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We study a lattice field theory model containing two flavors of massless staggered fermions with an
onsite four-fermion interaction. The model contains an SU(4) symmetry which forbids nonzero fermion
bilinear mass terms, due to which there is a massless fermion phase at weak couplings. However, even at

strong couplings fermion bilinear condensates do not appear in our model, although fermions do become
massive. While the existence of this exotic strongly coupled massive fermion phase was established long
ago, the nature of the transition between the massless and the massive phase has remained unclear. Using

Monte Carlo calculations in three space-time dimensions, we find evidence for a direct second-order
transition between the two phases suggesting that the exotic lattice phase may have a continuum limit at
least in three dimensions. A similar exotic second-order critical point was found recently in a bilayer system

on a honeycomb lattice.
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I. INTRODUCTION

It is well known that relativistic four-fermion field
theories in three dimensions can contain strongly interact-
ing second-order fixed points [1,2]. The search for such
fixed points in four dimensions has been less successful,
although efforts to find them continue in the context of
Yukawa models [3-6]. One of the motivations for their
search is to understand new dynamical mechanisms for
fermion mass generation that may be realized in nature.
Perturbatively, fermion masses arise from local fermion
bilinear terms in the action. Since four-fermion interactions
are perturbatively irrelevant in three and higher dimensions,
we expect a massless fermion phase at small couplings as
long as the interactions are invariant under some subgroup
of the chiral symmetry group that prevents fermion bilinear
condensates. However when these interactions become
strong, symmetries that protect the fermions from becom-
ing massive can break spontaneously leading to nonzero
fermion bilinear condensates and massive fermions. This
traditional mechanism of mass generation is well known. In
this paper we explore another more exotic mechanism of
mass generation where fermions become massive without
fermion bilinear condensates. As we will explain below,
such exotic mechanisms of fermion mass generation are
known to occur at strong couplings. In this work we
provide evidence that these lattice phases can be connected
to massless fermion phases by second-order phase tran-
sitions, suggesting that the exotic mass generation mecha-
nism may be of interest even in continuum quantum field
theory.

Anomaly matching severely constrains the chiral sym-
metries that can be preserved when fermions become
massive [7,8]. It is necessary for the full chiral symmetry
group of free fermions to be broken either explicitly or
spontaneously for fermions to become massive. However,
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there are chiral symmetry subgroups that can remain
unbroken, which forbid local fermion bilinear condensates,
yet allow for fermions to become massive. Such exotic
mechanisms of fermion mass generation have appeared in
the literature in the context of QCD-like theories [9—11]. In
these examples the spontaneous breaking of chiral sym-
metry occurs through the formation of four-fermion con-
densates which preserve an unbroken chiral symmetry
subgroup that forbids fermion bilinear condensates [12].
What about four-fermion field theories where the inter-
actions naturally generate the necessary four-fermion con-
densates that can make fermions massive, but still contain
symmetries that forbid fermion bilinear condensates? In
such theories, there is no need for any further symmetry
breaking in order to make fermions massive, since the four-
fermion coupling already breaks the full chiral symmetry
group to a subgroup that in principle allows for fermions to
become massive. On the other hand since four-fermion
interactions are irrelevant perturbatively, there will still be a
massless fermion phase at weak couplings. However, as
couplings become strong, there can be a phase transition
to a phase where fermions become massive without any
spontaneous symmetry breaking of the remnant chiral
symmetry subgroup. In such a transition there is no local
order parameter that distinguishes the two phases in the
strict sense of the word, although the four-fermion con-
densate could show a dramatic change in the vicinity of the
phase transition. In other words, the remnant chiral sym-
metry subgroup is realized in the Wigner-Weyl mode in
both the phases but in different forms: one containing
massless fermions and another containing massive fer-
mions with some form of parity doubling [13]. In this paper
we study an explicit example of such an exotic phase
transition in a four-fermion lattice field theory in three
dimensions. Interestingly, this phase transition seems to be
second order.

© 2015 American Physical Society
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It is well known that subgroups of the full chiral
symmetry group can be preserved on the lattice even in
the presence of interactions. A famous example is staggered
fermions, where a U(1) subgroup of the full chiral sym-
metry group prevents fermion mass terms [14-16]. With
more flavors this lattice chiral symmetry group is enhanced
and it is interesting to explore if there are subgroups of this
remnant lattice chiral symmetry group that forbid fermion
bilinear expectation values while still allowing staggered
fermions to become massive. Interestingly such an exotic
fermion mass-generation mechanism was discovered long
ago in studies of staggered lattice Yukawa models in four
dimensions within a phase called the strong paramagnetic
or PMS phase [17-21]. Many studies with Wilson fermions
followed this discovery in an attempt to explore if the PMS
phase can be used to formulate the standard model on the
lattice [22—26]. While most of these attempts seem to have
failed, as far as we know the rich phase structure that
was predicted within various models was only partially
verified with Monte Carlo calculations. In particular, results
in the intermediate coupling region may not have been
reliable since computational techniques were still in their
infancy at that time. While most of the studies of the PMS
phase focused on four dimensions, there have been studies
more recently in three space-time dimensions where
similar phase structures were found [27]. Analytic pre-
dictions using mean field theory also emerged at the same
time [28-32]. A review of these early results can be found
in Ref. [33].

