
Fake conformal symmetry in conformal cosmological models

R. Jackiw
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

So-Young Pi
Department of Physics, Boston University, Boston, Massachusetts 02215, USA

(Received 1 August 2014; published 13 March 2015)

We examine the local conformal invariance (Weyl invariance) in tensor-scalar theories used in recently
proposed conformal cosmological models. We show that the Noether currents associated with Weyl
invariance in these theories vanish. We assert that the corresponding Weyl symmetry does not have any
dynamical role.
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I. INTRODUCTION

Field theoretic models that possess Weyl invariance
(local conformal invariance) are the focus of present-day
attention. Recently some cosmologists suggested in a series
of papers that Weyl invariant dynamics can assist in
unraveling various cosmological issues [1,2]. The simplest
studied examples involve one or two scalar fields con-
formally coupled to the Ricci scalar R. The action for the
one-scalar-field model is given by

I1 ¼ −
Z

d4xL1;

L1 ¼
ffiffiffiffiffiffi
−g

p �
1

12
Rφ2 þ 1

2
gαβ∂αφ∂βφ −

1

4
λφ4

�
: ð1Þ

Henceforth the self-coupling is omitted, λ ¼ 0, since it has
no bearing on our investigation. A two-field generalization
of I1 based on two scalar fields, φ and ψ , conformally
coupled to R in an SO(1, 1) invariant manner has been
posited in Ref. [3]:

I2 ¼ −
Z

d4xL2;

L2 ¼
ffiffiffiffiffiffi
−g

p �
1

12
Rðφ2 − ψ2Þ þ 1

2
gαβð∂αφ∂βφ − ∂αψ∂βψÞ

�
:

ð2Þ

The action is invariant under the local Weyl transformation
of the fields:

gαβðxÞ → e2θðxÞgαβðxÞ; δgαβðxÞ ¼ 2θðxÞgαβðxÞ;
φðxÞ → eθðxÞφðxÞ; δφðxÞ ¼ θðxÞφðxÞ;
ψðxÞ → eθðxÞψðxÞ; δψðxÞ ¼ θðxÞψðxÞ: ð3Þ

In view of the claimed importance of the above Weyl
invariance, in this paper we examine in detail the dynamical
role of Weyl symmetry by determining its Noether

symmetry current. Although Weyl symmetry has a long
history [4], the associated current has not been previously
studied (to our knowledge). We find that the current
vanishes.
In Sec. II we present two calculations of Noether current

using the one-scalar-field model (1). The two-scalar-field
model (2) behaves similarly, except that there is additional
SO(1,1) symmetry, which we shall also discuss. We
interpret our result in Sec. III.

II. CALCULATIONS OF NOETHER CURRENTS

A. Covariant calculation of Weyl current

We describe our calculation of the Weyl symmetry
current associated with model (1), using the Noether
procedure. (The subscript 1 in L is omitted in this section.)
In its familiar form, Noether’s first theorem deals with
Lagrangians that depend at most on single derivatives of
the dynamical fields. In our application the Lagrangian
involves double derivatives (of gαβ in R). Thus some
modification is needed [5].
Without using the equations of motion the variation δL is

δL ¼ ∂L
∂φ δφþ ∂L

∂ð∂μφÞ
∂μδφþ ∂L

∂gαβ δg
αβ

þ ∂L
∂ð∂μgαβÞ

∂μδgαβ þ
∂L

∂ð∂μ∂νgαβÞ
∂μ∂νδgαβ: ð4aÞ

For the Lagrangian (1) and the transformations (3), δL
in (4a) is found to be

δL ¼ ∂μXμ; ð4bÞ

Xμ ¼ 1

2

ffiffiffiffiffiffi
−g

p
φ2gμν∂νθ; ð4cÞ

where the evaluation of Xμ follows from the well-known
scaling property of

ffiffiffiffiffiffi−gp
R. Equation (4b) is a consequence

of the action being invariant against the transformations (3).
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Next the Euler-Lagrange equations of motion

∂L
∂φ ¼ ∂μ

∂L
∂ð∂μφÞ

;

