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We present here a relationship among massive self-dual models for spin-3 particles inD ¼ 2þ 1 via the
Noether gauge embedment (NGE) procedure. Starting with a first-order model (in derivatives) SSDð1Þ we
have obtained a sequence of four self-dual models SSDðiÞ where i ¼ 1; 2; 3; 4. We demonstrate that the NGE
procedure generates the correct action for the auxiliary fields automatically. We obtain the whole action for
the fourth-order self-dual model including all the needed auxiliary fields to get rid of the ghosts of the
theory.
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I. INTRODUCTION

Massive gauge field theories in three spacetime dimen-
sions has attracted much attention since long ago. A special
feature of such theories is that they can be massive without
gauge symmetry breaking. This is possible thanks to the
addition of topological terms, as it was done in the case of
topologically massive electrodynamics (TME) and topo-
logically massive gravity (TMG) [1]. The two models cited
have in common the fact that they describe only singlets of
massive spin-2 particles, i.e., describe only one helicity
mode þs or −s, where we have s ¼ 1 for TME and s ¼ 2
for TMG. In the spin-2 case however through the Noether
gauge embedment (NGE) procedure we have demonstrated
[2] that the TMG actually can be related, at least at the level
of equations of motion, to another three models forming a
sequence of the so-called self-dual models of first, second,
third (TMG) and fourth order in derivatives.
With these self-dual models we have demonstrated [3,4]

that at the linearized level the Fierz-Pauli action which
describes a doublet of massive spin-2 particles can be
obtained via a soldering procedure of two second-order
self-dual models of opposite helicities. Besides, one can
recover the new massive gravity [5] (also at the linearized
level) by soldering two self-dual models of opposite
helicities of either third or fourth order in derivatives.
Although we have not observed higher spin particles

(s ≧ 2) in nature, the string theory predicts the existence of
such particles, so it would be interesting to investigate if the
same duality procedure can be generalized for such
particles in the context of gauge theories. A way of
introducing this context is starting by the models of
spin-3. That is only because this is the simplest higher
spin theory we can deal with. Strictly speaking the spin-3
theories do not contain for example the double trace

condition present in the context of higher spin theories
in general (s > 3). In the spin-2 case, as mentioned here
one can observe that we have four self-dual models in
D ¼ 2þ 1. In the spin-3 case there are apparently six self-
dual models [6]. There seems to be a rule of 2s for the
number of models according to the spin-s we have.
The first two models which describe one massive spin-3

mode in D ¼ 2þ 1 were proposed by Aragone and
Khoudeir in [7] and [8]. In both models the authors make
use of the vierbein formulation which was introduced by
Vasiliev in [9]. A Chern-Simons–like term is present in
both the first- and the second-order self-dual model. In the
second-order self-dual model the kernel of the action is the
usual massless spin-3 second-order term. The third model
that we have in sequence is named topological massive
spin-3 theory in analogy with the spins one and two cases.
The formulation of this model however is made in terms of
totally symmetric fields which indicate that, in trying to
connect those models via the NGE procedure, one needs to
deal with a change of variables which relates the non-
symmetric formulation in terms of vierbeins and the totally
symmetric one.
It is a feature of massive models in D ¼ 2þ 1 that in

order to have only the healthy spin-3 mode one needs to
add an auxiliary Lagrangian which contains ghost-killing
fields. In the three models cited above besides the healthy
mode we have ghosts of spin-1. That is why in those
models we have always an auxiliary Lagrangian which has
the role of eliminating the spurious degrees of freedom. In
[5] the authors propose a fourth-order equation of motion
for a massive spin-3 particle, although they do not propose
an action they suspect that it should contain auxiliary fields.
Here we start with the first-order self-dual spin-3 model of
[7], which we call SDð3Þ

1 and obtain a sequence of higher
order self-dual models: SDð3Þ

i → SDð3Þ
iþ1 with i ¼ 1; 2; 3 via

NGE. At each stage a new local symmetry is added via
embedding. In all cases the full action, including auxiliary
fields, is presented. There is no need of fine-tuning the
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“ghost-killing” auxiliary action. The whole models SDð3Þ
i ,

i ¼ 2; 3; 4 follow from the first-order model. However we
have not been able to obtain the fifth- and the sixth-order
self-dual models of [5].
The paper is organized as follows, in the first section we

present the first-order self-dual model and the embedment
of the first symmetry. In the second section we make the
NGE procedure to the second-order self-dual model. In the
third section we rewrite our third-order self-dual model in
terms of totally symmetric fields and make the last
immersion leading to a fourth-order self-dual model.

