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Classification of SU(4) x SU(2) x U(1) heterotic-string models

Alon E. Faraggi~ and Hasan Sonmez

"

Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, United Kingdom
(Received 18 January 2015; published 23 March 2015)

The free fermionic construction of the heterotic string in four dimensions produced a large space of
three-generation models with the underlying SO(10) embedding of the Standard Model states. The SO(10)
symmetry is broken to a subgroup directly at the string scale. Over the past few years free fermionic models
with the Pati-Salam and flipped SU(5) subgroups have been classified. In this paper we extend this
classification program to models in which the SO(10) symmetry is broken at the string level to the
SU(4) x SU(2), x U(1)g (SU421) subgroup. The subspace of free fermionic models that we consider
corresponds to symmetric Z, x Z, orbifolds. We provide a general argument that shows that this class of
SU421 free fermionic models cannot produce viable three-generation models.
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I. INTRODUCTION

The Standard Model of particle physics accounts
successfully for all subatomic observational data. The
gauge charges of the Standard Model matter states suggest
its embedding in SO(10) Grand Unified Theory, which is
broken to the Standard Model at the GUT or string
scale. The SO(10) unification picture is further supported
by the logarithmic evolution of the Standard Model gauge
parameters, the proton longevity, and the suppression of
left-handed neutrino masses. The heterotic-string [1] pro-
duces chiral SO(10) representations in its perturbative
spectrum, and is therefore the one suited to explore the
SO(10) GUT structure underlying the Standard Model.
Phenomenological studies of the heterotic-string have
been pursued since the mid-1980s [2], using a variety of
world-sheet [3—5] and target space techniques [6,7].

The free fermionic construction of the heterotic-string in
four dimensions produced a rich space of phenomenological
three-generation models. These models admit the underlying
SO(10) GUT embedding of the Standard Model spectrum.
However, the SO(10) symmetry is broken directly at the
string level. The early studies of these models consisted of
isolated examples that shared an underlying NAHE-base
structure [8]. Examples in which the SO(10) symmetry is
broken to the flipped SU(5) (FSUS) [9], SO(6) x SO(4)
heterotic-string Pati-Salam models (HSPSM) [10], SU(3) x
SU(2) x U(1)? Standard-like models (SLM) [11], SU(3) x
SU(2)?> x U(1) leftright symmetric (LRS) [12], and
SU(4) x SU(2) x U(1) (SU421) [13] subgroups were stud-
ied. Among these, the FSU5, SLM, HSPSM, and LRS cases
produced quasirealistic three-generation models, whereas
the SU421 case did not produce any viable three-generation
model. The advantage of the SU421 models compared to the
FSUS and HSPSM is that they admit the doublet-triplet, as
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well as the doublet-doublet spitting mechanism [13]. We also
note the recent interest in SU421 models from purely
phenomenological considerations [14].

The phenomenological free fermionic heterotic—string
models are Z, x Z, orbifolds that are constructed at
enhanced symmetry points in the moduli space [15,16].
Many of the phenomenological properties of the models are
rooted in their underlying Z, x Z, structure [17]. In recent
years systematic methods for the classification of sym-
metric Z, X Z, free fermionic orbifolds were developed in
Ref. [18] for type-II superstrings and in Refs. [19,20] for
symmetric Z, X Z, heterotic-string orbifolds with SO(10)
GUT symmetry. The classification was extended in
Refs. [21-23] and [24] to string vacua in which the
SO(10) symmetry is broken to the SO(6) x SO(4) Pati-
Salam and to the flipped SU(5) subgroups, respectively.
The Pati-Salam class of free fermionic vacua produced
examples of three-generation exophobic models in which
exotic fractionally charged states only appear in the
massive string spectrum [21,22], whereas the flipped
SU(S) class of models did not produce exophobic models
with an odd number of generations [24].

In this paper we discuss the classification for the class
of SU421 heterotic-string models. We provide a general
argument that breaking the SO(10) symmetry to this
subgroup cannot produce three chiral generations in the
prevalent free fermionic construction which is based on
symmetric Z, X Z, toroidal compactification with Z, x Z4
fermionic boundary conditions that break the SO(10)
symmetry to SU(4) x SU(2) x U(1).

