim to illustrate the ambiguity in the estimate of
perturbative uncertainty by varying μm and μα independ-
ently within an adjustable range ½μmin; μmax�. We will focus
on the uncertainties in the partial widths and remark that
they are related to the uncertainties in mQðmQÞ by [10]

ΔΓH→cc̄

ΓH→cc̄
≃ ΔmcðmcÞ

10 MeV
× 2.1%;

ΔΓH→bb̄

ΓH→bb̄
≃ ΔmbðmbÞ

10 MeV
× 0.56%: ð33Þ

The perturbative uncertainty, defined as half the difference
between the maximum and minimum values of ΓH→cc̄,
ΓH→bb̄, depends on μmin and μmax. We present the results in
Fig. 2 in terms of “percent relative uncertainties,” defined to
be 100ΔΓ=Γ. The red solid curves show the estimated
perturbative uncertainties as functions of μmin, with μcmax

(μbmax) fixed at 4 (15) GeV. Alternative choices for μcmax

(μbmax), 3 and 5 (13 and 17) GeV, give rise to the red dashed
curves. These can be compared with the dominant para-
metric uncertainties shown by the other curves in Fig. 2 (see
the figure caption for details). The popular choices in the
literature ðμcmin; μ

c
maxÞ ¼ ð2; 4Þ GeV and ðμbmin; μ

b
maxÞ ¼

ð5; 15Þ GeV yield perturbative uncertainties of 1.2% and
0.33% for ΓH→cc̄ and ΓH→bb̄, respectively, comparable with
parametric uncertainties. However, the perturbative uncer-
tainties increase rapidly and dominate the total theoretical
uncertainties if lower renormalization scales are consid-
ered. The result of the theoretical uncertainty estimate is
then strongly dependent on the artificial choice of μmin.
This poses a serious ambiguity in precision analysis and
calls for more enlightened prescriptions for the uncertainty
estimate. We note two possible directions in this regard.
The first direction was suggested very recently in

Ref. [48] in the context of mQ extraction. There it is
argued that the large perturbative uncertainty from com-
pletely uncorrelated variation of μm and μα is probably an
overestimate. To get the perturbative uncertainty under
control, a “convergence test” is performed to identify
regions in the μm-μα plane where the perturbative series
converges too slowly (characterized by a large convergence
parameter). These regions are then discarded in the uncer-
tainty estimate. Following the approach outlined in
Ref. [48], we find that the discarded regions correspond
to the upper-left and bottom-right corners in each plot in
Fig. 1, where mQðmQÞ and the partial widths exhibit rapid
variation. The final result in Ref. [48] is a reduced
perturbative uncertainty: 14 and 10 MeV for mcðmcÞ
and mbðmbÞ, respectively, corresponding to 2.9% and
0.56% relative uncertainties in ΓH→cc̄ and ΓH→bb̄,
respectively.

FIG. 2 (color online). Percent relative uncertainties in ΓH→cc̄ (left) and ΓH→bb̄ (right) as functions of μmin from various sources:
perturbative uncertainty with μcmax ¼ 4 GeV, μbmax ¼ 15 GeV (red solid) or alternatively μcmax ¼ 3; 5 GeV, μbmax ¼ 13; 17 GeV (red
dashed), parametric uncertainties from Mc

1 or M
b
2 (orange), αsðmZÞ (cyan solid), Mc;np

1 (blue, for ΓH→cc̄ only), and mH (purple). The
parametric uncertainty from αsðmZÞ incorrectly calculated assuming no correlation withmQ (cyan dotted) is also shown for comparison.
The parametric uncertainties are defined as shifts of the central values of ΓH→cc̄ and ΓH→bb̄ for μmin ≤ μm, μα ≤ μmax caused by varying
the input parameters within the errors quoted in Eqs. (24)–(32), with μcmax ¼ 4 GeV, μbmax ¼ 15 GeV (the kinks are due to the maximum
or minimum shifting to a different region in the μm-μα plane), and are found to be insensitive to μmax.
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The convergence test is a well-motivated idea, reflecting
the intuition that a proper scale choice should not lead to
very slow convergence. However, further study is necessary
to examine various details of the approach. For instance,
one may consider loosening the constraints mcðmcÞ ≤ μcm,
μcα ≤ 4 GeV, mbðmbÞ ≤ μbm, μbα ≤ 15 GeV imposed in
Ref. [48]. In particular, μm, μα slightly lower than
mQðmQÞ should be allowed as long as one retains four-
flavor (five-flavor) effective strong coupling for the charm
(bottom) quark. Also, the convergence criterion may be
refined. The definition of the convergence parameter in
Ref. [48] assumes an approximate geometric series behav-
ior of the αs series, but we find the latter falls off more
slowly than a geometric series in most cases. Furthermore,
it remains to seek a less arbitrary prescription for the
fraction of ðμm; μαÞ to be discarded and to investigate
whether the convergence parameter is a good indicator of
the size of higher-order corrections. In any case, to be
conservative the reduced perturbative uncertainties men-
tioned above should be interpreted with caution before the
approach is developed further.
As an alternative direction, one may consider the