II. NGE PROCEDURE FOR THE
SPIN-3 SELF-DUAL MODELS

A. The starting point

We begin with the first-order self-dual model for a
massive spin-3 particle in D ¼ 2þ 1 dimensions given
by the action below:

SSDð1Þ½ω; A� ¼
Z

d3x

�
−m

2
ξμðβγÞωμðβγÞ

þm2

6
ðωμω

μ − ωμðβγÞωβðμγÞÞ

þm2ωμAμ þ jμðβγÞωμðβγÞ
�
þ Sð1Þ½A�: ð1Þ

For convenience it is useful to define the notation

ξμðβγÞ ¼ Eμ
λωλðβγÞ; ð2Þ

where Eμν ¼ ϵμνγ∂γ . The action (1) is proposed by [7] in the
vierbein formulation. In the context of higher spin particles,
this formulation was first introduced by Vasiliev in [9].
Here, we work in a flat spacetime with signature ð−;þ;þÞ
and the basic spin-3 field is ωμðβγÞ, which is symmetric and
traceless in its Lorentz-like indices, i.e., ωμðβγÞ ¼ ωμðγβÞ
with ηβγωμðβγÞ ¼ 0. We define ωγ ¼ ημβωμðβγÞ. Then,
one can identify the first term in (1) as a first-order
Chern-Simons–like term. The mass term is similar to the
Fierz-Pauli mass term for spin-2 particles, except for the
extra term m2ωμAμ which includes the auxiliary vector
field Aμ.
Massive spin-3 actions cannot avoid the presence of

auxiliary fields, see for example Sec. III of [10].1 In (1)
besides the spin-3 propagation one also has a residual spin-
1 mode, and that is why we have the action Sð1Þ½A� which
contains dynamic terms for the ghost-killing field of spin
one, and it is given [7] by

Sð1Þ½A� ¼
Z

d3x½−9mϵμναAμ∂νAα

− 9m2AμAμ − 12ð∂μAμÞ2�: ð3Þ

As we write down the action (1) with a spin-3 sector
governed by ωμðβγÞ and a spin-1 sector governed by Aμ one
might wonder what would be the simplest contact term
between these two sectors, and this is of course given by the
term ωμAμ. Finally in order to have dual maps between the
self-dual models we have added a source term to the spin-3
sector given by jμðβγÞωμðβγÞ, the source jμðβγÞ shares the
same indices symmetry of ωμðβγÞ.
Due the presence of the mass term in the spin-3 sector,

the gauge symmetry of the Chern-Simons–like term:

δ ~ΛωμðβγÞ ¼ ∂μ
~ΛðβγÞ ð4Þ

is broken. Where we have a traceless parameter
ηβγ ~ΛðβγÞ ¼ 0. As we have done for spin-2 particles in D ¼
2þ 1 dimensions, we would like to systematically impose
this gauge symmetry by using the NGE procedure in order
to obtain an invariant model, with the same particle content
of the first-order self-dual model (1). Our previous expe-
rience with spin-2 self-dual models tells us that the price
one pays in obtaining an invariant model is that this new
model is of higher order in derivatives.
The NGE procedure consists of modifying the original

action, which is noninvariant under (4), adding a quadratic
term in the Euler tensor. In this way we are automatically
ensuring that the equations of motion of the original model
(1) are embedded in the new model. First let us write the
Euler tensor which comes from the spin-3 sector, by taking
the variation of the action with respect to ωμðβγÞ:

δSSDð1Þ ¼
Z

d3xKμðβγÞδωμðβγÞ: ð5Þ

The Euler tensor is given by

KμðβγÞ ¼ −mξμðβγÞ þm2

6
ðημβωγ þ ημγωβ − ωβðμγÞ − ωγðμβÞÞ

þm2

2
fμðβγÞðAÞ þ jμðβγÞ: ð6Þ

One can notice that KμðβγÞ ¼ KμðγβÞ and ηβγKμðβγÞ ¼ 0.
Besides, we have defined

fμðβγÞðAÞ ¼ ηβμAγ þ ηγμAβ − 2

3
ηβγAμ: ð7Þ

The next step in the NGE procedure consists basically of
performing two iterations, the first one can be done by
coupling a new auxiliary tensor field aμðβγÞ to the Euler
tensor as follows:1For nonlocal formulations see however [11].
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S1 ¼ SSDð1Þ −
Z

d3xaμðβγÞKμðβγÞ: ð8Þ

Now let us take the gauge variation of (8) by choosing a
proper gauge variation for the auxiliary field aμðβγÞ such as
δ ~ΛωμðβγÞ ¼ δ ~ΛaμðβγÞ ¼ ∂μ

~ΛðβγÞ. Then we have

δ ~ΛS1 ¼ −
Z

d3xδ ~ΛK
μðβγÞaμðβγÞ: ð9Þ

Taking the gauge variation of the Euler tensor (6) with
δ ~ΛA

μ ¼ 0 and substituting back in (9), we end up with

S2 ¼ S1−
Z

d3x

�
aμðβγÞKμðβγÞ−m2

6
ðaμaμ−aμðβγÞaβðμγÞÞ

�
;