IL. SU(4) x SU(2) x U(1) PHENOMENOLOGY

The field theory content of the N = 1 supersymmet-
ric SU(4) x SU(2), x U(1) model' was discussed in

'"We note that U(1) as defined here is equal to 1/2U(1), as
defined in Ref. [11].
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Ref. [13]. The SU421 class of heterotic-string
models differs from the HSPSM models in the breaking
of SU(2)p = U(1)g directly at the string level.
Similarly to the HSPSM, the SU421 heterotic-string
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The first and second equalities show the decomposition
under SU(4)- x SU(2), x U(1)g and SU(3), x SU(2),
U(1)g_, x U(1), respectively. The electroweak U(1)y
current is given by

Uy =300y + U (24)

From Eq. (2.1) we note that F; produces the quark and
lepton weak doublets, and that U, and Dy produce the
right-handed weak singlets. The two Higgs multiplets of
the Minimal Supersymmetric Standard Model, 2* and h,

are given by
1
h=(12-2).

1
he=(1,2,4>).
(123

The heavy Higgs states that are responsible for breaking
SU(4)c x U(1), gauge symmetry to the Standard Model
groups SU(3) x U(1), are given by the fields

H:<Z|'71’_l>7
2
(a1 4]

— ) D) .

The SU421 heterotic-string models may also contain states
that transform as

1 -1
6.1,0) = (3,1,5.0 3,1,-2.,0).
610= (315.0) < (31:750)

These multiplets arise from the vectorial 10 representation
of SO(10). These colored states generate proton decay
from dimension-five operators, and therefore must be

(2.5)

(2.6)

(2.7)

(2.8)

PHYSICAL REVIEW D 91, 066006 (2015)

models admit the SO(10) embedding, and the
chiral states are obtained from the spinorial 16
representations of SO(10), which decomposes in the
following way:

(2.1)
1 . .

) + <1,1,+1,—5> = u + N°, (2.2)
1 o

> + (1,2,+1,+§> = d + e°l. (2.3)

[

sufficiently heavy to be in agreement with the proton
lifetime limits. An important benefit of the SU421
symmetry-breaking pattern is that these color triplets
may be projected out by the generalized GSO (GGSO)
projections [25], and need not be present in the low-energy
spectrum. The string doublet-triplet mechanism works in
all models that include the symmetry-breaking pattern
SO(10) - SO(6) x SO(4). The HSPSM heavy Higgs
states, which break SU(4)xSU(2)r—SU(3)oxU(1)y,
contain color triplets with the charges of the states in
(2.3) that may give rise to dimension-five proton decay
mediating operators. In the HSPSM, the superpotential
terms J,HHD + A3 H H D couple the color triplets from the
vectorial representation (6, 1, 1) to the color triplets arising
from the heavy Higgs field. The GUT-scale VEVs of
the heavy Higgs fields H and H are used to give heavy
mass to the Higgs color triplets. However, the heavy Higgs
representations in the SU421 heterotic-string models,
Eq. (2.8), do not contain the states with the charges
of Eq. (2.3). Consequently, the stringy doublet-triplet
splitting mechanism works only in models in which the
SO(10) symmetry is broken to SU(3) x SU(2), x U(1)?,
SU4)exSU(2), xU(l)g, or SU3)sx SU(2),x
SU2)g x U(1)p_y-

Another important advantage of the SU421 class of
models versus the PS and LRS models is with respect
to the light Higgs representations. In the LRS and
PS models, the light Higgs states exist in bidoublet
representations and couple simultaneously to the up-
and down-type quarks, which may give rise to flavor-
changing neutral currents (FCNC) at an unacceptable
rate [26]. This introduces a bidoublet splitting problem.
The solutions that have been proposed in the literature
[27] use a SU(2), triplet representation that is not present
in string models in which the gauge symmetry is realized
as a level-one Kac-Moody algebra. On the other hand,
in SU421 models, SU(2), is broken at the string level,
and consequently the Higgs bidoublet is split at the
string level.
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The solutions to the doublet-doublet as well as the
doublet-triplet splitting problems are the two appealing
properties offered by the SU421 free fermionic heterotic-
string models. However, as we argue in the next section, the
free fermionic Z, x Z, orbifold models, with additional
Z, x Z, basis vectors that are used to break the SO(10)
symmetry to SU(4). x SU(2); x U(1)g, cannot in fact
produce three complete chiral generations and therefore,
like the NAHE-based free fermionic models [13], these
models do not produce viable SU421 string models.

