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The free fermionic construction of the heterotic string in four dimensions produced a large space of
three-generation models with the underlying SOð10Þ embedding of the Standard Model states. The SOð10Þ
symmetry is broken to a subgroup directly at the string scale. Over the past few years free fermionic models
with the Pati-Salam and flipped SUð5Þ subgroups have been classified. In this paper we extend this
classification program to models in which the SOð10Þ symmetry is broken at the string level to the
SUð4Þ × SUð2ÞL ×Uð1ÞR (SU421) subgroup. The subspace of free fermionic models that we consider
corresponds to symmetric Z2 × Z2 orbifolds. We provide a general argument that shows that this class of
SU421 free fermionic models cannot produce viable three-generation models.
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I. INTRODUCTION

The Standard Model of particle physics accounts
successfully for all subatomic observational data. The
gauge charges of the Standard Model matter states suggest
its embedding in SOð10Þ Grand Unified Theory, which is
broken to the Standard Model at the GUT or string
scale. The SOð10Þ unification picture is further supported
by the logarithmic evolution of the Standard Model gauge
parameters, the proton longevity, and the suppression of
left-handed neutrino masses. The heterotic-string [1] pro-
duces chiral SOð10Þ representations in its perturbative
spectrum, and is therefore the one suited to explore the
SOð10Þ GUT structure underlying the Standard Model.
Phenomenological studies of the heterotic-string have
been pursued since the mid-1980s [2], using a variety of
world-sheet [3–5] and target space techniques [6,7].
The free fermionic construction of the heterotic-string in

four dimensions produced a rich space of phenomenological
three-generationmodels. Thesemodels admit the underlying
SOð10Þ GUT embedding of the Standard Model spectrum.
However, the SOð10Þ symmetry is broken directly at the
string level. The early studies of these models consisted of
isolated examples that shared an underlying NAHE-base
structure [8]. Examples in which the SOð10Þ symmetry is
broken to the flipped SUð5Þ (FSU5) [9], SOð6Þ × SOð4Þ
heterotic-string Pati-Salam models (HSPSM) [10], SUð3Þ ×
SUð2Þ × Uð1Þ2 Standard-like models (SLM) [11], SUð3Þ ×
SUð2Þ2 ×Uð1Þ left-right symmetric (LRS) [12], and
SUð4Þ × SUð2Þ ×Uð1Þ (SU421) [13] subgroups were stud-
ied. Among these, the FSU5, SLM, HSPSM, and LRS cases
produced quasirealistic three-generation models, whereas
the SU421 case did not produce any viable three-generation
model. The advantage of the SU421 models compared to the
FSU5 and HSPSM is that they admit the doublet-triplet, as

well as the doublet-doublet spittingmechanism [13].We also
note the recent interest in SU421 models from purely
phenomenological considerations [14].
The phenomenological free fermionic heterotic–string

models are Z2 × Z2 orbifolds that are constructed at
enhanced symmetry points in the moduli space [15,16].
Many of the phenomenological properties of the models are
rooted in their underlying Z2 × Z2 structure [17]. In recent
years systematic methods for the classification of sym-
metric Z2 × Z2 free fermionic orbifolds were developed in
Ref. [18] for type-II superstrings and in Refs. [19,20] for
symmetric Z2 × Z2 heterotic-string orbifolds with SOð10Þ
GUT symmetry. The classification was extended in
Refs. [21–23] and [24] to string vacua in which the
SOð10Þ symmetry is broken to the SOð6Þ × SOð4Þ Pati-
Salam and to the flipped SUð5Þ subgroups, respectively.
The Pati-Salam class of free fermionic vacua produced
examples of three-generation exophobic models in which
exotic fractionally charged states only appear in the
massive string spectrum [21,22], whereas the flipped
SUð5Þ class of models did not produce exophobic models
with an odd number of generations [24].
In this paper we discuss the classification for the class

of SU421 heterotic-string models. We provide a general
argument that breaking the SOð10Þ symmetry to this
subgroup cannot produce three chiral generations in the
prevalent free fermionic construction which is based on
symmetricZ2 × Z2 toroidal compactification withZ2 × Z4

fermionic boundary conditions that break the SOð10Þ
symmetry to SUð4Þ × SUð2Þ ×Uð1Þ.

II. SUð4Þ × SUð2Þ × Uð1Þ PHENOMENOLOGY

The field theory content of the N ¼ 1 supersymmet-
ric SUð4ÞC × SUð2ÞL ×Uð1ÞR model1 was discussed in
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1We note that Uð1ÞR as defined here is equal to 1=2Uð1ÞL as
defined in Ref. [11].

