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In this work we use the gauge/gravity duality to study the anisotropy in the heavy quark potential in
strongly coupled N ¼ 4 super–Yang Mills (SYM) theory (both at zero and nonzero temperature) induced
by a constant and uniform magnetic field B. At zero temperature, the inclusion of the magnetic field
decreases the attractive force between heavy quarks with respect to its B ¼ 0 value and the force associated
with the parallel potential is the least attractive force. We find that the same occurs at nonzero temperature
and, thus, at least in the case of strongly coupled N ¼ 4 SYM, the presence of a magnetic field generally
weakens the interaction between heavy quarks in the plasma.
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I. INTRODUCTION

The holographic correspondence [1–3] is a powerful
nonperturbative tool that has been widely used to inves-
tigate the properties of strongly coupled non-Abelian gauge
theories with a large number of colors. In fact, its relevance
to the physics of the strongly coupled quark gluon plasma
formed in relativistic heavy ion collisions [4] became
evident after the discovery [5] that strongly coupled
(spatially isotropic) plasmas that can be described by
holographic methods behave as nearly perfect fluids where
the shear viscosity to entropy density ratio, η=s, is close to
the estimates obtained within relativistic hydrodynamic
modeling of heavy ion collisions (for a recent discussion
see [6]). Other applications of the correspondence to the
physics of the quark-gluon plasma (QGP) have been
reviewed in [7].
Given the recent interest regarding the effects of strong

electromagnetic fields in the physics of strong interactions
[8], it is natural to investigate whether holography can also
be as insightful in this case. For instance, it has been shown
in [9] that in a presence of a magnetic field, B, the shear
viscosity tensor of strongly coupled N ¼ 4 super–Yang
Mills (SYM) theory becomes anisotropic and the shear
viscosity coefficient in the direction of the magnetic field
violates the η=s ¼ 1=ð4πÞ result [5].
Motivated by the recent lattice work on the effects of

strong external (Abelian) magnetic fields on the QCD
heavy quark potential at zero temperature done in [10], in
this paper we study the effect of a constant magnetic field
on the heavy quark potential in strongly coupled N ¼ 4
SYM theory both at zero and nonzero temperature T. The
magnetic field distinguishes the different orientations of the
QQ̄ pair axis with respect to direction of the magnetic field

(defined here to be z axis) and, thus, there is now a
perpendicular potential, V⊥

QQ̄, for which the pair’s axis is on

the transverse plane xy and also a parallel potential, V∥
QQ̄,

for which the QQ̄ axis coincides with that of the magnetic
field. Clearly, other orientations are possible but here we
focus only on these two cases. Also, in this paper we will
not solve the Schrödinger equation associated with this
anisotropic potential (for recent studies of the effect of
magnetic fields on the masses of bound states see, for
instance, [11–13]).
These heavy quark potentials (both at zero and nonzero

temperature) in the gauge theory are defined in this paper
via their corresponding identification involving the appro-
priate Wilson loops

lim
T →∞

hWðC∥Þi ∼ eiV
∥
QQ̄

T lim
T →∞

hWðC⊥Þi ∼ eiV
⊥
QQ̄

T ; ð1Þ

where C∥ is a rectangular timelike contour of spatial length
L∥ in the z direction and extended over T in the time
direction while C⊥ is the corresponding contour of spatial
length L⊥ in the x direction.1 We follow D’Hoker and
Kraus’ construction of the holographic dual of N ¼ 4
SYM theory in the presence of a magnetic field [14–16]
and perform the calculations of the loops defined above in
the background given by the asymptotic Ads5 holographic
Einstein-Maxwell model to be reviewed below.
This paper is organized as follows. In the next section we

review the necessary details about the holographic dual of
N ¼ 4 SYM theory in the presence of a magnetic field at
zero temperature and perform the calculation of the parallel
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1Due to the matter content of N ¼ 4 SYM theory, the Wilson
loop also contains the coupling to the six SUðNÞ adjoint scalars
XI . In this paper we neglect the dynamics of the scalars and the
holographic calculation of the Wilson loop is defined in five
dimensions.
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and perpendicular potentials and forces in this case. The
effects of the breaking of SOð3Þ spatial invariance induced
by the magnetic field on the heavy quark potential and the
interquark force at nonzero temperature are studied in
Sec. III. Our conclusions are presented in Sec. IVand other
minor details of the calculations can be found in
Appendixes A–B. We use a mostly plus metric signature
and natural units ℏ ¼ kB ¼ c ¼ 1.

II. THE HOLOGRAPHIC SETUP AT ZERO
TEMPERATURE

In this section we review the properties of the asymptotic
Ads5 background corresponding to the holographic dual of
strongly coupled N ¼ 4 SYM theory in a magnetic field
worked out by D’Hoker and Kraus in [14–16]. We focus
here on the T ¼ 0 properties of the model.
The holographic model involves the Einstein-Maxwell

action in the bulk2:

S ¼ 1

16πG5

Z
M5

d5x
ffiffiffiffiffiffi−gp �

Rþ 12

l2
− 1

4
FμνFμν

�
þ SGHY þ SCT þ SCS; ð2Þ

where l is the asymptotic anti–de Sitter (AdS) radius, SGHY
is the Gibbons-Hawking-York action [17,18] and SCT is the
counterterm action, which is constructed using the holo-
graphic renormalization procedure [19–22]. For the kind of
calculations we carry out in the present work, these two
boundary actions will not come into play and, therefore, we
do not write them explicitly. The topological Chern-Simons
action, SCS, vanishes on shell for the kind of backgrounds
we consider here but it can be used to fix the relation
between the bulk magnetic field and the magnetic field in
the gauge theory by evaluating the Uð1Þ R-symmetry
current anomaly in 4D N ¼ 4 SYM3 with an external
magnetic field and comparing to the variation of (2) under a
gauge transformation, which reduces to the gauge variation
of SCS. Then one concludes that the external magnetic field
in SYM is

ffiffiffi
3

p
times the bulk magnetic field [14]. In what

follows, we discuss some of the details of the numerical
evaluation of the anisotropic background at T ¼ 0 obtained
in [15]. Then we proceed to employ it to evaluate the
parallel and perpendicular heavy quark potentials and
forces in Secs. II A–II B, respectively.
We begin by considering the following ansatz for the line

element in light-cone coordinates4 [15]

ds2 ¼ dr2

P2ðrÞ þ 2PðrÞdudvþ e2WðrÞðdx2 þ dy2Þ;

F2 ¼ Bdx∧dy; ð3Þ

where the boundary of the asymptotically Ads5 space is
located at r → ∞. A simple gauge choice for the Maxwell
field giving the electromagnetic field strength tensor
specified above is A1 ¼ Bxdy. Maxwell’s equations,
∇μFμν ¼ 0, are then automatically satisfied.
The Einstein’s equations obtained from the action (2) are