∂L
∂gαβ ¼ ∂μ

∂L
∂ð∂μgαβÞ

− ∂μ∂ν
∂L

∂ð∂μ∂νgαβÞ
ð5Þ

are used to eliminate ∂L
∂φ and ∂L

∂gαβ from (4a) thereby arriving
at an alternate divergence formula for δL:

δL ¼ ∂μKμ; ð6aÞ

Kμ ¼ ∂L
∂ð∂μφÞ

δφþ ∂L
∂ð∂μgαβÞ

δgαβ þ ∂L
∂ð∂μ∂νgαβÞ

∂νδgαβ

− ∂ν
∂L

∂ð∂μ∂νgαβÞ
δgαβ: ð6bÞ

Note that using the equations of motion always gives
(6a), (6b) regardless whether one is dealing with a
symmetry transformation or not.
Equating the two formulas for δL shows that the

symmetry current

Jμ ¼ Kμ − Xμ ð7aÞ
is conserved:

∂μJμ ¼ 0: ð7bÞ
A lengthy and tedious evaluation of (6b) yields the

simple result

Kμ ¼ Xμ; ð8aÞ
and the current vanishes:

Jμ ¼ 0: ð8bÞ

B. Noncovariant calculation of Weyl current

The occurrence of second-order derivatives of gαβ in R is
responsible for much of the tedium in our calculation.
Therefore, it is useful to give a formulation in which double
derivatives are absent. This is possible owing to the
following identity satisfied by R, in which double deriv-
atives are isolated:

ffiffiffiffiffiffi
−g

p
R ¼ Aþ B ¼ Aþ ∂αCα; ð9aÞ

A ¼ ffiffiffiffiffiffi
−g

p
gσρðΓλ

σκΓκ
ρλ − Γκ

σρΓλ
κλÞ; ð9bÞ

Cα ¼ ffiffiffiffiffiffi
−g

p ðgσρΓα
σρ − gσαΓλ

σλÞ: ð9cÞ

Here A is free of double derivatives; they are contained
in B, which is given by the divergence of Cα. The latter
depends solely on first derivatives of gαβ. Thus

L ¼ 1

12
∂αðCαφ2Þ þ L0; ð10aÞ

where

L0 ¼ 1

12
Aφ2 −

1

12
Cα∂αφ

2 þ ffiffiffiffiffiffi
−g

p �
1

2
gαβ∂αφ∂βφ

�
:

ð10bÞ

Total derivative terms in Lagrangians have no effect on
dynamics in the bulk. Therefore the argument can be based
on L0, which is free of second derivatives.
Before proceeding, we first observe that the variation of

δL given in (4c) comes entirely from the total derivative
term in (10a):

δL ¼ ∂μ

�
1

2

ffiffiffiffiffiffi
−g

p
φ2gμν∂νθ

�
¼ 1

12
∂μ½δðCμφ2Þ�: ð11Þ

Hence another advantage of working with L0 is that it is
invariant:

δL0 ¼ 0 ⇒ X0μ ¼ 0: ð12Þ

We again use the Noether theorem with L0. The argument
proceeds as before. One finds

K0μ ¼
� ∂L0

∂ð∂μφÞ
φþ 2

∂L0

∂ð∂μgαβÞ
gαβ

�
θ ¼ 0: ð13Þ

Not only does the symmetry current vanish, but addition-
ally K0μ and X0μ vanish separately.

C. SO (1,1) symmetry

As is well known model (2) possesses global SO(1,1)
symmetry which acts on the two scalar fields φ and ψ :

δφðxÞ ¼ ϵψðxÞ;
δψðxÞ ¼ ϵφðxÞ: ð14Þ

The current is readily determined by Noether’s method:

JμSOð1;1ÞðxÞ ¼ ϵ
ffiffiffiffiffiffi
−g

p
gμνðψðxÞ∂νφðxÞ − φðxÞ∂νψðxÞÞ:

ð15Þ

This is conserved by virtue of scalar field equations of
motion.