A. The SU(4) xSU(2) xU(1)
free fermionic construction

The string vacuum in the free fermionic formulation [3]
is defined in terms of a set of boundary condition basis
vectors and the generalized GSO projection coefficients,
which span the one-loop partition function. The basis
vectors generate a finite additive group = = >, n; b, where
n,y =0, ...,N, — 1. The physical states in the Hilbert space
of a sector @ € = are obtained by acting on the vacuum with
fermionic and bosonic oscillators and by applying the
GGSO projections. Each fermionic complex oscillator
acting on the vacuum is counted by a fermion number
operator as F,(f) =1 and a(f*) =—1. For periodic
complex fermions with a(f) =1, the vacuum is in a
doubly degenerate spinorial representation |+), annihilated
by the zero modes f, and f,* and with fermion numbers
F(f) =0, -1, respectively. The U(1) charges Q(f) of the
unbroken Cartan generators of the right-moving gauge
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group are given in terms of the boundary conditions and
fermion numbers of the complex right-moving world-sheet
fermions by

0(f) = yalf) + F(f). 2.9

In the light-cone gauge, the free fermionic heterotic-
string models in four dimensions require 20 left-moving
and 44 right-moving real world-sheet fermions, respec-
tively, to cancel the conformal anomaly. In the usual

B. The SU(4) x SU(2) x U(1) gauge group

In the following, we set up the necessary ingredients for
the classification of the SU421 free fermionic heterotic-
string models. The analysis is along similar lines to the
one performed in the classification of the SO(10) [19],
heterotic-string Pati-Salam models [21], and flipped SU(5)
models [24]. The novelty compared to these cases is that
the SU421 models employ two basis vectors that break the
SO(10) symmetry, whereas the HSPSM and FSU5 models
use only one. However, we argue below that this class of
heterotic-string vacua cannot in fact produce phenomeno-
logically viable models. The basis vectors that generate our
SU(4) x SU(2) x U(1) heterotic-string models are given
by the following 14 basis vectors:

vy =1 = {yh, gl yle6 gleb|plend gled jl23 gle.5 gl.81
vy =8 = {yt x'0%,

vy =e; = {YL o[y, @'}, i=1,...,6,

vo = by = {3, 1%, y34, y56|53, 556, 7l 5],

Vi = by = {712,450, y'2,y%0[5'2, 5%, 72, 5},

i =21 = {451""’4}»

Vip =22 = {455""’8}»

viy = a = {§*.4'?},
1
2

_ 1 -
U14:ﬂ:{w4’5:§’¢1 ..... 6:_}'

The basis vector 1 generates models with the SO (44) gauge
group from the Neveu-Schwarz sector. The vector §
produces N = 4 space-time supersymmetry. The vectors
ey, ...,eq break the SO(44) gauge group to SO(32) x
U(1)® and preserve the N = 4 space-time supersymmetry.
The e; basis vectors correspond to all the possible sym-
metric shifts of the six internal bosonic coordinates. The
basis vectors b; and b, correspond to Z, x Z, orbifold
twists and break N =4 space-time supersymmetry to

(2.10)

[

N = 1. Additionally, they reduce the rank of the gauge
group by breaking the U(1)® symmetry. Combined with the
projections of the basis vectors z; and z,, the SO(32) gauge
group is reduced to SO(10) x U(1)? x SO(8), x SO(8),,
where SO(10) x U(1)? and SO(8), x SO(8), correspond
to the observable and hidden gauge groups, respectively.
The combined projection of the basis vectors a and f
breaks the SO(10) GUT symmetry to SU(4) x SU(2)x
U(1), where « is identical to the basis vector used in the

066006-3



ALON E. FARAGGI AND HASAN SONMEZ

classification of the Pati-Salam models, and hence breaks
the SO(10) symmetry to SO(6) x SO(4), and finally, using
the f basis vector with fractional boundary conditions
reduces the SO(10) gauge symmetry to SU(4) x SU(2)x
U(l).

