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Motivated by the Son-Yamamoto (SY) relation, which connects the three-point and two-point
correlators, we consider the holographic renormalization group (RG) flows in the bottom-up approach
to holographic QCD via the Hamilton-Jacobi equation with respect to the radial coordinate. It is shown that
the SY relation is diagonal with respect to the RG flow in the 5D Yang-Mills-Chern-Simons model, while
the RG equation acquires an inhomogeneous term in the model with an additional scalar field, which
encodes the chiral condensate.
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I. INTRODUCTION

The derivation of the renormalization group (RG) flows
in effective field theories is a subtle issue; in particular, in
the chiral perturbation theory, only one-loop calculations
are well justified. Moreover, there is no simple way to
incorporate the nonperturbative effects into RG dynamics.
Holography provides a new tool to consider this problem;
one could investigate the dependence on the radial coor-
dinate, which is related to a RG scale. It was argued in [1]
(see [2] for a review) that the RG equation can be identified
with the Hamilton-Jacobi (HJ) equation when the radial
anti–de Sitter (AdS)–like holographic coordinate is treated
as the time variable. This identification is consistent with
the standard holographic recipe, where the classical action
in the bulk theory serves as the generating functional for the
correlators in the boundary theory. The HJ equations in the
bulk are supplemented by the Hamiltonian constraints—
Gauss law for the bulk gauge theory and the Arnowitt-
Deser-Misner constraints for the bulk gravity. The recent
discussion on the relation between the holographic RG and
the conventional Wilsonian RG can be found in [3].
It is important, generally, to derive the properties of the

different objects under a renormalization. The simplest
objects to study are the β function and the anomalous
dimensions of the local operators. Some of them are not
renormalized due to the conservation laws behind them. A
more general situation concerns the RG properties of the
correlators of the different local operators. If some operator
corresponds to the special symmetry, e.g., the trace of the
energy stress tensor that corresponds to the dilatation, one
can derive low-energy theorems as in [4]. These low-energy
theorems are the simplest examples of when the

nonperturbative effects can be accounted for in the RG
dynamics. It was shown that QCD low-energy theorems are
fulfilled in the holographic approach as well [5].
A separate question concerns the mixing of the operators

and correlators under the RG flows. This mixing can be
quite complicated, and the matrix of anomalous dimensions
of the local operators can have a huge dimension.
Sometimes, say in N ¼ 4 super Yang-Mills, the diagonal-
ization of the matrix of the one-loop anomalous dimensions
turns out to be equivalent to the evaluation of the spectrum
of some integrable system that follows from the special
symmetries of the dilatation operator. When we consider
the RG properties of the multipoint correlators, the situation
is more involved. Roughly speaking, one can use the
operator product expansion of the local operator first, then
consider the RG behavior of the emerging sum of the local
operators and coefficient functions and, finally, try to
collect them back into the form of the initial correlators.
There is no guarantee that it will acquire the form of the
initial correlator, because the anomalous dimensions of the
local operators generally do not know about each other.
In this paper we consider the behavior of the simplest

correlators under the nonperturbative RG motivated by the
Son-Yamamoto (SY) relation, derived in the holographic
setting in the 5D Yang-Mills-Chern-Simons (YM-CS)
model [6]. This relation connects three-point and two-point
correlators and, crucially, involves the axial anomaly. If
true, this relation would provide the highly nontrivial
anomaly-matching conditions for the resonances. It is
puzzling how this relation could be obtained purely in
the field theory framework without appealing to hologra-
phy. Also, the potential Ward identity behind it has not been
identified yet. Moreover, even its status is quite contro-
versial [7]. It reproduces the Vainshtein relation for the
magnetic susceptibility of the chiral condensate [8] and is
fulfilled in the chiral perturbation theory for two flavors in
the leading chiral logs [9]; however, there are explicit
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examples when it does not work [6,10]. Since its derivation
in [6] is a bit tricky, it is important to recognize its role in a
more general setting. It is interesting to understand the
principle behind this relation when it works, and what is
wrong with it in the models where it is not true.
To this end, we shall focus at the RG behavior of the SY