ð10Þ

after eliminating the auxiliary field aμðβγÞ through its
algebraic equations of motion to the following second
iterated action:

S2 ¼ SSDð1Þ − 3

2m2

Z
d3x½2KμðβγÞKβðμγÞ − KμðβγÞKμðβγÞ�:

ð11Þ

As it was expected the action (11) is quadratic on the
Euler tensor which ensures that the equations of motion of
(1) KμðβγÞ ¼ 0 are embedded in the equations of motion of
(11). By construction, S2 is automatically gauge invariant
under (4). After substituting back the Euler tensor (6) in
(11) we obtain the second-order spin-3 self-dual model:

SSDð2Þ ¼
Z

d3x

�
1

2
ξμðβγÞΩμðβγÞðξÞþm

2
ξμðβγÞωμðβγÞ

þ 2mξμAμ− jμðβγÞFμðβγÞðω;AÞ
�
þSð2Þ½A�: ð12Þ

The first term in (12) is the usual massless spin-3 second-
order action in the vierbein-like formulation, where

ΩμðβγÞðξÞ ¼ 3ðξβðμγÞ þ ξγðμβÞ − ξμðβγÞÞ − 2ηβγξμ: ð13Þ

The symbol Ω is self-adjoint:

Z
d3xωμðβγÞΩμðβγÞðξÞ ¼

Z
d3xξμðβγÞΩμðβγÞðωÞ: ð14Þ

The second-order term comes out as an analogue of the
Einstein-Hilbert term for spin-2. Actually as we are going
to verify ahead it is possible to rewrite it in terms of a totally
symmetric field ϕμβγ. The gauge invariant second-order
action (12) has now a new auxiliary action Sð2Þ½A� given by

Sð2Þ½A� ¼
Z

d3x

�
−9mϵμναAμ∂νAα − 32m2

3
AμAμ

− 12ð∂μAμÞ2
�
; ð15Þ

which differs from (3) just by a numerical factor on the
Proca mass term. It is not difficult to show after a rescaling
of Aμ that the action (12) is in fact precisely the second-
order self-dual model proposed by [8]. Another difference
has automatically appeared, as one can see the linking term
of the spin-3 field with the spin-1 auxiliary field has
changed from m2ωμAμ to 2mξμAμ ¼ 2mAμEαβωβðαμÞ in
such a way that the link is now invariant under the gauge
transformation (4). Last, the dual map between the equa-
tions of motion which comes from the second-order action
(12) and the equations of motion of the first-order action (1)
can be obtained through the dual field FμðβγÞ:

ωμðβγÞ ⟷ FμðβγÞðω; AÞ ¼ ΩμðβγÞðξÞ
m

þ fμðβγÞðAÞ; ð16Þ

where fμðβγÞðAÞ is defined in (7). With this dual map, one
can reproduce the equations of motion of the first-order
self-dual model from the equations of motion of the
second-order self-dual model. Note that FμðβγÞ is gauge
invariant.
We point out here that the new auxiliary Lagrangian (3),

has been automatically generated through the NGE pro-
cedure as well as the gauge invariant source term for the
auxiliary ghost-killing field Aμ. In the next section we show
that it is possible to continue with the NGE procedure in
order to obtain a third-order self-dual model.

B. From SD(2) to SD(3)

The second-order self-dual model obtained before is
invariant under the gauge symmetry (4). As we have done
for spin-2 [2] we are going to impose a new gauge
symmetry. One can do this by generalizing the gauge
symmetry used in the spin-2 case.2 Let us propose the
following symmetry:

δΦωμðβγÞ ¼ ϵμβ
ρΦðργÞ þ ϵμγ

ρΦðρβÞ: ð17Þ

It is straightforward to verify that the second-order term in
(12) is invariant under (17). However the first-order Chern-
Simons–like term breaks this symmetry. Then one can use
again the NGE procedure. From (12) we calculate the new
Euler tensor, which is now of second order in derivatives:

2In that case the symmetry corresponds to an arbitrary shift in
the antisymmetric part of the rank-2 tensor δeμν ¼ Λ½μν�.
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δSSDð2Þ
δωμðβγÞ

¼LμðβγÞ

¼Eμ
λ

�
ΩλðβγÞðξÞþmωλðβγÞ þfλðβγÞðAÞ− 1

m
ΩλðβγÞðjÞ

�

≡Eμ
λ
~LλðβγÞ: ð18Þ

Following the NGE procedure, we propose the first
iteration given by

S1 ¼ SSDð2Þ −
Z

d3xbμðβγÞLμðβγÞ; ð19Þ

where bμðβγÞ is an auxiliary field with the same symmetry
properties of ωμðβγÞ; i.e., δΦbμðβγÞ ¼ δΦωμðβγÞ. Then, with
respect to the gauge transformation (17) the action (19) has
the following gauge transformation:

δΦS1 ¼ −m
2

Z
d3xδΦðbμðβγÞEμ

λbλðβγÞÞ: ð20Þ

Then, by construction we have the following action:

S2 ¼ SSDð2Þ −
Z

d3x

�
bμðβγÞLμðβγÞ −m

2
bμðβγÞEμ

λbλðβγÞ
�
;

ð21Þ
which is automatically invariant under (17) and also under
(4). Note that we can rewrite S2 in the following way:

S2¼SSDð2Þ þ
Z
d3x

�
m
2

�
bμðβγÞ−

~LμðβγÞ
m

�
Eμ

λ

�
bλðβγÞ− ~LλðβγÞ

m

�

− 1

2m
~LμðβγÞEμ

λ
~LλðβγÞ

�
; ð22Þ

where ~LλðβγÞ is defined in (18). Making the change of
variable bλðβγÞ → ~bλðβγÞ þ ~LλðβγÞ=m, the first term in (22)
gets decoupled. The term m ~bμðβγÞEμ

λ
~bλðβγÞ=2 has no par-

ticle content, then we have

S2 ¼ SSDð2Þ − 1

2m

Z
d3x ~LμðβγÞEμ

λ
~LλðβγÞ: ð23Þ

Note that the equations of motion Eμ
λ
~LλðβγÞ ¼ LμðβγÞ of the

second-order self-dual model SSDð2Þ, i.e., LμðβγÞ ¼ 0 are
embedded in the equations of motion of S2. Substituting
~LμðβγÞ in (23) we have after some manipulation the third-
order self-dual model:

SSDð3Þ¼
Z
d3x

�
−1

2
ξμðβγÞΩμðβγÞðξÞ− 1

2m
ΩμðβγÞðξÞEμ

λΩλðβγÞðξÞ

−fμðβγÞðAÞEμ
λΩλðβγÞðξÞ−jμðβγÞHμðβγÞðω;AÞ

�
þS00½A�;

ð24Þ

which is precisely the third-order “topologically” massive
spin-3 action proposed by Deser and Damour in [12]. The
action is invariant under the gauge symmetries (4) and (17).
The second term in (24) corresponds to the topologically
Chern-Simons term of third order in derivatives. As before
the auxiliary Lagrangian has automatically changed in
order to get rid of lower spin ghosts:

S00½A�¼
Z

d3x

�
−32m

3
ϵμναAμ∂νAα−32m2

3
AμAμ

−12ð∂μAμÞ2
�
: ð25Þ

The auxiliary Lagrangian (25), see also [12], now differs
from the first one (3) by two numerical factors, by this time
the Chern-Simons term is also modified. One can notice
that this modification corresponds to the same numerical
factor which has appeared before when we found (15).
Again one can observe that the linking term [the third term
in (24)] between the spin-3 fields and the auxiliary vector
field is modified, becoming invariant under the new gauge
symmetry (17). Last, in this case the equivalence between
the third-order self-dual model SSDð3Þ and SSDð2Þ is given by
the dual map given by the dual field HμðβγÞ coupled to the
source term in (24):

ωμðβγÞ ⟷HμðβγÞ ¼− 1

m
ΩμðβγÞ

�
Ω
m
þf

�
þfμðβγÞðAÞ: ð26Þ

The third-order theory that we have found here is
expressed in terms of the partially symmetric field ωμðβγÞ
(vierbein-like formulation), however one can compare our
result with the topologically massive spin-3 theory [12]
which is given in terms of totally symmetric fields, by
doing the following change of variables:

ωμðβγÞ ¼
1ffiffiffi
3

p
�
ϕμβγ þ

1

4
ðηλβϕγ þ ηλγϕβÞ − 1

2
ηβγϕλ

�

þ ðϵμνβχνγ þ ϵμνγχ
ν
βÞ; ð27Þ

where χμνðxÞ ¼ χνμðxÞ and ημνχμν ¼ χ ¼ 0. Even if we had
χ ≠ 0, (27) would be invariant under a Weyl transforma-
tion, in other words δφχμν ¼ ημνφ. The numerical factors in
(27) are obtained in such a way that our results fit the results
of [12]. In D ¼ 2þ 1, the spin-3 basic field ωμðβγÞ has 15
independent components. This can be verified by noticing
that ωμðβγÞ has by definition the number of independent
components of a vector, times the number of independent
components of a symmetric traceless rank-2 tensor. On the
right-hand side of (27), we have the number of independent
components of a rank-3 symmetric tensor ϕμνλ, which is
DðDþ 1ÞðDþ 2Þ=6 ¼ 10 in D ¼ 2þ 1 plus the number
of independent components of a traceless rank-2 symmetric
tensor χμν which is DðDþ 1Þ=2 − 1 ¼ 5 in D ¼ 2þ 1.
Then in three dimensions we have 15 independent com-
ponents on both sides of (27).
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Rewriting (24) in terms of totally symmetric fields we
obtain