Rμν − 1

2
gμνR ¼ 8πG5Tμν; ð4Þ

where

Tμν ≡ −2ffiffiffiffiffiffi−gp δSmatter

δgμν

¼ 1

16πG5

�
gαβFμαFνβ − gμν

�
− 12

l2
þ 1

4
F2
αβ

��
ð5Þ

is the stress-energy tensor of the gauge field Aμ. After
taking the trace of (4) it is possible to express Einstein’s
equations in a more convenient form,

Rμν þ
gμν
3

�
12

l2
þ 1

4
FαβFαβ

�
− 1

2
gαβFμαFνβ ¼ 0: ð6Þ

The set of linearly independent components of Einstein’s
equations is given by the rr, uv and xx components of (6),
respectively,5

W00 þ P00

2P
þW0 2 þ P0 2

4P2
þ P0W0

P
− 1

6P2

�
12þ B2

2
e−4W

�
¼ 0; ð7Þ

P00

2P
þ P0 2

2P2
þ P0W0

P
− 1

3P2

�
12þ B2

2
e−4W

�
¼ 0; ð8Þ

W00 þ 2W0 2 þ 2P0W0

P
− 1

3P2
ð12 − B2e−4WÞ ¼ 0; ð9Þ

where the prime denotes the derivative with respect to the
radial direction, r.
Now we derive some useful equations from (7)–(9).

First, we obtain a constraint by taking the combination
P2½ð8Þ þ ð9Þ − ð7Þ�,

P2W0 2 þ P0 2

4
þ 2PP0W0 − 1

2

�
12 − B2

2
e−4W

�
¼ 0: ð10Þ

2Our definition for the Riemann tensor has an overall minor
sign in comparison to that used in [14] and we have also changed
the normalization of the Maxwell stress tensor term in the action.

3Consider writing the fields of N ¼ 4 in terms of N ¼ 1 with
an Uð1Þ R symmetry and assigning R charge equal 1 to the N2

gauginos [14].
4See Appendix A. 5From here on we adopt units where l ¼ 1.
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Taking the combinations, 2P½2ð7Þ − ð8Þ�, 3P2

2
ð9Þ − ð10Þ,

and 2P2e2W ½2ð8Þ þ ð9Þ�, we obtain, respectively,

P00 þ 2P0W0 þ 4PðW00 þW0 2Þ ¼ 0; ð11Þ

3P2W00

2
þ 2P2W0 2 − P0 2

4
þ PP0W0 þ B2

4
e−4W ¼ 0; ð12Þ

ðP2e2WÞ00 ¼ 24e2W: ð13Þ

We use the coupled ordinary differential equations (ODEs)
(11)–(12) to obtain the numerical solutions for WðrÞ and
PðrÞ. For this sake, we also need to specify the initial
conditions to start the numerical integration of these ODEs.
We are going to work with infrared boundary conditions
which we shall specify in a moment. First, notice we can
formally solve (13) for P2 as follows:

P2ðrÞ ¼ 24e−2WðrÞ
Z

r

0

dξ
Z

ξ

0

dλe2WðλÞ; ð14Þ

where we fixed the integration constants by imposing that
in the infrared P2ð0Þ ¼ ðP2Þ0ð0Þ ¼ 0 [15]. Besides (14),
another equation that will be useful in the determination of
the parameters of the infrared expansions we take below for
WðrÞ and PðrÞ is given by the combination6 2½ð10Þ þ 12Þ�,

3½ðP2Þ0W0 þ P2ðW00 þ 2W0 2Þ� − 12þ B2e−4W ¼ 0: ð15Þ

Let us now work out the infrared expansions for WðrÞ
and PðrÞ. Following [15], we are interested in numerical
solutions of the dynamical ODEs (11)–(12) that interpolate
between AdS3 × R2 for small r in the infrared and Ads5 for
large r in the ultraviolet. As discussed in [14], this
corresponds to a renormalization group flow between a
conformal field theory (CFT) in (1þ 1) dimensions in the
infrared and a CFT in (3þ 1) dimensions in the ultraviolet,
which is the expected behavior of SYM theory in the
presence of a constant magnetic field [14]. Then for small r
we can take the following infrared expansions:

WðrÞ ¼ ra þ ωr2a þOðr3aÞ; ð16Þ

P2ðrÞ ≈ 12r2½1 − 2ra þ ð2 − 2ωÞr2a�

×

�
1þ 4ra

2þ 3aþ a2
þ 2ð1þ ωÞr2a
1þ 3aþ 2a2

�
; ð17Þ

where (17) was obtained by substituting (16) into (14).
Now we substitute (16)–(17) into (15) and set to zero the
coefficients of each power of r in the resulting expression,
obtaining

Oðr0Þ∶ B ¼ 2
ffiffiffi
3

p
; ð18Þ

OðraÞ∶ 9a2 þ 9a − B2 ¼ 0 ⇒ a ¼ aþ ≈ 0.758; ð19Þ

Oðr2aÞ∶ ω ≈ −0.634; ð20Þ

where we have chosen the positive root in (19) in order to
obtain a finite Wð0Þ and used (18)–(19) to obtain (20).
Substituting (19)–(20) into (16)–(17), we determine the
first terms in the infrared expansions forWðrÞ,W0ðrÞ, PðrÞ
and P0ðrÞ, which are enough to initialize the numerical
integration of the coupled ODEs (11)–(12). We start the
integration in the deep infrared at some small r ¼ rmin and
integrate up to some large r ¼ rmax near the boundary. The
numerical results for the metric functions WðrÞ and PðrÞ
appearing in (3) are shown in Fig. 1 (these results match
those in [15]).
The ultraviolet asymptotics for this numerical solution is

given by ðe2WðrmaxÞ;PðrmaxÞÞ≈ð1.12365;1.00002Þ×2rmax.
Therefore, in order to have an asymptotically Ads5 space at
the ultraviolet cutoff, r ¼ rmax, we rescale ðe2WðrÞ; PðrÞÞ ↦
ðe2W̄ðrÞ; P̄ðrÞÞ, where e2W̄ðrÞ ¼ e2WðrÞ=1.12365 and P̄ðrÞ ¼
PðrÞ=1.00002. With this metric rescaling, the physical
constant magnetic field in the gauge theory reads7 B ¼ffiffiffi
3

p
B=1.12365 ≈ 5.34.
These results were originally obtained in Ref. [15]. In the

following we use them to evaluate the parallel and
perpendicular heavy quark potential at zero temperature
in the presence of a constant magnetic field.

