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We construct a wide class of nongeometric compactifications of type II superstring theories preserving
N ¼ 1 space-time supersymmetry in four dimensions, starting from Calabi-Yau compactifications at
Gepner points. Particular examples of this construction provide quantum equivalences between Calabi-Yau
compactifications and non-Calabi-Yau ones, generalizing mirror symmetry. The associated Landau-
Ginzburg models involve both chiral and twisted chiral multiplets and hence cannot be lifted to ordinary
Calabi-Yau gauged linear sigma models.
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I. INTRODUCTION

It iswidely acknowledged that Calabi-Yau (CY)manifolds
form only a small subset of supersymmetric string compac-
tifications. Understanding more general compactifications is
an important goal, both for probing the quantum geometry of
string theory and for obtaining four-dimensionalmodels with
fewer moduli and fewer supersymmetries. Besides compac-
tifications with Ramond-Ramond (RR) fluxes, which are
quite successful in this respect but lack a usable world sheet
formulation, it is desirable to findmodelswith a better grip on
α0 corrections beyond the supergravity regime. Unlike in
heterotic strings, it is not possible to consider type II
compactifications with Neveu-Schwarz–Neveu-Schwarz
(NSNS) three-form flux only, because of the tadpole con-
dition

R
e−2ΦH ∧⋆ H ¼ 0 coming from the equations of

motion.
It leaves the possibility of using nongeometric fluxes;

compactifications of this type have been described as
asymmetric orbifolds of rational tori [1–3], using free-
fermion models [4,5] or as T-folds that are locally geo-
metric and their (generalized) T-duals [6–8]. Studying such
nongeometric fluxes in interacting rather than free world
sheet conformal field theories (CFTs) would allow us to
understand how nongeometric compactifications can be
defined in nontrivial backgrounds. A large class of super-
symmetric compactifications on Calabi-Yau manifolds, in
the stringy regime of negative Kähler moduli, is described
by superconformal field theories constructed by Gepner
using N ¼ ð2; 2Þ minimal models as building blocks
[9,10]. Some asymmetric (0, 2) Gepner models have been
considered in the past, as heterotic compactifications with
nonstandard gauge bundles [11–15]. In contrast type IIA/
IIB asymmetric Gepner models have not been explored in
detail; as we shall see they provide a good starting point for
constructing large classes of nongeometric backgrounds.

Discriminating between abstract world sheet theories
with and without a geometrical target-space interpretation
is quite difficult. We use in this work a simple sufficient
(but not necessary) criterion. Let us consider a compacti-
fication of type IIA or type IIB superstrings (without
orientifolds, D-branes or RR fluxes) such that all space-
time supersymmetry (SUSY) comes from the left-moving
world sheet degrees of freedom. A geometric compactifi-
cation of this sort would exist if the two connections with
torsion ∇ðω�H=2Þ appearing in the supersymmetry
variations of the gravitini gave different G-structures,
requiring nonzero three-form flux; for compact models
this is forbidden by the tadpole condition quoted above.
The inspiration for this article originates from a recent

work [16] where we described fibrations of K3 Gepner
models over a two torus in type II, breaking space-time
supersymmetry from the right movers only. Following our
general argument it implies that, while going around a one
cycle of the base, the K3 fiber undergoes a nongeometric
symmetry twist. The symmetries of theK3 fiber appearing in
the monodromies are actually neither geometric symmetries
nor mirror symmetry. These new nongeometric symmetries
of CY quantum sigma models are the focus of the present
work.We embed them in a larger framework of nongeometric
models based on solvable Calabi-Yau compactifications.
We construct a wide class of asymmetric Gepner models

in type II, using the simple currents formalism [17],
preserving space-time supersymmetry from the left movers,
while the other half is generically broken. This is made
possible by a specific choice of discrete torsion, which
changes in particular the orbifold action on the Kähler
moduli. This leads to many nongeometric compactifica-
tions withN ¼ 1 supersymmetry in four dimensions, and a
reduced moduli space of vacua. We present some examples
based on the quintic to illustrate these features.
In some cases, including those underlying the K3

fibrations over T2 studied in [16], the nongeometric fluxes*israel@lpthe.jussieu.fr
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lead to superconformal field theories isomorphic to the
original ones, albeit of a different nature. These are
generalizations of mirror symmetry of (2,2) models [in
heterotic strings, (0,2) extensions of mirror symmetry
have been considered in [18] and subsequent works]
that take the sigma models out of the realm of CY
compactifications.
Mirror symmetry plays a major role in our understanding

