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We present here a relationship among massive self-dual models for spin-3 particles in D = 2 + 1 via the
Noether gauge embedment (NGE) procedure. Starting with a first-order model (in derivatives) Ssp(1) we
have obtained a sequence of four self-dual models S. SD(i) where i = 1,2, 3, 4. We demonstrate that the NGE
procedure generates the correct action for the auxiliary fields automatically. We obtain the whole action for
the fourth-order self-dual model including all the needed auxiliary fields to get rid of the ghosts of the

theory.
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I. INTRODUCTION

Massive gauge field theories in three spacetime dimen-
sions has attracted much attention since long ago. A special
feature of such theories is that they can be massive without
gauge symmetry breaking. This is possible thanks to the
addition of topological terms, as it was done in the case of
topologically massive electrodynamics (TME) and topo-
logically massive gravity (TMG) [1]. The two models cited
have in common the fact that they describe only singlets of
massive spin-2 particles, i.e., describe only one helicity
mode +s or —s, where we have s = 1 for TME and s = 2
for TMG. In the spin-2 case however through the Noether
gauge embedment (NGE) procedure we have demonstrated
[2] that the TMG actually can be related, at least at the level
of equations of motion, to another three models forming a
sequence of the so-called self-dual models of first, second,
third (TMG) and fourth order in derivatives.

With these self-dual models we have demonstrated [3,4]
that at the linearized level the Fierz-Pauli action which
describes a doublet of massive spin-2 particles can be
obtained via a soldering procedure of two second-order
self-dual models of opposite helicities. Besides, one can
recover the new massive gravity [5] (also at the linearized
level) by soldering two self-dual models of opposite
helicities of either third or fourth order in derivatives.

Although we have not observed higher spin particles
(s = 2) in nature, the string theory predicts the existence of
such particles, so it would be interesting to investigate if the
same duality procedure can be generalized for such
particles in the context of gauge theories. A way of
introducing this context is starting by the models of
spin-3. That is only because this is the simplest higher
spin theory we can deal with. Strictly speaking the spin-3
theories do not contain for example the double trace
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condition present in the context of higher spin theories
in general (s > 3). In the spin-2 case, as mentioned here
one can observe that we have four self-dual models in
D = 2 + 1. In the spin-3 case there are apparently six self-
dual models [6]. There seems to be a rule of 2s for the
number of models according to the spin-s we have.

The first two models which describe one massive spin-3
mode in D=241 were proposed by Aragone and
Khoudeir in [7] and [8]. In both models the authors make
use of the vierbein formulation which was introduced by
Vasiliev in [9]. A Chern-Simons-like term is present in
both the first- and the second-order self-dual model. In the
second-order self-dual model the kernel of the action is the
usual massless spin-3 second-order term. The third model
that we have in sequence is named topological massive
spin-3 theory in analogy with the spins one and two cases.
The formulation of this model however is made in terms of
totally symmetric fields which indicate that, in trying to
connect those models via the NGE procedure, one needs to
deal with a change of variables which relates the non-
symmetric formulation in terms of vierbeins and the totally
symmetric one.

It is a feature of massive models in D =2 + 1 that in
order to have only the healthy spin-3 mode one needs to
add an auxiliary Lagrangian which contains ghost-killing
fields. In the three models cited above besides the healthy
mode we have ghosts of spin-1. That is why in those
models we have always an auxiliary Lagrangian which has
the role of eliminating the spurious degrees of freedom. In
[5] the authors propose a fourth-order equation of motion
for a massive spin-3 particle, although they do not propose
an action they suspect that it should contain auxiliary fields.
Here we start with the first-order self-dual spin-3 model of
[7], which we call SD(IB) and obtain a sequence of higher
order self-dual models: SD\”) — SDI*, with i = 1,2,3 via
NGE. At each stage a new local symmetry is added via
embedding. In all cases the full action, including auxiliary
fields, is presented. There is no need of fine-tuning the

© 2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.91.065037
http://dx.doi.org/10.1103/PhysRevD.91.065037
http://dx.doi.org/10.1103/PhysRevD.91.065037
http://dx.doi.org/10.1103/PhysRevD.91.065037

E.L. MENDONCA AND D. DALMAZI

“ghost-killing” auxiliary action. The whole models SD§3),

i =2,3,4 follow from the first-order model. However we
have not been able to obtain the fifth- and the sixth-order
self-dual models of [5].

The paper is organized as follows, in the first section we
present the first-order self-dual model and the embedment
of the first symmetry. In the second section we make the
NGE procedure to the second-order self-dual model. In the
third section we rewrite our third-order self-dual model in
terms of totally symmetric fields and make the last
immersion leading to a fourth-order self-dual model.

