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I. INTRODUCTION

It is well known (see, e.g., [1]) that in a four-dimensional
space-time, different supersymmetry multiplets are repre-
sented by different superfields, and hence different field
theory models exist. The simplest one is a minimal scalar
multiplet described by the chiral and antichiral superfields
that are well studied being the basic ingredients of the
Wess-Zumino model and many other field theories [2,3].
Another well-studied important example is a vector multi-
plet described by the real scalar superfield that represents
itself as a basic ingredient for supergauge theories such
as super-QED and super-Yang-Mills theory (for different
aspects of supergauge theories, see [1–3] and many other
textbooks). These models, although they are most studied
within different contexts, do not exhaust the set of physically
interesting theories.
In this paper, we consider another supersymmetry

multiplet, that is, the tensor multiplet. Originally inspired
by the paper [4], this tensor multiplet was elaborated in [5],
using a spinor chiral superfield. As it was shown in [5], this
multiplet allows the consideration of a new supergauge
model and is responsible for a topological mass term when
it is coupled to a real gauge scalar superfield. (In the
superfield language, it is represented by a spinor chiral
superfield that was originally inspired by the paper [4] and
has been introduced in [5] where it was shown to
correspond to the so-called tensor multiplet and to allow
for introducing, first, a new supergauge model, and second,
a topological mass term in the case of the coupling of the
spinor gauge superfield to the usual real gauge scalar
superfield.) Another more interesting feature of this model
is that the gauge invariant strength, corresponding to spinor
chiral and antichiral superfields, is just a linear superfield,

different from the chiral one, that occurs for the real scalar
superfield [1]. While in [5] only the free theory has been
considered, we study here its coupling to a chiral scalar
matter. Classical aspects of this model were discussed in
[6]. An alternative coupling for the linear superfield and
tensor multiplet has been discussed in [7], where some of
its string-related aspects were considered (for applications
of this multiplet see also the references therein). Other
important issues related to tensor multiplets were consid-
ered in [8]; also, beside the standard tensor multiplet
discussed in [5], improved tensor multiplets were intro-
duced for both the massless [9] and massive [10] cases.
Using a superfield effective potential methodology

[11–14] previously developed, we calculate the one-loop
superfield effective potential for a theory involving the
coupling of the spinor gauge superfield with the usual
scalar gauge superfield and the chiral scalar matter. We
emphasize that, up to now, there were no examples of
quantum calculations involving chiral spinor superfields.
The structure of the paper is as follows. In Sec. II, we

discuss the classical action of the chiral spinor gauge
superfield, coupled to the usual scalar gauge superfield
and a chiral matter. In Sec. III we calculate the one-loop
effective potential in this theory, and Sec. IV contains the
summary of our results.

II. SUPERSYMMETRIC TOPOLOGICALLY
MASSIVE GAUGE THEORY

Let us start our study with the supersymmetric topo-
logically massive gauge theory that will be used to find the
one-loop Kählerian effective potential (KEP). In the pure
gauge sector, we have [5]

SG ¼ 1

2

Z
d6zWαWα −

1

2

Z
d8zG2 −m

Z
d8zVG; ð1Þ

where m is a constant with mass dimension equal to 1, and
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Wα ¼ iD̄2DαV; G ¼ −
1

2
ðDαψα þ D̄ _αψ̄ _αÞ; ð2Þ

where ψα, ψ̄ _α are chiral and antichiral spinor superpoten-
tials corresponding to the tensor multiplet [1], and V is a
usual real gauge superpotential. Actually, G is a linear
superfield satisfying the relation D2G ¼ D̄2G ¼ 0. The
superfield strengths Wα, G, and the action (1) are invariant
under the Abelian gauge transformations,

δV ¼ iðΛ̄ −ΛÞ; δψα ¼ iD̄2DαL; δψ̄ _α ¼ −iD2D̄ _αL;

ð3Þ

where Λ is a chiral superfield, Λ̄ is an antichiral one, and
L ¼ L̄ is a real scalar one [1].
Let us show that the theory (1) describes a massive gauge

theory. For this, let us extract the equations of motion by
varying the action (1) with respect to the superfields V and
ψα. Then, we get