possibility of finding an optimal scale via a defensible
scale-setting procedure, such as the one advocated by
Brodsky–Lepage–Mackenzie (BLM) [49]. The BLM scale
for an observable is obtained by absorbing the nf terms in
the perturbation series, which come from the QCD beta
function, into the running coupling αs. This is arguably the
physical scale of the process, with higher-order corrections
associated with RG running appropriately resummed. We
also note that the BLM procedure extended to all orders
based on the principle of maximum conformality [50] has
been demonstrated to be self-consistent [51]. In the case of
MQ

n , however, there are two renormalized parameters, αs
andmQ, and naive application of the BLM procedure might
be problematic. This is because, even when the nf terms are
absorbed into running αs and/ormQ, the leading-order mass
renormalization, which is independent of nf, may lead to
large loop corrections which are difficult to identify.
Indeed, we find that naive application of BLM, namely
absorbing the nfα2s terms, sets scales for μm and μα which
are strongly disfavored by the convergence test. In light of
the importance of a more precise mQ determination, it
might be worthwhile to investigate the nontrivial possibility
of generalizing the BLM method and its extensions [50,52]
to include running quark masses.
The parametric uncertainties, on the other hand, are seen

from Fig. 2 to be dominated by experimental measurement
uncertainties of Mc

1 and Mb
2 (orange). Reduction of these

will rely on more precise measurements of RQðsÞ and more
careful treatment of experimental data. At present the major
problem is the lack of data above

ffiffiffi
s

p ¼ 11.2 GeV, result-
ing in large uncertainties in the bottom quark moments
[45]. Also, the quarkonium resonances are currently treated

in the narrow width approximation, the quality of which
should be examined in light of higher precision require-
ments in the future. αsðmZÞ (cyan solid) constitutes a
subdominant source of parametric uncertainties. Its con-
tribution is seen to be smaller than the incorrect estimate
assuming no correlation between αsðmZÞ and mQ (cyan
dashed), due to partial cancelation between direct αsðmZÞ
dependence and indirect dependence throughmQ. With our
conservative estimate (i.e. erring on the large side) in
Eq. (24), Mc;np

1 leads to an uncertainty in ΓH→cc̄ (blue)
at a similar level as αsðmZÞ. This may represent a challenge
in the future and calls for further investigation of the gluon
condensate contribution. The uncertainty due to mH (pur-
ple) is less important, while other input observables listed at
the beginning of this section have a negligible effect on the
parametric uncertainty.

V. CONCLUSIONS

For the precision Higgs program to succeed in the future,
additional effort is required to improve the precision of SM
calculations in order to match the proposed experimental
accuracy. A better understanding of theoretical uncertain-
ties is critical. Toward this aim, we emphasize the role of
low-energy observables and further propose the idea of a
global analysis incorporating relevant observables across
all energy regimes. Rather than contributing indirectly via
the charm and bottom quark masses, low-energy observ-
ables explicitly participate in such a precision analysis.
Future studies in this direction should examine all candi-
dates of low-energy observables and determine an efficient
set of observables for the global fit.
In the context of precision Higgs calculations, we

focused on the Higgs boson partial widths to charm and
bottom quarks and investigated the theoretical uncertainties
in these observables. By eliminating charm and bottom
quark masses in favor of low-energy observables Mc

1 and
Mb

2 , we recast the partial widths in terms of these and
other input observables. Much information originally
hidden in uncertainties in the highly processed quark
masses becomes transparent. Experimental uncertainties
in the low-energy observables are directly propagated into
the Higgs partial widths, and the uncertainty due to αsðmZÞ
is treated properly. Perturbative uncertainties are difficult to
assess due to the ambiguity in the choice of renormalization
scales in the low-energy regime and can dominate the total
theoretical uncertainty of the Higgs partial widths if lower
values of the renormalization scales are considered than is
usually the case in the literature.
Such analysis points to future directions in the precision

program. For the partial widths considered here, we note
that, while future experimental progress could potentially
reduce parametric uncertainties significantly, our ability to
make precise predictions on the Higgs partial widths will
not improve unless better understanding of the perturbative
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uncertainty is achieved. As for Mc
1 and Mb

2 studied here,
this might require the calculation of Oðα4sÞ corrections to
ΠQðq2Þ (in the low-q2 limit) and/or more enlightened scale
setting. Though the actual situation may be better in a
global fit where Mc

1 and Mb
2 are not the only low-energy

observables involved, it remains crucial to carefully inves-
tigate whether the scale-setting problem is also present for
other low-energy observables sensitive to mQ. If the
perturbative uncertainty gets under control, the precision
program, where both low-energy observables and Higgs
observables play an important role, will be promising in
studying properties of the Higgs boson, and even more
generally testing the SM across a wide range of energy
scales and probing new physics ideas.
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