II. NGE PROCEDURE FOR THE
SPIN-3 SELF-DUAL MODELS

A. The starting point

We begin with the first-order self-dual model for a
massive spin-3 particle in D =2 4 1 dimensions given
by the action below:

m
SSD(I)[Q)’ A} — /de {—25,,(/;},)0)”(/}7)

m2

T (0,0 — @5

+ m*w, A +jﬂ(ﬁy)a)”(ﬂ7>] +sMAL (1)
For convenience it is useful to define the notation

Sulpy) = Eﬂlwl(ﬁy) ] (2)

where E,, = ¢,,,0". The action (1) is proposed by [7] in the
vierbein formulation. In the context of higher spin particles,
this formulation was first introduced by Vasiliev in [9].
Here, we work in a flat spacetime with signature (—, +, +)
and the basic spin-3 field is Oy(py)s which is symmetric and
traceless in its Lorentz-like indices, i.e., Oy(py) = Ou(yp)
with 7w, 5, =0. We define o, = *’w,y,. Then,
one can identify the first term in (1) as a first-order
Chern-Simons—like term. The mass term is similar to the
Fierz-Pauli mass term for spin-2 particles, except for the
extra term mza)ﬂA” which includes the auxiliary vector
field A,,.

Massive spin-3 actions cannot avoid the presence of
auxiliary fields, see for example Sec. III of [10]." In (1)
besides the spin-3 propagation one also has a residual spin-
1 mode, and that is why we have the action S(!)[A] which
contains dynamic terms for the ghost-killing field of spin
one, and it is given [7] by

'For nonlocal formulations see however [11].
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SWIA] = / d*x[-9me"A,0,A,
—9m*A,AF —12(0,A")?]. (3)

As we write down the action (1) with a spin-3 sector
governed by w4, and a spin-1 sector governed by A, one
might wonder what would be the simplest contact term
between these two sectors, and this is of course given by the
term w,A”. Finally in order to have dual maps between the
self-dual models we have added a source term to the spin-3
sector given by jﬂ(ﬁy)a)"(ﬁ”, the source j, ) shares the
same indices symmetry of w,g,).

Due the presence of the mass term in the spin-3 sector,
the gauge symmetry of the Chern-Simons-like term:

83 0u(py) = Oul\ipy) (4)

is broken. Where we have a traceless parameter
nﬁyA(m = 0. As we have done for spin-2 particles in D =
2 4 1 dimensions, we would like to systematically impose
this gauge symmetry by using the NGE procedure in order
to obtain an invariant model, with the same particle content
of the first-order self-dual model (1). Our previous expe-
rience with spin-2 self-dual models tells us that the price
one pays in obtaining an invariant model is that this new
model is of higher order in derivatives.

The NGE procedure consists of modifying the original
action, which is noninvariant under (4), adding a quadratic
term in the Euler tensor. In this way we are automatically
ensuring that the equations of motion of the original model
(1) are embedded in the new model. First let us write the
Euler tensor which comes from the spin-3 sector, by taking
the variation of the action with respect to @)

8Ssp(1) = / K" 5w, 5. (5)

The Euler tensor is given by

2
KHbr) = —prr) 4 % (BPa + nraf — W) — b))

m2
4 7f/t(/fy) (A) + ). (6)

One can notice that K*#7) = K+ and 5y K*P1) = 0.
Besides, we have defined

2
FUOO(A) = AT AP = Zrar. o (T)

The next step in the NGE procedure consists basically of
performing two iterations, the first one can be done by
coupling a new auxiliary tensor field a,(,) to the Euler
tensor as follows:
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S1 = SSD(]) — / d3xaﬂ</3],>K"<ﬂ7). (8)

Now let us take the gauge variation of (8) by choosing a
proper gauge variation for the auxiliary field a,4,) such as
53 u(py) = O3 u(py) = Oul\(py)- Then we have

6AS1 = —/d3x5AK”</}7)aﬂ</;y>. (9)

Taking the gauge variation of the Euler tensor (6) with
0;A* = 0 and substituting back in (9), we end up with

2
m
S, =8, — / dPx {aﬂ(p’y)K”(ﬂy) _?(aﬂaﬂ — aMW)aﬂ(w)) ,

(10)

after eliminating the auxiliary field a,,) through its
algebraic equations of motion to the following second
iterated action:

3
S, = SsD(l) — W/ d3x[2Kﬂ(ﬂ7)Kﬁ(W) _ Kﬂ(ﬂ}l)Ku(/}y)}.
(11)

As it was expected the action (11) is quadratic on the
Euler tensor which ensures that the equations of motion of
(1) K#P1) = 0 are embedded in the equations of motion of
(11). By construction, S, is automatically gauge invariant
under (4). After substituting back the Euler tensor (6) in
(11) we obtain the second-order spin-3 self-dual model:

1 m
Ssp) = / d'x {gfuwmﬂ"(ﬂ )+ Eupp @V

+2mE, A" — 5 F*P) (w,A) | + SPIA]. (12)

The first term in (12) is the usual massless spin-3 second-
order action in the vierbein-like formulation, where

Q5 (&) = 3(Epur) + Erup) — Sutpr) — 2npySu- (13)

The symbol Q is self-adjoint:

/ & x, 5, QP (£) = / P&, 5y QP (). (14)

The second-order term comes out as an analogue of the
Einstein-Hilbert term for spin-2. Actually as we are going
to verify ahead it is possible to rewrite it in terms of a totally
symmetric field ¢,4,. The gauge invariant second-order
action (12) has now a new auxiliary action S)[A] given by
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32m?

S@A] = / d3x{—9m€””“A”8UAa— A A"

- 12(8,,Aﬂ)2] : (15)

which differs from (3) just by a numerical factor on the
Proca mass term. It is not difficult to show after a rescaling
of A, that the action (12) is in fact precisely the second-
order self-dual model proposed by [8]. Another difference
has automatically appeared, as one can see the linking term
of the spin-3 field with the spin-1 auxiliary field has
changed from m?w,A* to 2mé,A* = 2mA*E¥ wy ) in
such a way that the link is now invariant under the gauge
transformation (4). Last, the dual map between the equa-
tions of motion which comes from the second-order action
(12) and the equations of motion of the first-order action (1)
can be obtained through the dual field F#(1);

@"\Pr) s prbr) (w,A) = + fHPN(A),

Qﬂ(ﬁﬂ(g) (16)

where f##7)(A) is defined in (7). With this dual map, one
can reproduce the equations of motion of the first-order
self-dual model from the equations of motion of the
second-order self-dual model. Note that F*") is gauge
invariant.

We point out here that the new auxiliary Lagrangian (3),
has been automatically generated through the NGE pro-
cedure as well as the gauge invariant source term for the
auxiliary ghost-killing field A,,. In the next section we show
that it is possible to continue with the NGE procedure in
order to obtain a third-order self-dual model.

B. From SD(2) to SD(3)

The second-order self-dual model obtained before is
invariant under the gauge symmetry (4). As we have done
for spin-2 [2] we are going to impose a new gauge
symmetry. One can do this by generalizing the gauge
symmetry used in the spin-2 case.” Let us propose the
following symmetry:

(17)

So®y(py) = €up’ Pipy) T+ €4 Ppp)-

It is straightforward to verify that the second-order term in
(12) is invariant under (17). However the first-order Chern-
Simons-like term breaks this symmetry. Then one can use
again the NGE procedure. From (12) we calculate the new
Euler tensor, which is now of second order in derivatives:

’In that case the symmetry corresponds to an arbitrary shift in
the antisymmetric part of the rank-2 tensor de,, = Ay,
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0Ssp(2)
Oy (py)

1
=F+, (Qﬂ(ﬂr) (&) +ma™Pr) 4 fAPr)(A) - QMr)( j))

— [H(Py)

=g, L), (18)

Following the NGE procedure, we propose the first
iteration given by

$1=Ssp) — / & xby ) LY, (19)

where l.J”(ﬂy) is an au).(iliary field with the same symmet.ry
properties of @, s,); 1.€., Soby(s,) = Opw,(s,). Then, with
respect to the gauge transformation (17) the action (19) has
the following gauge transformation:

m
58 = -5 / AP x5 (b () E* ;04 P1). (20)

Then, by construction we have the following action:

om
$2 = Ssp(z) — / d'x (buwy)”(ﬁ " =3 bupy B0 ”>’
(21)

which is automatically invariant under (17) and also under
(4). Note that we can rewrite S, in the following way:

m i‘ﬂ(ﬂ}’) B LA
S2 — SSD(Z) +/d3x |:§ <bﬂ(ﬂ}’) —7 Eﬂl bll(ly) —7

1 -~

2
_%Lﬂ(ﬂr)EﬂﬂL (ﬂy)] ) (22)

where L*¥7) is defined in (18). Making the change of
variable p6r) — pHPY) 4 Z/I(fy) /m, the first term in (22)
gets decoupled. The term mb, s, E¥ ﬁb’W}y) /2 has no par-
ticle content, then we have