of CY manifolds, both in their physical and mathematical
aspects [19,20]. It generalizes T-duality to CY sigma
models as one exchanges the axial and vector R-
symmetries of the superconformal algebra [21]. The first
concrete realization was obtained by Greene and Plesser
[22] using Gepner models; they have shown that an
orbifold by the largest subgroup of discrete symmetries
preserving space-time supersymmetry (bar permutations)
gives an isomorphic conformal field theory with reversed
right-moving R-charges. It provides an equivalence
between type IIA compactified on some CY and type
IIB on a topologically distinct one, such that their Hodge
diamonds are mirror to each other. Using the gauged linear
sigma model (GLSM) description [23] that includes the
Gepner points, Hori and Vafa gave a proof of mirror
symmetry [24]; in this context the dual models appear
naturally as orbifolds of Landau-Ginzburg (LG) models.
As a special case of the general construction of asym-

metric Gepner models that we present in this work, there
exists a subclass of models such that the axial and vector
R-symmetries for a single minimal model are exchanged;
they are isomorphic as CFTs to the original theory. They
correspond to “hybrid” LG orbifolds with both chiral and
twisted chiral superfields, and hence cannot be lifted to
ordinary Calabi-Yau GLSMs; this is a sign of the non-CY
nature of these new dual models. Following the ideas of
[24] we propose a hybrid GLSM that provides their UV
completion. Given that the map can be applied stepwise to
each and every minimal model until we reach the usual
mirror theory, we give this symmetry the name of fractional
mirror symmetry.
This work is organized as follows. In Sec. II we present a

short overview of simple currents and Gepner models
orbifolds. In Sec. III we provide the general construction
ofN ¼ 1 nongeometric compactifications, and study some
explicit examples based on the quintic. In Sec. IV we define
and study fractional mirror symmetry. Finally in Sec. V we
give the conclusions and explain the relation between the
K3 fibrations over tori of [16] and these new constructions.
Useful facts about N ¼ 2 characters and representations
are given in the appendix.

II. SIMPLE CURRENTS AND GEPNER MODELS

Let us first review briefly the simple current formalism
[25,26], its relation with Gepner models and orbifolds
thereof.

A. Simple currents and discrete torsion

In a conformal field theory a simple current J is a
primary of the chiral algebra whose fusion with a generic
primary gives a single primary: J ⋆ ϕμ ¼ ϕν. This action
defines the monodromy charge of the primary with respect
to the current, Q{ðμÞ ¼ ΔðϕμÞ þ ΔðJ{Þ − ΔðJ{ ⋆ ϕμÞ mod
1; two currents are mutually local if Q{ðJ|Þ ¼ 0. We
consider the extension of a rational CFT by a set of M
simple currents J{. Provided that the simple currents action
has no fixed points, the associated modular-invariant
partition function is

Z¼
X
μ

YM
{¼1

X
b{∈Zn{

χμðqÞχμþβ|b|ðq̄Þδð1ÞðQ{ðμÞþX{|b|Þ; ð1Þ

with J{ ⋆ ϕμ ¼ ϕμþβ{ and n{ being the length of J{. The
symmetric part of the matrix X is determined by the relative
monodromies as X{| þ X|{ ¼ Q{ðJ|Þ, while the antisym-
metric part, discrete torsion, should be such that

gcdðn{; n|ÞX{| ∈ Z: ð2Þ

If the left and right kernels of X are different, the simple-
current-extended modular invariant is asymmetric.

B. Gepner models

A Gepner model for type II superstrings compactified
on a CY threefold is obtained from a tensor product of r
N ¼ ð2; 2Þ minimal models, whose central charges satisfyP

r
n¼1 cn ¼

P
r
n¼1ð3 − 6=knÞ ¼ 9, tensored with a free R2

superconformal theory that represents the space-time part
in the light-cone gauge. One needs to project the theory
onto states with odd-integer left and right R-charges; this
can be rephrased in the simple currents formalism. The
simple currents of the minimal models are primaries with
quantum numbers (j ¼ 0, m, s). These simple currents can
be grouped together with the current for a free fermion into
a simple current J with labels

βJ ¼ ðs0jm1;…; mrjs1;…; srÞ; ð3Þ

where s0 is the fermionic Z4 charge of the R2 factor.
The Gepner modular invariant is obtained as a simple

current extension, using first the sets of currents
fJn; n ¼ 1;…; rg, with

βn ¼ ð2j0;…; 0j0;…; 0; 2|{z}
n-th position

; 0;…; 0Þ ð4Þ

enforcing world sheet supersymmetry, and second the
current J0, with

β0 ¼ ð1j1;…; 1j1;…; 1Þ; ð5Þ
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ensuring the projection onto odd-integer R-charges, hence
space-time supersymmetry. All these simple currents are
mutually local.
In order to write the Gepner model partition function in a

compact way we gather the free-fermion character θs0;2=η
and minimal model characters χjm;s as

χλμðqÞ ¼
θs0;2ðqÞ
ηðqÞ ×

Yr
n¼1

χjnmn;snðqÞ; ð6Þ

where we have grouped the associated quantum numbers as
follows:

λ ¼ ðj1;…; jrÞ and μ ¼ ðs0jm1;…; mrjs1;…; srÞ: ð7Þ
The diagonal modular-invariant partition function of a CY3 compactification at a Gepner point is then given by

Z ¼ 1

2r
1

τ22jηj4
X
λ;μ

X
b0∈ZK

ð−1Þb0δð1Þ
�
QR − 1

2

�Yr
n¼1

X
bn∈Z2

δð1Þ
�
s0 − sn

2

�
χλμðqÞχλμþβ0b0þβlbl

ðq̄Þ; ð8Þ

where QR is the left-moving world sheet R-charge and
K ¼ lcmð4; 2k1;…; 2krÞ. One can check that the right-
moving R-charge Q̄R also takes odd-integer values.

C. Supersymmetric orbifolds and mirror symmetry

Simple currents preserving world sheet and space-time
supersymmetry should be mutually local with respect to the
Gepner model currents fJ0; J1;…; Jrg; see [11]. Let us
consider a generic simple current J with

βJ ¼ ð0j2ρ1;…; 2ρrj0;…; 0Þ; ρn ∈ Z: ð9Þ

Any such current is mutually local with respect to the set
of currents fJng; hence the corresponding extended par-
tition function always preserves world sheet supersym-
metry. Mutual locality with respect to the current J0 (which
ensures odd integrality of the R-charges) requires that

Xr

n¼1

ρn
kn

∈ Z: ð10Þ

If this condition is satisfied one obtains an N ¼ 2 com-
pactification, corresponding to a Calabi-Yau orbifold at a
Gepner point.
Extending a Gepner model with all such supersymmetry-

preserving simple currents (without discrete torsion) gives
the mirror Gepner model, which is such that the right
R-charge Q̄R has opposite sign compared to the original
model; it exchanges the chiral and twisted chiral rings of
the theory, hence the complex structure and Kähler moduli
spaces. This is the basis of the construction of mirror
manifolds by Greene and Plesser [22].

III. NONGEOMETRIC CY COMPACTIFICATIONS

In this section we describe a way to obtain many
nongeometric models starting from a Calabi-Yau compac-
tification at a Gepner point.

A. General method

In order to construct new nongeometric compactifica-
tions we consider extensions of the Gepner model partition
function by simple currents that are not mutually local with
respect to the Gepner model currents. A generic current J
as in Eq. (9) is actually nonlocal with respect to J0; hence
space-time supersymmetry is completely broken (while
world sheet supersymmetry is preserved). Indeed

Q0ðJÞ ¼
Xr
n¼1

ρn
kn

mod 1: ð11Þ

Now comes the key step; there is a choice of discrete
torsion, consistent with Eq. (2) for any fρn ∈ Zg, given by

Xantisym
0J ¼ − 1

2

Xr

n¼1

ρn
kn

; ð12Þ

bringing down the X matrix to a lower-triangular form. Its
only nonzero entries are

XJJ ¼
Xr
n¼1

ρ2n
kn

; XJ0 ¼
Xr

n¼1

ρn
kn

: ð13Þ

This choice allows us to bring back the projection onto
odd-integer left-moving R-charges QR into its origi-
nal form.
The modular-invariant partition function of the

J-extended Gepner model with this choice of discrete
torsion is given by
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Z ¼ 1

2r
1

τ22jηj4
X
λ;μ

X
b0∈ZK

ð−1Þb0δð1Þ
�
QR − 1

2

�

×
X
B∈ZN

δð1Þ
�Xr

n¼1

ρnðmn þ b0 þ ρnBÞ
kn

�Yr
n¼1

X
bn∈Z2

δð1Þ
�
s0 − sn

2

�
χλμðqÞχλμþβ0b0þβlblþβJB

ðq̄Þ; ð14Þ

where QR is the left-moving world sheet R-charge
and the length of the simple current is given by N ¼
lcm ðlcmðρ1; k1Þ=ρ1;…; lcmðρr; krÞ=ρrÞ).1
If some levels kn are even, there may be fixed points

under the simple current action, and multiplicity factors
need to be added accordingly to the partition function. For
simplicity of presentation we assume that we do not
encounter this situation, which does not change the salient
features of the construction; for instance one can take all the
levels kn to be odd.
Thanks to the discrete torsion the projection onto odd-

integer world sheet R-charges, given by the discrete delta
function in the first line, has been restored in the left-
moving sector; hence space-time supersymmetry from the
left movers is preserved. This supersymmetry is generated
by spectral flow of the left-moving N ¼ 2 superconformal
algebra as usual.
Twisted sectors associated with the J extension (i.e.

states with B ≠ 0) can have fractional values of the right-
moving world sheet R-charge Q̄R. Indeed,

Q̄R ≡ 1þ 2B
Xr

n¼1

ρn
kn

mod 2Z; ð15Þ

hence space-time supersymmetry from the right movers is
generically broken; we end up with N ¼ 1 four-
dimensional supersymmetry. Following our general argu-
ment given in the introduction, this construction provides a
whole class of nongeometric quotients of CY sigma models
at Gepner points.
Naturally it is possible to consider a simple current

extension by several such currents, with a discrete torsion
of the form (12) for each of them; these currents may
or may not be mutually local. Discrete torsion with no
components along the “Gepner currents” J0 and Jn
can be added without breaking further space-time
supersymmetry.