SSDð3Þ½ϕ;A� ¼
Z
d3x

�
−1

2
ϕμβγGμβγðϕÞ− 1

2m
CμβγðϕÞGμβγðϕÞ

− 4

3
ffiffiffi
3

p ~AμβγGμβγðϕÞ− 1

m2
Cμβγð~jÞGμβγðϕÞ

�

þS00½A�−
ffiffiffi
3

p

m

Z
d3x~jμðEμνAνþmAμÞ: ð28Þ

We have used the spin-3 “Einstein tensor” GμβγðϕÞ and the
symmetrized curl CμνλðϕÞ defined in [12], given by

GμβγðϕÞ≡ Rμνλ − 1

2
ηðμνRλÞ; ð29Þ

where we have the “Ricci” tensor given by Rμνλ ¼
□ϕμνλ − ∂α∂ðμϕανλÞ þ ∂ðμ∂νϕλÞ and its trace Rλ ¼
ημνRμνλ. The symmetrized curl is defined by

CμβγðϕÞ≡ EðμνϕνβγÞ: ð30Þ

Besides the above definitions we have used the symmetric
combinations for the spin-1 field Aμ:

~Aμνλ ¼ AðμηνλÞ ð31Þ
and for the source term of (24):

jμðβγÞ ¼
1ffiffiffi
3

p
�
~jμβγ þ

1

4
ðημβ ~jγ þ ημγ ~jβÞ − 1

2
ηβγ ~jμ

�
: ð32Þ

It is useful for the next step to notice that the first two terms
in (28) are self-adjoint; i.e., ϕμνλGμνλðψÞ ¼ ψμνλGμνλðϕÞ
and ϕμνλCμνλðψÞ ¼ ψμνλCμνλðϕÞ inside spacetime integrals.
From this totally symmetric version of the third-order self-
dual model, in the next section we are going to make the
last step with the NGE procedure by imposing a new gauge
symmetry on (28). Notice that χμν introduced in (27) is
absent in (28) due to the symmetry (17).

C. A complete fourth-order self-dual action for spin-3

In the first section we have used the gauge symmetry (4)
where the symmetric rank-2 parameter ~Λμν is traceless.
However one can verify that the spin-3 topological Chern-
Simons term of third order, second term in (28), is invariant
with respect to a generalization of this symmetry with an
arbitrary (traceful) symmetric parameter:

δΛϕμβγ ¼ ∂ðμΛβγÞ; ð33Þ
with Λβγ ¼ Λγβ. On the other hand the second-order term,
first term in (28) as well as the interaction term between the
vector field Aμ and the symmetric spin-3 field ϕμνλ are
noninvariant under the generalization (33). So one can now
impose this symmetry in one more round of the NGE
procedure. By noticing that the Einstein operatorGμβγðϕÞ is

self-adjoint, the ϕμβγ variation of the action (28) gives us
the following Euler tensor:

δSSDð3Þ
δϕμνλ

≡ Nμνλ ¼ −Gμνλ

�
ϕþ CðϕÞ

m
þ 4 ~A

3
ffiffiffi
3

p þ Cð~jÞ
m2

�

≡−GμνλðbÞ; ð34Þ
where we have automatically defined b. As usual we start
with a first iteration of the form

S1 ¼ SSDð3Þ −
Z

d3xaμνλNμνλ; ð35Þ

where we have added a totally symmetric field aμβγ
such that its gauge transformation is given by
δΛaμνλ ¼ ∂ðμΛνλÞ ¼ δΛϕμνλ. Then, from the gauge trans-
formation of (35) we have

δΛS1 ¼
Z

d3xaμνλδΛGμνλðaÞ; ð36Þ

which then gives us

S2¼SSDð3Þ−
Z

d3x

�
−aμνλGμνλðbÞþ1

2
aμνλGμνλðaÞ

�
; ð37Þ

where b is defined in (34). This allows us to rewrite (37) as

S2 ¼ SSDð3Þ

−
Z

d3x

�
1

2
ðaμνλ−bμνλÞGμνλða−bÞ−1

2
bμνλGμνλðbÞ

�
:

ð38Þ

Finally, shifting aμνλ → ~aμνλ þ bμνλ we can decouple ~aμνλ
and bμνλ and since the second-order term ~aμνλGμνλð ~aÞ is
completely decoupled and has no particle content we end
up with the equivalent invariant action:

S2 ¼ SSDð3Þ þ
1

2

Z
d3xbμνλGμνλðbÞ: ð39Þ

Substituting back bμνλ given in (34) we have a complete
fourth-order action given by