1 - -
S, = Sspa) ~ 3 / d®xL, 5, E¥ S (23)

Note that the equations of motion E#,L*#") = [#") of the
second-order self-dual model SSD<2), ie., LMY =0 are
embedded in the equations of motion of §,. Substituting

L, in (23) we have after some manipulation the third-
order self-dual model:

1 1
Ss00) :/ d3x[_5€” @ (&) =5 - Cu(p) () E* S (&)

_f;t(/}y) (A)EM}»Q/{(/}Y)(g) _jy(/)’y)Hﬂ(/}Y)(w’A) +S,/[A]’

(24)
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which is precisely the third-order “topologically” massive
spin-3 action proposed by Deser and Damour in [12]. The
action is invariant under the gauge symmetries (4) and (17).
The second term in (24) corresponds to the topologically
Chern-Simons term of third order in derivatives. As before
the auxiliary Lagrangian has automatically changed in
order to get rid of lower spin ghosts:

32m?

_AﬂAﬂ

32
S"[A]= / dx {—Tmeﬂ”"AME)DA,,—

— 12(8”14”)2} . (25)

The auxiliary Lagrangian (25), see also [12], now differs
from the first one (3) by two numerical factors, by this time
the Chern-Simons term is also modified. One can notice
that this modification corresponds to the same numerical
factor which has appeared before when we found (15).
Again one can observe that the linking term [the third term
in (24)] between the spin-3 fields and the auxiliary vector
field is modified, becoming invariant under the new gauge
symmetry (17). Last, in this case the equivalence between
the third-order self-dual model Ssp(3) and Sgp7) is given by
the dual map given by the dual field H*() coupled to the
source term in (24):

Ou(py) < HHBr) — _lgﬂ(ﬂy) <9+f> + frbr) (A). (26)
m m

The third-order theory that we have found here is
expressed in terms of the partially symmetric field w4,
(vierbein-like formulation), however one can compare our
result with the topologically massive spin-3 theory [12]
which is given in terms of totally symmetric fields, by
doing the following change of variables:

1 1 1

D) = 75 Pupy + 5 ipby + iybp) = 515,85

+ (eﬂyﬂ)(l/y + eﬂvy)(uﬁ)’ (27)
where y,,,(x) = y,,(x) and **y,, = ¥ = 0. Even if we had
x #0, (27) would be invariant under a Weyl transforma-
tion, in other words 6,y,, = 1,,¢. The numerical factors in
(27) are obtained in such a way that our results fit the results
of [12]. In D =2 + 1, the spin-3 basic field @y(py) has 15
independent components. This can be verified by noticing
that @, (5, has by definition the number of independent
components of a vector, times the number of independent
components of a symmetric traceless rank-2 tensor. On the
right-hand side of (27), we have the number of independent
components of a rank-3 symmetric tensor ¢,,,;, which is
D(D+1)(D+2)/6 =10 in D =2+ 1 plus the number
of independent components of a traceless rank-2 symmetric
tensor y,, which is D(D+1)/2—-1=5in D=2+ 1.
Then in three dimensions we have 15 independent com-
ponents on both sides of (27).
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Rewriting (24) in terms of totally symmetric fields we
obtain

Ssp) @, A] :/d3x |:_%¢yﬂyGﬂﬂy(¢)_ﬁ 5y (0)GHP7 ()

1 -
G ()= 5 Cyp ()G (9)

4 -

—ﬁAMy
V3 .

+sA-2> / Bx] (E¥A, +mAY).  (28)

We have used the spin-3 “Einstein tensor” G,,(¢) and the
symmetrized curl C,,,(¢) defined in [12], given by
1
Gﬂ/37(¢) = RHVA _ 5,7(/41/}{/1), (29)

where we have the “Ricci” tensor given by RM4 =

Ot — 9,0Wp™Y) + 0Wd* Y  and its trace R =
1,,R**. The symmetrized curl is defined by
Cﬂﬂ}' (¢) ¢I/ﬁ}/ (30)

Besides the above definitions we have used the symmetric
combinations for the spin-1 field A,:

Aﬂu/l = A(/A’IM) (31)

and for the source term of (24):

. 1 ~ 1 ~ ~ 1 ~
Jupr) = 7§ Jupy T 4 (Mupiy + My Jp) — 5’7/)’7114 . (32)

It is useful for the next step to notice that the first two terms
in (28) are self-adjoint; i.e., ¢,,,G*"*(y) = w,,,G"*(¢)
and ¢b,,,,C"*(y) = W O ﬁ(qﬁ) inside spacetlme integrals.
From this totally symmetric version of the third-order self-
dual model, in the next section we are going to make the
last step with the NGE procedure by imposing a new gauge
symmetry on (28). Notice that y#, introduced in (27) is
absent in (28) due to the symmetry (17).