relation in the framework of the holographic HJ equation.
Because of the 5D Chern-Simons (CS) term, the canonical
momentum of the gauge field in the Hamiltonian picture is
modified, and we shall take the anomalous shift into
account. We shall consider the HJ equation supplemented
by the Gauss law constraint in the simplest holographic
models for QCD, which can be thought of as a generali-
zation of the chiral Lagrangian when the whole tower of
mesons is taken into account. We shall demonstrate that in
the simplest model with the gauge fields in the bulk, the SY
relation is diagonal with respect to nonperturbative RG
flow generated by the HJ equation. However, when con-
densate is taken into account, the inhomogeneous term
arises in the RG equation, which means that the SY relation
cannot be true at all scales. We shall also find the two-point
correlator diagonal under the nonperturbative RG flow.
The paper is organized as follows. First, we briefly

discuss the models under consideration and the HJ
approach to nonperturbative RG evolution. Then we will
demonstrate, by explicit calculation, that the SY relation is
diagonal under RG flow in the 5D YM-CS model, but gets
mixed with other correlators in the model with an addi-
tional scalar field. Some directions for the future research
are summarized in the Conclusion.

II. BOTTOM-UP MODELS
OF HOLOGRAPHIC QCD

In this paper, following [6], we will consider two
holographic QCD models. The first model [11] deals with
the bulk Yang-Mills-Chern-Simons theory, where chiral
symmetry breaking is incorporated by a boundary con-
dition on the additional scalar field. The model involves
vector fields AL ¼ Aa

Lt
a, AR ¼ Aa

Rt
a, where ta are gener-

ators of the algebra uðNfÞ, which are dual to left and right
quark currents jL ¼ jV − jA, jR ¼ jV þ jA, and scalar field
X, whose boundary value is related to chiral condensate
hq̄qi. The action reads as

SYMX ¼
Z

d5x
ffiffiffi
g

p
Tr

�
jDmXj2 þ 3jXj2 − 1

4g25
ðF2

L þ F2
RÞ
�
;

ð1Þ

where DmX ¼ ∂mX þ iðARm − ALmÞX and FL;Rmn ¼∂mAL;Rn − ∂nAL;Rm − i½AL;Rm; AL;Rn�. In order to reproduce
the chiral anomaly we add the Chern-Simons term,

S ¼ SYMðAL; ARÞ þ SCSðALÞ − SCSðARÞ; ð2Þ

with

SCSðAÞ¼ κTr

�
AF2−

i
2
A3F−

1

10
A5

�
; κ¼−

Nc

24π2
: ð3Þ

The expectation value of the scalar field is fixed in the
chiral limit by the solution to the classical equation of
motion

XðzÞ ¼ σz3

2
; ð4Þ

where σ is proportional to the chiral condensate. We
assume the AdS5 metric in the bulk theory,

ds2 ¼ 1

z2
ð−dz2 þ ημνdxμdxνÞ: ð5Þ

In our notations roman letters denote five-dimensional
coordinates, which we raise and lower using the AdS5
metric, whereas greek letters are used for four-dimensional
objects, which we manipulate using the Minkowski metric
ημν. The physical 4D world is located at the “UV” boundary
of AdS5 space, z ¼ ϵ → 0. The theory also needs an “IR”
boundary, located at z ¼ zm ≈ 1=ΛQCD. Below we will
consider the following IR boundary conditions [11]:

∂zAAμ ¼ ∂zAVμ ¼ 0: ð6Þ

In the second model there is no scalar field, and the chiral
symmetry breaking occurs due to different boundary con-
ditions for AL and AR. The IR brane is located at z ¼ 0 and
UV brane is located at z ¼ z0. The action reads as [6]

S ¼ 1

2

Z
d4x

Z
z0

dz

�
f2ðzÞTrðF2

Lzμ þ F2
RzμÞ

−
1

2g2ðzÞ TrðF
2
Lμν þ F2

RμνÞ
�
þ SCS: ð7Þ

Following Son and Yamamoto we assume fðzÞ and gðzÞ to
satisfy the following conditions: fð−zÞ ¼ fðzÞ and
gð−zÞ ¼ gðzÞ. It is more convenient to work with vector
and axial gauge connections,