Observable: SU(4) x SU(2); x U(1)g %

PHYSICAL REVIEW D 91, 066006 (2015)

C. The string spectrum

The space-time vector bosons that are obtained from the
Neveu-Schwarz (NS) sector and that survive the GGSO
projections, defined by the basis vectors in (2.10) generate
the observable and hidden gauge groups given by

1)?,

U(
Hidden: SU(2), x U(1), x SU(2)5 x U(1)5 x SU(2)¢ x U(1)¢ x SO(4),.

The string states arising in other sectors transform under these gauge group factors. Additional space-time vector bosons
that enhance the NS observable and/or hidden gauge groups may arise from additional sectors. In order to preserve the
above gauge groups, all these additional space-time vector bosons need to be projected out. These additional space-time

vector bosons arise from the following 36 sectors:

21, z1 + B, 71 + 2P,
7 +a, 1 +a+p, z1 +a+2p,
22, 2 +/p, 2 + 20,
2 +a, ZH+a+p, 2 +a+2p,
21 + 22, 21+ 2+ B, Z1 + 2 + 28,
G,y = 71+ +a, 2+ +a+p, 21+ +a+2p, ’ 2.11)
b, 25, a,
a+p, a+2p, X,
1 +x+p, 71 +x+2p, 71 +x+a,
1 +x+a+p, Z +x+p, L+ x+a+p,
Uttt x+p u+ntx+26, u1t+ntxt+a+p,
x+p, X+ a, x+a+p,

where x =1+ S+ 5% e, + 2, + 2.

D. The matter content

The observable matter states in heterotic-string vacuum
with (2, 2) world-sheet supersymmetry is embedded in the
27 representation of Eg. In the free fermionic construction
that we adopt here, and using the basis vectors in (2.10),
the Eg is first broken to the SO(10) x U(1) symmetry.
Therefore, the 27 of Eq decomposes in the following way:

27 =16+10+1, (2.12)

where the 16 transforms under the spinorial representation
of SO(10) and 10 transforms in the vectorial representation
of the SO(10), and similarly for 27. The following 48 sectors
produce states that give the spinorial 16 or 16 of SO(10):

BYgrs=S+b, + pes+qeq +res+seq
={w" 1. (1=p)y’y . po’@.(1-q)y*5*
(1=r)y’ 3 re’ @, (1—15)y°3°, s0°@°. 7", 17" ,,,,, 5}7
5”1)” S+b,+pe;+qey+res+seg,
ng’S:S+b3+P€1+q€2+re3+se4,

|
where p,q,r,s =0,1 and by = b + b, + x. In order to
distinguish between the spinorial 16 and 16 in the states
given above, the following chirality operators are used:

e B )
by + (1 —=r)es+ (1 —s)eg

e e )
b+ (1—=r)es+ (1 —s)eg

3
XGpso = c( B > (2.14)
b+ (1—=r)es+ (1 —s)ey
where Xﬁfqi”“’ 19 — 1 implies the states corresponding to

the 16 of SO(10) and X" = —1 those corresponding to
the 16 of SO(10). Moreover, we note that the states here can
be projected in or out depending on the GGSO projections of
the basis vectors e, ..., eg, z; and z,. Therefore, we define
below a projector P, such that P = 1 implies the state is
projected in and P = O implies the state is projected out. The
projector P is given by
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o _1i_
Ppars 6 (1 C(B(l)
@ _ Y _~ &
qurs - 16 <1 C(B(z)

3 1 €s
P(Pf}rs = E <1 - C(B(3)