PHYSICAL REVIEW D 91, 066006 (2015)

1550-7998=2015=91(6)=066006(8) 066006-1 © 2015 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.066006
http://dx.doi.org/10.1103/PhysRevD.91.066006
http://dx.doi.org/10.1103/PhysRevD.91.066006
http://dx.doi.org/10.1103/PhysRevD.91.066006


Ref. [13]. The SU421 class of heterotic-string
models differs from the HSPSM models in the breaking
of SUð2ÞR → Uð1ÞR directly at the string level.
Similarly to the HSPSM, the SU421 heterotic-string

models admit the SOð10Þ embedding, and the
chiral states are obtained from the spinorial 16
representations of SOð10Þ, which decomposes in the
following way:

Fi
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The first and second equalities show the decomposition
under SUð4ÞC × SUð2ÞL ×Uð1ÞR and SUð3ÞC × SUð2ÞL×
Uð1ÞB−L ×Uð1ÞR, respectively. The electroweak Uð1ÞY
current is given by

Uð1ÞY ¼ 1

2
Uð1ÞB−L þ Uð1ÞR: ð2:4Þ

From Eq. (2.1) we note that FL produces the quark and
lepton weak doublets, and that UR and DR produce the
right-handed weak singlets. The two Higgs multiplets of
the Minimal Supersymmetric Standard Model, hu and hd,
are given by

hd ¼
�
1; 2;−

1

2

�
; ð2:5Þ

hu ¼
�
1; 2;þ 1

2

�
: ð2:6Þ

The heavy Higgs states that are responsible for breaking
SUð4ÞC ×Uð1ÞR gauge symmetry to the Standard Model
groups SUð3Þ ×Uð1ÞY are given by the fields

H ¼
�
4̄; 1;−

1

2

�
; ð2:7Þ
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2

�
: ð2:8Þ

The SU421 heterotic-string models may also contain states
that transform as

ð6; 1; 0Þ ¼
�
3; 1;

1

3
; 0
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þ
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3̄; 1;−

1

3
; 0

�
:

These multiplets arise from the vectorial 10 representation
of SOð10Þ. These colored states generate proton decay
from dimension-five operators, and therefore must be

sufficiently heavy to be in agreement with the proton
lifetime limits. An important benefit of the SU421
symmetry-breaking pattern is that these color triplets
may be projected out by the generalized GSO (GGSO)
projections [25], and need not be present in the low-energy
spectrum. The string doublet-triplet mechanism works in
all models that include the symmetry-breaking pattern
SOð10Þ → SOð6Þ × SOð4Þ. The HSPSM heavy Higgs
states, which break SUð4Þ×SUð2ÞR→SUð3ÞC×Uð1ÞY ,
contain color triplets with the charges of the states in
(2.3) that may give rise to dimension-five proton decay
mediating operators. In the HSPSM, the superpotential
terms λ2HHDþ λ3H̄ H̄ D̄ couple the color triplets from the
vectorial representation (6, 1, 1) to the color triplets arising
from the heavy Higgs field. The GUT-scale VEVs of
the heavy Higgs fields H and H̄ are used to give heavy
mass to the Higgs color triplets. However, the heavy Higgs
representations in the SU421 heterotic-string models,
Eq. (2.8), do not contain the states with the charges
of Eq. (2.3). Consequently, the stringy doublet-triplet
splitting mechanism works only in models in which the
SOð10Þ symmetry is broken to SUð3ÞC × SUð2ÞL ×Uð1Þ2,
SUð4ÞC × SUð2ÞL ×Uð1ÞR, or SUð3ÞC × SUð2ÞL×
SUð2ÞR × Uð1ÞB−L.
Another important advantage of the SU421 class of

models versus the PS and LRS models is with respect
to the light Higgs representations. In the LRS and
PS models, the light Higgs states exist in bidoublet
representations and couple simultaneously to the up-
and down-type quarks, which may give rise to flavor-
changing neutral currents (FCNC) at an unacceptable
rate [26]. This introduces a bidoublet splitting problem.
The solutions that have been proposed in the literature
[27] use a SUð2ÞL triplet representation that is not present
in string models in which the gauge symmetry is realized
as a level-one Kac-Moody algebra. On the other hand,
in SU421 models, SUð2ÞR is broken at the string level,
and consequently the Higgs bidoublet is split at the
string level.
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The solutions to the doublet-doublet as well as the
doublet-triplet splitting problems are the two appealing
properties offered by the SU421 free fermionic heterotic-
string models. However, as we argue in the next section, the
free fermionic Z2 × Z2 orbifold models, with additional
Z2 × Z4 basis vectors that are used to break the SOð10Þ
symmetry to SUð4ÞC × SUð2ÞL ×Uð1ÞR, cannot in fact
produce three complete chiral generations and therefore,
like the NAHE-based free fermionic models [13], these
models do not produce viable SU421 string models.