In this work we revisit a simple lattice four-fermion
model with two flavors of staggered fermions interacting
with an onsite four-fermion coupling. Our model is a
limiting case of a lattice Yukawa model studied long ago
[20]. Earlier studies were performed in four dimensions,
where it was established that there is a massless fermion
phase at weak couplings and a PMS phase at strong
couplings. The weak-coupling phase was referred to as
the weak paramagnetic or PMW phase. The authors used
mean field theory in the intermediate-coupling region and
found that the two phases are separated from each other by a
more conventional massive fermion phase with a nonzero
chiral condensate (referred to as the ferromagnetic or FM
phase). This phase diagram is shown as scenario A in Fig. 1.
On the other hand a different mean field theory calculation,
which becomes exact in the limit of large dimensions, found
a direct first-order transition between the massless and the
massive phases [29-32]. This is shown as scenario B in
Fig. 1. As far as we know, a controlled first-principles
Monte Carlo calculation has never been performed. In this
work we perform such a calculation in three space-time
dimensions and find a result consistent with scenario B, but
with a second-order transition between the PMW and the
PMS phases. This second-order critical point cannot be
described using a traditional four-fermion field theory that
involves spontaneous symmetry breaking and the formation
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FIG. 1 (color online). The two possible phase diagrams for our
model based on previous studies. Our work provides strong
evidence in favor of scenario B with a second-order transition
between the PMW phase and the PMS phase.

of afermion bilinear condensate. Interestingly, a very similar
second-order transition was recently found in an extended
Hubbard model on a bilayer-honeycomb lattice, where it
was argued that the exotic critical point is a multicritical
point where three topology-driven second-order phase
transition lines meet [34].

Our paper is organized as follows. In the next section we
present our model, its symmetries and the observables we
wish to compute. In Sec. III we discuss how our model can
be viewed as a limit of a lattice Yukawa model and argue
the presence of the PMW and the PMS phases at weak and
strong couplings respectively. We also review results from
the mean field theory calculation that predicts a direct first-
order transition between the two phases. We then discuss
the fermion bag approach in Sec. IV, which we use to
perform Monte Carlo calculations. Section V contains a
discussion of the specific Monte Carlo update procedures we
have used in our work. In Sec. VI we present our numerical
results and their analysis that provides evidence for a single
second-order transition between the two phases and in
Sec. VII we discuss why we believe there is no order
parameter that distinguishes the two phases. Finally,
Sec. VIII contains our conclusions.

II. MODEL AND SYMMETRIES

The model we study contains two flavors of staggered
fermions with an onsite four-fermion interaction. The
Euclidean action of our model is given by

§S=S8y- UZ{Wx,ll//x,ll/_/x,zll/x,z}, (1)

where S is the free massless staggered fermion action

SO = Z Z l/_/x,iMx.y Wy,i' (2)

i=12 x)y

Here vy, ;,w,;,i = 1,2 are four independent Grassmann-
valued fields, M is the well-known staggered fermion
matrix given by
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nx,&
M., = ZT [5xﬁy+& - 5)‘-)‘—5’}’ (3)

X = (x1,x,, x3) denotes a lattice site on a three-dimensional
cubic lattice and & = i, Q, 3 represent unit lattice vectors in
the three directions. The staggered fermion phases are
defined as usual: ;=11 5=(=1)", and n 5= (=1)"1"*.
We study cubical lattices of equal size L in each direction
with antiperiodic boundary conditions. Since the lattice is
cubical we can define a parity for each site using the sign
factor e, = (—1)"1+2*% If ¢, = 1 we define the site to be
even and otherwise it is odd. Our model is just one of the
many possible lattice Gross-Neveu models that have been
considered in the literature [2,35-38]; however, the PMS
phase at strong couplings is a peculiarity of our model and
is not present in most models. This difference has been
pointed out in earlier work [20].

It is easy to verify that the action given in Eq. (1) is
symmetric under the usual space-time lattice transforma-
tions and internal SU(4) transformations given below
[15,16].

(i) Space-time translations:

Wx,i - fx,&ww»&,i? ll_/x,i - gx,&lz_U)H»&,i» (4)
where £, ; = (=1)*2F5, $5 = (=1)*, and s3=1
(i) Space-time rotations:

Wyi ™ SR<R_1x)l//R'1x,i7
Wi = SR(RT'X)Wg-1, s, (5)

where R =R p+¢ is the rotation X, = X4,
X, = —X,, and x, = x, when 7 # p,c and Sg(x)=
%(1 :t?’][, (x)r]x,& + gx,p‘fx,a+’7xf)’7x,&§x,p§x.a)’ where the
two signs represent the cases p>o¢ and p <o
respectively.

(ii1)) Axis reversal:

Vi (_1)x/}l//(1/’x).iv l/_/x.,i - (_1)x/)l/_/(1/’x),i’ (6)
where 17 (x) is the axis reversal operation on x which
changes x, — —x, and x, = x,,0 # p.

(iv) Global SU(4) transformations:

er,l er,l
l//xe,l SV l//xe,l ’ (78)
l//xe,z W.X‘,,Z
l/_/xe 2 l/_/xe,Z
l//xo,l ’//xo,l
Wx,,,l VS l//x,,,l ’ (7b)
Yx,2 Vi, 2
l/_/)((,,2 lZ/x,),Z
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where x, and x, refer to even and odd lattice sites
respectively, and V is a SU(4) matrix in the fundamental
representation.

The free action is invariant under a much bigger
symmetry group since it describes four flavors of four-
component Dirac fermions. While this enhanced symmetry
can only be understood in the momentum-space formu-
lation, the SU(4) symmetry discussed above and the
well-known U, (1) symmetry of staggered fermions, imple-
mented through the transformations

ife,
Yyi ™€ Vi

l/_/x,i - eiegxl/_/x,i’ (8)
are both visible even in position space. In most staggered
four-fermion models, it is the U, (1) symmetry that breaks
spontaneously when fermions become massive. In contrast,
in our model the interaction term breaks it explicitly
by introducing a four-fermion condensate. On the other
hand the SU(4) symmetry forbids fermion bilinear con-
densates. Indeed the six onsite fermion bilinears ¢, ; =

J’x,ll//x,l’ ¢x$2 = l/_/x,Zl//x,Z’ ¢x.3 = li’x,ll//x,b ¢x,4 =
WedWals $xs = Wai¥Wa2, $re = Wil transform
under the sextet representation of SU(4), and cannot
acquire an expectation value unless the SU(4) symmetry
breaks spontaneously. We believe our model is an example
of four-fermion models, discussed in the Introduction,
where fermions become massive due to four-fermion con-
densates although fermion bilinear condensates vanish. As
discussed in the Introduction, since four-fermion inter-
actions are irrelevant there is still a massless fermion phase
at weak couplings. However, as we will see in the next
section, at sufficiently strong couplings fermions become
massive without fermion bilinear condensates. As far as we
can tell, no local order parameters exist that distinguish
between the two phases. Thus, fermion mass generation in
our model is a question of dynamics rather than symmetry.