δSG
δV

¼ iDαWα −mG ¼ 0; ð4Þ

δSG
δψα

¼ D̄2DαG − imWα ¼ 0: ð5Þ

On the one hand, if we multiply Eq. (4) by D̄2Dβ and use
D̄2DβDαWα ¼ □Wβ, we get

ð□ −m2ÞWα ¼ 0: ð6Þ

On the other hand, if we multiply Eq. (5) by Dα and use
DαD̄2DαG ¼ □G, we get

ð□ −m2ÞG ¼ 0: ð7Þ

Therefore, from Eqs. (6) and (7), we can conclude that
the superfield strengths Wα and G satisfy massive Klein-
Gordon equations.
To perform quantum calculations, we must add to (1) a

gauge-fixing term. In particular, we will consider the
following one [5]:

SGF ¼ −
1

2α

Z
d8zVfD2; D̄2gV

−
1

8β

Z
d8zðDαψα − D̄ _αψ̄ _αÞ2; ð8Þ

where α and β are the gauge-fixing parameters. The
ghosts are completely factorized since the theory is
Abelian.
Now, let us introduce interaction between the (anti)chiral

scalar superfield and the gauge superfields [2]. Under the
usual gauge transformation, the chiral and antichiral matter
superfields transform as [1]

Φ0 ¼ e2igΛΦ; Φ̄0 ¼ Φ̄e−2igΛ̄: ð9Þ

The interaction term that we will consider in this paper,
which is invariant under the combined transformations (3)
and (9), is given by [15]

SM ¼
Z

d8zΦ̄e2gVΦe4hG: ð10Þ

The coupling constants g and h have mass dimensions 0
and −1, respectively. The reasons for choosing this model
are the following: First, this model was considered in [6]
in the study of the formation of cosmic strings. Second,
our aim consists in calculating the one-loop Kählerian
effective potential, which means that we should introduce
the coupling of the spinor gauge superfield (actually, of
the strength G, to achieve gauge invariance) to the chiral
matter. Otherwise, at one-loop order the contribution of
the spinor gauge superfield to the effective potential
would be trivial. In principle, we could introduce an
arbitrary dimensionless function fðhGÞ instead of e4hG,
but the exponential interaction was chosen only for
the sake of concreteness. Unfortunately, any coupling
of the strength G is nonrenormalizable, but this is the
price we pay for the coupling to produce nontrivial one-
loop results.
It follows from this expression that the tree-level

KEP is

Kð0Þ ¼ ΦΦ̄: ð11Þ

Finally, the supersymmetric topologically massive gauge
theory that we will study in this work follows from (1), (8),
and (10):

S ¼ −
1

2

Z
d8zV

�
−DαD̄2Dα þ

1

α
fD2; D̄2g

�
V −

1

8

Z
d8z

��
1þ 1

β

�
½ψαDαDβψβ þ ψ̄ _αD̄ _αD̄_βψ̄ _β�

þ 2

�
1 −

1

β

�
ψαDαD̄_βψ̄ _β

�
þm

2

Z
d8zVðDαψα þ D̄ _αψ̄ _αÞ þ

Z
d8zΦ̄e2gVΦe−2hðDαψαþD̄ _αψ̄ _αÞ; ð12Þ
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where we explicitly wrote the gauge superpotentials.
The standard method of calculating the effective action is

based on the methodology of the loop expansion [16]. To do
this, wemake a shiftΦ → Φþ ϕ in the superfieldΦ (together
with the analogous shift for Φ̄), where nowΦ is a background

(super)field and ϕ is a quantum one. We assume that the
gauge superfields V, ψα, and ψ̄ _α are quantum. To calculate
the effective action at the one-loop level, we have to keep only
the quadratic terms in the quantum superfields. By using this
prescription, we get from (12)

S2½Φ̄;Φ; ϕ̄;ϕ;ψα; ψ̄ _α; V� ¼ Sq þ Sint; ð13Þ

Sq ¼
1

2

Z
d8z

�
−V□

�
Π1=2 þ

1

α
Π0

�
V −

1

4

��
1þ 1

β

�
ðψαDαDβψβ þ ψ̄ _αD̄ _αD̄_βψ̄ _βÞ þ 2

�
1 −

1

β

�
ψαDαD̄ _βψ̄ _β

�
þ 2ϕ̄ϕ

�
;