A. The SUð4Þ × SUð2Þ × Uð1Þ
free fermionic construction

The string vacuum in the free fermionic formulation [3]
is defined in terms of a set of boundary condition basis
vectors and the generalized GSO projection coefficients,
which span the one-loop partition function. The basis
vectors generate a finite additive group Ξ ¼ P

knkbk where
nk ¼ 0;…; Nzk − 1. The physical states in the Hilbert space
of a sector α ∈ Ξ are obtained by acting on the vacuumwith
fermionic and bosonic oscillators and by applying the
GGSO projections. Each fermionic complex oscillator
acting on the vacuum is counted by a fermion number
operator as FαðfÞ ¼ 1 and αðf�Þ ¼ −1. For periodic
complex fermions with αðfÞ ¼ 1, the vacuum is in a
doubly degenerate spinorial representation j�i, annihilated
by the zero modes f0 and f0� and with fermion numbers
FðfÞ ¼ 0;−1, respectively. The Uð1Þ charges QðfÞ of the
unbroken Cartan generators of the right-moving gauge

group are given in terms of the boundary conditions and
fermion numbers of the complex right-moving world-sheet
fermions by

QðfÞ ¼ 1

2
αðfÞ þ FðfÞ: ð2:9Þ

In the light-cone gauge, the free fermionic heterotic-
string models in four dimensions require 20 left-moving
and 44 right-moving real world-sheet fermions, respec-
tively, to cancel the conformal anomaly. In the usual
notation these are denoted as ψμ, χ1;…;6, y1;…;6, ω1;…;6,
and ȳ1;…;6, ω̄1;…;6, ψ̄1;…;5, η̄1;2;3, ϕ̄1;…;8.

B. The SUð4Þ × SUð2Þ × Uð1Þ gauge group

In the following, we set up the necessary ingredients for
the classification of the SU421 free fermionic heterotic-
string models. The analysis is along similar lines to the
one performed in the classification of the SOð10Þ [19],
heterotic-string Pati-Salam models [21], and flipped SUð5Þ
models [24]. The novelty compared to these cases is that
the SU421 models employ two basis vectors that break the
SOð10Þ symmetry, whereas the HSPSM and FSU5 models
use only one. However, we argue below that this class of
heterotic-string vacua cannot in fact produce phenomeno-
logically viable models. The basis vectors that generate our
SUð4Þ × SUð2Þ ×Uð1Þ heterotic-string models are given
by the following 14 basis vectors:

v1 ¼ 1 ¼ fψμ; χ1;…;6; y1;…;6;ω1;…;6jȳ1;…;6; ω̄1;…;6; η̄1;2;3; ψ̄1;…;5; ϕ̄1;…;8g;
v2 ¼ S ¼ fψμ; χ1;…;6g;

v2þi ¼ ei ¼ fyi;ωijȳi; ω̄ig; i ¼ 1;…; 6;

v9 ¼ b1 ¼ fχ34; χ56; y34; y56jȳ34; ȳ56; η̄1; ψ̄1;…;5g;
v10 ¼ b2 ¼ fχ12; χ56; y12; y56jȳ12; ȳ56; η̄2; ψ̄1;…;5g;
v11 ¼ z1 ¼ fϕ̄1;…;4g;
v12 ¼ z2 ¼ fϕ̄5;…;8g;
v13 ¼ α ¼ fψ̄4;5; ϕ̄1;2g;

v14 ¼ β ¼
�
ψ̄4;5 ¼ 1

2
; ϕ̄1;…;6 ¼ 1

2

�
: ð2:10Þ

The basis vector 1 generates models with the SOð44Þ gauge
group from the Neveu-Schwarz sector. The vector S
produces N ¼ 4 space-time supersymmetry. The vectors
e1;…; e6 break the SOð44Þ gauge group to SOð32Þ ×
Uð1Þ6 and preserve the N ¼ 4 space-time supersymmetry.
The ei basis vectors correspond to all the possible sym-
metric shifts of the six internal bosonic coordinates. The
basis vectors b1 and b2 correspond to Z2 × Z2 orbifold
twists and break N ¼ 4 space-time supersymmetry to