C. A complete fourth-order self-dual action for spin-3

In the first section we have used the gauge symmetry (4)
where the symmetric rank-2 parameter A, is traceless.
However one can verify that the spin-3 topological Chern-
Simons term of third order, second term in (28), is invariant
with respect to a generalization of this symmetry with an
arbitrary (traceful) symmetric parameter:

SnPupy = Oulhpy) (33)

with Ay, = A, 4. On the other hand the second-order term,
first term in (28) as well as the interaction term between the
vector field A, and the symmetric spin-3 field ¢,,, are
noninvariant under the generalization (33). So one can now
impose this symmetry in one more round of the NGE
procedure. By noticing that the Einstein operator G5, () is

PHYSICAL REVIEW D 91, 065037 (2015)

self-adjoint, the ¢4, variation of the action (28) gives us
the following Euler tensor:

0Ssp(3)
6¢/wl

Clp) 4A
+3 7 +
= —G"(b), (34)

_ 3 ()
:Nﬂl:_Gﬂl[¢+ 2

where we have automatically defined b. As usual we start
with a first iteration of the form

S] = SSD(3) — / d3xaﬂ,,,1N”’”1, (35)

where we have added a totally symmetric field a,g,
such that its gauge transformation is given by
Opayw; = O Nyy) = OaPuu,- Then, from the gauge trans-
formation of (35) we have

SpS) = /d3xa”,,,16AG”"’1(a), (36)
which then gives us
1
S2:SSD(3)_/d3x |:_aﬂl/ﬂGMD/1<b)+§aﬂblGﬂyl(a):|’ (37)
where b is defined in (34). This allows us to rewrite (37) as
S =Ssp3)
&3 ! b,,;)G** b 1b G"* (b
- X E(a;wl_ ;w/l) (a_ )_5 VA ( ) .
(38)

Finally, shifting a,,, — a,,, + b,,; we can decouple Ay
and b,,; and smce the second-order term a,,,G**(a) is
completely decoupled and has no particle content we end
up with the equivalent invariant action:

1
SZ = SSD(3) + z/d?’xbﬂinﬂI/ﬁ(b)' (39)

Substituting back b,,, given in (34) we have a complete
fourth-order action given by

Sooc /d3 {Stui G+ 5y Cus ()

kGO

+WC,M(}‘)GW[ <¢>>+3 Tim H

3 -
a3 / &, (B2, +mAY). (40)
m

Now the auxiliary action S”[A] has gained a new term of
second order in derivatives, which combined with (9,A*)?
is precisely the Maxwell term:
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32 1
S"A] = 5 d*x [ 2FWF/“’ + met*A,0,A,
+ mQA”A/’} , (41)
where F,, = 0,A,—9d,A,. In the literature there is no

fourth-order action describing a massive spin-3 singlet in
D =2+ 1. In [6] equations of motion of fourth order in
derivatives are introduced but there is no action from where
one can derive it. Besides, the auxiliary fields needed for a
complete description of the spin-3 parity singlet without
ghosts are not considered. Here we are introducing a
complete model with an action for the auxiliary fields.
The equivalence is guaranteed through the dual maps. We
can check that the spin-3 sector of (40) is indeed the action
that gives us the fourth-order equations of motion of [6] by
rewriting the first two terms in the action as follow:

1
[ x5 buiGIc@)

3
= _%/d3x¢”MEuaEpﬂEﬂy¢aﬂy7 (42)

/d3)€212 /wl(¢> ;w/l[ (¢)]

=57 d*xqﬁ””ljﬁ"‘E PE, Dapy- (43)
The combination of these two terms according to (40)
allows us to derive the equations of motion suggested in
[6]. In that paper the authors have defined a 3rd rank (and
3rd order) symmetric tensor potential which is basically a
symmetric combination of the operators E,, that we have
used along this paper. We must say that they have
considered as the Einstein tensor this 3rd rank tensor
instead of the definition used in [12] which is of second
order in derivatives and this is not clear at nonlinear level.
Throughout this paper we have preferred to keep the
second-order definition of the spin-3 analogue of the
Einstein tensor.