B. Some quintic-based examples

We have given a method that allows us to obtain type IIA
or type IIB N ¼ 1 compactifications to four dimensions,
with neither orientifolds nor RR fluxes, starting from
quite generic nonsupersymmetric geometric orbifolds of

Calabi-Yau compactifications at Gepner points (this can be
extended to a wider class of Landau-Ginzburg orbifolds;
see Sec. V). The moduli spaces of such models are
significantly reduced compared to the original N ¼ 2
CY compactifications.
To illustrate this general construction, let us consider

several examples based on the quintic Calabi-Yau. The
quintic is given by the hypersurface

Z5
1 þ Z5

2 þ Z5
3 þ Z5

4 þ Z5
5 ¼ 0 ð16Þ

in P4, the complex variables Zn being homogeneous
coordinates on the complex projective space. This
Calabi-Yau has a unique complexified Kähler modulus t,
whose real part is the volume modulus inherited from the
ambient P4. The complex structure moduli correspond to
deformations of Eq. (16) by monomials of degree five;
there are 101 inequivalent of them.
In the regime ℜðtÞ → −∞, a quantum (2,2) nonlinear

sigma model (NLSM) on the quintic is described by the
Gepner model with k1 ¼ � � � ¼ k5 ¼ 5. Complex structure
deformations correspond to marginal chiral operators of
R-charges QR ¼ Q̄R ¼ 1. They are obtained from a tensor
product of chiral operators in each minimal model, labeled
by an SUð2Þ spin jn, with jn ∈ f0; 1=2;…; kn=2 − 1g,
such that

P
5
n¼1 2jn=kn ¼ 1; they correspond to the mono-

mials Z2j1
1 � � �Z2j5

5 . Twisted chiral states (i.e. chiral with
respect to the left-moving superconformal algebra and
antichiral with respect to the right-moving superconformal
algebra) appear in the twisted sectors of the Gepner
model projection, i.e., with b0 ≠ 0 in the partition function
(8). Explicitly, the complexified Kähler modulus has
2j1 ¼ � � � ¼ 2jn ¼ 1 and b0 ¼ 8.
We consider simple current extensions of the form

discussed in Sec. III, with discrete torsion leading generi-
cally to N ¼ 1 space-time supersymmetry. They are
characterized by the integer-valued five-dimensional vector

ϱ ¼ ðρ1;…; ρ5Þ; ð17Þ

giving the simple current action in each minimal model. We
consider below the salient features of three representa-
tive cases.

1If some of the ρns vanish, the definition of N has to be
modified accordingly; only nonzero entries enter the formula.
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1. ϱ ¼ ð1;2;3;2;1Þ model

On top of the projection onto odd-integer left R-charges,
states in the partition function should satisfy the constraint

m1þ2m2þ3m3þ2m4þm5þ9b0þ19B∈5Z; ð18Þ
see Eq. (14), where the label of the twisted sectors is
B ¼ 0;…; 4. For each of the 101 left chiral operators of
charge QR ¼ 1, one can solve Eq. (18) in a given twisted
sector B.
Furthermore, the right Zkn charge of the nth minimal

model is shifted in the twisted sectors as mn þ b0 → mnþ
b0 þ 2ρnB. For a given spin jn, chiral and antichiral states
minimize the conformal dimension with respect to mn.
Therefore if B ≠ 0 a formerly massless state could
only stay massless if, in each minimal model, either
2ρnB≡ 0 mod 2kn, i.e. if the shift is trivial (thanks to
the periodicity mn ∼mn þ 2kn), or if a formerly chiral or
antichiral state becomes another antichiral or chiral state.
In this particular example, we found that out of the 101

original chiral states of charge QR ¼ Q̄R ¼ 1, correspond-
ing to the complex structure deformations, only 18 oper-
ators remain massless. They all belong to the untwisted
sector B ¼ 0 in this case, and hence are still chiral
operators; this is not a generic feature of the models as
we will see in the next example. The former unique Kähler
modulus of the quintic threefold is lifted, acquiring a string-
scale mass

MK ¼
ffiffiffiffi
2

α0

r
: ð19Þ

In the original Gepner model, the gravitino correspond-
ing to the space-time supersymmetry associated with the
right movers was obtained from the Neveu-Schwarz-
Ramond primary operator with 2j1 ¼ � � � ¼ 2j5 ¼
m1 ¼ � � � ¼ m5 ¼ 0 and b0 ¼ 1. For these quantum num-
bers the constraint (18) singles out the twisted sector B ¼ 4.
Accordingly the right gravitino is now massive, with

Mψμ
¼ 2

ffiffiffiffi
2

α0

r
: ð20Þ

This mass scale is of the same order as massive string states.
It indicates that one cannot reliably study this construction
as a spontaneous N ¼ 2 → N ¼ 1 SUSY breaking from
an effective N ¼ 2 supergravity perspective.