N ¼ 1. Additionally, they reduce the rank of the gauge
group by breaking theUð1Þ6 symmetry. Combined with the
projections of the basis vectors z1 and z2, the SOð32Þ gauge
group is reduced to SOð10Þ ×Uð1Þ3 × SOð8Þ1 × SOð8Þ2,
where SOð10Þ ×Uð1Þ3 and SOð8Þ1 × SOð8Þ2 correspond
to the observable and hidden gauge groups, respectively.
The combined projection of the basis vectors α and β
breaks the SOð10Þ GUT symmetry to SUð4Þ × SUð2Þ×
Uð1Þ, where α is identical to the basis vector used in the
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classification of the Pati-Salam models, and hence breaks
the SOð10Þ symmetry to SOð6Þ × SOð4Þ, and finally, using
the β basis vector with fractional boundary conditions
reduces the SOð10Þ gauge symmetry to SUð4Þ × SUð2Þ×
Uð1Þ.

C. The string spectrum

The space-time vector bosons that are obtained from the
Neveu-Schwarz (NS) sector and that survive the GGSO
projections, defined by the basis vectors in (2.10) generate
the observable and hidden gauge groups given by

Observable∶ SUð4Þ × SUð2ÞL ×Uð1ÞR ×Uð1Þ3;
Hidden∶ SUð2ÞA × Uð1ÞA × SUð2ÞB ×Uð1ÞB × SUð2ÞC × Uð1ÞC × SOð4Þ2:

The string states arising in other sectors transform under these gauge group factors. Additional space-time vector bosons
that enhance the NS observable and/or hidden gauge groups may arise from additional sectors. In order to preserve the
above gauge groups, all these additional space-time vector bosons need to be projected out. These additional space-time
vector bosons arise from the following 36 sectors:

GEnh ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

z1; z1 þ β; z1 þ 2β;

z1 þ α; z1 þ αþ β; z1 þ αþ 2β;

z2; z2 þ β; z2 þ 2β;

z2 þ α; z2 þ αþ β; z2 þ αþ 2β;

z1 þ z2; z1 þ z2 þ β; z1 þ z2 þ 2β;

z1 þ z2 þ α; z1 þ z2 þ αþ β; z1 þ z2 þ αþ 2β;

β; 2β; α;

αþ β; αþ 2β; x;

z1 þ xþ β; z1 þ xþ 2β; z1 þ xþ α;

z1 þ xþ αþ β; z2 þ xþ β; z2 þ xþ αþ β;

z1 þ z2 þ xþ β; z1 þ z2 þ xþ 2β; z1 þ z2 þ xþ αþ β;

xþ β; xþ α; xþ αþ β;

9>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>;

; ð2:11Þ

where x ¼ 1þ SþP
6
i¼1 ei þ z1 þ z2.

D. The matter content

The observable matter states in heterotic-string vacuum
with (2, 2) world-sheet supersymmetry is embedded in the
27 representation of E6. In the free fermionic construction
that we adopt here, and using the basis vectors in (2.10),
the E6 is first broken to the SOð10Þ ×Uð1Þ symmetry.
Therefore, the 27 of E6 decomposes in the following way:

27 ¼ 16þ 10þ 1; ð2:12Þ
where the 16 transforms under the spinorial representation
of SOð10Þ and 10 transforms in the vectorial representation
of theSOð10Þ, and similarly for 2̄7. The following 48 sectors
produce states that give the spinorial 16 or 1̄6 of SOð10Þ:
Bð1Þ
pqrs¼Sþb1þpe3þqe4þre5þse6

¼fψμ;χ12;ð1−pÞy3ȳ3;pω3ω̄3;ð1−qÞy4ȳ4;qω4ω̄4;

ð1−rÞy5ȳ5;rω5ω̄5;ð1−sÞy6ȳ6;sω6ω̄6;η̄1;ψ̄1;…;5g;
Bð2Þ
pqrs¼Sþb2þpe1þqe2þre5þse6;

Bð3Þ
pqrs¼Sþb3þpe1þqe2þre3þse4; ð2:13Þ

where p; q; r; s ¼ 0; 1 and b3 ¼ b1 þ b2 þ x. In order to
distinguish between the spinorial 16 and 1̄6 in the states
given above, the following chirality operators are used:

X
ð1ÞSOð10Þ
pqrs ¼ C

�
Bð1Þ
pqrs

b2 þ ð1 − rÞe5 þ ð1 − sÞe6

�
;