Of course it is possible that the SU(4) symmetry still
breaks spontaneously at some intermediate couplings. In
order to look for such breaking, we can measure correlation
functions between the six fermion bilinears. The SU(4)
symmetry can be used to relate all of them to two
independent correlation functions. In this work we compute
the corresponding two independent susceptibilities

1
X1 = ﬁ Z <¢x,l¢y,1>v (93)
XY XFEY
1
X2 =573 Z (Pr16y2), (9b)
X,V XEY

where expectation values are defined as

()= / [y Oe=S9), (10)
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with Z being the partition function. The presence of a
condensate can be inferred when these susceptibilities
diverge as L? for large values of L. Another observable that
we compute is the local four-point condensate defined by

1 _ _
Pm = FZ<WX,1WX,1WX,2W)C,2>' (1 1)
x

We find that this quantity increases rapidly near the phase
transition.

III. CONNECTION TO YUKAWA MODELS

Our model can be obtained from many lattice Yukawa
models, the simplest being the one in which two flavors of
staggered fermions are coupled to an Ising field 6, = £1
and whose action is given by

S= SO - Kzax0x+& - YZ Z lei/x,il//x.i' (12)

x,a i=12 x

Here « is the hopping parameter for the Ising field and Y is
the Yukawa coupling. When x = 0 it is easy to show that
the partition function of the above model is exactly the
same as the partition function of our model if we set
U = Y2. Note however that the SU(4) symmetry is broken
in the Yukawa model for general values of x and is restored
(but hidden) when x = 0.

The Yukawa model at x = 0 can be studied in perturba-
tion theory for both small and large Y. At small coupling
the fermionic correlation function up to second order in Y?
is given by

(Wi ) = 8y(M3) + Y (M IOM),,), - (13)
where H)(C'y') = (M3))" is a matrix in position space. Using
this expression and the usual power-counting rules of
weak-coupling perturbation theory that show four-fermion
couplings are irrelevant, it is easy to verify that fermions

remain massless. Similarly, the bosonic correlation function
is given by

<l/_/x,il//x,il/_/y,jl//y,j> = 51](1_[)%) + Y4<H(2)H(2)H(2))xy)

+ Y2(1 = 5;;)(MP11?) (14)

Xy
which goes to zero when x and y are separated far from
each other showing that fermion bilinear condensates
vanish. In the leading large-coupling limit the fermionic
correlation function is given by

. 1\ 2¢+2
<lI/x.i1//y,j> = 511,' ) Axy» (15)
Y

where 27 + 1 is the number of bonds in the shortest path
connecting sites x and y. This number is odd since the
correlation function is nonzero only if x is an even site and
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y is an odd site or vice versa. Thus, Z =0, 1,2, ... is fixed
once x and y are chosen. In general there are many such
paths, each of which we can label with the sites along the
path as P = (x, 21,22, ...22¢-1. 22¢ ¥)- A,y is then given by
a sum over amplitudes for each path,

AX}' = _Z(MX,Zl )3MZ| o) (MZz,Z3)3’ * 'MZz/quf (MZZf.,,V)?"
P
(16)

Thus, we see that the fermionic correlation function decays
exponentially as exp(—(4¢ +4)InY) proving that fer-
mions have become massive. Similarly, the bosonic two-
point correlation function is given by

Y2

+(1-4;) <%> 2mcxy. (17)

) ) 1\ 2242
<Wx,in,iWy.jl//y,j> = 5ij< > Bxy

If i = j then x and y must have opposite parity like in the
fermionic correlation function. This means the total number
of bonds in the path is odd (2 + 1) as before. But when
i #j then x and y must have the same parity for the
correlation function to be nonzero. This means the total
number of bonds in the path is even and is given by 2Z + 2.
We are excluding the possibility of x =y here. The
corresponding amplitudes are given by

Bxy = Z(MX,Zl)2(M11,Z2>2'"(MZ%”_]ZQf)Z(Msz,y)z’
P

ny = Z(MX,Zl)2(M11,22>2‘"(M22f_212f_1)2<M12f+1$y)2'
P

(18)

Thus, bosonic correlations also decay exponentially, which
means the fermion bilinear condensates again vanish. This
is the proof that there is a PMS phase at strong couplings.

The phase diagram of the Yukawa model was obtained
in the mean-field approximation by various groups
[20,29,32]. While each of these calculations yield slightly
different results, they qualitatively agree that the generic
phase diagram at some k # 0 is given by scenario A in
Fig. 1. For N flavors of staggered fermions, the calculation
at k =0 discussed in Ref. [29] found that the critical
coupling between the PMW and the FM phases is given by

d
Yy :my (19)

and between the FM and the PMS phases it is given by

L d(Ng-1)
Yc_ff. (20)
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While Y # Y7 for most values of Ny, for our model
(Ny=2)Y¥ =Y = d/2. This suggests that the FM phase
may be absent for all values of d consistent with scenario B
of Fig. 1. However, the direct transition between the PMW
and the PMS phases is found to be first order. A first-
principles Monte Carlo calculation is clearly necessary to
understand what happens at intermediate couplings. In this
work we provide evidence for the presence of a direct
second-order transition between the two phases.