ALμ ¼ Vμ þ Aμ; ARμ ¼ Vμ − Aμ; ð8Þ

which obey the Neumann and the Dirichlet boundary
conditions, respectively,

∂zVμðz ¼ 0Þ ¼ 0; Aμðz ¼ 0Þ ¼ 0: ð9Þ

This model suffers from the problem that three-point
correlation hVVAidoes not vanishwhenoneof themomenta
of vector fields tends to zero [12].We can add a surface term
to the action to resolve this problem, which leads us to the
expression for the CS term [12] (in the gauge Az ¼ Vz ¼ 0)
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SCS ¼
Z

d4xdzTr

�
4κϵzαβγλη

�
3Aα

FVβγ

2
FVzλ

þAα
FAβγ

2
FAzλ

��
: ð10Þ

III. HAMILTON-JACOBI EQUATION

The standard way to evaluate correlation functions using
holography is to solve equations of motion in the five-
dimensional bulk and vary the on-shell action with respect
to boundary conditions. However, from classical mechanics
and field theory we know that there is an alternative
approach, namely the Hamilton-Jacobi equation, which
sometimes works more effectively.
Suppose we have a 5D holographic model. This means

that we deal with a five-dimensional geometry and five-
dimensional bulk action S5D. Let us denote the fifth
coordinate by z. The physical 4D world with coordinates
xμ lies at the UV boundary, whose fifth coordinate we will
denote by ϵ. The value of ϵ can be thought of as a UV
cutoff. If we are interested in 4D correlators of fields jα
(where α just enumerates fields), then, according to the
holographic picture, we have to insert corresponding
sources Oα in the 4D action,

S4D½O� ¼
Z

d4x

�
L4D þ

X
α

jαðxÞOαðxÞ
�
: ð11Þ

Then we have to promote OαðxÞ to 5D dynamical fields
Oαðz; xÞ, and the five-dimensional bulk action S5D men-
tioned above is the action for these fields. Below we will
keep track of the fields’ arguments: OαðxÞmeans boundary
value, whereas Oαðz; xÞ is 5D dynamical field such that
Oαðz ¼ ϵ; xÞ ¼ OαðxÞ. In the proper limit we have to solve
classical equations of motion in the bulk with the fixed
values of Oαðz; xÞ at the physical UV boundary. Then, the
4D quantum generating function equals to

Zquantum
4D ½OαðxÞ� ¼ expðiSon-shell5D ½ϵ; OαðxÞ�Þ: ð12Þ

Note that the on-shell action depends only on the boundary
value Oαðz ¼ ϵ; xÞ ¼ OαðxÞ and the value of ϵ. In this
approach, OαðxÞ plays the role of a classical background
chemical potential for jαðxÞ. In 5D classical field theory
one can switch to the Hamiltonian description in which we
will trade ϵ to be the “time.” We introduce canonical
momenta

παðz; xÞ ¼
∂L5D

∂ð∂ϵOαðz; xÞÞ
: ð13Þ

On-shell value is given by

πon-shellα ðz; xÞ ¼ δSon-shell5D

δOαðxÞ
: ð14Þ

The Hamiltonian is given by the Legendre transform,

Hðπαðz; xÞ; Oαðz; xÞ; ϵÞ

¼
Z

d4x
X
α

παðz; xÞ∂ϵOαðz; xÞ − L5D; ð15Þ

and the general form of the Hamilton-Jacobi equation
reads as

∂Son-shell5D

∂ϵ þH

�
δSon-shell5D

δOαðxÞ
; OαðxÞ; ϵ

�
¼ 0: ð16Þ

The advantage of the HJ equation is that we can obtain
a hierarchy of equations for correlators if we vary the
HJ equations with respect to Oα, since hjαðxÞiquantum4D ¼
δSon-shell

5D
δOαðxÞ .
It is instructive to obtain two-point functions for models

from the previous section using this method. For simplicity,
let us calculate hVVi for the first model. Neglecting the
axial part, we arrive at the Hamiltonian (we drop indices 5D
and on-shell for S)