X
ð2ÞSOð10Þ
pqrs ¼ C

�
Bð2Þ
pqrs

b1 þ ð1 − rÞe5 þ ð1 − sÞe6

�
;

X
ð3ÞSOð10Þ
pqrs ¼ C

�
Bð3Þ
pqrs

b1 þ ð1 − rÞe3 þ ð1 − sÞe4

�
; ð2:14Þ

where X
ð1;2;3ÞSOð10Þ
pqrs ¼ 1 implies the states corresponding to

the 16 of SOð10Þ and XðiÞSOð10Þ
pqrs ¼ −1 those corresponding to

the 1̄6 of SOð10Þ. Moreover, we note that the states here can
be projected in or out depending on theGGSOprojections of
the basis vectors e1;…; e6, z1 and z2. Therefore, we define
below a projector P, such that P ¼ 1 implies the state is
projected in andP ¼ 0 implies the state is projected out. The
projector P is given by
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Pð1Þ
pqrs ¼ 1
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��
:
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��
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Pð3Þ
pqrs ¼ 1

16

�
1 − C

� e5

Bð3Þ
pqrs

��
:

�
1 − C

� e6

Bð3Þ
pqrs

��
:

�
1 − C

� z1

Bð3Þ
pqrs

��
:

�
1 − C

� z2

Bð3Þ
pqrs

��
: ð2:15Þ

These projectors above can in fact be expressed as matrix
equations given by0
BBBBB@

ðe1je3Þ ðe1je4Þ ðe1je5Þ ðe1je6Þ
ðe2je3Þ ðe2je4Þ ðe2je5Þ ðe2je6Þ
ðz1je3Þ ðz1je4Þ ðz1je5Þ ðz1je6Þ
ðz2je3Þ ðz2je4Þ ðz2je5Þ ðz2je6Þ

1
CCCCCA

0
BBB@
p

q

r

s

1
CCCA¼

0
BBB@
ðe1jb1Þ
ðe2jb1Þ
ðz1jb1Þ
ðz2jb1Þ

1
CCCA;

0
BBBBB@

ðe3je1Þ ðe3je2Þ ðe3je5Þ ðe3je6Þ
ðe4je1Þ ðe4je2Þ ðe4je5Þ ðe4je6Þ
ðz1je1Þ ðz1je2Þ ðz1je5Þ ðz1je6Þ
ðz2je1Þ ðz2je2Þ ðz2je5Þ ðz2je6Þ

1
CCCCCA

0
BBB@
p

q

r

s

1
CCCA¼

0
BBB@
ðe3jb2Þ
ðe4jb2Þ
ðz1jb2Þ
ðz2jb2Þ

1
CCCA;

0
BBBBB@

ðe5je1Þ ðe5je2Þ ðe5je3Þ ðe5je4Þ
ðe6je1Þ ðe6je2Þ ðe6je3Þ ðe6je4Þ
ðz1je1Þ ðz1je2Þ ðz1je3Þ ðz1je4Þ
ðz2je1Þ ðz2je2Þ ðz2je3Þ ðz2je4Þ

1
CCCCCA

0
BBB@
p

q

r

s

1
CCCA¼

0
BBB@
ðe5jb3Þ
ðe6jb3Þ
ðz1jb3Þ
ðz2jb3Þ

1
CCCA:

ð2:16Þ

Writing the projectors as the matrix equations given above
entails solving systems of linear equations. These algebraic
equations can be solved using a computerized code, which
can be used to scan a vast space of models.
Similarlly to the spinorial representations, the singlet and

vectorial 10 representations of SOð10Þ are obtained from
the following 48 sectors:

Bð4Þ
pqrs ¼ Bð1Þ

pqrs þ x

¼ fψμ; χ12; ð1−pÞy3ȳ3;pω3ω̄3; ð1− qÞy4ȳ4; qω4ω̄4;

ð1− rÞy5ȳ5; rω5ω̄5; ð1− sÞy6ȳ6; sω6ω̄6; η̄2;3g;
Bð5;6Þ
pqrs ¼ Bð2;3Þ

pqrs þ x: ð2:17Þ

Massless states that arise in these sectors are obtained by
acting on the vacuum with a NS oscillator. The type of
states therefore depend on the type of oscillator, and may
correspond to SOð10Þ singlets or the vectorial 10 repre-
sentation of SOð10Þ, which is needed for electroweak
symmetry breaking. The different types of SOð10Þ singlets
arising from Eq. (2.17) are

(1) fη̄igjRið4;5;6Þpqrs or fη̄�igjRið4;5;6Þpqrs , i ¼ 1; 2; 3, where

jRið4;5;6Þpqrs is the degenerated Ramond vacuum of

the Bð4;5;6Þ
pqrs sector. These states transform as vector-

like representations under the Uð1Þi’s.
(2) fϕ̄1;2gjRið4;5;6Þpqrs or fϕ̄�1;2gjRið4;5;6Þpqrs . These states

transform as vectorlike representations of SUð2ÞA×
Uð1ÞA.