SSDð4Þ ¼
Z
d3x

�
1

2m
ϕμνλGμνλ½CðϕÞ�þ 1

2m2
CμνλðϕÞGμνλ½CðϕÞ�

þ 4

3
ffiffiffi
3

p
m
~AμνλGμνλ½CðϕÞ�

þ 1

m2
Cμνλð~jÞGμνλ

�
CðϕÞþ 4

3
ffiffiffi
3

p
m
~A

��

þS000½A�−
ffiffiffi
3

p

m

Z
d3x~jμðEμρAρþmAμÞ: ð40Þ

Now the auxiliary action S000½A� has gained a new term of
second order in derivatives, which combined with ð∂μAμÞ2
is precisely the Maxwell term:
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S000½A� ¼ − 32

3

Z
d3x

�
− 1

2
FμνFμν þmϵμναAμ∂νAα

þm2AμAμ

�
; ð41Þ

where Fμν ¼ ∂μAν − ∂νAμ. In the literature there is no
fourth-order action describing a massive spin-3 singlet in
D ¼ 2þ 1. In [6] equations of motion of fourth order in
derivatives are introduced but there is no action from where
one can derive it. Besides, the auxiliary fields needed for a
complete description of the spin-3 parity singlet without
ghosts are not considered. Here we are introducing a
complete model with an action for the auxiliary fields.
The equivalence is guaranteed through the dual maps. We
can check that the spin-3 sector of (40) is indeed the action
that gives us the fourth-order equations of motion of [6] by
rewriting the first two terms in the action as follow:

Z
d3x

1

2m
ϕμνλGμνλ½CðϕÞ�

¼ − 3

2m

Z
d3xϕμνλEμ

αEν
βEλ

γϕαβγ; ð42Þ
Z

d3x
1

2m2
CμνλðϕÞGμνλ½CðϕÞ�

¼ 9

2m2

Z
d3xϕμνλ□θαμEν

βEλ
γϕαβγ: ð43Þ

The combination of these two terms according to (40)
allows us to derive the equations of motion suggested in
[6]. In that paper the authors have defined a 3rd rank (and
3rd order) symmetric tensor potential which is basically a
symmetric combination of the operators Eμν that we have
used along this paper. We must say that they have
considered as the Einstein tensor this 3rd rank tensor
instead of the definition used in [12] which is of second
order in derivatives and this is not clear at nonlinear level.
Throughout this paper we have preferred to keep the
second-order definition of the spin-3 analogue of the
Einstein tensor.

III. CONCLUSION

We have verified that there is an equivalence between
four self-dual models for massive spin-3 particles in
D ¼ 2þ 1. We have done this through the NGE procedure.
The same procedure was used before in the context of
massive spin-2 and spin-1 self-dual models. The challenges
here were the presence of auxiliary Lagrangians which have
to be considered in order to preserve only spin-3 prop-
agations without ghosts and the identification of the correct
symmetry to be embedded. We have observed that the
auxiliary Lagrangians have been automatically generated
by the NGE procedure. The changes guarantee the absence

of lower spin ghosts. It is worth mentioning that as
discussed in [13,14] the NGE procedure does not guarantee
the spectrum equivalence, but this is not the case of the
models obtained here.
Although we have started with the first-order self-dual

model [7] passing through the second-order self-dual
model [8] in the vierbein formulation, one could verify
that after arriving in the topologically massive spin-3 model
it is possible to make a change of variables which relates the
partially symmetric formulation ωμðβγÞ and the totally
symmetric formulation ϕμβγ . Such change of variables
see (27) preserves, and respect the number of independent
degrees of freedom.
A complete fourth-order action was achieved in (40).

The core of this action reproduces the fourth-order spin-3
equations of motion proposed by [6]. However in [6] the
auxiliary ghost-killing fields needed in order to maintain
the correct spin-3 propagation have not been considered.
Here the auxiliary action is obtained systematically from
previous massive spin-3 self-dual models once we know the
first-order model (1).
We have used a generalization of the symmetries used in

the spin-2 context up to the third-order model. However to
obtain the fourth-order self-dual model a generalization of
the Weyl transformation for spin-3, which in our point of
view would be δϕμβγ ¼ ηðμβξγÞ, does not correspond to the
necessary symmetry to make the last step. Instead of this
we have generalized the symmetry used between the first-
and second-order self-dual model, taking advantage that the
topological Chern-Simons term is invariant under δϕμβγ ¼∂ðμΛβγÞ with Λμν arbitrary symmetric tensor. In Table I, the
reader can find a summary of the spins, 1, 2 and 3 chains of
embeddings and the corresponding symmetry and con-
straint on the symmetry parameters.
The next challenge is to go beyond the fourth-order self-

dual model Sð3ÞSDð4Þ and arrive at the sixth-order self-dual
model suggested in [6] eventually. We have not been able to
find any new local symmetry of the fourth-order term in
(28) to be embedded. This is under investigation.
Eventually the use of gauge invariant formulations of