IV. FERMION BAG APPROACH

Traditional Monte Carlo methods for studying four-
fermion field theories are based on introducing an auxiliary
field to convert the four-fermion coupling into a fermion
bilinear term in the action. In this work we use an alternative
Monte Carlo approach introduced a few years ago, called the
fermion bag approach [39]. Interestingly, some sign prob-
lems that had remained unsolved with traditional methods,
can be solved in the fermion bag approach [40-42]. The new
approach has also helped in accurately computing the critical
exponents with massless fermions [40,43]. A review of the
fermion bag approach can be found in Ref. [44].

In the fermion bag approach, we rewrite the partition
function of our model as a sum over monomer configu-
rations which we denote as [n]. Each monomer configu-
ration is defined through a binary lattice field n, = 0,1
which denotes the absence or presence of a monomer at the
site x respectively. Figure 2 shows an example of a
monomer configuration on a two-dimensional lattice. As
explained in Ref. [45], there are two dual viewpoints to
define fermion bags: 1) a strong-coupling viewpoint where
lattice sites that do not contain monomers are defined as
free fermion bags inside which fermions of both flavors hop

~igiellooe| o0
-O-—-0 0@ -0 0--
0000006 0600
.--00-0000 . .-00-00

29300300 g
000|100 0

00016100606
0000000000000

6080000 606

0000000000 000
1o o1 0000000

FIG. 2 (color online). An example of a monomer configuration
[n] showing free fermion bags on a two-dimensional lattice. The
filled circles represent monomers and the connected regions
without monomers form free fermion bags.
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freely; lattice sites with monomers form point-like fermion
bags where fermions are pinned; 2) a weak-coupling
viewpoint where all monomer sites form a fermion bag
and fermions of both flavors propagate freely between the
monomer sites. Fermion bags of either viewpoint are
uniquely defined for every monomer configuration. An
interesting feature of the strong-coupling viewpoint is that
at sufficiently strong couplings there are many distinct
fermion bags, which we label as B = 1, 2..., and fermions
from one bag cannot hop to a different bag. In contrast in
the weak-coupling viewpoint there is a single fermion bag
containing all monomer sites. Based on these two view-
points we can write the partition function in two different
but equivalent ways:

Z= ZUN'"H(Det Wg))2,

Z = (Det(M))) UN» (Det(G))?,
]

(21a)
(21b)

where N,, represents the number of monomers in the
configuration, M is the free staggered fermion matrix
defined in Eq. (2), W represents the free staggered fermion
matrix connecting the sites within the bag B, and G
represents an N,, x N,, free staggered propagator matrix
connecting monomer sites. The elements of G are given by

szxy Zo/nxa’snlk’, (22)
S sink,

where k= (k,k,,k3) where k,= (2n+1)z/L,n=
0,1...,L —1 due to antiperiodic boundary conditions. At
weak couplings there are very few monomers and the weak-
coupling viewpoint becomes more useful for calculations
and the Boltzmann weight of each monomer configuration
is nothing but the sum over all Feynman diagrams. Thus,
the weak-coupling viewpoint is exactly identical to the
well-known diagrammatic determinantal Monte Carlo
methods [46-49]. On the other hand at strong couplings,
when the number of monomers becomes comparable to the
volume, the strong-coupling viewpoint becomes useful for
calculations since free fermion bags become small. As we
discuss below, it is also easy to understand some of the
strong-coupling results of the previous section intuitively.

Expressions for observables can also be derived easily in
the fermion bag approach. For example, in the strong-
coupling viewpoint the two-point fermion correlation
function is given by

l//le//)l - ZUNWH Det WB)) WBxy’ (23)

where WB ey is the inverse of the Dirac operator within the
free fermion bag B that contains the sites x and y. It is
understood that when either of the sites x or y contains a
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monomer, that configuration does not contribute to the
correlation function. Further, since fermions cannot hop
from one fermion bag to another, x and y are also forced to
be within the same bag. With this insight it is easy to see
why fermion correlations decay exponentially at strong
couplings. Since the lattice is filled with monomers, large
fermion bags are suppressed exponentially and fermions
are confined within small regions.

The argument that shows that even bosonic correlations
decay exponentially is more subtle. In principle, it is
possible to have a single insertion of ; ,y; , within special
fermion bags that allow a zero mode in the matrix Wp.
Clearly, such bags do not contribute to the partition
function since without the insertion of ;v the deter-
minant Det(Wp) vanishes. However, with the insertion
of w; ,w;, one row and one column are removed from the
matrix and then the determinant no longer vanishes. This is
very similar to the argument of how instantons can
contribute to the chiral condensate in single-flavor QCD.
However, since there are two flavors in our model and
Wiy, only involves the flavor i, the determinant of the
other flavor still vanishes due to the zero mode in Wy of the
second flavor. Thus, a single insertion of a fermion bilinear
is forbidden in our model. For this reason bosonic corre-
lation functions also get contributions only when both x
and y are within the same bag. For example the expression
for one of the correlation functions is given by

_ _ 1 _
o) =5 S UM T (Det(W) (W5, )2
B
(24)

Since x and y are within the bag, it too decays exponentially
at sufficiently large coupling as we found in the previous
section.

V. MONTE CARLO ALGORITHMS

We have constructed three different Monte Carlo algo-
rithms to update the monomer configurations [n]. The first is
a block algorithm that creates, destroys and moves mono-
mers within blocks. The second is a worm algorithm that
creates a pair of half-monomers near each other (i.e., ¥, ;y, ;
and y, ;. ;) and moves one around until it returns to the
vicinity of its pair and detailed balance allows us to destroy
the pair. As the half-monomer moves around it can create or
destroy other monomers. The third is a heat-bath sweep
algorithm that picks a random site along with every other site
on the lattice and performs a heat-bath update on the two
sites. Below we provide more details of the three algorithms.