ð14Þ

Sint ¼
1

2

Z
d8zfðm − 8ghΦ̄ΦÞVðDαψα þ D̄ _αψ̄ _αÞ þ 2ð2gÞΦ̄Vϕþ 2ð2gÞΦϕ̄V

þ ð2gÞ2Φ̄ΦV2 − 4hΦ̄ðDαψα þ D̄ _αψ̄ _αÞϕ − 4hΦϕ̄ðDαψα þ D̄ _αψ̄ _αÞ
þ ð2hÞ2Φ̄Φ½ðDαψαÞDβψβ þ ðD̄ _αψ̄ _αÞD̄_βψ̄ _β þ 2ðDαψαÞD̄ _αψ̄ _α�g; ð15Þ

where the irrelevant terms were omitted, including those
involving covariant derivatives of the background (anti)
chiral superfields. Moreover, we used the projection oper-
ators Π1=2 ≡ −□−1DαD̄2Dα and Π0 ≡□−1fD2; D̄2g.
The one-loop approximation does not depend on how we

break the Lagrangian into free and interacting parts [17].
However, by convenience, we will extract the propagators
from the terms that are independent of the background
superfields and the vertices from the ones in which the
quantum superfields interact with the background ones.
In the gauges α ¼ 0 and β ¼ −1, we obtain from Sq the

propagators

hVð1ÞVð2Þi ¼ −
1

p2
ðΠ1=2Þ1δ12;

hψαð1Þψ̄ _αð2Þi ¼
2pα _α

p4
δ12;

hϕð1Þϕ̄ð2Þi ¼ 1

p2
δ12: ð16Þ

Before we start the calculation of the one-loop supergraphs,
we first notice from (15) that there is a factor DαD̄2 in a
vertex at one end of the propagator hψαð1Þψ̄ _αð2Þi, and there
is a factor D̄ _αD2 in the other vertex at the other end of the
same propagator. Here the factors D̄2 and D2 are present in
the vertices due to the chirality (antichirality) of the
superfield ψα (ψ̄ _α) just as in the usual Wess-Zumino model,
because of the properties of the variational derivatives with
respect to the chiral superfields (see [1–3]), and the Dα, D̄ _α

arise from the explicit form of the vertices. It is convenient
to go from the above used formulation of propagators
where the derivatives D2, D̄2 are associated with the

vertices to a formulation where these derivatives are
incorporated into the propagators (these two manners to
introduce the Feynman supergraphs exist also in the Wess-
Zumino model; see, e.g., [1]). In other words, we associate
the covariant derivatives with the propagator hψαð1Þψ̄ _αð2Þi
(instead of to the vertices) and define a new scalar field
ψ ¼ Dαψα with the propagator,

hψð1Þψ̄ð2Þi≡Dα
1D̄

2
1D̄

_α
2D

2
2hψαð1Þψ̄ _αð2Þi ¼ 2ðΠ1=2Þ1δ12;

ð17Þ

where we used the fact that D̄ _α
2D

2
2δ12 ¼ −D2

1D̄
_α
1δ12, and the

factors D2, D̄2 emerged due to properties of variational
derivatives. We can also apply the same reasoning for the
propagator hϕð1Þϕ̄ð2Þi and for the vertices involving the
scalar (anti)chiral superfields.
In summary, by transferring all covariant derivatives

from the vertices (15) to the propagators (16), we get

hVð1ÞVð2Þi ¼ −
1

p2
ðΠ1=2Þ1δ12; ð18Þ

hψð1Þψ̄ð2Þi ¼ hψ̄ð1Þψð2Þi ¼ 2ðΠ1=2Þ1δ12; ð19Þ

hϕð1Þϕ̄ð2Þi ¼ −ðΠ−Þ1δ12; hϕ̄ð1Þϕð2Þi ¼ −ðΠþÞ1δ12;
ð20Þ

where Π− ≡□−1D̄2D2 and Πþ ≡□−1D2D̄2 are projection
operators. These propagators will connect the following
new vertices:
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~Sint ¼
1