III. CONCLUSION

We have verified that there is an equivalence between
four self-dual models for massive spin-3 particles in
D = 2 4 1. We have done this through the NGE procedure.
The same procedure was used before in the context of
massive spin-2 and spin-1 self-dual models. The challenges
here were the presence of auxiliary Lagrangians which have
to be considered in order to preserve only spin-3 prop-
agations without ghosts and the identification of the correct
symmetry to be embedded. We have observed that the
auxiliary Lagrangians have been automatically generated
by the NGE procedure. The changes guarantee the absence

PHYSICAL REVIEW D 91, 065037 (2015)

of lower spin ghosts. It is worth mentioning that as
discussed in [13,14] the NGE procedure does not guarantee
the spectrum equivalence, but this is not the case of the
models obtained here.

Although we have started with the first-order self-dual
model [7] passing through the second-order self-dual
model [8] in the vierbein formulation, one could verify
that after arriving in the topologically massive spin-3 model
itis possible to make a change of variables which relates the
partially symmetric formulation @y, and the totally
symmetric formulation ¢,4,. Such change of variables
see (27) preserves, and respect the number of independent
degrees of freedom.

A complete fourth-order action was achieved in (40).
The core of this action reproduces the fourth-order spin-3
equations of motion proposed by [6]. However in [6] the
auxiliary ghost-killing fields needed in order to maintain
the correct spin-3 propagation have not been considered.
Here the auxiliary action is obtained systematically from
previous massive spin-3 self-dual models once we know the
first-order model (1).

We have used a generalization of the symmetries used in
the spin-2 context up to the third-order model. However to
obtain the fourth-order self-dual model a generalization of
the Weyl transformation for spin-3, which in our point of
view would be 6¢,5, = 1,4¢,), does not correspond to the
necessary symmetry to make the last step. Instead of this
we have generalized the symmetry used between the first-
and second-order self-dual model, taking advantage that the
topological Chern-Simons term is invariant under 6¢,5, =
9, \gy) with A, arbitrary symmetric tensor. In Table I, the
reader can find a summary of the spins, 1, 2 and 3 chains of
embeddings and the corresponding symmetry and con-
straint on the symmetry parameters.

The next challenge is to go beyond the fourth-order self-
dual model Ss?) 4 and arrive at the sixth-order self-dual
model suggested in [6] eventually. We have not been able to
find any new local symmetry of the fourth-order term in
(28) to be embedded. This is under investigation.
Eventually the use of gauge invariant formulations of

TABLE I. Here we have used SDj, where n is the order of the
self-dual model and s is the spin.

s Embedding Symmetry Constraint

I SD{}) > SD{}) Safu=8,A

2 SDj) > SD)) S = 0,8,

2 D) = SDY) breu = A = €0l Ay =0

2 sD}) - SDf} Speu = Pl

3 SDS; - SD% O3 Ouipy) = 9 A(/fy ”ﬂyl&(ﬂ}') =0
3 SD 8 SD g; Sa@y(py) = €up” Por) T € Pop)

3 SDS; - SDE?& Snbupy = Opulpy) Agy = Ay
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higher spin fields as in [15] may inspire us to overcome the
fourth-order barrier.
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APPENDIX EQUATIONS OF MOTION
AND DUAL MAP

1. Equations of motion

We start by deriving from (1), with Ju(py) =0, the

equations of motion with respect to the field w,,(4,), which
gives us
K+ = —mEr g, (P)
m2
+ a (o + ol — wPlur) — wr(uﬂ))
m? 2
+7<,1ﬂ/5A7+,1ﬂ7A/3_§,7/"}’AM> =0 (A1)

and with respect to the vector field A¥:

F* = 18mE"A, — 18m2A" + m*a* + 249" 0,A" = 0
(A2)

Our goal is then to demonstrate that from the equations of
motion (Al) and (A2) one can obtain the Fierz-Pauli
conditions for spin-3. In order to demonstrate it we first
make some manipulations with K ,4,); for example, apply-
ing d, in K*#1) we have

Ol + 00’ — 0 (wﬁ ) 4 @)

=219, A" —3(0PAT 4 97 AP). (A3)
Now, let wus take the following combination:
1,5K"? ) + €,,,K" ;) = 0. This leaves us with the equa-
tion

NPl + 0o — 8”(w/3(ﬂ7> + ' Wh))
m
= g (Gﬂﬂawa(/’W) + GYﬂaa)a(/‘/}))' (A4)
Taking the trace 17”/,»1(”(/’7), we have
m Sm
Ea,,w“(’”’) + 30)}’ + TA’ =0. (A5)