A. Block algorithm

In this algorithm a site on the lattice is chosen at random
and a local block consisting of 6 sites in its vicinity is
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chosen to be updated, while the sites outside the block are
held fixed. Since much of the matrix whose determinant is
being calculated does not change during the block update,
the computational cost is significantly reduced. Each
update within the block involves two steps, adding and
removing monomers in pairs followed by moving individ-
ual monomers around. Each of these steps is performed
roughly 100 times during the block update.

The first step of the update that involves adding and

removing monomers in pairs is performed as follows:

(1) Choose to either add or remove monomers with
probability half.

(2) If the decision is to add monomers, compute K,
the number of pairs of free sites (one even and one
odd) within the block in the current configuration
where two monomers can be added. Choose one of
these pairs at random and add monomers to the sites
with probability

Qiaik
pP—= final “free ) (2 5 )
Qinitial kfilled

With probability 1 — P keep the old configuration.
In the expression above, kgoq 1S the number of pairs
of monomer sites (one even and one odd) within the
block in the new configuration from where mono-
mers can be removed and Qg and Q. are the
Boltzmann weights of the final and the initial
configurations with and without the two monomers.
(3) If the decision is to remove monomers compute
kineq» the number of pairs of monomer sites (one
even and one odd) within the block in the current
configuration from where monomers can be re-
moved. Choose one of these pairs at random and
remove monomers from the sites with probability

Qe )
P flnalkﬁlled (26)

Qinitial kfree

With probability 1 — P keep the old configuration.
In the above expression kg, is the number of free
sites (one even and one odd) within the block in the
new configuration where monomers can be added
and Qi and Qg are the Boltzmann weights of
the final and initial configurations with and without
the two monomers.
The calculation of Qgpa1/Qinitial iNVolves computing a ratio
of two determinants with one row and one column added or
subtracted and is the most computationally intensive step in
the algorithm.

The second step of the update involves moving mono-
mers from one site to another site with the same parity that
does not contain a monomer. For high acceptance we move
monomers only to an allowed neighboring site but repeat
the process many times. The update is as follows:
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(1) Pick a monomer site x at random.

(2) Pick at random one of the 12 next-to-nearest-
neighbor sites of x with the same parity as x. We
will refer to this site as y. Note that x and y belong to
diagonally opposite pairs of sites of an elementary
square.

(3) If y contains a monomer then the update stops.
Otherwise the monomer located at x is moved to y
with probability

Q
p=_tm (27)
Qinitial

With probability 1 — P the monomer at x is left
untouched.
Since the move-monomer step is repeated many times,
monomers diffuse around within the block.

B. Worm algorithm

Past experience shows that worm-type algorithms are
able to reduce autocorrelation times significantly since
worm updates are based on correlations within the system
[50]. A worm-type algorithm can be designed for our model
as we discuss here. The idea is based on sampling the
bosonic correlation function through the worm. Since a
monomer is the presence of a four-point vertex
WalWx1WaoWy, at the site x, a half-monomer is the
presence of a fermion bilinear vertex at the site. Further
when the two half-monomers are located at the sites with
the same parity then they are forced to belong to different
flavors and vice versa. In order to understand this algorithm
it is useful to define a compatibility condition for two sites x
and y. Two sites x and y are defined to be compatible if 1) x
and y have different site parities, but the same filling i.e.
either both are free sites or both have monomers, or 2) x and
y have the same site parity, but have opposite filling i.e. one
is a free site and the other has a monomer. If x and y are
compatible, the head of the worm can in principle move
from x to y or vice versa. Whether it really moves depends
of course on probabilities that satisfy detailed balance. On
the other hand when x and y are incompatible, the head of
the worm cannot move between the two sites. It is also
useful to define a set of nearby sites for a given site x. The
worm will explore these nearby sites as it proceeds forward.
We will define nearby sites to mean the six nearest-
neighbor sites, the 12 next-to-nearest-neighbor sites and
six sites that are two lattice spacings away along each
direction. Thus, at each step the worm will explore one of
24 nearby sites as it moves ahead. Based on these
definitions, the worm update is constructed as follows:

(1) Determine all the possible pairs of nearby sites that

satisfy the compatibility conditions described above.
Define kj,;; as the number of such pairs and pick one
compatible pair at random. Label the pair of sites
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randomly as x(tail) and y(head). The state of the site
x, whether it is free or contains a monomer, is noted.

(2) Create worm: Introduce half-monomers at x and y
with probability

o innal ekpairs
= 3
Qinitiat 121

(28)

where e is an enhancement factor to increase the
acceptance and L° is the lattice volume. With
probability 1 — P the update ends; otherwise pro-
ceed to the next step.

(3) Move worm-head: Pick one of 24 nearby sites of y at
random. Call this site z. If the site z is the first site x,
proceed to the “destroy-worm” step. Otherwise try
to move the worm-head from y to z. There are two
possibilities: 1) if y and z are sites with opposite
parity, propose a new configuration where y has
the opposite filling state of z and move the half-
monomer to z; 2) if y and z are sites with the same
parity, propose a new configuration where y has the
same filling state of z and move the half-monomer
to z. Both these proposals are accepted with the
Metropolis acceptance probability

Q.
P final ’ (29)
Qinitial

and the worm-head is moved to z from y. If the
proposal is rejected the worm-head remains at y. The
“move worm-head” step is repeated again.

(4) Destroy worm: Propose to remove the half-
monomers located at y and x by restoring the site
x to the same state as it was in the first step when the
update started and restoring y to the unique state that
makes it compatible with x. Accept the proposal
with probability

 Qpa 1217

P 9
Qinitial ekpairs

(30)

where ki 1s calculated just like the first step but for

the final configuration without the half-monomers.