A. Holographic Wilson loop ∥ ~B at T ¼ 0

Now we determine the parallel heavy quark potential
from the vacuum expectation value of a rectangular Wilson
loop defined by a contour C∥ with its spatial length along
the magnetic field direction. We follow the holographic
prescription proposed in [23–26] (see also [27,28] and
references therein for more recent discussions) to evaluate
the rectangular loops in SYM in the strong t’Hooft coupling
limit, λ ≫ 1, with a large number of colors, N → ∞, in
terms of a classical Nambu-Goto action in the background
discussed in the previous section.
For this sake, it is better to recast the rescaled version of

the metric (3) as follows8:

ds2 ¼ dr2

P̄2ðrÞ þ P̄ðrÞð−dt2 þ dz2Þ þ e2W̄ðrÞðdx2 þ dy2Þ;

ð21Þ

6We note that PðrÞ enters in this equation only through P2 and
ðP2Þ0 ¼ 2PP0, which can be immediately read off from (14).

7This rescaling changes the x and y coordinates in (3) as
follows: ðx; yÞ ↦ ðx; yÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1.12365
p

. Furthermore, as discussed
after Eq. (2), the extra factor of

ffiffiffi
3

p
relates the bulk magnetic field

and the magnetic field in the gauge theory.
8See Appendix A.
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where P̄ðrÞ and W̄ðrÞ are the rescaled numerical functions
discussed in the previous section. For the sake of notation
simplicity, since in the remainder of this section we are
going to use only these rescaled functions, we omit from
now on the bars in their notation.
The rectangular Wilson loop at the boundary of the

asymptotically Ads5 space (21) parallel to the magnetic
field is extended along the time direction by T and has
spatial length L∥, which denotes the heavy quark-antiquark
spatial separation in the direction of the magnetic field (we
take T ≫ L∥). We choose to place the probe quark Q at
−ẑL∥=2 and the Q̄-probe charge at þẑL∥=2. Attached to
each of the probe charges in the pair there is a string that
sags in the interior of the bulk of the space (21). As usual
[23–26], in the limit T → ∞ we consider a classical U-
shaped configuration that extremizes the Nambu-Goto
action and has a minimum at some value r0 of the radial
coordinate in the interior of the bulk.
The parametric equation of the two-dimensional string

world sheet swept out in the five-dimensional bulk is
formally given by

Xμ∶ Internal Space → Target Space ðBulkÞ
ðτ; σÞ ↦ Xμðτ; σÞ ¼ xμ; ð22Þ

and, in static gauge τ → t; σ → z, the target space coor-
dinates over the string world sheet become

Xrðt; zÞ ¼ r; Xt ¼ t; Xx ¼ 0;

Xy ¼ 0; Xz ¼ z; ð23Þ

where Xrðt; zÞ ¼ r is a constraint equation. For loops
where T ≫ L∥, the static string configuration is invariant
under translations in time and one can write Xrðt; zÞ ¼
XrðzÞ ¼ r. For the sake of notation simplicity, we take a
slight abuse of language and write simply r ¼ rðzÞ for this
constraint equation. Therefore, the static gauge condition
can be summarized as follows:

ðτ; σÞ → ðt; zÞ ⇒ Xμðt; zÞ ¼ ðrðzÞ; t; 0; 0; zÞ: ð24Þ

The pullback or the induced metric over the string world
sheet in the numerical background (21) is defined by

γab ¼ gμν∂aXμ∂bXν; a; b ∈ fτ; σg; ð25Þ

with components

γtz ¼ γzt ¼ 0; ð26Þ

γtt ¼ −PðrðzÞÞ; ð27Þ

γzz ¼
_r2ðzÞ

P2ðrðzÞÞ þ PðrðzÞÞ; ð28Þ

where the dot denotes the derivative with respect to z. The
square root of minus the determinant of the induced metric
reads

ffiffiffiffiffiffi−γp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2ðzÞ

PðrðzÞÞ þ P2ðrðzÞÞ
s

; ð29Þ

and, therefore, the Nambu-Goto action for this QQ̄ con-
figuration is

SNG ¼ 1

2πα0

Z
d2σ

ffiffiffiffiffiffi−γp

¼ T
2πα0

Z
L∥=2

−L∥=2
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2ðzÞ

PðrðzÞÞ þ P2ðrðzÞÞ
s

; ð30Þ

where α0 ¼ l2
s and ls is the string length.

Since the integrand in (30), LNG, does not depend
explicitly on z, HNG defined below is a constant of motion
in the z direction
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FIG. 1. Numerical solution for the functions WðrÞ and PðrÞ that appear in the background metric at zero temperature (3), which
interpolates between AdS3 × R2 in the infrared (small r) and Ads5 in the ultraviolet (large r).
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HNG ≡ ∂LNG

∂ _r _r − LNG ¼ −P2ðrðzÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2ðzÞ

PðrðzÞÞ þ P2ðrðzÞÞ
q ¼ C: ð31Þ

We may determine C by evaluating (31) at the minimum of
rðzÞ where the U-shaped string configuration has a mini-
mum in the interior of the bulk, rðz ¼ 0Þ ¼ r0, where
_rð0Þ ¼ 0 and find

C ¼ −P2ðr0Þffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ðr0Þ

p : ð32Þ

Substituting (32) into the square of (31) and solving for
_rðzÞ, one obtains

_rðzÞ ¼ drðzÞ
dz

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P3ðrðzÞÞ

�
P2ðrðzÞÞ
P2ðr0Þ

− 1

�s
; ð33Þ

which implies that

L∥ðr0Þ ¼ 2

Z
∞

r0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P3ðrÞ½ P2ðrÞ

P2ðr0Þ − 1�
q ; ð34Þ

where we used that for the U-shaped string configuration
described before, rð�L∥=2Þ → ∞, since the probe charges
are localized at the boundary of the space (21), and we also
took into account the fact that the U-shaped contour of
integration in the rz plane is symmetric with respect to the r
axis, with rðz ¼ 0Þ ¼ r0.
The bare parallel heavy quark potential for this staticQQ̄

configuration reads

V∥
QQ̄;bareðr0Þ ¼

SNG
T

����
on-shell

¼ 1

2πα0

Z
L∥=2

−L∥=2
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P4ðrðzÞÞ
P2ðrð0ÞÞ

s

¼ 1

πα0

Z
∞

r0

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðrÞ

P2ðrÞ − P2ðr0Þ

s
; ð35Þ

where we used (33) to evaluate the on-shell Nambu-Goto
action (30). Now we need to regularize (35) by subtracting
the divergent self energies of the infinitely heavy probe
chargesQ and Q̄. These contributions correspond to strings
stretching from each probe charge at the boundary to the
deep interior of the bulk and, in practice, one identifies the
ultraviolet divergences to be subtracted by looking at
the dominant contribution in the integrand of (35) in the
limit r → ∞,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðrÞ

P2ðrÞ − P2ðr0Þ

s
⟶
r→∞ 1ffiffiffiffiffiffiffiffiffi

PðrÞp ����
r→∞

∼
1ffiffiffiffiffi
2r

p : ð36Þ

Therefore, the sum of the self energies of the probe charges
is given by

2 × V0 ¼ 2 ×
1

2πα0

Z
∞

0

drffiffiffiffiffi
2r

p ; ð37Þ

and the renormalized parallel heavy quark potential is

V∥
QQ̄ðr0Þ ¼ V∥

QQ̄;bareðr0Þ − 2V0

¼ 1

πα0

"Z
∞

r0

dr

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðrÞ

P2ðrÞ − P2ðr0Þ

s
− 1ffiffiffiffiffi

2r
p

!