2

Z
d8zf2MVðψ þ ψ̄Þ þ 2ð2gÞΦ̄Vϕþ 2ð2gÞΦϕ̄V þ ð2gÞ2Φ̄ΦV2

− 4hΦ̄ðψ þ ψ̄Þϕ − 4hΦϕ̄ðψ þ ψ̄Þ þ ð2hÞ2Φ̄Φ½ψ2 þ ψ̄2 þ 2ψψ̄ �g; ð21Þ

where M ≡ 1
2
ðm − 8ghΦ̄ΦÞ. Therefore, now the vertices

involve only scalar superfields.
In the next section, we will perform the calculations of

the one-loop supergraphs using the propagators (18)–(20),
written in terms of projection operators, and the vertices
(21), written only in terms of scalar superfields, instead of
the original propagators (16) and the original vertices (15).

III. ONE-LOOP CALCULATIONS

Now, let us start the calculations of the one-loop super-
graphs contributing to the KEP. Since Π1=2Π−¼
Π−Π1=2¼Π1=2Πþ¼ΠþΠ1=2¼0, it follows from (18)–(20)
that there can be no mixed contributions containing both
gauge and matter propagators at one-loop order. Therefore,
the basic supergraphs contributing to the effective action
in the theory under consideration are of three types:
first, those with internal lines composed of propagators
hψð1Þψ̄ð2Þi only; second, those composed of propagators
hVð1ÞVð2Þi only; and third, those involving alternating
propagators hψð1Þψ̄ð2Þi and hVð1ÞVð2Þi. In our graphical
notation, the dashed line is for hψψ̄i propagator, the wavy
line is for hVVi propagator, and the double one is for Φ or
Φ̄ background fields.
It is easy to verify that the contribution to the effective

action generated by the sum of supergraphs at Fig. 1, with
simple propagators (19), and the vertices 2ð2hÞ2ðΦΦ̄Þψψ̄ is
zero. Indeed, it is equal to

Γ0 ¼
X∞
n¼1

1

2n
½4ð2h2ÞΦΦ̄hψψ̄i�n; ð22Þ

where the coefficient 4 is caused by two different con-
tractions. Using the explicit form of the propagators (19),
we get

Γ0 ¼
X∞
n¼1

Z
d8z1

1

2n
½4ð2h2ÞΦΦ̄Π1=2�nδ8ðz1 − z2Þjz1¼z2 :

ð23Þ

Then, we take into account that ðΠ1=2Þn ¼ Π1=2, and
Π1=2δ

8ðz1 − z2Þjz1¼z2 ¼ −2 1
□
δ4ðx1 − x2Þjx1¼x2 . Carrying

out the Fourier transform, we have

Γ0 ¼
X∞
n¼1

1

2n

Z
d8z½4ð2h2ÞΦΦ̄�n

Z
d4k
ð2πÞ4

1

k2
; ð24Þ

but within the dimensional regularization framework
implemented through the replacement d4k → μ4−2ωd2ωk,
one has

R
d2ωk
ð2πÞ2ω

1
k2 ¼ 0. Hence, this contribution vanishes.

Now, let us sum over the vertices ð2hÞ2Φ̄Φψ2 and
ð2hÞ2Φ̄Φψ̄2. The corresponding supergraphs again exhibit
structures similar to Fig. 1 with only an even number of
vertices. However, it is worthwhile to point out that we can
insert an arbitrary number of vertices ð2hÞ2Φ̄Φψψ̄ into the
propagators hψð1Þψ̄ð2Þi. Therefore, we should first intro-
duce a “dressed” propagator. In this propagator, the
summation over all vertices ð2hÞ2Φ̄Φψψ̄ is performed
(see Fig. 2). As a result, this dressed propagator is equal to

hψð1Þψ̄ð2ÞiD ¼ hψð1Þψ̄ð2Þi þ
Z

d4θ3hψð1Þψ̄ð3Þi½ð2hÞ2Φ̄Φ�3hψð3Þψ̄ð2Þi

þ
Z

d4θ3d4θ4hψð1Þψ̄ð3Þi½ð2hÞ2Φ̄Φ�3hψð3Þψ̄ð4Þi½ð2hÞ2Φ̄Φ�4hψð4Þψ̄ð2Þi þ � � � : ð25Þ

By using (19), integrating by parts, and summing the resultant series, we arrive at

hψð1Þψ̄ð2ÞiD ¼
�

2Π1=2

1 − 2ð2hÞ2Φ̄Φ
�

1

δ12: ð26Þ

Afterwards, we can compute all the contributions by noting that each one-loop supergraph above is formed by n vertices
like those given by Fig. 3.
Hence, the contribution of this vertex is given by