2. ϱ ¼ ð0;0;1;2;3Þ model

Only the last three minimal models are affected by the
simple current extension. The untwisted sector (B ¼ 0)
contains the subset of marginal chiral operators, i.e.
complex structure deformations, that are not projected
out. Some of these, as Z2

3Z4Z2
5, involve only the last three

minimal models; others as Z2
1Z

3
2 involve only the first two

ones; finally operators as Z1Z2
4Z

2
5 contain both. Overall

there are 20 such marginal chiral operators.

In this model, the twisted sectors (B ≠ 0) also contain
marginal operators, of a peculiar nature. While they are
chiral with respect to the left-moving superconformal
algebra, they are neither chiral (c) nor antichiral (a) with
respect to the right-moving one. In terms of the right-
moving chiral or antichiral nature in the individual minimal
model factors, one gets

(i) B ¼ 1 sector: one operator from Z3Z2
4Z

2
5, of (c/a,c/a,

a,c,a) chirality on the right;
(ii) B ¼ 2 sector: two operators, e.g. from Z2Z2

3Z4Z5 of
(c/a,c,a,a,a) right chirality;

(iii) B ¼ 3 sector: two operators, e.g. from Z2Z3Z2
4Z5 of

(c/a,c,c,a,a) right chirality;
(iv) B ¼ 4 sector: two operators, e.g. from Z2Z3Z4Z2

5 of
(c/a,c,a,c,c) right chirality.

Hence all these twisted sector marginal operators are
semichiral operators. Anticipating the discussion of the
next section, there is no “duality frame” with respect to
fractional mirror symmetry such that all massless operators
are either chiral or twisted chiral.

3. ϱ ¼ ð0;0;0;2;2Þ model

While analyzing the amount of space-time supersym-
metry, one observes that some models preserve more
supersymmetry than one can naively think; this example
is one of them.
As written previously, in the original Gepner model

the gravitino from the NSR sector is characterized by
2j1 ¼ � � � ¼ 2j5 ¼ m1 ¼ � � � ¼ m5 ¼ 0 and b0 ¼ 1. In the
present case, the corresponding state belongs to the twisted
sector B ¼ 2. While the first three minimal models are in
the right Ramond ground state with ðj; m; sÞ ¼ ð0; 1; 1Þ,
the last two minimal models have to be in the Ramond
ground state of opposite R-charge, i.e. with ðj; m; sÞ ¼
ð0;−1;−1Þ, in order to get a massless operator.
In ordinary constructions of space-time supersymmetric

compactifications, one imposes that the diagonal R-current
has a spectrum of odd-integer charges, such that it can be
exponentiated to a spin field mutually local with the
physical states. As Eq. (15) indicates, the model that we
consider does not satisfy this property on the right.
Nevertheless there exists a different realization of space-
time supersymmetry for the right-moving degrees of free-
dom. One can check that the supersymmetry operator that
we have just constructed is mutually local with the other
operators, owing both to the left-moving Gliozzi-Scherk-
Olive projection QR ∈ 2Zþ 1 and to the projection
coming from the simple current extension, namely
2ðm4 þm5 þ 2b0Þ þ 8B ∈ 5Z.

IV. FRACTIONAL MIRROR SYMMETRY

The last example of asymmetric Gepner model that
we studied in the previous section was quite intriguing, as
space-time supersymmetry among the right-moving
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degrees of freedom was realized even though the right R-
charge Q̄R was not integer valued. In some cases the
similarity between the geometric compactifications and the
nongeometric ones goes beyond the amount of preserved
supersymmetry.