−
Z

r0

0

drffiffiffiffiffi
2r

p
#
: ð38Þ

In order to obtain the curve V∥
QQ̄ðL∥Þ, one may construct

a table with pairs of points ðL∥ðr0Þ; V∥
QQ̄ðr0ÞÞ by taking

different values of the parameter r0 in Eqs. (34) and (38),
and then numerically interpolate between these points.
Before doing this, let us first obtain the corresponding
expressions for the perpendicular potential V⊥

QQ̄ðL⊥Þ. After
that, we will make a comparison between the heavy quark
potentials and forces obtained in the presence of the
magnetic field and the standard isotropic SYM results
discussed in [23].

B. Holographic Wilson loop ⊥ ~B at T ¼ 0

Now we consider a rectangular Wilson loop with spatial
length L⊥ located in the plane perpendicular to the
magnetic field direction at the boundary of the space
(21). We place the Q-probe charge at −x̂L⊥=2 and the
Q̄-probe charge atþx̂L⊥=2. For thisQQ̄ configuration, it is
convenient to define the following static gauge:

ðτ; σÞ → ðt; xÞ ⇒ Xμðt; xÞ ¼ ðrðxÞ; t; x; 0; 0Þ: ð39Þ

Following the same general steps discussed in detail in
the previous section, one obtains

L⊥ðr0Þ ¼ 2

Z
∞

r0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ðrÞe2WðrÞ

h
PðrÞe2WðrÞ

Pðr0Þe2Wðr0Þ − 1
ir ; ð40Þ

V⊥
QQ̄ðr0Þ

¼ 1

πα0

"Z
∞

r0

dr

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2WðrÞ

PðrÞe2WðrÞ − Pðr0Þe2Wðr0Þ

s
− 1ffiffiffiffiffi

2r
p

1
CA

−
Z

r0

0

drffiffiffiffiffi
2r

p
#
: ð41Þ
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We note that both the (renormalized) parallel and
perpendicular potentials are regularized by the same sub-
traction term, 2 × V0, in Eq. (37).
In practice, for the numerical integrations to be per-

formed in Eqs. (34), (38), and (40)–(41), the boundary at
r → ∞ is numerically described by rmax, in accordance
with the numerical solution obtained for the metric (21).
Our plots for the parallel and perpendicular potentials at
T ¼ 0 are shown on the left panel of Fig. 2. One can see
that for the T ¼ 0 anisotropic holographic setup considered
in this section the magnitudes of both the parallel and
perpendicular potentials at nonzero B are enhanced with
respect to the B ¼ 0 isotropic case (given by ∼ − 0.228=L
[23]), though the parallel potential is more affected by the
magnetic field. Also, for very short distances

ffiffiffiffi
B

p
L ≪ 1,

both potentials converge to the isotropic potential [23] since
the effects from the magnetic field become negligible in this
limit. On the right panel of Fig. 2 we show the forces
associated with these potentials. One can see that the
magnetic field generally decreases the magnitude of
the attractive force between the quarks in comparison to
the isotropic scenario and that the force experienced by the
quarks becomes the weakest when the pair axis is parallel to
the direction of the magnetic field.
Moreover, in the absence of any other scale in the theory

besides B (and the interquark distance L), the actual value
of B is immaterial. This situation changes when one
switches on the temperature and, in this case, there is a
new dimensionless scale given by the ratio B=T2. In fact,
we shall see in the next section that in this case one is able

to tune the anisotropy in the heavy quark potential by
varying the value of the magnetic field.

III. THE HOLOGRAPHIC SETUP AT FINITE
TEMPERATURE

In this section we study the interplay between finite
temperature and magnetic field effects on the heavy quark
potential in an N ¼ 4 SYM plasma. For the sake of
completeness, here we review some of the details regarding
the derivation of the numerical anisotropic metric at finite
temperature obtained in [14]. We then proceed to employ it
to determine how the parallel and perpendicular potentials
are affected by the magnetic field and temperature.
We use the following ansatz9 [14],

ds2 ¼ dr̄2

hðr̄Þ − hðr̄Þdt2 þ e2Wðr̄Þðdx2 þ dy2Þ þ e2Gðr̄Þdz2;

F2 ¼ Bdx∧dy; ð42Þ
where the boundary of the asymptotically Ads5 space is
taken to be at r̄ → ∞ and the black hole horizon is located
at r̄ ¼ r̄H, which is defined by the largest root of the
equation hðr̄HÞ ¼ 0. Moreover, note thatWðr̄HÞ andGðr̄HÞ
are both finite.
The set of linearly independent components of Einstein’s

equations is given by the r̄ r̄, tt, xx and zz components of
(6), respectively,
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0.30

0.25

0.20

0.15
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0.00
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F
Q
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FIG. 2 (color online). Anisotropy induced by a magnetic field B in N ¼ 4 SYM at T ¼ 0 (in this plot α0 ¼ 1) in the heavy quark
potential (left panel) and the corresponding force (right panel). The solid black lines denote the isotropic result ∼ − 0.228=L [23], the
dashed red lines correspond to the perpendicular potential V⊥

QQ̄ and force F⊥
QQ̄ ¼ −dV⊥

QQ̄=dL, and the dotted-dashed blue lines

correspond to the parallel potential V∥
QQ̄ and force F∥

QQ̄ ¼ −dV∥
QQ̄=dL.

9See Appendix A for a discussion about the coordinates used
in this section.

R. ROUGEMONT, R. CRITELLI, AND J. NORONHA PHYSICAL REVIEW D 91, 066001 (2015)

066001-6



G00 þG0 2 þ 2W00 þ 2W0 2 þ h00

2h
þ h0

h

�
W0 þ G0

2

�

− 4

h

�
1þ B2

24
e−4W

�
¼ 0; ð43Þ

h00 þ h0ðG0 þ 2W0Þ − 8

�
1þ B2

24
e−4W

�
¼ 0; ð44Þ

W00 þ 2W0 2 þW0
�
h0

h
þG0

�
− 4

h

�
1 − B2

12
e−4W

�
¼ 0;

ð45Þ

G00 þG0 2 þ G0
�
h0

h
þ 2W0

�
− 4

h

�
1þ B2

24
e−4W

�
¼ 0:

ð46Þ

Now we derive some useful equations from (43)–(46).
First, we obtain a constraint by taking the combination
−h½ð43Þ − 1