These projectors above can in fact be expressed as matrix
equations given by

(eiles) (eiles) (eiles) (eiles) \ /P (e1]by)
(eales) (eales) (eales) (eales) . (ealby)
(z1]es) (zileq) (zi]es) (zi]es) rl | lby) |
(22]e3) (z2]eq) (z2]es) (z2]es) Y (z2lb1)
(esler) (esles) (esles) (esles) \ /P (e3]b7)
(esler) (ealez) (eales) (esles) 9| __ (e4|br)
(z1ler) (z1le2) (ziles) (ziles) rl (z11b2) ’
(22]e1) (z2]€2) (z2]es) (z2]es) s (22]b2)
(esler) (esles) (esles) (esles) p (es]b3)
(esler) (esles) (esles) (esles) q1 (es|bs)
(ziler) (zilex) (ziles) (ziles) rl (z11b3)
(22]e1) (22]e2) (z2]e3) (z2]es) s (22]b3)

Writing the projectors as the matrix equations given above
entails solving systems of linear equations. These algebraic
equations can be solved using a computerized code, which
can be used to scan a vast space of models.

Similarlly to the spinorial representations, the singlet and
vectorial 10 representations of SO(10) are obtained from
the following 48 sectors:

B<p4q>rs = ng)rx +x
={y" 1" (1= p)y’y, p’@®, (1 - q)y*5*, qo'a*,
(1=r)y’y ., r’ @, (1 — 5)y%5°, sab@, ij>3},

o8 (2.17)

R 2.3
qurs = BE)qr?v + x.

Massless states that arise in these sectors are obtained by
acting on the vacuum with a NS oscillator. The type of
states therefore depend on the type of oscillator, and may
correspond to SO(10) singlets or the vectorial 10 repre-
sentation of SO(10), which is needed for electroweak
symmetry breaking. The different types of SO(10) singlets
arising from Eq. (2.17) are

PHYSICAL REVIEW D 91, 066006 (2015)

1)) (=, ) 0 ) 0l )
2.)) (<o)

)
Ho-elag D=l )
)

22
. c( ) ( c< )).(1-c< )) (2.15)
pqrs)) ( pqrs qurs B‘<z73q)rs
|
M {7'}R) 4q2s6 or {7*'}|R) 4q§s67 i=1,2,3, where
(4.5.6)

|R)pgrs 1is the degenerated Ramond vacuum of

the BE,‘,,X ) sector. These states transform as vector-
like representations under the U(1),’s

@) {" 2RSS or {1 2}|R)%S) These states
transform as vectorlike representations of SU(2),x
U(1) 4.

3) {PHR)SS or {g34YR)S3S) These states
transform as vectorlike representations of SU(2) X
U(1)p.

@ {PSHRS or {§SOHRY NS These states
transform as vectorlike representations of SU(2)x
Ul)c-

) {§" 8}|R>,,“q§;3 or {g7TSHR)ESD. These states
transform as vectorlike representations of SO(4).

Similarly, for the matrix equations given above in
Eq. (2.15), we can write algebraic equations for the sectors
in Eq. (2.17) given as follows:

(erles) (eiles) (erles) (erles)\ /P (e1]b1+x)
(e2]e3) (exles) (eales) (eales) || g | | (ealby+x)
(z1]e3) (ziles) (ziles) (zi]es) | @bt |
(22]e3) (22]eq) (zales) (z2les)/ \'s (22|b1+x)
(esler) (eslez) (esles) (esles) p (e3]br+x)
(esler) (esler) (eales) (esles) || @ _ (e4|br+x)
(ziler) (zilez) (ziles) (ziles) || 7 (z1|ba+x) |
(22]e1) (z2]€2) (z2les) (z2les)/ \'s (22|62 +x)
(esler) (eslex) (esles) (esles)\ /P (ess|b3+x)
(esler) (eslex) (esles) (esles) || a | | (eslbs+x)
(ziler) (z1lea) (ziles) (ziles) || 7| | (z1lb3+x)
(z2]e1) (22]€2) (zale3) (z2leq)/ \'s (22b3+x)
(2.18)

III. THE OBSERVABLE MATTER SPECTRUM

The basis vectors a and f given in Eq. (2.10) break the
SO(10) symmetry to SU(4) x SU(2), x U(1)g. Following
the @ and f GGSO projections, the decomposition of the
spinorial 16 and 16 representations of SO(10) under the
SU(4) x SU(2), x U(1), gauge group is given as follows:
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16 = (4,2,0) + (4,1,—1) + (4,1, +1),
16 = (4,2,0) + (4,1, —1) + (4,1, +1).