H ¼ −
1

2
g25z

Z
d4x

�
δS

δAVμðz; xÞ
�

þ 1

4g25z
Tr

Z
d4xFμνðz; xÞ2: ð17Þ

Hence, the HJ equation reads as

∂S
∂ϵ −

1

2
g25ϵ

Z
d4x

�
δS

δAVμðϵ; xÞ
�

þ 1

g25ϵ
Tr

Z
d4xFμνðϵ; xÞ2 ¼ 0: ð18Þ

If we assume that the correlation function is not too
singular at the limit ϵ → 0, so that ϵhjVjVi → 0, then,
after varying twice with respect to the VA, we have near the
UV boundary

∂hjaVμð−pÞjbVνðpÞi
∂ϵ ¼ −

1

2g25ϵ
ðp2ημν −pμpνÞδab; ð19Þ

therefore,

hjaVμð−pÞjbVνðpÞi¼−
1

2g25
logðpϵÞðp2ημν−pμpνÞδab; ð20Þ

which exactly coincides with the result found in [11].
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Now let us discuss boundary conditions for the
Hamilton-Jacobi equation. Because we deal with the
first-order differential equation, to specify boundary con-
ditions we need to know the values of correlators at the
particular z. To this end, consider the bulk action

S ¼
Z

zuv

zir

dzd4xL: ð21Þ

If we take the limit zuv → zir, then naively we have

S ≈ ðzir − zuvÞ
Z

d4xLðz ¼ zuvÞ; ð22Þ

and taking variations with respect to the boundary UV
values is exceptionally simple. So far everything was
applicable for both models, so we did not specify zir; zuv
and L. However, we should be careful with terms
like ∂zAVμ.
In the first model we have Neumann boundary con-

ditions (6); therefore, in the leading order in zir − zuv ¼
zm − ϵ we can neglect ∂zAVμ and ∂zAAμ. So, we are left
with

S ¼ ðzm − ϵÞTr
Z

d4x

�
−

1

4g25ϵ
ðF2

Lμνðzuv; xÞ

þ F2
Rμνðzuv; xÞÞ þ

3

ϵ3
A2
Aμðzuv; xÞjXj2ðzuv; xÞ

�
: ð23Þ

In the second model we consider the limit z0 → 0. We
have different boundary conditions for Aμ and Vμ [see
Eq. (9)]. Again we can neglect ∂zVμ. However, we can no
longer neglect ∂zAμ: at the UV boundary the value of Aμ

can be arbitrary but at the IR boundary it must be zero, so
we have a very sharp transition ∂zAμ ¼ 1

z0
Aμ þOð1Þ. Now

it is straightforward to write down the leading terms in the
Lagrangian,

S¼ z0

Z
d4xTr

�
f2ðz0Þ
z20

A2
μðz0Þ−

1

2g2ðz0Þ
F2
Vμνðz0Þ

�
; ð24Þ

where the additional non-Abelian terms from the CS term
are omitted.

IV. SON-YAMAMOTO RELATION

The Son-Yamamoto relation [6] connects three-point
functions and two-point functions in the models described
above. Let us introduce the usual notations as follows:

hVa⊥
μ ðqÞVb⊥

ν ð−qÞi ¼ δabΠ⊥
μνðqÞq2ΠVðqÞ

hAa⊥
μ ðqÞAb⊥

ν ð−qÞi ¼ δabΠ⊥
μνðqÞq2ΠAðqÞ

hVa
μðkÞV⊥b

ν ð−k −QÞA⊥c
α ðQÞi ¼ Q2

4π2
ϵμναβkβwTðQÞ

× TrðtatbtcÞ;
k → 0

Π⊥
μνðqÞ ¼ ημν −

qμqν
q2

Π∥
μνðqÞ ¼ qμqν

q2
: ð25Þ

Slightly abusing notation, we use the same letter for quark
currents and their holographic duals. It is easy to distin-
guish them: if Vμ or Aμ are located within a correlator h…i
then they should be understood as a quark current, for
example, hVμAνi means hjVμjAνi. Otherwise, the letters Vμ

or Aμ refer to holographic duals of corresponding currents.
We start from the 5D Yang-Mills action for the second

model,

S ¼
Z

d4xdzTr

�
f2ðzÞðð∂zAμÞ2 þ ð∂zVμÞ2Þ

þ 1

2g2ðzÞ ðF
2
Aμν þ F2

VμνÞ þ 12κϵzαβγληAα
FVβγ

2
FVzλ

�
;