TABLE I. Here we have used SDs
n where n is the order of the

self-dual model and s is the spin.

s Embedding Symmetry Constraint

1 SDð1Þ
ð1Þ → SDð1Þ

ð2Þ δΛfμ ¼ ∂μΛ � � �
2 SDð2Þ

ð1Þ → SDð2Þ
ð2Þ δξeμν ¼ ∂μξν � � �

2 SDð2Þ
ð2Þ → SDð2Þ

ð3Þ δΛeμν ¼ Λ½μν� ¼ ϵμναξ
α ΛðμνÞ ¼ 0

2 SDð2Þ
ð3Þ → SDð2Þ

ð4Þ δϕeμν ¼ ϕημν � � �
3 SDð3Þ

ð1Þ → SDð3Þ
ð2Þ δ ~ΛωμðβγÞ ¼ ∂μ

~ΛðβγÞ ηβγ ~ΛðβγÞ ¼ 0

3 SDð3Þ
ð2Þ → SDð3Þ

ð3Þ δΦωμðβγÞ ¼ ϵμβ
ρϕðργÞ þϵμγ

ρΦðρβÞ � � �
3 SDð3Þ

ð3Þ → SDð3Þ
ð4Þ δΛϕμβγ ¼ ∂ðμΛβγÞ Λβγ ¼ Λγβ
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higher spin fields as in [15] may inspire us to overcome the
fourth-order barrier.
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APPENDIX EQUATIONS OF MOTION
AND DUAL MAP

1. Equations of motion

We start by deriving from (1), with jμðβγÞ ¼ 0, the
equations of motion with respect to the field ωμðβγÞ, which
gives us

KμðβγÞ ¼ −mEμαωα
ðβγÞ

þm2

6
ðημβωγ þ ημγωβ − ωβðμγÞ − ωγðμβÞÞ

þm2

2

�
ημβAγ þ ημγAβ − 2

3
ηβγAμ

�
¼ 0 ðA1Þ

and with respect to the vector field Aμ:

Fμ ¼ 18mEμαAα − 18m2Aμ þm2ωμ þ 24∂μ∂αAα ¼ 0:

ðA2Þ
Our goal is then to demonstrate that from the equations of
motion (A1) and (A2) one can obtain the Fierz-Pauli
conditions for spin-3. In order to demonstrate it we first
make some manipulations with KμðβγÞ; for example, apply-
ing ∂μ in KμðβγÞ we have

∂βωγ þ ∂γωβ − ∂μðωβðγμÞ þ ωγðβμÞÞ
¼ 2ηβγ∂μAμ − 3ð∂βAγ þ ∂γAβÞ: ðA3Þ

Now, let us take the following combination:
ϵλμβKμðβ

γÞ þ ϵγμβKμðβ
λÞ ¼ 0. This leaves us with the equa-

tion

∂βωγ þ ∂γωβ − ∂μðωβðμγÞ þ ωγðμβÞÞ
¼ m

6
ðϵβμαωαðμγÞ þ ϵγμαω

αðμβÞÞ: ðA4Þ

Taking the trace ημβKμðβγÞ, we have

Eαμω
αðμγÞ þm

2
ωγ þ 5m

3
Aγ ¼ 0: ðA5Þ

Applying ∂β∂γ in (A3) and (A4) and then taking the
difference between the resulting equations we have

−4□∂μAμ ¼ −m
3
Eαμ∂λω

αðμλÞ: ðA6Þ

Applying ∂γ in (A5) and using the result (A6) we find that

□∂μAμ ¼ −m2

24
∂μω

μ − 5m2

36
∂μAμ: ðA7Þ

Now if we apply ∂μ in (A2) we have

�
□ − 3m2

4

�
∂μAμ ¼ −m2

24
∂μω

μ: ðA8Þ

Using (A8) in (A7) we conclude that ∂μAμ ¼ 0 and
consequently ∂μω

μ ¼ 0. Now let us define the following
vectors Sα ¼ ∂β∂γωα

ðβγÞ and Tα ¼ ∂μ∂λωμðλαÞ. If we make
∂β∂γKμðβγÞ and ∂μ∂βKμðβγÞ we have, respectively,

EμαSα þ
m
3
ðTμ þ□AμÞ ¼ 0; ðA9Þ

□ωγ þ 3□Aγ ¼ Tγ þ Sγ: ðA10Þ

Then taking EμβKμðβγÞ, after some algebra it is possible
to show that

Tγ ¼ □ωγ − 3□Aγ þ 16m
3

EγβAβ − 16m2

9
Aγ; ðA11Þ

so, from (A11) and (A10) we have Sγ written as

Sγ ¼ 6□Aγ − 16m
3

EγβAβ þ
16m2

9
Aγ: ðA12Þ

Applying Eβγ in (A5) we have

Sβ − Tβ þ□ωβ þ 32m
3

EβγAγ − 9□Aβ ¼ 0: ðA13Þ

Finally substituting back (A11) and (A12) in (A13), after
some manipulation we can prove that Aγ ¼ 0, and con-
sequently from (A2) we can demonstrate that ωγ ¼ 0. Back
with this results in (A10) and (A13) we show that
Tμ ¼ 0 ¼ Sμ. Besides, making Aγ ¼ 0 ¼ ωγ in (A13) we
can verify that ωμðβγÞ obey