Applying 940, in (A3) and (A4) and then taking the
difference between the resulting equations we have
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400, A" = =5 E 0,074, (A6)

Applying 0, in (A5) and using the result (A6) we find that

00,A" = — a " —53%8 AF (A7)
Now if we apply d, in (A2) we have
O 3£aAﬂ— " (A8)
4 247

Using (A8) in (A7) we conclude that J,A* =0 and
consequently d," = 0. Now let us define the following
vectors S, = O 0 Lw, PV and T, = 00w, If we make
D50,K* ) and a, ,0,K*P") we have, respectlvely,
(T* + 0A*) =0,

ES, + % (A9)

o’ 4 30A7 = T7 + §7. (A10)

Then taking EﬂﬂKﬂ(ﬂ}’), after some algebra it is possible
to show that

16m 16m?>

77 = DCU}/ 3|:|A7 + ?Ey/}Aﬂ —

A7, (All)

so, from (A11l) and (A10) we have S” written as

16 16m?
S7—6DA7—TmEyﬂAﬁ+ m

AT, (A12)

Applying EP in (A5) we have

2
SF — TP + O/ +3TmE/’VA —90JAP =

(A13)

Finally substituting back (A11) and (A12) in (A13), after
some manipulation we can prove that A, =0, and con-
sequently from (A2) we can demonstrate that w, = 0. Back
with this results in (A10) and (Al13) we show that
T" =0 = §". Besides, making A, =0 = w, in (A13) we
can verify that @, s, obey

0

"

(wﬂ(yu) + wy(ﬂﬂ)) =0. (A14)

So, from (A4) the antisymmetric part of w4, is null, i.e.,
— ) = .

WY (A15)

Using this new information, after applying E,, in (A1)
we can check that

(A16)
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Here, one could then rescale the mass by a factor 3,
however we prefer to keep the same notation of [7]. Back
with these results in (AS) and applying 0, in (A3) we can
demonstrate that 4, is transverse 0,0 #r) = 0.
Summarizing we have demonstrated that all the Fierz-
Pauli conditions are satisfied from the equations of motion,
i.e., the spin-3 field is traceless w, = 0, totally symmetric,
transverse and satisfy a Klein-Gordon equation. It is a good
moment to also verify that from the equations of motion
one can obtain the Pauli-Lubanski equation, which makes
clear that the spin described is in fact 3. In order to make
this we need to define the generators of translation and
rotation for spin-3 states. The general expression for the
generator of rotations can be obtained, for example, from
[16]. For the reader’s convenience we present here the
explicit form of the s = 3 case:

()4t = T3

a(B 7 sH)
55

[ A A A
= g (eyaﬂISZp + €yaﬁIS;}:p + €paﬁI‘S‘£u

+e ayIS +e ayIS/M + €, T ﬁ/l

+ €, al IS Py +e aﬂIS/"Y +e a/IIS/}J’) (A17)
where
86 + 808))
1y — Oude £ 3by) Al8
S 2 ( )

is the rank-2 symmetric identity. The generator of rotations
J; given by (A17) obeys the following relation:

a\Pri ( Ja\odw opw
(TSI = (s + 1)T5hy. (A19)
with s = 3 in this case. In (A19) we have
oYW opw 1 ol o) SO o SW
Iﬂ?/) - Isﬂg) 18[5/41/(5?5 +5 ¢5p +5P5 ¢)
+pov)+uop)l. (A20)
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where

Loy =~ (8 Tsly + 0Tssw +8uTsty)  (A21)

[SSTI

is the rank-3 symmetric identity. Besides the relation (A19)
we can also verify the following commutation relation:
2 .
(k. (Ffpi') = iest Uy’ (A22)
Finally, from (A1) using all Fiez-Pauli conditions we
have the Pauli-Lubanski equation:

(P J5 = sm)ily @54, = O, (A23)

where s = 3 and ,,,, is totally symmetric and traceless.

2. Dual map

From (12) with (j,4,) = 0) we take the equations of
motion for @*7), which can be written as
—mEF FoUP) 4 mgbr) = 0, (A24)

where we have used the definition of the dual field F#(%r)

given by (16). But with the same definition of F**7) one
can write

2

m? m
_ (Fy(uﬂ) 4 Fﬂ(}’ﬂ)) 4 & (WP Fr + P Fr)

méPr) = g

2 2
5 (P PAT ) = AP, (A25)
Substituting back this result in (A24) we have exactly the
same equations of motion derived from the first-order self-
dual model given by (A1) with the change @, 5,) = F )
Then the equivalence between the first-order self-dual
model and the second-order self-dual model can be
demonstrated at least at the level of the equations of
motion. The same procedure can be applied to demonstrate
the equivalence between the other self-dual models.