(3) fϕ̄3;4gjRið4;5;6Þpqrs or fϕ̄�3;4gjRið4;5;6Þpqrs . These states
transform as vectorlike representations of SUð2ÞB×
Uð1ÞB.

(4) fϕ̄5;6gjRið4;5;6Þpqrs or fϕ̄�5;6gjRið4;5;6Þpqrs . These states
transform as vectorlike representations of SUð2ÞC×
Uð1ÞC.

(5) fϕ̄7;8gjRið4;5;6Þpqrs or fϕ̄�7;8gjRið4;5;6Þpqrs . These states
transform as vectorlike representations of SOð4Þ.

Similarly, for the matrix equations given above in
Eq. (2.15), we can write algebraic equations for the sectors
in Eq. (2.17) given as follows:

0
BBB@
ðe1je3Þ ðe1je4Þ ðe1je5Þ ðe1je6Þ
ðe2je3Þ ðe2je4Þ ðe2je5Þ ðe2je6Þ
ðz1je3Þ ðz1je4Þ ðz1je5Þ ðz1je6Þ
ðz2je3Þ ðz2je4Þ ðz2je5Þ ðz2je6Þ

1
CCCA

0
BBB@
p

q

r

s

1
CCCA¼

0
BBB@
ðe1jb1þxÞ
ðe2jb1þxÞ
ðz1jb1þxÞ
ðz2jb1þxÞ

1
CCCA;

0
BBB@
ðe3je1Þ ðe3je2Þ ðe3je5Þ ðe3je6Þ
ðe4je1Þ ðe4je2Þ ðe4je5Þ ðe4je6Þ
ðz1je1Þ ðz1je2Þ ðz1je5Þ ðz1je6Þ
ðz2je1Þ ðz2je2Þ ðz2je5Þ ðz2je6Þ

1
CCCA

0
BBB@
p

q

r

s

1
CCCA¼

0
BBB@
ðe3jb2þxÞ
ðe4jb2þxÞ
ðz1jb2þxÞ
ðz2jb2þxÞ

1
CCCA;

0
BBB@
ðe5je1Þ ðe5je2Þ ðe5je3Þ ðe5je4Þ
ðe6je1Þ ðe6je2Þ ðe6je3Þ ðe6je4Þ
ðz1je1Þ ðz1je2Þ ðz1je3Þ ðz1je4Þ
ðz2je1Þ ðz2je2Þ ðz2je3Þ ðz2je4Þ

1
CCCA

0
BBB@
p

q

r

s

1
CCCA¼

0
BBB@
ðes5jb3þxÞ
ðe6jb3þxÞ
ðz1jb3þxÞ
ðz2jb3þxÞ

1
CCCA:

ð2:18Þ

III. THE OBSERVABLE MATTER SPECTRUM

The basis vectors α and β given in Eq. (2.10) break the
SOð10Þ symmetry to SUð4Þ × SUð2ÞL ×Uð1ÞR. Following
the α and β GGSO projections, the decomposition of the
spinorial 16 and 1̄6 representations of SOð10Þ under the
SUð4Þ × SUð2ÞL × Uð1ÞL gauge group is given as follows:
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16 ¼ ð4; 2; 0Þ þ ð4̄; 1;−1Þ þ ð4̄; 1;þ1Þ;
1̄6 ¼ ð4̄; 2; 0Þ þ ð4; 1;−1Þ þ ð4; 1;þ1Þ:

Here, to break the SUð4Þ × SUð2ÞL ×Uð1ÞL gauge group
to the standard model group, we require the heavy Higgs
pair. This pair is given by

ð4̄; 1;−1Þ þ ð4; 1;−1Þ:

Similarly, the vectorial representation 10 of SOð10Þ decom-
posed under the SUð4Þ × SUð2ÞL ×Uð1ÞL gauge group is
given as follows:

10 ¼ ð6; 1; 0Þ þ ð1; 2;−1Þ þ ð1; 2;þ1Þ:

Furthermore, we take the following normalizations of the
hypercharge and electromagnetic charge:

Y ¼ 1

3
ðQ1 þQ2 þQ3Þ þ

1

2
ðQ4 þQ5Þ;

Qem ¼ Y þ 1

2
ðQ4 −Q5Þ;

where the Qi charges of a state arise due to ψ i for
i ¼ 1;…; 5. Table I summarizes the charges of the color
SUð3Þ and electroweak SUð2Þ ×Uð1Þ Cartan generators of
the states which form the SUð4Þ × SUð2ÞL ×Uð1ÞL matter
representations. Here “þ” and “−” label the contribution of
an oscillator with fermion number F ¼ 0 or F ¼ −1 to the
degenerate vacuum. These states correspond to particles of

the Standard Model. More precisely, we can decompose
these representations under SUð3Þ × SUð2Þ × Uð1Þ as

ð4; 2; 0Þ ¼
�
3; 2;þ 1

6

�
Q
þ
�
1; 2;−

1

2

�
L
;

ð4̄; 1;−1Þ ¼
�
3̄; 1;−

2

3

�
uc
þ ð1; 1; 0Þνc ;

ð4̄; 1;þ1Þ ¼
�
3̄; 1;þ 1

3

�
dc
þ ð1; 1;þ1Þec ;

where L is the lepton doublet; Q is the quark doublet;
and dc; uc; ec, and νc are the quark and lepton singlets.
Because of the α- and β-projections, which project on
incomplete 16 and 1̄6 representations, complete families
and antifamilies are formed by combining states from
different sectors.

IV. NONVIABILITY OF THE
SUð4Þ × SUð2Þ × Uð1Þ MODEL

We now discuss why in our free fermionic construction,
the SUð4Þ × SUð2Þ × Uð1Þ GUT models are not viable. As
mentioned in the previous section, the matter content
comes from the 16 of SOð10Þ. However, with the addition
of the α and β basis vectors from Eq. (2.10), the 16
representation is broken by the GGSO projections that are
in general given by

eiπvi·Fξ jSξi ¼ δξC

�
ξ
vi

��
jSξi: ð4:1Þ

Here δξ ¼ �1 is a spacetime spin statistics index, and Fξ is
the fermion number operator. In the SU421 models
spanned by Eq. (2.10), the GGSO projection coefficients

C

�
ξ
vi

�
can take the values �1;�i. Therefore, firstly

considering the α GGSO projection, we decompose the
16 into the Pati-Salam group representation. Moreover,
using the following chirality operators:

X
ð1ÞSOð6Þ
pqrs ¼ C

�
Bð1Þ
pqrs

α

�
;

X
ð2ÞSOð6Þ
pqrs ¼ C

�
Bð2Þ
pqrs

α

�
;

X
ð3ÞSOð6Þ
pqrs ¼ C

�
Bð3Þ
pqrs

α

�
; ð4:2Þ

we deduce that for X
ðiÞSOð6Þ
pqrs ¼ 1 we get the QR ≡ ð4̄; 1; 2Þ

states under SUð4Þ × SUð2ÞL × SUð2ÞR, whereas the

QL ≡ ð4; 2; 1Þ states correspond to X
ðiÞSOð6Þ
pqrs ¼ −1. Next,

considering the β GGSO projection, the operators

TABLE I. Charges of the color SUð3Þ and electroweak
SUð2Þ × Uð1Þ Cartan generators of the states which form the
SUð4Þ × SUð2ÞL × Uð1ÞL matter representations.

Representation ψ̄1;2;3 ψ̄4;5 Y Qem

(4; 2; 0)

(þ;þ;−) (þ;−) 1=6 2=3
(þ;þ;−) (−;þ) 1=6 −1=3
(−;−;−) (þ;−) −1=2 0
(−;−;−) (−;þ) −1=2 −1

ð4̄; 1;−1Þ
(þ;−;−) (−;−) −2=3 −2=3
(þ;þ;þ) (−;−) 0 0

ð4̄; 1;þ1Þ
(þ;−;−) (þ;þ) 1=3 1=3
(þ;þ;þ) (þ;þ) 1 1

ð4̄; 2; 0Þ

(þ;−;−) (þ;−) −1=6 −2=3
(þ;−;−) (−;þ) −1=6 1=3
(þ;þ;þ) (þ;−) 1=2 0
(þ;þ;þ) (−;þ) 1=2 1

ð4; 1;−1Þ
(þ;þ;−) (þ;þ) 2=3 2=3
(−;−;−) (þ;þ) 0 0

ð4; 1;þ1Þ
(þ;þ;−) (−;−) −1=3 −1=3
(−;−;−) (−;−) −1 −1
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Xð1Þ421
pqrs ¼ C