2h ð44Þ − 2ð45Þ–ð46Þ�,

h0ðG0 þ 2W0Þ þ 2hðW0 2 þ 2W0G0Þ − 12

�
1 − B2

24
e−4W

�
¼ 0: ð47Þ

Taking the combination h½ð45Þ − ð46Þ�, and using the
constraint (47) to eliminate B2e−4W from Eqs. (44)–(46),
we obtain, respectively,

hðW00 −G00 þ 2W0 2 −G0 −G0W0Þ þ h0ðW0 −G0Þ

þ B2

2
e−4W ¼ 0; ð48Þ

h00 þ 5ðG0 þ 2W0Þ
3

h0 þ 4ðW0 2 þ 2W0G0Þ
3

h − 16 ¼ 0;

ð49Þ

W00 þ 2

3
W0 2 − 1

3

�
h0

h
þ 5G0

�
W0 þ 12 − 2h0G0

3h
¼ 0; ð50Þ

G00 þG02 þ 2

3

�
2h0

h
þ 5W0

�
G0 þ 2W02

3
þ 2h0W0 − 24

3h
¼ 0:

ð51Þ
Equations (47)–(48) will be employed in the determination
of the near-horizon boundary conditions required to ini-
tialize the numerical integration of the coupled ODEs
(49)–(51).
Following [14], it is convenient to rescale the radial

coordinate in such a way that the horizon is at 1, i.e., r̄ ↦ ~r,
such that ~rH ¼ 1. Therefore, after this rescaling hð1Þ ¼ 0.
One can also rescale the time coordinate [14] so that

h0ð1Þ ¼ 1; ð52Þ

and the Hawking temperature, therefore, reads

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g0~t ~tg~r ~r 0

q
4π

����
~r¼1

¼ h0ð1Þ
4π

¼ 1

4π
: ð53Þ

Rescaling x, y and z, one can also set Wð1Þ ¼ Gð1Þ ¼ 0
and it is possible to show that

W0ð1Þ ¼ 4 − b2

3
; G0ð1Þ ¼ 4þ b2

6
; ð54Þ

where b is the magnetic field expressed in these rescaled
coordinates. The numerical solutions will asymptote to

hð~r → ∞; bÞ → ~r2; e2Wð~r→∞;bÞ → ωðbÞ~r2;
e2Gð~r→∞;bÞ → gðbÞ~r2; ð55Þ

where ωðbÞ and gðbÞ are functions that can be determined
numerically. The conformal boundary metric, therefore,
reads

ds2bdy ∼ −d~t2 þ ωðbÞðd~x2 þ d~y2Þ þ gðbÞd~z2;
F2 ¼ bd~x∧d~y; ð56Þ

where ∼ denotes conformal equivalence. One can write the
boundary metric (56) in the usual (conformal) Minkowski
form by rescaling the spatial coordinates in order to absorb
the factors ofωðbÞ and gðbÞ such that the physical magnetic
field in the gauge theory is [14]

B ¼
ffiffiffi
3

p b
ωðbÞ : ð57Þ

Now we work out the near-horizon expansions for10

hðrÞ, WðrÞ, and GðrÞ. In order to avoid the singular point
of the ODEs located at the horizon, one must start the
numerical integration slightly above it. For this sake, we
take near-horizon Taylor expansions XðrÞ ¼ Xð1Þþ
X0ð1Þðr − 1Þ þ � � �, with some small but nonzero
ðr − 1Þ → rmin, where X ¼ fh;W;Gg. Since now
Xð1Þ ¼ 0, the near-horizon boundary conditions are given
by Xðrstart ≡ rmin þ 1Þ ≈ X0ð1Þrmin, with the numerical
integration starting at rstart ¼ rmin þ 1, slightly above the
horizon, and going up to some rmax near the boundary. The
near-horizon boundary conditions are then

10For the sake of notation simplicity, we omit from now on the
tilde in the rescaled coordinates.
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hðrstartÞ ¼ rmin; h0ðrstartÞ ¼ 1;

WðrstartÞ ¼
�
4 − b2

3

�
rmin; W0ðrstartÞ ¼ 4 − b2

3
;

GðrstartÞ ¼
�
4þ b2

6

�
rmin; G0ðrstartÞ ¼ 4þ b2

6
: ð58Þ

The numerical results for ln hðrÞ, WðrÞ, and GðrÞ in the
metric (42) are shown in Fig. 3 for b ¼ 2.7. The numerical
solutions interpolate between BTZ ×R2 in the infrared and
Ads5 in the ultraviolet.11 These results were originally
obtained in [14] and we have checked that we can numeri-
cally reproduce the entropy density found in that work.
We remark that for b ≥ 2

ffiffiffi
3

p
the numerical solutions for

the geometry are not asymptotically Ads5 [14]. Thus, we
restrict our calculations to values of b < 2

ffiffiffi
3

p
. It is

important to emphasize, however, that this limitation on
the values of b does not imply in any practical limitation on
the values of the physical magnetic field in the gauge
theory, B, which is related to b via Eq. (57). This is so
because, as one can check numerically,ωðbÞ is a decreasing
function of b and ωðb → 2

ffiffiffi
3

p Þ → 0, such that one can
cover in practice all values of the physical magnetic field in
the interval ½0;∞Þ.
Also, as in the zero temperature case, in order to have an

asymptotically Ads5 space at the ultraviolet cutoff,
r ¼ rmax, we see from (55) that one needs to do the
following rescaling: ðe2Wðr;bÞ;e2Gðr;bÞÞ↦ðe2W̄ðr;bÞ;e2Ḡðr;bÞÞ,

where e2W̄ðr;bÞ ¼ e2Wðr;bÞ=ωðbÞ and e2Ḡðr;bÞ ¼ e2Gðr;bÞ=
gðbÞ. For the sake of notation simplicity, since in the
remainder of this work we are going to use only the
rescaled functions e2W̄ðr;bÞ and e2Ḡðr;bÞ, we omit from now
on the bars in their notation. We can now use this back-
ground to evaluate the parallel and perpendicular heavy
quark potentials in an N ¼ 4 SYM plasma in the presence
of a constant magnetic field.

A. Anisotropic heavy quark potential for T ≠ 0

The holographic calculation of the T ≠ 0 Wilson loops
used in the definition of the parallel and perpendicular
potentials follows the same procedure done before in the
case where T ¼ 0. The boundary conditions for each string
configuration are the same as before and the overall shape
of the string in the bulk is the U-shaped profile [26]. The
only difference is that when T ≠ 0 the background metric
to be used is the numerically found anisotropic black brane
in Eq. (42) according to the discussion above. Therefore, it
is easy to show that the interquark separation and (renor-
malized) heavy quark potential for the parallel case are

L∥ðr0Þ ¼ 2

Z
∞

r0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrÞe2GðrÞ½ hðrÞe2GðrÞ

hðr0Þe2Gðr0Þ − 1�
r ; ð59Þ

V∥
QQ̄ðr0Þ ¼

1

πα0

�Z
∞

r0

dr

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrÞe2GðrÞ

hðrÞe2GðrÞ − hðr0Þe2Gðr0Þ

s
− 1

!