If the proposal is accepted the update stops. Other-

wise the “move worm-head” step is repeated.
Since configurations with two half-monomers can often
have much smaller Boltzmann weights as compared to
those without the half-monomers, we have introduced an
enhancement factor e = 10 in the step that creates the
worm. However in order to ensure detailed balance we also
divide by this factor in the step that destroys the worm.

The worm algorithm can be used to measure y; and y,

easily. Let n,, (n,) be the number of y sites generated during
the worm update that have the opposite (same) parity as x.
Then it is easy to argue that
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X1 _e<no>1 )(2—e<ns>' (31)
The reweighting factor e is necessary since the half-
monomer sector was produced with an enhanced weight.
Thus, the total number of steps during the worm update is
proportional to y; + y, on an average. Since in our model
we find that the susceptibilities do not grow with volume a
single worm update only touches a few lattice sites in the
neighborhood of the first site. Hence we have to repeat the
worm update a sufficient number of times starting with
different initial sites in order to ensure that the entire lattice
has been updated.

C. Heat-bath sweep algorithm

Although the worm algorithm is normally efficient in
computing y; and y,, we have noticed some rare but
large fluctuations in our data especially for large values of
U. Worm algorithms can in principle generate rare runaway
loops which can cause problems with statistics and the
computation of errors. Hence, in order to check our errors
we devised a simple heat-bath sweep algorithm, which
guarantees bounded fluctuations. On the other hand the
heat-bath sweep is not computationally efficient since the
algorithm attempts to add and subtract monomers over long
distances. In our work we have only used it as a method to
check the accuracy of our worm algorithm results on
smaller lattices. The algorithm proceeds as follows:

(1) Pick a site at random (say x).

(2) Pick every site y on the lattice in a fixed sequence

and perform the following heat-bath update. If x and
y are incompatible sites proceed to the next y.
Otherwise propose a new configuration where both
sites x and y are flipped (i.e., monomer sites are
changed to free sites and vice versa). Let Q. and
Q4 be the Boltzmann weights of the new and the
old configurations. The proposed new configuration
is accepted with the heat-bath probability

Q
p=_ v (32)
Qnew + Qold

With probability 1 — P the old configuration is
retained and the update moves on to the next site y.

(3) Once all the sites y are visited the update ends.
This algorithm also allows us to compute the two suscep-
tibilities y; and y, during the heat-bath sweep. One can

show that
1 !
Xi= 5 < Ev

where a prime on the sum indicates that the sites y used in
the sum should 1) have the opposite parity as x for y; and
the same parity as x for y, and 2) be compatible with the x.

V Qnewgold >, (33)

Qnew =+ 'Q'old
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D. Equilibration, autocorrelation and parallelization

We have used the block algorithm (or ALGI), the
worm algorithm (or ALG2) and the heat-bath sweep
algorithm (or ALG3) as a cross-check against each other
to make sure they are free of errors. These tests along
with comparisons with some exact calculations are dis-
cussed in the Appendix. In order to study equilibration and
autocorrelations we define the concept of a sweep, as
performing the required number of local updates such that
all lattice sites are stochastically flipped at least once. For
example in the block algorithm we pick roughly L3/63
random blocks in a sweep. On the other hand since the
worm update involves choosing a site at random and
updating a few sites within its neighborhood, a sweep
consists of repeating the worm update at least a volume
number of times. Each heat-bath update on the other hand is
exactly one sweep.

As in previous studies [45] we have observed that
worm algorithms based on the fermion bag approach
usually produce independent equilibrated configurations
within a few sweeps independent of the lattice size. This
continues to be true even in our work. We provide some
evidence for this in Fig. 3 where we show the Monte Carlo
time history of our three observables at L =20 and U =
0.95 for 900 sweeps (in the inset) and the first 20 sweeps
are shown in the main graph. The solid lines in the main
graphs show the average obtained from the whole data set.
As one can see, the monomer number reaches the average
value in roughly about five sweeps and then begins to
fluctuate.

If we make the drastic assumption that once equilibration
is reached, a single sweep is sufficient to produce another
independent configuration, then using several hundred
computing cores each starting with an equilibrated con-
figuration but different random number sequences, we
should be able to generate an independent configuration
after a single sweep from each computer core. We can then
average the data from all the cores and propose it as the
final average. We can of course continue the runs of each of
the cores for several sweeps if necessary and monitor the
fluctuations. In Fig. 3 the solid squares represent such an
average over 500 computer cores for 20 sweeps. It is clear
that after each sweep the data from the 500 independent
cores produces a number consistent with the average over
900 sweeps on a single core. This feature continues to hold
at other lattice sizes and couplings, some of which are
shown in the appendix. Based on this result, in our study we
use several hundred cores in parallel and run for 5-10
sweeps, where each core starts from an equilibrated
configuration. The final answer is obtained as an average
over such short runs on hundreds of cores. While we are
confident of our errors, in order to be conservative we
multiply them by a factor of 2 uniformly across the board
when we analyze our data.
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FIG. 3 (color online).

Plots of equilibration for the three observables p,,, y; and y,, starting from a configuration with zero monomers

at L = 20, U = 0.95. The insets show the Monte Carlo time history for 900 sweeps using ALG2. The average of the data from the inset
is shown as a solid line in the main plots. The open squares are average data from 500 independent runs after a single sweep starting from
an equilibrated configuration. The plot demonstrates that instead of running a single computer for many sweeps, one can run many

computers for a single sweep and average the data.

VI. ANALYSIS AND RESULTS

Based on weak- and strong-coupling analyses we have
already argued in Sec. III that the model contains at least
two phases: a PMW phase at weak couplings characterized
by massless fermions and a PMS phase at strong couplings
characterized by massive fermions without fermion bilinear
condensates. While one mean-field analysis suggested a
direct first-order transition between the two phases, another
analysis found an intermediate phase with spontaneous
symmetry breaking. In this section we analyze our
Monte Carlo results and argue that our model in fact
contains a single second-order phase transition between the
two phases. In Table I we tabulate all our data.