�
Bð1Þ
pqrs

β

�
;

Xð2Þ421
pqrs ¼ C

�
Bð2Þ
pqrs

β

�
;

Xð3Þ421
pqrs ¼ C

�
Bð3Þ
pqrs

β

�
ð4:3Þ

determine the decomposition of theQL andQR states under
SUð4Þ × SUð2Þ ×Uð1Þ. Here, the product β · Bpqrs

j ¼ −1
with ðj ¼ 1; 2; 3Þ, and the modular invariance constraints,

impose that Xð1;2;3Þ421
pqrs ¼ �i. Therefore, this implies the

states cannot be completed to form a family. Thus, to
complete the 16, the states (4, 2, 0), ð4̄; 1;−1Þ and
ð4̄; 1;þ1Þ under the SUð4Þ × SUð2ÞL ×Uð1ÞR group all
need to survive the GGSO projections, but in order for
the ð4̄; 1;−1Þ and ð4̄; 1;þ1Þ states to survive, we need

Xð1;2;3Þ421
pqrs ¼ �1, which is forbidden in this case by modular

invariance. To see more clearly why this is the case, we
consider the decomposition of the 16 representation in the
combinatorial notation of Ref. [28]:

16≡
��

5

0

�
þ
�
5

2

�
þ
�
5

4

��
ð4:4Þ

≡
��

3

0

�
þ
�
3

2

����
2

0

�
þ
�
2

2

��
þ
��

3

1

����
2

1

��

ð4:5Þ

≡
��

3

0

�
þ
�
3

2

����
2

0

��
þ
��

3

0

�
þ
�
3

2

����
2

2

��

þ
��

3

1

����
2

1

��
; ð4:6Þ

where the combinatorial factor counts the number of
periodic fermions in the j−i state. The second line in
Eq. (4.5) corresponds to the decomposition of the 16 under
the Pati-Salam subgroup, whereas Eq. (4.6) shows its
decomposition under the SU421 subgroup. The key point
here, as seen from Eq. (4.6), is the even number of fermions
in the j−i vacuum of the QR states, resulting in �1
projections on the left-hand side of Eq. (4.1), whereas
the right-hand side is fixed by the product β · Bpqrs

j ¼ −1 to
be �i. Thus, the exclusion arises because the β projection
fixes the chirality of the vacuum of the world-sheet
fermions ψ̄4;5 that generate the SUð2ÞL × Uð1ÞR symmetry.

We note that the situation here is different from the case of
the SU421 models of Ref. [13]. The reason is that our
classification method only allows for symmetric boundary
conditions for the set of internal fermions fy;ωjȳ; ω̄g1;…;6,
whereas the models of Ref. [13] introduce additional
freedom by allowing asymmetric boundary conditions.
Thus, while the NAHE-based models of Ref. [13] did
not yield any model with three complete generations, they
contain both the QL and QR states in their spectra, whereas
vacua with only symmetric boundary conditions with
respect to the set fy;ωjȳ; ω̄g1;…;6 do not contain QR states
and are therefore categorically excluded. It is of further
interest to note that in the case of the LRS models, the
chirality of the QL þ LL and QR þ LR is similarly affected
[12]. However, there it is compensated by the chirality of
the η̄j world-sheet fermions leading to opposite charges
under the Uð1Þj gauge symmetries. The SLM models [11]
are obtained by combining the PS and FSU5 breaking
vectors. Therefore, the SLM models produce complete 16
multiplets decomposed under the SLM group and with
equalUð1Þj charges. The SU421 class of models is the only
case that is excluded in vacua with symmetric internal
boundary conditions.

V. CONCLUSION

In this paper we discussed the classification of the
SU421 models with symmetric internal boundary condi-
tions. This continues the development of the classification
program initiated in Ref. [19], which led to the discovery of
spinor-vector duality [29] and exophobic string vacua
[21,22,30]. The novel feature in the classification of the
SU421 models compared to the PS and FSU5 vacua is the
introduction of two basis vectors that break the SOð10Þ
symmetry. An appealing feature of the SU421 models is the
admission of both the triplet-doublet as well as the doublet-
doublet splitting mechanism, which is shared only with the
Standard-like models. However, as we showed in Sec. IV,
these models cannot accommodate the weak SUð2Þ singlet
states of the Standard Model and are therefore excluded.
The next step in our classification program is the classi-
fication of Standard-like models, that will be reported in a
future publication.
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