Q13¼
Z

d4θ2½ð2hÞ2Φ̄Φ�1
��

2Π1=2

1−2ð2hÞ2Φ̄Φ
�

1

δ12

�
½ð2hÞ2Φ̄Φ�2

��
2Π1=2

1−2ð2hÞ2Φ̄Φ
�

2

δ23

�
¼
�

2ð2hÞ2Φ̄Φ
1−2ð2hÞ2Φ̄ΦΠ1=2

�
2

1

δ13: ð27Þ
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It follows from the result above that the contribution of a supergraph formed by n vertices is given by

In ¼
Z

d4x
1

2n

Z
d4θ1d4θ3 � � � d4θ2n−1

Z
d4p
ð2πÞ4Q13Q35 � � �Q2n−3;2n−1Q2n−1;1

¼
Z

d4x
1

2n

Z
d4θ1d4θ3d4θ5 � � � d4θ2n−1

Z
d4p
ð2πÞ4

��
2ð2hÞ2Φ̄Φ

1 − 2ð2hÞ2Φ̄ΦΠ1=2

�
2

1

δ13

�

×

��
2ð2hÞ2Φ̄Φ

1 − 2ð2hÞ2Φ̄ΦΠ1=2

�
2

3

δ35

�
� � �

��
2ð2hÞ2Φ̄Φ

1 − 2ð2hÞ2Φ̄ΦΠ1=2

�
2

2n−1
δ2n−1;1

�

¼
Z

d8z
1

2n

Z
d4p
ð2πÞ4

�
2ð2hÞ2Φ̄Φ

1 − 2ð2hÞ2Φ̄Φ
�

2n
Π1=2δθθ0 jθ¼θ0 : ð28Þ

By using Π1=2δθθ0 jθ¼θ0 ¼ 2=p2, we get the effective action

Γð1Þ
1 ¼

X∞
n¼1

In ¼ −
Z

d8z
Z

d4p
ð2πÞ4

1

p2
ln

�
1 −

�
2ð2hÞ2Φ̄Φ

1 − 2ð2hÞ2Φ̄Φ
�

2
�
: ð29Þ

The integral over the momenta vanishes within the dimen-
sional regularization scheme. Therefore,

Γð1Þ
1 ¼ 0: ð30Þ

We will not calculate explicitly the one-loop supergraphs
involving the gauge superfield propagators hVð1ÞVð2Þi
connecting the vertices ð2gÞ2Φ̄ΦV2, because the result is
already known and described in [14]. Therefore, it is given by

Γð1Þ
2 ¼ −

Z
d8z

Z
d4p
ð2πÞ4

1

p2
ln

�
1þ ð2gÞ2Φ̄Φ

p2

�
: ð31Þ

Finally, let us move on to the last type of one-loop
supergraphs, which involve the propagators hψð1Þψ̄ð2Þi
and hVð1ÞVð2Þi in the internal lines connecting the vertices
MVψ and MVψ̄ (see Fig. 4). As before, we can insert an
arbitrary number of vertices ð2hÞ2Φ̄Φψψ̄ into the propagators
hψð1Þψ̄ð2Þi. Moreover, we can also insert an arbitrary
number of pairs of the vertices ð2hÞ2Φ̄Φψ2 and
ð2hÞ2Φ̄Φψ̄2 into hψð1Þψ̄ð2Þi. Since hψð1Þψ̄ð2Þi has already
been dressed by ð2hÞ2Φ̄Φψψ̄ in (25) and (26), it follows that
the desired dressed propagator hψð1Þψ̄ð2Þi2D is equal to the
summation over all pairs of the vertices ð2hÞ2Φ̄Φψ2 and
ð2hÞ2Φ̄Φψ̄2 into hψð1Þψ̄ð2ÞiD (see Fig. 5). Therefore, we get