∂μðωβðγμÞ þ ωγðβμÞÞ ¼ 0: ðA14Þ

So, from (A4) the antisymmetric part of ωμðβγÞ is null, i.e.,

ωμðβγÞ − ωβðμγÞ ¼ 0: ðA15Þ
Using this new information, after applying Eλμ in (A1)

we can check that

�
□ −m2

9

�
ωλ

ðβγÞ
¼ 0: ðA16Þ
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Here, one could then rescale the mass by a factor 3,
however we prefer to keep the same notation of [7]. Back
with these results in (A5), and applying ∂γ in (A3) we can
demonstrate that ωμðβγÞ is transverse ∂γω

μðβγÞ ¼ 0.
Summarizing we have demonstrated that all the Fierz-
Pauli conditions are satisfied from the equations of motion,
i.e., the spin-3 field is traceless ωγ ¼ 0, totally symmetric,
transverse and satisfy a Klein-Gordon equation. It is a good
moment to also verify that from the equations of motion
one can obtain the Pauli-Lubanski equation, which makes
clear that the spin described is in fact 3. In order to make
this we need to define the generators of translation and
rotation for spin-3 states. The general expression for the
generator of rotations can be obtained, for example, from
[16]. For the reader’s convenience we present here the
explicit form of the s ¼ 3 case:

ðJα3Þβγλμνρ ¼ i
12

ϵðμαðβδ
γ
νδ

λÞ
ρÞ

¼ i
3
ðϵμαβIS

γλ
νρ þ ϵν

αβIS
γλ
μρ þ ϵρ

αβIS
γλ
νμ

þ ϵμ
αγIS

βλ
νρ þ ϵν

αγIS
βλ
μρ þ ϵρ

αγIS
βλ
μν

þ ϵμ
αλISνρ

βγ þ ϵν
αλIS

βγ
μρ þ ϵρ

αλIS
βγ
μνÞ; ðA17Þ

where

IS
βγ
μν ¼ ðδβμδγν þ δβνδ

γ
μÞ

2
ðA18Þ

is the rank-2 symmetric identity. The generator of rotations
J3 given by (A17) obeys the following relation:

ðJα3ÞβγλμνρðJα3Þσϕωβγλ ¼ sðsþ 1ÞIσϕω
μνρ ; ðA19Þ

with s ¼ 3 in this case. In (A19) we have

Iσϕω
μνρ ¼−IS

σϕω
μνρ þ 1

18
½δμνðδϕρ δωσþδσϕδωρ þδσρδ

ωϕÞ
þðρ↔νÞþðμ↔ρÞ�; ðA20Þ

where

IS
σϕω
μνρ ¼ 1

3
ðδσμIS

ϕω
νρ þ δϕμIS

σω
νρ þ δωμIS

σϕ
νρ Þ ðA21Þ

is the rank-3 symmetric identity. Besides the relation (A19)
we can also verify the following commutation relation:

½ðJα3Þβγλμνρ; ðJξ3Þσϕωβγλ � ¼ iϵδξαðJδ3Þσϕωμνρ : ðA22Þ

Finally, from (A1) using all Fiez-Pauli conditions we
have the Pauli-Lubanski equation:

ðP · J3 − smÞσϕωμνρ ωσϕω ¼ 0; ðA23Þ

where s ¼ 3 and ωσϕω is totally symmetric and traceless.

2. Dual map

From (12) with (jμðβγÞ ¼ 0) we take the equations of
motion for ωμðβγÞ, which can be written as

−mEμ
αFαðγβÞ þmξμðβγÞ ¼ 0; ðA24Þ

where we have used the definition of the dual field FμðβγÞ
given by (16). But with the same definition of FμðβγÞ one
can write

mξβðμγÞ ¼ −m2

6
ðFγðμβÞ þ FμðγβÞÞ þm2

6
ðημβFγ þ ηγβFμÞ

þm2

2
ðημβAγ þ ηγβÞ −m2

3
ημγAβ: ðA25Þ

Substituting back this result in (A24) we have exactly the
same equations of motion derived from the first-order self-
dual model given by (A1) with the change ωμðβγÞ → FμðβγÞ.
Then the equivalence between the first-order self-dual
model and the second-order self-dual model can be
demonstrated at least at the level of the equations of
motion. The same procedure can be applied to demonstrate
the equivalence between the other self-dual models.
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