−
Z

r0

0

dr

�
ð60Þ

while for the perpendicular setup one finds

L⊥ðr0Þ ¼ 2

Z
∞

r0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrÞe2WðrÞ½ hðrÞe2WðrÞ

hðr0Þe2Wðr0Þ − 1�
r ; ð61Þ

V⊥
QQ̄ðr0Þ ¼

1

πα0

�Z
∞

r0

dr

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrÞe2WðrÞ

hðrÞe2WðrÞ − hðr0Þe2Wðr0Þ

s
− 1

!

−
Z

r0

0

dr

�
; ð62Þ

where r0 is the point in the bulk where the U-shaped
configuration has its minimum. Note that we used the same
(temperature independent) subtraction scheme employed at
T ¼ 0 to define the renormalized potentials at finite
temperature. These potentials are proportional to the
(regularized) area of the Nambu-Goto world sheet and
they are interpreted in the strongly coupled gauge theory as

0 20 40 60 80 100
0

2

4

6

8

10

r

FIG. 3 (color online). Numerical solutions for the functions
ln hðrÞ (solid black line), WðrÞ (dashed red line), and GðrÞ
(dotted-dashed blue line) in (42) for b ¼ 2.7. The numerical
background interpolates between BTZ × R2 in the infrared (small
r) and Ads5 in the ultraviolet (large r).

11The Bañados-Teitelboim-Zanelli (BTZ) black hole solution
[29] is asymptotically Ads3 and, thus, at zero temperature one
recovers the solution discussed in Sec. II.

R. ROUGEMONT, R. CRITELLI, AND J. NORONHA PHYSICAL REVIEW D 91, 066001 (2015)

066001-8



the difference in the total free energy of the system due to
the addition of the heavy QQ̄ pair [30]. While one can may
argue that one should remove an entropylike contribution
from this free energy difference [31,32], in this paper we
shall not perform such a subtraction and, for simplicity, we
define this free energy difference (which equals the
regularized Nambu-Goto action) in each case to be the
corresponding heavy quark potential at finite temperature.
As done before, in the numerical integrations to be

performed in Eqs. (59)–(62), the boundary at r → ∞ is
numerically described by rmax. At finite temperature, there
is a maximum value of LT above which there are other
string configurations that may contribute to the evaluation
of the Wilson loops at finite temperature [27] besides the
semiclassical U-shaped string configuration. This implies
that one cannot compute the potentials with the setup
described here when LT is large. In fact, one can show that
the inclusion of the magnetic field makes this problem
worse, as it is shown in Fig. 4 below. In this plot we show
LT as a function of the appropriate rescaled horizon yH (see
Appendix B for the definition of this variable) for the
isotropic case (solid black line) and for the parallel (dotted-
dashed blue line) and perpendicular (dashed red curve)
cases computed using B=T2 ¼ 50 (left panel) and B=T2 ¼
1000 (right panel). When yh → 0 the curves follow the
isotropic SYM case while one can see that the maximum of
LT is considerably decreased if the magnetic field is
sufficiently intense and this effect is stronger for the
perpendicular configuration. This implies that the region
of applicability of the U-shaped string world sheet
decreases with the applied magnetic field and, thus, other
string configurations must be taken into account when
computing the string generating functional for sufficiently

large LT [27]. This problem was investigated in the case of
an isotropic N ¼ 4 SYM plasma in [33] but the extension
of these calculations to the anisotropic scenario studied
here will be left as a subject of a future study. Nevertheless,
for the values of LT in which the U-shaped configuration is
dominant our results for the potential are trustworthy and
we shall discuss them below.
Also, the fact that the maximum of LT decreases with the

applied magnetic field implies that the imaginary part of the
potential, computed for instance within the world sheet
fluctuation formalism [28,34], may be enhanced by the
magnetic field and this would affect the thermal width of
heavy quarkonia in a strongly coupled plasma.
The combined effects from nonzero temperature and

magnetic field on the heavy quark potential (left panel) and
the corresponding force between the quarks (right panel)
can be seen in Fig. 5. We found that the anisotropy in the
heavy quark potential (and the force) induced by the
magnetic field only becomes relevant for very large values
of the field. In fact, in Fig. 5 we have set B=T2 ¼ 1000 to
better illustrate the effects. The solid black lines correspond
to the isotropic result for the potential VB¼0

QQ̄ and its

respective force, the dashed red lines correspond to the
perpendicular potential V⊥

QQ̄ and perpendicular force, and

the dotted-dashed curves correspond to the parallel potential
V∥
QQ̄ and parallel force (in this plot α0 ¼ 1). By comparing

Figs. 5 and 2 one can see that, roughly, the overall effect of
the temperature is to shift the parallel and perpendicular
potentials upwards with respect to the isotropic result.
However, the pattern found at T ¼ 0 regarding the corre-
sponding forces between the quarks is maintained, i.e., the
force experienced by the quarks is theweakest when the pair
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0.00

0.05

0.10

0.15

0.20

0.25

yH

L
T

T 2 50

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

yH

L
T

T 2 1000

FIG. 4 (color online). Interquark separation LT versus the rescaled horizon yH (see Appendix B). In the left panel B=T2 ¼ 50while for
the right panel B=T2 ¼ 1000. For both panels the solid black line corresponds to the isotropic SYM case while the dashed red line
(dotted-dashed blue line) corresponds to the case of anisotropic SYM with QQ̄ axis perpendicular (parallel) to the magnetic field axis.
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axis is aligned with the magnetic field. Therefore, at least in
the case of strongly coupled N ¼ 4 SYM, we find that the
inclusion of a magnetic field generally weakens the attrac-
tion between heavy quarks in the plasma.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have studied how the inclusion of a
constant magnetic field B affects the interaction between
heavy QQ̄ pairs in strongly coupled N ¼ 4 SYM theory
both at zero and finite temperature by computing rectan-
gular Wilson loops using the holographic correspondence.
The magnetic field makes the heavy quark potential and the
corresponding force anisotropic and we found that the
attraction between the heavy quarks weakens in the
presence of the magnetic field (both at T ¼ 0 and
T ≠ 0). Although, in practice, in the model considered
here this effect only becomes relevant when B=T2 is
extremely large [9,35].
We note that Ref. [36] studied the anisotropy in the

heavy quark potential induced by a nontrivial axion field
in the bulk [37] and found a reduction in the binding energy
of the QQ̄ pair. This result is consistent with ours even
though the source of anisotropy used in [36] is different than
the one used here (the constant magnetic field). This
agreement between different anisotropic holographic models
has also been found to hold in the case of transport coef-
ficients since the shear viscosity coefficient along the direc-
tion of anisotropy computed in the axion-induced model [38]
and in Ref. [9] display the same qualitative behavior.
One may think that results in this paper give support to