We first focus on the average monomer density p,,
defined in Eq. (11) as a function of U. This is plotted in
Fig. 4 for L = 8,12 and 16. We find the density to be a
smooth function of U for all values of L and most
importantly the thermodynamic limit is reached by
L =16 for all values of U. There is no evidence for a
first-order transition. However, since there should at least
be one transition as a function of U, the quick but smooth
rise of the monomer density around U = 1 can be taken to
be a signal for such a second-order transition. The lack of
any other feature in p,, as a function of U also provides
evidence that there is only a single phase transition.

Since p,, is not a critical quantity, we need to look at
other observables like the chiral susceptibilities y; and y,
defined in Eq. (9), in order to understand the properties of
the phase transition. These susceptibilities couple to long-
wavelength modes of the theory and will diverge at a
second-order critical point. Another interesting feature of
the definitions of y; and y, is that the disconnected
component has not been subtracted. Hence in the presence
of nonzero fermion bilinear condensates we expect both y,
and y, to diverge as L>. In Fig. 5 we plot y, and y, as
functions of U for various values of L. In the inset of Fig. 5
we plot the finite-size effects on the susceptibilities around
U =~ 1 where such effects are maximum. We find that for a

fixed L both susceptibilities are smooth functions of U with
a clear peak around U =~ 1 as expected from p,, data. As L

increases, the location of the peak U, moves to the left

and the value of the peak ™

. increases.

Surprisingly there is no indication whatsoever for the L3
divergence in the susceptibilities from Fig. 5. As the inset
shows, at both U = 0.8 and U = 1.2 the susceptibilities
saturate for large L, while at U = 0.96, both the suscep-
tibilities do seem to diverge but only linearly. As we discuss
below, this divergence is consistent with the usual scaling at
a second-order critical point. Based on this evidence we
conclude that both fermion bilinear condensates (¢, ;)
and (¢, ,) vanish for all values of U. Due to the SU(4)
symmetry present in the model the same must be true for all
the other condensates discussed in Sec. II. Finally, we note
that both y; and y, are very similar for all values of U,
except near U = 0 where one can see from Fig. 5 that
x1 7 0 but y, = 0 as expected.

We next quantify the divergence of y; and y, around
U =~ 1 in order to verify that it is consistent with a second-
order transition. Defining x = (U — U,)L'/*, near a sec-
ond-order transition we expect both susceptibilities to
satisfy the finite-size scaling relations,

xi(U.L) = L*>7f,(x), (34)
where 7 and v are the usual critical exponents and f;(x) are
analytic functions for small values of x. In previous studies
it was possible to use Eq. (34) by expanding f(x) in a
power series up to x*, and fit the Monte Carlo data to it and
thus extract the critical coupling and exponents [43,51].
Unfortunately, in our current study such an analysis seems
to be quite unstable. It is possible that the function f(x)
cannot easily be approximated with a few terms in the range
of the available data. Hence, we need to find a way to
combine our data in the small-x region with some infor-
mation from the large-x region using a more elaborate
analysis.
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TABLE 1. Monte Carlo results for p,,, y; and y, as a function of U and L. Being conservative, all errors are multiplied by a factor of 2
as discussed at the end of Sec. V.