ð26Þ
and omit the term AFAFA, which makes no contribution to
the three-point correlator hVVAi. Introducing the ansatz for
the bulk fields (superscript 0 indicates boundary value),

Vμðz; qÞ ¼ V0⊥
μ ðqÞVðz; qÞ þ V0∥

μ ðqÞψVðz; qÞ
Aμðz; qÞ ¼ A0⊥

μ ðqÞAðz; qÞ þ A0∥
μ ðqÞψAðz; qÞ; ð27Þ

we recover the results found in [6],

ΠV ¼ 2

q2
fðz0Þ2V 0ðz0; qÞ

wT ¼ 48κ

q2

Z
z0

0

Aðz; qÞV 0ðz; qÞdz: ð28Þ

Note that although we use greek letters for four-
dimensional indices, objects Vμðz; qÞ are five-dimensional,
because we have adopted the gauge V0ðz; qÞ ¼ 0. On the
other hand, objects with superscript 0, such as V0

μðqÞ, are
boundary values of corresponding fields and, therefore, are
four-dimensional objects. In what follows wewill keep argu-
ments of our fields explicit, in order to prevent any confusion.
Our aim is now to reproduce the Son-Yamamoto relation

for the transversal part of a triangle anomalies, taking
variational derivatives of the Hamilton-Jacobi equation.
The Hamiltonian is given by
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H ¼ Tr
Z

d4x∂zAμðz; xÞπμAðz; xÞ

þ ∂zVμðz; xÞπμVðz; xÞ − L; ð29Þ

where πAμðz; xÞ ¼ ∂L
∂ð∂zAμðz;xÞÞ and πVμ is defined in the

similar fashion. Let us rewrite the last expression for H
in terms of Aμðz; xÞ, Vμðz; xÞ, πAμðz; xÞ, and πVμðz; xÞ.
First, we need to obtain an exact expression for canonical
momenta,

πμAðz; xÞ ¼
∂L

∂ð∂zAμðz; xÞÞ
¼ 2f2ðzÞ∂zAμðz; xÞ; ð30Þ

πμVðz; xÞ ¼
∂L

∂ð∂zVμðz; xÞÞ
¼ 2f2ðzÞ∂zVμðz; xÞ
þ 6κϵαβγzμAαðz; xÞFVβγðz; xÞ; ð31Þ

which yields the expressions for ∂zVμ and ∂zAμ,

∂zAμðz; xÞ ¼
πAμðz; xÞ
2f2ðzÞ ; ð32Þ

∂zVa
μðz; xÞ ¼

πaVμðz; xÞ
2f2ðzÞ − 3

κ

f2ðzÞ ϵ
zαβγμAb

αðz; xÞFc
Vβγðz; xÞTrðtatbtcÞ: ð33Þ

We are now able to write down the resulting Hamilton-Jacobi equation,

∂S
∂z0 þ Tr

Z
d4x

�
1

2fðzÞ2 π
μ
AπAμ þ

1

2fðzÞ2 π
μ
VðπVμ − 6κϵαβγzμ AαFVβγÞ − f2ðzÞðð∂zAμÞ2 þ ð∂zVμÞ2Þ

þ 1

2g2ðzÞ ðF
2
Aμν þ F2

VμνÞ þ 6κϵzαβγλAαFVβγFVzλ

�
¼ 0; ð34Þ

which can be presented in the following form:

∂S
∂z0 þ

Z
d4x

�
1

4fðzÞ2 π
2
Aμ þ

1

4fðzÞ2 ðπVμ − ϕVμÞ2 −
1

2gðzÞ2 ðF
2
Aμν þ F2

VμνÞ
�

¼ 0

ϕVμ ¼ 6κϵzαβγμAαFVβγ: ð35Þ

We omitted uðNfÞ indices for brevity; the notation should be self-evident.
We turn now to the discussion of the RG properties of the multipoint correlators. First, let us derive the two-point

correlator diagonal with respect to the RG flow. Taking the second variational derivative of the HJ equation after the simple
algebra, we obtain

∂
∂z0 ðΠA − ΠVÞ ¼ −

q2

2f2
ðΠ2

A − Π2
VÞ: ð36Þ

We see that the difference between the axial and vector correlators is diagonal, and the sum of these correlators defines the
q2-dependent “anomalous dimension.”
We consider now the three-point functions involving one axial and two vector currents. Taking the Fourier transform of

the HJ equation and applying the variation δ3

δV0
ηðkÞδV0

χð−q−kÞδA0
λðqÞ

, we obtain

∂
∂z0

δ3S
δV0

ηðkÞδV0
χð−q − kÞδA0

λðqÞ
þ 1

2f2

Z
d4p

�
hAλAμiðq; pÞhVηVχAμiðk;−q − k;−pÞ

þ hVηAλVμiðk; q; pÞhVχVμið−q − k;−pÞ − δ2ϕVμðz0; pÞ
δVηðz0; kÞδAλðz0; qÞ

ðk; q; pÞhVχVμið−q − k;−pÞ
�

¼ 0: ð37Þ

Note that we set boundary values A0
μðxÞ and V0

μðxÞ to zero, because we consider the situation without background
fields.
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Let us write down every term in some detail, as follows:

hAλAμiðq; pÞ ¼ δðpþ qÞq2Π⊥
λμΠA;

hVχVμið−q − k;−pÞ ¼ δðkþ qþ pÞp2Π⊥
χμΠV; ð38Þ

hVηVχAμiðk;−q − k;−pÞ

¼ p2

4π2
Πα⊥

μ ðΠβ⊥
χ wT þ Πβ∥

χ wLÞϵαβγηkγδðpþ qÞ; ð39Þ

hVηAλVμiðk;q;pÞ

¼ p2

4π2
Πα⊥

λ ðΠβ⊥
μ wT þΠβ∥

μ wLÞϵαβγηkγδðpþqþ kÞ: ð40Þ

For the Fourier transform of ϕV we get

ϕVðz0; pÞ ¼ 6κϵzαβγμ
Z

dq0Aαðz0; q0ÞFVβγðz0;−q0 − pÞ;
ð41Þ

δ2ϕVμ

δVηðz0; kÞδAλðz0; qÞ
ðz0; k; q; pÞ

¼ 12κϵzαβγμkβδðkþ pþ qÞ: ð42Þ

We now contract the Hamilton-Jacobi equation with qη to
get rid of the longitudinal part of the three-point correlator,
and arrive at the equation for wT,

qη
∂
∂z0 hVηVχAλiðk;−q − k; qÞ

¼ 1

2f2ðz0Þ
�
q4

4π4
ðΠA þ ΠVÞwTϵλχβηkβqη

þ 12κq2ΠVϵ
λχβηkβqη

�
: ð43Þ

This expression can be presented in the following form,
suitable for the discussion of the SY relation:

q2

4π2
∂wT

∂z0 ¼ 1

2f2ðz0Þ
�
q4

4π2
ðΠA þ ΠVÞwT

þ 6κq2ðΠA þ ΠVÞ þ 6κq2ðΠV − ΠAÞ
�
: ð44Þ

Recall that the original Son-Yamamoto relation reads
as [6]

ðS − YÞ ¼ wT −
Nc

Q2
þ Nc

f2π
ðΠA − ΠVÞ ¼ 0; ð45Þ

where

1

fπðz0Þ2
¼ 1

2

Z
z0

0

dz
1

fðzÞ2 : ð46Þ

If we take into account the diagonal two-point correlator
and substitute it into the variation of the HJ equation, we
obtain