A. Elementary simple current extensions and fractional
mirror symmetry

A particular type ofJ extension with discrete torsion has
indeed remarkable properties, as not only the space-time
supersymmetry is the same as the original Calabi-Yau
compactification at a Gepner point, but the whole super-
conformal field theories are isomorphic to each other.
Extending a Gepner model partition function with an
elementary simple current of labels

βJ ¼ ð0j2; 0;…; 0j0;…; 0Þ; ð21Þ

amounts, while taking into account the twisted sectors and
discrete torsion, to replacing in the original partition
function the antiholomor-phic character for the first minimal
model with the character of opposite Zk1 charge, namely

χj1m1þb0;s1þb0þ2b1
ðq̄Þ →J-ext

χj1−m1−b0;s1þb0þ2b1
ðq̄Þ: ð22Þ

In the right Neveu-Schwarz sector, there is an equivalence
between the map (22) and changing the sign of the right R-
charge associated with the first minimal model. In the right
Ramond sector it is also true if one changes the right-
moving space-time chirality at the same time. As super-
conformal field theories the original model and the new one
are therefore isomorphic.
Starting from a type IIA Calabi-Yau compactification at a

Gepner point, we obtain a type IIB theory on a Gepner model
whose right-moving R-charge associated with the first
minimal model has been reversed; with respect to the original
right-movingdiagonal R-current the spectrumofR-charges is
not integer valued; hence the model is not associated with a
Calabi-Yau. To put it differently the quotient does not
preserve the holomorphic three form. These two models
are isomorphic, and hence describe the same physics. This
fractional mirror symmetry can be applied stepwise until one
obtains the mirror description in the usual sense.

B. Hybrid Landau-Ginzburg models

A minimal model is the IR fixed point of a LG model
with superpotential W ¼ Zk [27]. Its mirror, obtained by a
Zk quotient, is a LG model for a twisted chiral superfield ~Z
with a twisted superpotential ~W ¼ ~Zk. In the present
context we are considering a similar quotient acting
inside a LG orbifold, with a discrete torsion that disen-
tangles partly the two orbifolds—the diagonal one
ensuring R-charge integrality and the Zk1 quotient
giving the fractional mirror. We end up with a hybrid

Landau-Ginzburg orbifold containing both a twisted chiral
superfield ~Z1 and chiral superfields Z2;…;r; hence it cannot
be related to a Calabi-Yau GLSM.
This quantum equivalence need not be restricted to the

Gepner points in the Calabi-Yau moduli space. To illustrate
this point let us consider again the quintic. Away from the
Gepner point, we expect that for every hypersurface in P4

of the form

z51 þ
X

αabcza2z
b
3z

c
4z

5−a−b−c
5 ¼ 0 ð23Þ

a fractional mirror with respect to the chiral superfield Z1

exists. In other words the complex structure deformations
that preserve the Z5 symmetry z1 → e2iπ=5z1 are compat-
ible with this duality. Kähler deformations are not com-
patible with it, as can be seen explicitly at the Gepner
point; hence this symmetry is not manifest in the large-
volume limit.
When these conditions are met the N ¼ 2 superconfor-

mal algebra can be split into the algebra coming from the
LG model W ¼ Z5

1 and from the LG model for the other
multiplets. This allows us to dualize Z1 into a twisted chiral
multiplet, giving a more general hybrid LG orbifold with
superpotential W ¼ P

αabcZa
2Z

b
3Z

c
4Z

5−a−b−c
5 and twisted

superpotential ~W ¼ ~Z5
1. One expects also that other acci-

dental splittings of the superconformal algebra, correspond-
ing to orbifolds of tensor products of Landau-Ginzburg
models of more generic form [for instance if the LG
potential splits as W ¼ GðZ1; Z2Þ þHðZ3; Z4; Z5Þ],
should give rise to different fractional mirror symmetries.
On the Calabi-Yau side, Landau-Ginzburg orbifolds and

Calabi-Yau NLSMs describe the infrared dynamics of (2,2)
gauged linear sigma models in different regimes, contin-
uously connected by varying the Fayet-Iliopoulos param-
eters, i.e. giving vacuum expectation values to marginal
twisted chiral operators in the infrared description. It would
be very helpful to have then a UV completion of the dual
theory, which can be taken out of the hybrid Landau-
Ginzburg regime where both formulations become overtly
equivalent. We propose such a description below.

C. Fractional mirror symmetry and GLSMs

For concreteness we consider again the (2,2) gauged
linear sigma model for the quintic threefold. This two-
dimensional gauge theory contains a Uð1Þ vector super-
field, five chiral superfields Z1;…;5 of charge one and a
chiral superfield P of charge −5. They interact through
the superpotential W ¼ PGðZnÞ, where G ¼ P

Z5
n is the

degree five homogeneous polynomial defining the CY
hypersurface; furthermore the theory contains a twisted
superpotential ~W ¼−tΣ, t¼ r− iθ being the complexified
Fayet-Iliopoulos parameter and Σ the field-strength super-
field. In the regime ℜðtÞ ≪ 0, or equivalently when p ≠ 0,
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if flows to the diagonalZ5 orbifold of the Landau-Ginzburg
model with superpotential W ¼ GðZnÞ.
Using the approach of Hori and Vafa to mirror symmetry

[24], one can dualize only the chiral superfield Z1 to a
twisted chiral superfield ~Y. One expects to get a hybrid
GLSMwith superpotential and twisted superpotential (with
Ĝ ¼ Z5