III. INTERPRETATION OF THE RESULT
AND DISCUSSION

The Noether procedures always leave current formulas
ambiguous up to identically conserved superpotentials.
This is because one is extracting an expression from its
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divergence: ∂μðKμ − XμÞ ¼ 0 suggests that the conserved
current is Jμ ¼ Kμ − Xμ. In spite of the ambiguity due to
the possible presence of superpotentials, the fact that K0μ
and X0μ vanish individually (in the noncovariant calcula-
tion) is strong evidence that current vanishes.
Moreover, an extension of Noether’s theorem, called the

“second theorem,” establishes that the current associated
with a local symmetry is always a superpotential [5,6]. We
applied Noether’s second theorem to the model (1) and
regained our previous result: vanishing current.
The fact that the Weyl current vanishes cannot be

attributed to the locality of the symmetry transformation
parameter θðxÞ. An instructive example is electrodynamics,
where δAμ ¼ ∂μθ and δΨ ¼ −iθΨ for a charged field Ψ.
The current is nonvanishing and is identically conserved;
i.e. it is a superpotential:

Jμ ¼ ∂νðFμνθÞ: ð16Þ
(This is the Noether current for gauge symmetry, not the
source current JμEM that appears in the Maxwell equations.)
While the gauge dependence in (16) with inhomogeneous
θ may make Jμ unphysical, the global limit produces a
sensible result:

Jμ ¼ ∂νðFμνÞθ ¼ JμEMθ: ð17Þ

In the Weyl case setting the parameter θ in (3) to a constant
produces a global symmetry. Yet the current still vanishes.
Evidently the vanishing of the Weyl symmetry current

both local and a forteriori also global reflects the particu-
larly peculiar role of the Weyl “symmetry” in the examined
models. We assert that Weyl invariance has no dynamical
role in conformal cosmological models based on action (1)
and (2). At best, a possible calculational convenience may
be achieved.
It is common practice in recent cosmology papers to view

the tensor-scalar Lagrangians like (1) and (2) as gauge
theories presented in the so-called “Jordan” frame. Gauge
fixing brings them to “Einstein” frame, with one less
minimally coupled scalar field and no Weyl symmetry due
to gauge fixing. Inviewof thevanishingWeyl current, a better
description is that the Einstein-Hilbert theory does not arise
from gauge fixing but from a redefinition of dynamical
variables by a spurion field. In detail this works as follows.
We shall now call the metric tensor in Jordan frame (1)

and (2) gJαβ and call the Einstein metric tensor gEαβ. Upon

substituting in L1; gJαβφ
2 by gEαβ, the spurion field φ

disappears and the Einstein-Hilbert action, which clearly
lacks local conformal symmetry, emerges from (1) (G has
been set to 3=4π):

LEH
1 ¼ ffiffiffiffiffiffiffiffi

−gE
p �

1

2
RðgEÞ

�
: ð18Þ

Similarly, substituting gJαβðφ2 − ψ2Þ ¼ gEαβ in L2 and
parameterizing the scalar fields as φ ¼ u coshω and
ψ ¼ u sinhω we obtain (setting G ¼ 3=4π)

LEH
2 ¼ ffiffiffiffiffiffiffiffi

−gE
p �

1

2
RðgEÞ −

1

2
gαβE ∂αω∂βω

�
; ð19Þ

where ω is a physical massless scalar field. The spurion
field u has disappeared and so have Weyl and SO(1,1)
invariances. SO(1,1) symmetry becomes the shift sym-
metry ω→ωþϵ. Correspondingly the SO(1,1) current (15)
reads

JμSHIFT ¼ ϵ
ffiffiffiffiffiffiffiffi
−gJ

p
gμνJ u2∂νω ¼ ϵ

ffiffiffiffiffiffiffiffi
−gE

p
gμνE ∂νω: ð20Þ

Introducing a spurion field and dressing up a model to
appear gauge invariant is what we call a fake gauge
invariance. We note that others have expressed similar or
related criticisms [7].
Up to now the only merit of Weyl symmetry in model (1)

is to provide a derivation for the new improved energy-
momentum tensor θCCJαβ : varying I1 with respect to gαβ

produces θCCJαβ in the flat limit [8]. It will be interesting to
find the symmetry current in a conventional Weyl invariant
model, built on the square of the Weyl tensor. There the
symmetry is again local, but no scalar field is present to
absorb the “gauge freedom.”
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Note added.—We have been informed that the symmetry
current in the Weyl tensor theory has been recently
examined and it also vanishes [9].