∂
∂z0 ðS − YÞ ¼ −

ðΠA þ ΠVÞq2
2f2

ðS − YÞ: ð47Þ

Therefore, in this model, the SY relation is diagonal
under the renormalization group. In order to prove that
the ðS − YÞ is zero for all z0, let us take the limit z0 → 0;
that is, we consider the SY relation near the UV boundary.
In the model under consideration, the chiral symmetry is
broken because of the boundary conditions; therefore, we
should be careful at this point. The boundary conditions do
not play any role for the HJ equation itself, but they are
important for the boundary conditions for the HJ equation.
Recalling (24), we see that wT → 0 and

Nc

f2π
ðΠA − ΠVÞ →

Nc

q2
: ð48Þ

Hence, the SY relation indeed holds at the UV boundary
and, therefore, it holds for all z0.
In the first model with the additional scalar field we have

similar HJ equations,

∂
∂ϵ ðΠA − ΠVÞ ¼

g25ϵq
2

2
ðΠ2

A − Π2
VÞ þ

3

ϵ3
jXj2; ð49Þ

q2

4π2
∂wT

∂z0 −
g25ϵ
2

�
q4

4π2
ðΠA þ ΠVÞwT

þ 6κq2ðΠA þ ΠVÞ þ 6κq2ðΠV − ΠAÞ
�
¼ 0; ð50Þ

and

∂ðS − YÞ
∂ϵ ¼ ðΠA þ ΠVÞ

q2g25ϵ
2

ðS − YÞ þ 3Nc

ϵ3f2π
jXj2: ð51Þ

Note that in this equation fπ is defined as in the second
model (see Eq. (46)].
Therefore, we see that in the model with an additional

scalar field, the RG equation for the SY relation acquires
the inhomogeneous term that corresponds to its failure. In
order to make this expression diagonal and look for the
modified diagonal correlator, one could potentially add a
term θ to the SY relation that would have to satisfy the
following equation:

∂θ
∂ϵ ¼ θðΠA þ ΠVÞ

q2g25ϵ
2

−
3Nc

ϵ3f2π
jXj2: ð52Þ

However, we have not found its proper operator realization.
It is interesting to note that Eq. (36) tells us that the flow

for ΠA − ΠV is diagonal, but we do not expectΠA ¼ ΠV . In
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the second model, the problem is due to the boundary
conditions: ΠA ¼ ΠV does not hold for z0 ¼ 0. In the first
model, the chiral symmetry is broken only by the quark
condensate X [see Eq. (49)]. If it vanishes, then we indeed
have ΠA ¼ ΠV .

V. CONCLUSION

In this paper we have examined the behavior of the SY
relation under the nonperturbative RG flow. We have found
that when the SY relation is fulfilled, it is diagonal under
the action of the RG flow generated by the HJ equation,
while when it is not true, the inhomogeneous term in the
RG equation is present. We expect that the diagonal
evolution under RG flow should be one of the guiding
principles in searches for more complicated anomaly-
matching conditions. It would be interesting to obtain
the higher correlators that are diagonal under RG flow
in holographic models of QCD. However, we have seen
that the issue of the diagonalization is model dependent in
holographic models of QCD; hence, it is important to
perform similar consideration for the models when the bulk
dual theory is uniquely defined, as in supersymmetry gauge
theories. It would be interesting to formulate the diago-
nalization of the correlators in terms of the string world
sheet theory. The diagonalization of the matrix of the
anomalous dimensions corresponds to the diagonalization

of the spin chain Hamiltonian that arises upon the dis-
cretization of the world sheet sigma model; it would be
interesting to formulate the problem of the diagonalization
of correlators in a similar manner.
It would be also interesting to investigate a few related

problems. First, the similar diagonalization problem can be
discussed in the gravity sector of the bulk theory, when the
Wheeler-deWitt equation plays the role of the HJ equation.
The second question concerns the baryonic sector of the
theory. The baryons correspond to the instantons in the bulk
theory [13]; hence, an interesting question concerns the
solution to the HJ equations in the sector with nonvanishing
topological charge. Finally, it would be interesting to find
similar diagonal correlators from the HJ equation in the
holographic bulk descriptions of condensed matter models.
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