the idea that in a strongly coupled plasma deconfinement is

facilitated by the inclusion of a magnetic field. However,
such a conclusion may only be properly drawn in the case
where the underlying gauge theory is not conformal at T ¼
0 and B ¼ 0. In fact, the lattice results of Ref. [10] show
that in QCD in a magnetic field at T ¼ 0 the absolute value
of the Coulomb coupling in the direction of the magnetic
field is enhanced with respect to its vacuum value while this
coupling is suppressed in the case perpendicular to the
magnetic field. On the other hand, the string tension
perpendicular to the field is enhanced with respect to its
vacuum value while the string tension parallel to the field is
suppressed. This illustrates how complicated the effects of
a magnetic-field-induced anisotropy can be in a gauge
theory with a mass gap.
It is interesting to see that the relative behavior we found

between the perpendicular and parallel potentials in
strongly coupled SYM qualitatively agrees with the per-
turbative calculation carried out in [39] for the Coulomb-
like part of the quark-antiquark potential in QCD at zero
temperature, with the absolute value of the perpendicular
potential being suppressed with respect to the potential in
the direction of the magnetic field, which in turn is
consistent with the behavior found on the lattice [10].
However, notice that SYM and QCD are very different
theories in the vacuum and that, in particular, there is no
confinement in SYM while in QCD for large quark-
antiquark separations the potential becomes linear in the
quark-antiquark separation (in the absence of dynamical
quark flavors), instead of Coulomb-like.
Moreover, even for the Coulomb-like part of the QCD

quark-antiquark potential at zero temperature, the overall
behavior is different than what we have found here for the

0.00 0.02 0.04 0.06 0.08 0.10

20

15

10

5

LT

VQ Q

T

T 2 1000

0.02 0.03 0.04 0.05 0.06 0.07 0.08
300

250

200

150

100

50

0

LT

FQ Q

T2

T2 1000

FIG. 5 (color online). Anisotropy induced by a strong magnetic field B=T2 ¼ 1000 in the heavy quark potential (left panel) and the
corresponding force (right panel) experienced by aQQ̄ pair in a strongly coupledN ¼ 4 SYM plasma. The solid black lines correspond
to the isotropic result VB¼0

QQ̄ and isotropic force FB¼0
QQ̄ ¼ −dVB¼0

QQ̄ =dL, the dashed red lines correspond to the perpendicular potential V⊥
QQ̄

and perpendicular force F⊥
QQ̄ ¼ −dV⊥

QQ̄=dL, and the dotted-dashed curves correspond to the parallel potential V∥
QQ̄ and force

F∥
QQ̄ ¼ −dV∥

QQ̄=dL. In this plot α0 ¼ 1.
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strongly coupled N ¼ 4 SYM theory. In fact, in our case
both the parallel and perpendicular potentials are enhanced
with respect to the isotropic, zero magnetic field case. Also,
both the parallel and perpendicular forces between the
quark and the antiquark are suppressed with respect to the
B ¼ 0 case. In fact, if one rewrites the potential as
V ¼ −αð ffiffiffiffi

B
p

LÞ=L ¼ −ð0.228þ fð ffiffiffiffi
B

p
LÞÞ=L, one can

see from Fig. 2 that in the ultraviolet limit L → 0 the
potentials and forces go back to the vacuum result of
Ref. [23]. However, for finite quark-antiquark separations,
the effect of the magnetic field becomes relevant and the
suppression observed for the parallel and perpendicular
forces with respect to the isotropic, zero magnetic field case
may be then related to some type of screening effect due to
an effective change in the “coupling constant” αð ffiffiffiffi

B
p

LÞ due
to the presence of the magnetic field.
It would be interesting to study modifications of the

holographic setup addressed here and consider systems that
are not conformal at T ¼ 0 and B ¼ 0. For instance,
consider a confining theory at zero temperature and finite
magnetic field with confinement scale Λ. In this case, there
is already a relevant dimensionless ratio B=Λ2 and, for
instance, one can study how the mass gap of the theory is
affected by the presence of the magnetic field and also how
the area law of the rectangular Wilson loop becomes
anisotropic and can be used to define a string tension
for the heavy quark potential that depends on the angle
between the QQ̄ pair and the magnetic field direction.
Such a model could be easily constructed following the

bottom up studies in [40–44] this time involving a dynami-
cal metric, a scalar field, and a vector field in the bulk. The
parallel and perpendicular potentials computed in this non-
conformal model could be more easily compared to the
lattice QCD study of Ref. [10]. Moreover, since such models
are tuned to describe some of the thermodynamical proper-
ties of the strongly coupled QCD plasma found on the lattice
[45], after the inclusion of the magnetic field, one could
directly study in these models how the external field affects
the deconfinement transition [46,47] and also the role played
by the paramagnetic behavior of QCD matter [48] on the
determination of other quantities, which also has been
studied on the lattice [49–51]. Moreover, one could also
investigate in such a model how the external field modifies
other dynamical observables [7] that could be relevant to the
phenomenology of the QGP formed in heavy ion collisions.
We hope to address these questions in the near future.
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APPENDIX A: COORDINATE
TRANSFORMATIONS

In this appendix we list the different coordinate systems
used in this paper and how one may write the metric of
Ads5 spacetime in each one of them. A common way of
expressing the Ads5 metric in the context of the holo-
graphic correspondence is through the explicitly conformal
coordinate system below:

ds2 ¼ l2

U2
ðdU2 − dt2 þ dx2 þ dy2 þ dz2Þ; ðA1Þ

where the boundary of the Ads5 space is atU ¼ 0. Defining
the coordinate transformation

r̄≔
l2

U
; ðA2Þ

one may rewrite the Ads5 metric as follows:

ds2 ¼ l2

r̄2
dr̄2 þ r̄2

l2
ð−dt2 þ dx2 þ dy2 þ dz2Þ; ðA3Þ

where the boundary of the Ads5 space is now at r̄ → ∞.
This coordinate system is the one used in [14] and in
Sec. III to obtain the finite temperature solutions.
Also, through the coordinate transformation

r≔
r̄2

2l
¼ l3

2U2
; ðA4Þ

one can write the Ads5 metric as

ds2 ¼ l2

4r2
dr2 þ 2r

l
ð−dt2 þ dx2 þ dy2 þ dz2Þ; ðA5Þ

where the boundary is at r → ∞. We can further define the
light-cone coordinates

u≔
zþ tffiffiffi

2
p ; v≔

z − tffiffiffi
2

p ; ðA6Þ

in terms of which (A5) is rewritten as follows:

ds2 ¼ l2

4r2
dr2 þ 4r

l
dudvþ 2r

l
ðdx2 þ dy2Þ: ðA7Þ

This coordinate system is the one used in [15] and in Sec. II
to study the zero temperature solution of the model.