[1] S. Deser, R. Jackiw, and S. Templeton, Topologically
massive gauge theories, Ann. Phys. (N.Y.) 140, 372
(1982).

[2] D. Dalmazi and E.L. Mendonca, A new spin-2
self-dual model in D =2+ 1, J. High Energy Phys. 09
(2009) 011.

[3] D. Dalmazi and E. L. Mendonca, Generalized soldering of
42 helicity states in D = 2 + 1, Phys. Rev. D 80, 025017
(2009).

[4] D. Dalmazi and E. L. Mendonga, Duality of parity doublets
of helicity £2 in D =2+ 1, Phys. Rev. D 82, 105009
(2010).

[5] E. A. Bergshoeff, O. Hohm, and P. K. Townsend, Massive
gravity in three dimensions, Phys. Rev. Lett. 102, 201301
(2009).

[6] E. A. Bergshoeff, O. Hohm, and P. K. Townsend, On higher
derivatives in 3D gravity and higher-spin gauge theories,
Ann. Phys. (Amsterdam) 325, 1118 (2010).

065037-8


http://dx.doi.org/10.1016/0003-4916(82)90164-6
http://dx.doi.org/10.1016/0003-4916(82)90164-6
http://dx.doi.org/10.1088/1126-6708/2009/09/011
http://dx.doi.org/10.1088/1126-6708/2009/09/011
http://dx.doi.org/10.1103/PhysRevD.80.025017
http://dx.doi.org/10.1103/PhysRevD.80.025017
http://dx.doi.org/10.1103/PhysRevD.82.105009
http://dx.doi.org/10.1103/PhysRevD.82.105009
http://dx.doi.org/10.1103/PhysRevLett.102.201301
http://dx.doi.org/10.1103/PhysRevLett.102.201301
http://dx.doi.org/10.1016/j.aop.2009.12.010

DUAL DESCRIPTIONS OF MASSIVE SPIN-3 PARTICLES ...

[7] C. Aragone and A. Khoudeir, Self-dual spin-4 and 3
theories, Rev. Mex. Fis. 39, 819 (1993).

[8] C. Aragone and A. Khoudeir, Massive triadic Chern-Simons
spin-3 theory, in Proceedings of the SILARG VII (World
Scientific, Singapore, 1994), p. 529.

[9] M. A. \Vasiliev, “Gauge” form of description of
massless fields with arbitrary spin, Yad. Fiz. 32, 855
(1980).

[10] C. Aragone, S. Deser, and Z. Yang, Massive Higher spin
from dimensional reduction of gauge fields, Ann. Phys.
(N.Y.) 179, 76 (1987).

[11] D. Francia, Geometric Lagrangians for massive higher-spin
fields, Nucl. Phys. B796, 77 (2008).

PHYSICAL REVIEW D 91, 065037 (2015)

[12] T. Damour and S. Deser, “Geometry” of spin-3 gauge
theories, Ann. Inst. Henri Poincaré, A 47, 277 (1987).

[13] A.P.S. Baeta, M. C. Botta, and J. A. Helayl-Neto, On the
relation between the propagators of dual theories, Europhys.
Lett. 65, 760 (2004).

[14] D. Dalmazi, Ghost free dual vector theories in 2+ 1
dimensions, J. High Energy Phys. 01 (2006) 132.

[15] L. L. Buchbinder, T. V. Snegirev, Yu. M. Zinoviev, and Yu.
M. Zinoviev, Gauge invariant Lagrangian formulation of
massive higher spin fields in (A)dS; space, Phys. Lett. B
716, 243 (2012).

[16] P.J. Arias, Dualidad en teorias de spin-2 massivo en
dimension 2 + 1, arXiv:0912.5106v2.

065037-9


http://dx.doi.org/10.1016/S0003-4916(87)80005-2
http://dx.doi.org/10.1016/S0003-4916(87)80005-2
http://dx.doi.org/10.1016/j.nuclphysb.2007.12.002
http://dx.doi.org/10.1209/epl/i2003-10192-1
http://dx.doi.org/10.1209/epl/i2003-10192-1
http://dx.doi.org/10.1088/1126-6708/2006/01/132
http://dx.doi.org/10.1016/j.physletb.2012.08.022
http://dx.doi.org/10.1016/j.physletb.2012.08.022
http://arXiv.org/abs/0912.5106v2