2 þ � � �Z5
5):

W ¼ PĜðZnÞ; ~W ¼ Σð ~Y − tÞ þ e− ~Y; ð24Þ

where the second term in the twisted superpotential comes
from world sheet instantons.
Following for instance the discussion in [28], a geomet-

rical NLSM regime of this model, if it existed, would be
characterized by nonzero three-form flux H; this seems at
odds with the tadpole condition recalled in the introduction.
To settle this potential issue let us analyze classically what
the predictions of the GLSM corresponding to (24) are. The
vacua are determined by the scalar potential:

Vðzn; ~y; p; σÞ ¼ jĜðznÞj2 þ jpj2
X5
n¼2

j∂nĜðznÞj2 þ jσ − e−~yj2

þ e2

2
ðjz2j2 þ � � � þ jz5j2 − 5jpj2 þℜð~yÞ −ℜðtÞÞ2 þ jσj2ðjz2j2 þ � � � þ jz5j2 þ 52jpj2Þ: ð25Þ

A geometrical “phase” would be characterized by jzij ≠ 0.
It implies that p ¼ 0 by transversality of Ĝ, and also that
σ ¼ 0 in the vacuum as the superfields Zn are minimally
coupled to the vector superfield; see the last term in (25).
The twisted F-term (third term) shows a runaway behavior
as the vacuum is obtained for ℜð~yÞ → þ∞. As a conse-
quence the D-term condition (last but one term) cannot be
satisfied. Hence this two-dimensional theory has no regime
with a NLSM description; this result, which is in accor-
dance with the supergravity tadpole condition, relies
crucially on the world sheet instanton contribution in
e− ~Y to the twisted superpotential.
On the contrary there exists a hybrid Landau-Ginzburg

phase. Setting p ≠ 0, which breaks spontaneously the gauge
group to Z5, implies that zn ¼ 0 by transversality of Ĝ and
that σ ¼ 0. Then the twisted F-term enforces ℜð~yÞ → þ∞
as above. Finally, the D-term condition shows that jpj is
driven to very large values. The effective superpotential for
the chiral superfields Zn is then of the form W ∼ ĜðZnÞ.
Regarding the twisted chiral superfield, it was argued in [24]
that the fundamental field after the duality in such a compact
model is given by e− ~Y ¼ ~X5. This conjecture was tested in
the context of ordinary mirror symmetry by computing the
masses of A-type or B-type boundary states saturating the
Bogomol'nyi-Prasad-Sommerfield bound; the same argu-
ment cannot be used in the hybrid models, but we expect
that the same field redefinition can be carried over. It is not
single valued, being invariant under ~X → e2iπ=5 ~X, hinting
towards the orbifold structure that we obtained in the hybrid
Landau-Ginzburg description. Clearly, a better understand-
ing of the low-energy dynamics of this theory would be
helpful in making the correspondence between the hybrid
GLSMs and the hybrid LG models more precise.

V. CONCLUSIONS AND DISCUSSION

In this work we have constructed a wide class of
compactifications of type IIA and type IIB superstring

theories, starting from Calabi-Yau compactifications at
Gepner points, whose generic features are N ¼ 1 space-
time supersymmetry (with neither orientifolds nor fluxes)
and a reduced moduli space of vacua.
As was explained in the introduction, such com-

pactifications preserving only N ¼ 1 four-dimensional
supersymmetry are necessarily nongeometric, as the ten-
dimensional supercharges, related respectively to the left-
moving and right-moving world sheet degrees of freedom,
are not on the same footing. Technically, the origin of this
nongeometrical nature was the introduction of a very
specific discrete torsion, whose role was to turn a non-
supersymmetric Gepner model orbifold into an N ¼ 1

theory.
One may argue that, after all, these models are almost

geometric as the discrete torsion only plays a role in the
twisted sectors. This is not actually correct, as the tensor
product of minimal models becomes a CY sigma model at a
Gepner point only after the extension by the Gepner
currents J0 and Jn has been implemented. The discrete
torsion has an effect in the twisted sectors of the J0
extension, giving the compactification a nongeometric
nature. In particular the quotient has a different action
on twisted chirals, i.e. on Kähler moduli, compared to the
corresponding geometric orbifold.
As a special case of this construction, we have obtained

new quantum symmetries associated with superconformal
field theories lying in the moduli space of Calabi-Yau
compactifications that we have called fractional mirror
symmetry. Unlike the usual mirror symmetry which is
understood everywhere in the CY moduli space, these
new dualities are visible only when accidental discrete
symmetries become manifest, in the Landau-Ginzburg
regime. We have proposed a gauged linear sigma model
description of the dual theory that provides a UV com-
pletion and can be taken out of this regime but does not
exhibit a geometrical phase, as expected.