BRIEF REPORTS PHYSICAL REVIEW D 91, 067501 (2015)

067501-3



[1] R. Kallosh and A. Linde, J. Cosmol. Astropart. Phys. 07
(2013) 002, and cited papers.

[2] I. Bars, P. J. Steinhardt, and N. Turok, Phys. Rev. D 89,
061302 (2014), and cited papers.

[3] I. Bars, S.-H. Chen, P. J. Steinhardt, and N. Turok, Phys. Rev.
D 86, 083542 (2012).

[4] P. A. M. Dirac, Proc. R. Soc. A 333, 403 (1973); S. Deser,
Ann. Phys. (N.Y.) 59, 248 (1970); N. C. Tsamis and R. P.
Woodard, Ann. Phys. (N.Y.) 168, 457 (1986); A. Iorio,
L. ORaifeartaigh, I. Sachs, and C. Wiesendanger, Nucl. Phys.
B495, 433 (1997); A. Polyakov, Yad. Fiz. 64, 594 (2001)
[Phys. At. Nucl. 64, 540 (2001)]; R. Jackiw, C. Nunez,
and S.-Y. Pi, Phys. Lett. A 347, 47 (2005); E. Alvarez,

M. Herrero-Valea, and C. P. Martin, J. High Energy Phys. 10
(2014) 115.

[5] D. Bak, D. Cangemi, and R. Jackiw, Phys. Rev. D 49, 5173
(1994).

[6] E. Noether, Nachr. Akad. Wiss. Gött., 2 2, 235 (1918).
(The Noether second theorem is described e.g. in
Ref. [5]).

[7] M. Hertzberg, arXiv:1403.5253; I. Quiros, arXiv:1405.6668;
S. Deser (private communication).

[8] C. Callan, S. Coleman, and R. Jackiw, Ann. Phys. (N.Y.) 59,
42 (1970).

[9] M. Campigotto and L. Fatibene, Ann. Phys. (N.Y.) 354, 328
(2015).

BRIEF REPORTS PHYSICAL REVIEW D 91, 067501 (2015)

067501-4

http://dx.doi.org/10.1088/1475-7516/2013/07/002
http://dx.doi.org/10.1088/1475-7516/2013/07/002
http://dx.doi.org/10.1103/PhysRevD.89.061302
http://dx.doi.org/10.1103/PhysRevD.89.061302
http://dx.doi.org/10.1103/PhysRevD.86.083542
http://dx.doi.org/10.1103/PhysRevD.86.083542
http://dx.doi.org/10.1098/rspa.1973.0070
http://dx.doi.org/10.1016/0003-4916(70)90402-1
http://dx.doi.org/10.1016/0003-4916(86)90040-0
http://dx.doi.org/10.1016/S0550-3213(97)00190-9
http://dx.doi.org/10.1016/S0550-3213(97)00190-9
http://dx.doi.org/10.1134/1.1358479
http://dx.doi.org/10.1016/j.physleta.2005.04.020
http://dx.doi.org/10.1007/JHEP10(2014)115
http://dx.doi.org/10.1007/JHEP10(2014)115
http://dx.doi.org/10.1103/PhysRevD.49.5173
http://dx.doi.org/10.1103/PhysRevD.49.5173
http://arXiv.org/abs/1403.5253
http://arXiv.org/abs/1405.6668
http://dx.doi.org/10.1016/0003-4916(70)90394-5
http://dx.doi.org/10.1016/0003-4916(70)90394-5
http://dx.doi.org/10.1016/j.aop.2014.12.026
http://dx.doi.org/10.1016/j.aop.2014.12.026