Here, to break the SU(4) x SU(2), x U(1), gauge group
to the standard model group, we require the heavy Higgs
pair. This pair is given by
(4,1,-1) + (4,1,-1).

Similarly, the vectorial representation 10 of SO(10) decom-
posed under the SU(4) x SU(2), x U(1), gauge group is
given as follows:

10 = (6,1,0) + (1,2,—1) + (1,2, +1).
Furthermore, we take the following normalizations of the
hypercharge and electromagnetic charge:

:—(Ql + 0+ 03) + (Q4+Q5)

1
Qem =Y +5(Q4 = Os),

where the Q; charges of a state arise due to y' for
i=1,...,5. Table I summarizes the charges of the color
SU(3) and electroweak SU(2) x U(1) Cartan generators of
the states which form the SU(4) x SU(2), x U(1), matter
representations. Here “4” and “—"" label the contribution of
an oscillator with fermion number ' = 0 or F = —1 to the
degenerate vacuum. These states correspond to particles of

TABLE 1. Charges of the color SU(3) and electroweak
SU(2) x U(1) Cartan generators of the states which form the
SU(4) x SU(2), x U(1), matter representations.
Representation g3 e Y OQem
(+.+.-) (=4 1/6 -1/3
(47250) (_5_7_) (+7_) _1/2 O
(_7_7_ (_’ +) _1/2 -1
- (+’ ) _) (_v _) _2/3 _2/3
4.1.-1) +++H (=) 0 0
- (+,—-) (+.+ 1/3 1/3
(4,1,+1) (+,+,+) (+,+) 1 1
(+.—-=) (+.-)  -1/6  -2/3
— (+’_9_) (_7+) _]/6 ]/3
(4,2,0) (+ +.+) (+.,-) 1/2 0
(+,+.+) =+ 1/2 1
.+ (D) 2/3 2/3
(4.1.-1) (=== () 0 0
(4’1’+1) (_7_7_) (_7_) -1 -1

PHYSICAL REVIEW D 91, 066006 (2015)

the Standard Model. More precisely, we can decompose
these representations under SU(3) x SU(2) x U(1) as

1 1
(4,2,0) = (3,2,+—> + (1,2,——) ,
6/ 2),

- = 2

(4.1,-1) = (3,1,—5) +(1,1,0),c,

- = 1

(4,1,+1) = (3,1,+§> + (1,1, +1),,
dL‘

where L is the lepton doublet; O is the quark doublet;
and d°, u¢, e, and v are the quark and lepton singlets.
Because of the a- and p-projections, which project on
incomplete 16 and 16 representations, complete families
and antifamilies are formed by combining states from
different sectors.

IV. NONVIABILITY OF THE
SU(4) x SU(2) x U(1) MODEL

We now discuss why in our free fermionic construction,
the SU(4) x SU(2) x U(1) GUT models are not viable. As
mentioned in the previous section, the matter content
comes from the 16 of SO(10). However, with the addition
of the a and f basis vectors from Eq. (2.10), the 16
representation is broken by the GGSO projections that are
in general given by

eimiFe|S,) = 55(7( < )*|S§). (4.1)

Here §: = &1 is a spacetime spin statistics index, and F is
the fermion number operator. In the SU421 models
spanned by Eq. (2.10), the GGSO projection coefficients
C (f can take the values =+1;4i. Therefore, firstly
i

considering the @ GGSO projection, we decompose the
16 into the Pati-Salam group representation. Moreover,
using the following chirality operators:

(1)
nglq):;)(@ - C ( B[quS > s

a
2)
X;Zq);"gso«‘) - C ( qurs > k]
a
0
xisoo — ¢ ( Bpars ) , (4.2)
(04

we deduce that for X! ,)15,03 9 =1 we get the Qg = (4,1,2)
states under SU(4) x SU(2); x SU(2)g, whereas the

0; = (4,2,1) states correspond to X;;rs = —1. Next,
considering the f GGSO projection, the operators
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(1)
xpis = (P,

(2)
X = C<B‘Z” ) ,

(3)
g = (")

determine the decomposition of the Q; and Qp states under
SU(4) x SU(2) x U(1). Here, the product 8- BY"" = —1
with (j = 1,2,3), and the modular invariance constraints,

impose that XE,lq’%f)“‘ = +i. Therefore, this implies the

states cannot be completed to form a family. Thus, to
complete the 16, the states (4, 2, 0), (4_1,1,—1) and
(4,1,+1) under the SU(4) x SU(2), x U(1), group all
need to survive the GGSO projections, but in order for
the (4_1,1,—1) and (ZI,I,—H) states to survive, we need

X 5,1(,’,;3)42‘ = =1, which is forbidden in this case by modular
invariance. To see more clearly why this is the case, we
consider the decomposition of the 16 representation in the
combinatorial notation of Ref. [28]:

to=1(o)+(2) - (4).
=) QUG+ GGG

©)- QIR QI
-1

where the combinatorial factor counts the number of
periodic fermions in the |—) state. The second line in
Eq. (4.5) corresponds to the decomposition of the 16 under
the Pati-Salam subgroup, whereas Eq. (4.6) shows its
decomposition under the SU421 subgroup. The key point
here, as seen from Eq. (4.6), is the even number of fermions
in the |-) vacuum of the Qp states, resulting in +1
projections on the left-hand side of Eq. (4.1), whereas
the right-hand side is fixed by the product 8 - BY""* = —1 to
be +i. Thus, the exclusion arises because the  projection
fixes the chirality of the vacuum of the world-sheet
fermions y*> that generate the SU(2), x U(1), symmetry.

(4.3)

(4.4)

(4.6)
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We note that the situation here is different from the case of
the SU421 models of Ref. [13]. The reason is that our
classification method only allows for symmetric boundary
conditions for the set of internal fermions {y, w|y, @} "9,
whereas the models of Ref. [13] introduce additional
freedom by allowing asymmetric boundary conditions.
Thus, while the NAHE-based models of Ref. [13] did
not yield any model with three complete generations, they
contain both the Q; and Qp states in their spectra, whereas
vacua with only symmetric boundary conditions with
respect to the set {y, |7, @}"° do not contain Qy states
and are therefore categorically excluded. It is of further
interest to note that in the case of the LRS models, the
chirality of the Q; + L; and Q + Ly is similarly affected
[12]. However, there it is compensated by the chirality of
the 7/ world-sheet fermions leading to opposite charges
under the U(1); gauge symmetries. The SLM models [11]
are obtained by combining the PS and FSUS breaking
vectors. Therefore, the SLM models produce complete 16
multiplets decomposed under the SLM group and with
equal U(1); charges. The SU421 class of models is the only
case that is excluded in vacua with symmetric internal
boundary conditions.

V. CONCLUSION

In this paper we discussed the classification of the
SU421 models with symmetric internal boundary condi-
tions. This continues the development of the classification
program initiated in Ref. [19], which led to the discovery of
spinor-vector duality [29] and exophobic string vacua
[21,22,30]. The novel feature in the classification of the
SU421 models compared to the PS and FSUS vacua is the
introduction of two basis vectors that break the SO(10)
symmetry. An appealing feature of the SU421 models is the
admission of both the triplet-doublet as well as the doublet-
doublet splitting mechanism, which is shared only with the
Standard-like models. However, as we showed in Sec. IV,
these models cannot accommodate the weak SU(2) singlet
states of the Standard Model and are therefore excluded.
The next step in our classification program is the classi-
fication of Standard-like models, that will be reported in a
future publication.
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