NONGEOMETRIC CALABI-YAU COMPACTIFICATIONS AND … PHYSICAL REVIEW D 91, 066005 (2015)

066005-7



The asymmetric K3 fibrations over T2 that we have given
in [16] can be rephrased in light of the construction exposed
in this article. These models, which we obtained considering
some modular properties of N ¼ 2 characters, can be
interpreted as fibrations of K3 at Gepner points over a
two torus, with a nongeometric monodromy twist around
each one cycle of the base. For this purpose one considers
two elementary J extensions as (21), acting respectively in
the first and second factors of a K3 Gepner model, and as
Zk1 and Zk2 shifts along the two torus. These models are
close relatives of T-folds [6] and interpolate between the K3
sigma model in the large torus limit, and a “half-mirror” K3
in the opposite small-volume limit. As the world sheet
realization of space-time supersymmetry on the right-
moving side is different in the theories appearing in these
two limits, the interpolating model naturally breaks this half
of space-time supersymmetry. Furthermore, as shown in [6],
at the minimum of the four-dimensional supergravity poten-
tial, which is where the on-shell world sheet description is
defined, only fields invariant under the symmetry used in the
twisting stay massless. It explains why, in many cases, all the
K3 moduli are lifted in this construction. As there are no
massless Ramond-Ramond fields in these models, it is
possible to add D-branes alone to these compactifications
without running into a problematic RR tadpole. One expects
that the associated open string spectra are nonsupersym-
metric, yet the potential phenomenological implications of
such models are worth exploring in detail.
Finally it would be interesting to find whether these

symmetries are related to the Mathieu moonshine, which
suggests that K3 compactifications have an underlyingM24

symmetry whose origin is not fully understood [29].
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APPENDIX: N ¼ 2 CHARACTERS

The characters of the N ¼ ð2; 2Þ minimal model with
c ¼ c̄ ¼ 3 − 6=k, i.e. the supersymmetric SUð2Þk=Uð1Þ
gauged Wess-Zumino-Witten model, are conveniently
defined through the characters χjm;s of the ½SUð2Þk−2 ×
Uð1Þ2�=Uð1Þk bosonic coset, obtained by splitting the
Ramond and Neveu-Schwarz sectors according to the
fermion number mod 2. Defining q ¼ e2πiτ and
z ¼ e2πiν, these characters are determined implicitly
through the identity

χjk−2ðνjτÞθs;2ðν − ν0jτÞ ¼
X
m∈Z2k

χjm;sðν0jτÞθm;k

�
ν − 2ν0

k

����τ
�
;

ðA1Þ

in terms of the theta functions of dsuð2Þk:
θm;kðτ; νÞ ¼

X
n

qkðnþm
2kÞ2zkðnþm

2kÞ; m ∈ Z2k ðA2Þ

and χjk−2 the characters of the affine algebra dsuð2Þk−2:
χjk−2ðνjτÞ ¼

θ2jþ1;kðνjτÞ − θ−ð2jþ1Þ;kðνjτÞ
iϑ1ðνjτÞ

: ðA3Þ

Highest-weight representations are labeled by ðj; m; sÞ,
corresponding to primaries of SUð2Þk−2×Uð1Þk×Uð1Þ2.
The following identifications apply:

ðj; m; sÞ ∼ ðj; mþ 2k; sÞ ∼ ðj; m; sþ 4Þ

∼
�
k
2
− j − 1; mþ k; sþ 2

�
ðA4Þ

as the selection rule 2jþmþ s ¼ 0 mod 2. The half-
integer modded spin j is restricted to 0 ≤ j ≤ k

2
− 1. The

conformal weights of the superconformal primary states are

Δ ¼ jðjþ 1Þ
k

−m2

4k
þ s2

8
for − 2j ≤ m − s ≤ 2j ðA5aÞ

Δ ¼ jðjþ 1Þ
k

−m2

4k
þ s2

8
þm − s − 2j

2
for 2j ≤ m − s ≤ 2k − 2j − 4 ðA5bÞ

and their R-charge reads

QR ¼ − s
2
þm

k
mod 2: ðA6Þ
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(i) Chiral primary states are obtained for m ¼ 2j and
s ¼ 0 (thus an even fermion number). Their con-
formal dimension reads

Δ ¼ QR

2
¼ j

k
: ðA7Þ

Equivalently they are of the form ðj; m; sÞ ¼
ðj;−2ðjþ 1Þ; 2Þ.

(ii) Antichiral primary states are obtained for m ¼
2ðjþ 1Þ and s ¼ 2 (thus an odd fermion number).
Their conformal dimension reads

Δ ¼ −QR

2
¼ 1

2
− jþ 1

k
: ðA8Þ

Equivalently they are of the form ðj; m; sÞ ¼
ðj;−2j; 0Þ.
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