hψð1Þψ̄ð2Þi2D ¼ hψð1Þψ̄ð2ÞiD þ
Z

d4θ3d4θ4hψð1Þψ̄ð3ÞiD½ð2hÞ2Φ̄Φ�3hψ̄ð3Þψð4ÞiD

× ½ð2hÞ2Φ̄Φ�4hψð4Þψ̄ð2ÞiD þ
Z

d4θ3d4θ4d4θ5d4θ6hψð1Þψ̄ð3ÞiD½ð2hÞ2Φ̄Φ�3
× hψ̄ð3Þψð4ÞiD½ð2hÞ2Φ̄Φ�4hψð4Þψ̄ð5ÞiD½ð2hÞ2Φ̄Φ�5hψ̄ð5Þψð6ÞiD
× ½ð2hÞ2Φ̄Φ�6hψð6Þψ̄ð2ÞiD þ � � � : ð32Þ

After some algebraic work, we find

hψð1Þψ̄ð2Þi2D ¼ ð2fðΦ̄ΦÞΠ1=2Þ1δ12; where

fðΦ̄ΦÞ≡ 1

1 − 4ð2hÞ2Φ̄Φ : ð33Þ

FIG. 1. One-loop supergraphs composed by propagators
hψð1Þψ̄ð2Þi.

FIG. 2. Dressed propagator hψð1Þψ̄ð2ÞiD. The vertices are
2ð2hÞ2ðΦΦ̄Þψψ̄ .
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Additionally, we can also insert an arbitrary number of
vertices ð2gÞ2Φ̄ΦV2 into the propagators hVð1ÞVð2Þi. In
this case, the dressed propagator hVð1ÞVð2ÞiD is already
known in the literature, and it is given by [18]

hVð1ÞVð2ÞiD ¼
�

−Π1=2

p2 þ ð2gÞ2Φ̄Φ
�

1

δ12: ð34Þ

As before, we can compute all the contributions by noting
that each supergraph above (Fig. 4) is formed by n
fragments, like those depicted in Fig. 6. This fragment
yields the contribution

R13 ¼
Z

d4θ2ðMÞ1
��

−Π1=2

p2 þ ð2gÞ2Φ̄Φ
�

1

δ12

�

× ðMÞ2½ð2fΠ1=2Þ2δ23�

¼
�

−2fM2Π1=2

p2 þ ð2gÞ2Φ̄Φ
�

1

δ13: ð35Þ

It follows from the result above that the contribution of a
supergraph formed by n subgraphs is given by

Jn ¼
Z

d4x
1

2n

Z
d4θ1d4θ3 � � � d4θ2n−1

Z
d4p
ð2πÞ4 R13R35 � � �R2n−3;2n−1R2n−1;1

¼
Z

d4x
1

2n

Z
d4θ1d4θ3d4θ5 � � � d4θ2n−1

Z
d4p
ð2πÞ4

��
−2fM2Π1=2

p2 þ ð2gÞ2Φ̄Φ
�

1

δ13

�

×

��
−2fM2Π1=2

p2 þ ð2gÞ2Φ̄Φ
�

3

δ35

�
� � �

��
−2fM2Π1=2

p2 þ ð2gÞ2Φ̄Φ
�

2n−1
δ2n−1;1

�

¼
Z

d8z
1

2n

Z
d4p
ð2πÞ4

�
−2fM2

p2 þ ð2gÞ2Φ̄Φ
�

n
Π1=2δθθ0 jθ¼θ0 : ð36Þ

Again, by using Π1=2δθθ0 jθ¼θ0 ¼ 2=p2, we get the effective action

Γð1Þ
3 ¼

X∞
n¼0

Jn ¼ −
Z

d8z
Z

d4p
ð2πÞ4

1

p2
ln

�
1þ 2fM2

p2 þ ð2gÞ2Φ̄Φ
�
: ð37Þ

By summing (30), (31), and (37) we obtain the total one-loop effective action

Γð1Þ½Φ̄;Φ� ¼ −
Z

d8z
Z

d4p
ð2πÞ4

1

p2
ln½p2 þ ð2gÞ2Φ̄Φþ 2fM2�: ð38Þ

Substituting the explicit form for M and f, we arrive at the following result for the KEP:

Kð1ÞðΦ̄;ΦÞ ¼ −
Z

d4p
ð2πÞ4

1

p2
ln

�
p2 þ 1

2 − 8ð2hÞ2Φ̄Φ ðm − 8ghΦ̄ΦÞ2 þ ð2gÞ2Φ̄Φ
�
: ð39Þ

FIG. 3. A typical vertex in one-loop supergraphs involving
ð2hÞ2Φ̄Φψ2 and ð2hÞ2Φ̄Φψ̄2.

FIG. 4. One-loop supergraphs composed by propagators
hψð1Þψ̄ð2Þi and hVð1ÞVð2Þi.
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The integral above is well known and can be computed
by using the dimensional regularization. Finally, in the limit
ω → 2 we find

Kð1ÞðΦ̄;ΦÞ ¼ Kð1Þ
divðΦ̄;ΦÞ þ Kð1Þ

fin ðΦ̄;ΦÞ; ð40Þ
where

Kð1Þ
divðΦ̄;ΦÞ ¼

1

16π2ð2 − ωÞ
�

1

2 − 8ð2hÞ2Φ̄Φ ðm − 8ghΦ̄ΦÞ2

þ ð2gÞ2Φ̄Φ
�
; ð41Þ

Kð1Þ
fin ðΦ̄;ΦÞ

¼ −
1

16π2

�
1

2 − 8ð2hÞ2Φ̄Φ ðm − 8ghΦ̄ΦÞ2 þ ð2gÞ2Φ̄Φ
�

× ln
1

μ2

�
1

2 − 8ð2hÞ2Φ̄Φ ðm − 8ghΦ̄ΦÞ2 þ ð2gÞ2Φ̄Φ
�
;

ð42Þ
and μ is an arbitrary scale required on dimensional grounds.
Notice that the one-loop KEP (40)–(42) is divergent.

Moreover, we notice that the divergent part (41) is given
by an infinite power series in Φ̄Φ. Therefore, the theory under
consideration is nonrenormalizable, and itmust be interpreted
as an effective field theory below some energy scale chosen
on the basis of phenomenological considerations [19].
In particular, let us take h ¼ 0 in (40). This choice

corresponds to a minimal coupling between the gauge

scalar superfield and the matter chiral superfields [see (10)].
Therefore,

Kð1Þ
divðΦ̄;ΦÞ ¼

ð2gÞ2Φ̄Φ
16π2ð2 − ωÞ ; ð43Þ

Kð1Þ
fin ðΦ̄;ΦÞ ¼ −

1

32π2
½m2 þ 2ð2gÞ2Φ̄Φ�

× ln
1

2μ2
½m2 þ 2ð2gÞ2Φ̄Φ�: ð44Þ

In this case, we notice that the divergent term (43) is
proportional to Φ̄Φ. Therefore, to remove divergences, we
can insert a similar one-loop counterterm as the one used in
the supersymmetric quantum electrodynamics. Moreover, if
we take the massless case in (43)–(44), we recover the one-
loop KEP for the usual supersymmetric quantum electrody-
namics [14].

IV. SUMMARY

We formulated a new theory involving coupling of three
superfields of different natures: a chiral spinor gauge super-
field originally introduced in [5] together with the usual real
scalar gauge superfield and the chiral scalar matter super-
field. For this theory, we developed a superfield procedure
for calculating the one-loop effective potential, which we
successfully found. Theprocedure does not essentially differ
from the usual supergauge theories [14] with the rather
similar structure of the one-loop contribution. The fact that
the new theory is nonrenormalizable is not unexpected since
many nonpolynomial supersymmetric theories are nonre-
normalizable [13,20]. We expect that the importance of the
theory is not exhausted by the classical studies in the cosmic
string contexto, it can be used as an ingredient of possible
phenomenologically interesting supersymmetric gauge the-
ories involving several gauge (super)fields with some of
them being massive.
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