APPENDIX B: WILSON LOOPS IN N ¼ 4 SYM

For the sake of completeness, in this appendix we give a
brief review of the holographic computation of rectangular
Wilson loops in SYM at finite temperature [25,26] without
magnetic fields. We closely follow the discussions in

ANISOTROPIC HEAVY QUARK POTENTIAL IN … PHYSICAL REVIEW D 91, 066001 (2015)

066001-11



Sec. VA of Ref. [28]. At finite T and B ¼ 0, the back-
ground giving a holographic description of thermal SYM is
the Ads5-Schwarzschild metric

ds2 ¼ l2

r̄2fðr̄Þ dr̄
2 − r̄2fðr̄Þ

l2
dt̄2 þ r̄2

l2
ðdx̄2 þ dȳ2 þ dz̄2Þ;

fðr̄Þ ¼ 1 − r̄4H
r̄4

; ðB1Þ

where the boundary is at r̄ → ∞ and the horizon is at
r̄ ¼ r̄H. Rescaling r̄ ≕ 4r̄Hðr − 3=4Þ, ðt̄; x̄; ȳ; z̄Þ ≕
ðt; x; y; zÞ=4r̄H and adopting units where l ¼ 1, one
rewrites (B1) as follows:

ds2 ¼ dr2

ðr − 3
4
Þ2fðrÞ −

�
r − 3

4

�
2

fðrÞdt2 þ
�
r − 3

4

�
2

d~x2;

fðrÞ ¼ 1 − 1

½4ðr − 3
4
Þ�4 ; ðB2Þ

where the boundary is at r → ∞ and the horizon is now at
r ¼ 1. From (B2), the Hawking temperature reads

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−g0ttgrr 0

p
4π

����
r¼1

¼ 1

4π
; ðB3Þ

which is the same constant temperature obtained before in
Eq. (53) for the magnetic backgrounds. Indeed, one can
check numerically that the magnetic backgrounds at finite
temperature derived in Sec. III converge for the metric (B2)
in the limit of zero magnetic field, as it should be.
The formal expressions for the interquark distance and

the heavy quark potential (we set α0 ¼ 1 below) as
functions of the parameter r0 are given by12

LðT≠0Þ
QQ̄ ðr0Þ ¼ 32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4r0 − 3Þ4 − 1

q Z
∞

r0

×
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ð4r − 3Þ4 − 1�½ð4r − 3Þ4 − ð4r0 − 3Þ4�
p ;

ðB4Þ

VðT≠0Þ
QQ̄ ðr0Þ ¼

1

π

�Z
∞

r0

dr

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4r − 3Þ4 − 1

ð4r − 3Þ4 − ð4r0 − 3Þ4

s
− 1

!

−
Z

r0

0

dr

�
: ðB5Þ

Defining the new integration variable R≔ 4r − 3 and also
the constant R0 ≔ 4r0 − 3, we rewrite (B4)–(B5) as
follows:

LðT≠0Þ
QQ̄ ðR0Þ ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4
0 − 1

q Z
∞

R0

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR4 − 1ÞðR4 − R4

0Þ
p ; ðB6Þ

VðT≠0Þ
QQ̄ ðR0Þ ¼

1

4π

�Z
∞

R0

dR

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 − 1

R4 − R4
0

s
− 1

�
− R0 − 3

�
:

ðB7Þ

Defining now y≔ R=R0 and also yH ≔ 1=R0, one rewrites
(B6)–(B7) as follows:

LðT≠0Þ
QQ̄ ðyHÞ ¼ 8yH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y4H

q Z
∞

1

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy4 − y4HÞðy4 − 1Þ

p ;

ðB8Þ

VðT≠0Þ
QQ̄ ðyHÞ¼

1

4πyH

"Z
∞

1

dy

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y4−y4H
y4−1

s
−1

!
−1−3yH

#
:

ðB9Þ
Let us denote the integrals in (B8)–(B9) by I1 and I2,
respectively. In what follows, we express these integrals in
terms of Gaussian hypergeometric functions, by using the
following integral representation:

2F1ða; b; c; zÞ

¼ ΓðcÞ
ΓðbÞΓðc − bÞ

Z
1

0

dxxb−1ð1 − xÞc−b−1ð1 − zxÞ−a;

ðB10Þ

which is valid for Re½c� > Re½b� > 0 and jzj < 1.
Defining the new integration variable x≔ y−4, one

obtains for the integral in (B8)

I1 ¼
Z

∞

1

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy4 − y4HÞðy4 − 1Þ

p
¼ 1

4

Z
1

0

dxx−1=4ð1 − xÞ−1=2ð1 − xy4HÞ−1=2

¼ 1

4

Γð3=4ÞΓð1=2Þ
Γð5=4Þ 2F1

�
1

2
;
3

4
;
5

4
; y4H

�

≈ 0.5992F1

�
1

2
;
3

4
;
5

4
; y4H

�
: ðB11Þ

For the integral in (B9),

I2 ¼
Z

∞

1

dy

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y4 − y4H
y4 − 1

s
− 1

!

¼ 1

4

Z
1

0

dxx−5=4½ð1 − xÞ−1=2ð1 − xy4HÞ1=2 − 1�; ðB12Þ
12For instance, one may obtain these expressions by replacing

hðrÞ → ðr − 3=4Þ2fðrÞ and e2WðrÞ → ðr − 3=4Þ2 in Eqs. (61)–
(62).
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we employ the following regularization scheme13 in order
to allow the use of the integral representation (B10):

I reg
2 ¼ 1

4
lim
λ→0

Z
1

0

dxx−5=4þλ½ð1 − xÞ−1=2ð1 − xy4HÞ1=2 − 1�

¼ 1

4
lim
λ→0

�
Γð−1=4þ λÞΓð1=2Þ

Γð1=4þ λÞ 2F1

×

�
− 1

2
;− 1

4
þ λ;

1

4
þ λ; y4H

�
þ 4

1 − 4λ

�

≈ −0.5992F1

�
− 1

2
;− 1

4
;
1

4
; y4H

�
þ 1: ðB13Þ

Substituting (B11) into (B8) and (B13) into (B9), one
obtains, respectively,

LðT≠0Þ
QQ̄ ðyHÞ ≈ 4.792yH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y4H

q
2F1

�
1

2
;
3

4
;
5

4
; y4H

�
;

ðB14Þ

VðT≠0Þ
QQ̄ ðyHÞ ≈ − 0.048

yH
2F1

�
− 1

2
;− 1

4
;
1

4
; y4H

�
− 3

4π
;

ðB15Þ

with jy4Hj < 1. Equations (B14)–(B15) were employed to
obtain numerically the parametric SYM curve in Fig. 5.
As a final remark, we mention that the values of yH

considered in the parametric plots shown in Fig. 5 were
restricted values below ymax

H , which is the value of yH where
LT reaches its maximum value.
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