U L Pm X X2 Uu L Pm X X2
0200 8  301(7)x 107 440(9) x 1073 8(1)x 1073 1.050 16 191(2) x 103 456(9) x 1072 433(9) x 10~
0400 8  127(1)x 10™*  476(5) x 1073 149(2)><103 1.080 16 231(2) x 103 513(6) x 1072 490(6) x 1072
0.600 8  312(2)x 10™*  552(4) x 107>  261(2) x 107> 1.100 16 259(2) x 10>  500(6) x 1072 478(6) x 1072
0.800 8  642(4)x 10™*  717(5)x 107>  457(3) x 107> 1.120 16 288(2) x 107>  468(6) x 1072 447(6) x 1072
1.000 8 1340(7) x 107  1198(9) x 107> 967(8) x 10> 1.150 16  338(1) x 10> 393(2) x 1072 372(2) x 1072
1.050 8 1674(10) x 10~ 145(1) x 1072 1228(10) x 10~ 1.200 16  415(1) x 10>  287(2) x 1072 267(2) x 1072
1.080 8  195(1)x 107> 164(1) x 1072 142(1) x 1072 0.800 20 643(2) x 107+ 1026(5) x 107> 753(5) x 1073
1100 8  217(1) x 107 178(1) x 1072 157(1) x 1072 0.880 20  857(2) x 10™* 1440(9) x 1073 1181(8) x 1073
1120 8 245(1) x 107 193(1) x 1072 172(1) x 1072 0.900 20 922(3) x 10™*  160(1) x 1072 1351(10) x 1073
1150 8 290(2) x 1073 2093(10) x 107> 1885(9) x 107> 0.930 20 1038(3) x 10™* 199(1) x 1072 174(1) x 1072
1.180 8  341(2) x 1073 2159(8) x 1073 1956(8) x 103 0.950 20 1133(7) x 10* 239(4) x 1072 214(4) x 1072
1200 8  377(2) x 1073 2133(8) x 107> 1932(7) x 10~ 0.960 20 1180(3) x 10~* 262(2) x 1072 238(2) x 1072
1220 8  412(2) x 1073 2063(8) x 1073 1864(7) x 1073 0.970 20 1239(3) x 107* 295(2) x 1072 271(2) x 1072
1240 8 447(2) x 1073 1952(8) x 1073 1758(7) x 1073 0.980 20 1294(9) x 10~ 325(7) x 1072 301(7) x 1072
0200 12 302(4) x 107> 470(6) x 1073 78(1) x 1073 1.000 20 1436(9) x 10™*  412(8) x 1072 388(8) x 1072
0400 12 1275(9) x 107> 515(4) x 107 173(1) x 1073 1.030 20 173(1)x 1073 58(1) x 10! 56(1) x 107!
0.600 12 312(1)x 107 615(3) x 1073 314(2) x 107> 1.050 20 195(1) x 1073  630(7) x 1072 608(7) x 1072
0.800 12 645(3)x 10™*  873(6) x 107> 606(5) x 10> 1.080 20  234(2) x 10>  631(7) x 1072 609(7) x 1072
0.880 12 856(3) x 10™* 1107(6) x 107> 852(5) x 107> 1.100 20 2631(8) x 10~* 575(4) x 1072 554(3) x 1072
0900 12 921(3) x 10™* 1189(6) x 107> 938(5) x 10~ 1.120 20 2928(9) x 10~* 507(4) x 1072 489(7) x 1072
0.930 12 1034(3) x 107 1354(7) x 1073 1107(6) x 1073 1.150 20 335(1) x 1073 414(5) x 1072 394(5) x 1072
0.950 12 1114(10) x 107  148(3) x 1072 124(2) x 1072 1.200 20 413(1) x 107> 291(4) x 1072 272(4) x 1072
0.960 12 1169(4) x 10™*  1580(9) x 107> 1338(9) x 1073 0.880 24  855(2) x 10™* 1548(9) x 107>  1290(8) x 1073
0980 12 127(1) x 1073 179(3) x 1072 155(3) x 1072 0.900 24 920(3) x 107+ 175(2) x 1072 149(1) x 1072
1.000 12 139(2) x 107 199(5) x 1072 175(4) x 1072 0.930 24 1039(2) x 10™* 229(2) x 1072 203(2) x 1072
1.030 12 164(2) x 1072 251(7) x 1072 228(6) x 1072 0.950 24 1133(3) x 107 281(3) x 1072 257(3) x 1072
1.050 12 185(2) x 1072 284(6) x 1072 262(5) x 1072 0.960 24 1182(3) x 10~* 316(3) x 1072 292(3) x 1072
1.080 12 222(3)x 107 337(5)x 1072 315(5) x 1072 0.970 24 1240(3) x 10* 362(3) x 1072 338(3) x 1072
1.100 12 249(3) x 1072 361(5) x 1072 339(5) x 1072 0.980 24 1302(3) x 10~* 417(4) x 1072 393(4) x 1072
1.120 12 2817(8) x 10™*  366(1) x 1072 345(1) x 1072 1.000 24 1456(3) x 10™* 555(3) x 1072 532(3) x 1072
1.150 12 3300(9) x 10™*  346(1) x 1072 325(1) x 1072 1.020 24 1637(5) x 10*  690(5) x 1072 667(5) x 1072
1180 12 3791(9) x 10~*  305(1) x 1072 284(1) x 1072 1.030 24 1747(4) x 10~  745(4) x 1072 723(4) x 1072
1200 12 4104(8) x 107 2753(9) x 1073 254(2) x 1072 1.050 24 1971(6) x 107*  782(4) x 1072 759(4)><10—2
0.800 16  646(3) x 10™*  967(6) x 1073 695(5) x 1073 1.070 24 2226(5) x 10™*  736(4) x 1072 72(1) x 107!
0.880 16  860(2) x 10™*  1297(7) x 1073 1039(6) x 1073 1.080 24 235(2) x 1073  698(8) x 1072 678(8) x 1072
0900 16  922(2) x 10™*  1419(8) x 10~  1166(7) x 1073 0.900 28 924(2) x 10™* 190(1) x 1072 165(1) x 1072
0.930 16  1037(3) x 10™* 1689(10) x 107>  1442(9) x 107> 0.930 28 1039(2) x 10™* 253(2) x 1072 228(2) x 1072
0950 16 1126(9) x 107 195(4) x 107> 170(4) x 1072 0.950 28 1132(2) x 10™* 325(2) x 1072 300(2) x 1072
0960 16 1171(4) x 107*  207(2) x 1072 183(2) x 1072 0.960 28 1186(2) x 107+ 379(3) x 1072 354(3) x 1072
0970 16  1229(2) x 10™*  2271(9) x 107> 2031(9) x 107> 0.970 28 1244(3) x 10~* 444(4) x 1072 420(4) x 1072
0.980 16 1278(10) x 107 245(5) x 1072 221(5) x 1072 0.980 28 1308(3) x 107+ 522(4) x 1072 498(4) x 1072
1.000 16 143(1) x 107 301(6) x 107> 278(6) x 1072 1.000 28 1463(3) x 10™* 716(6) x 1072 691(5) x 10~
1.030 16 167(2) x 107 390(8) x 1072 367(8) x 1072
Consider y(U, L) as a function of U for a fixed value of Xpeak
L F . . . Upeak U + 1v* (35)
. From Fig. 5 we see that this function has a peak at some L

value U = Upear- On the other hand from Eq. (34) we
notice that the peak occurs at the value x = x,. Where
df(x)/dx = 0. Although x,,, Will not be small it will still k
satisfy the relation X = L7 (Xpeak) - (36)

Further, the value of y at U = Uy Will be given by
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FIG. 4 (color online). The variation of the monomer density p,,
(a four-point condensate) as a function of U at L = 8, 12 and 16.
The inset shows the change in p,, as a function of L at U =
1.0, 1.1 and 1.2 where the variation is the maximum. By L = 16
we find that p,, has reached its thermodynamic limit at all
values of U.

Thus, if we know the values of Upey and ype We can
combine Egs. (35) and (36) valid at large values of x along
with Eq. (34) valid at small values of x and try to perform a
combined fit. Such a combined fit seems to be more stable.
The large-x data is shown in Fig. 6 and used to extract
Upeak and ypeqx- This is accomplished by approximating the
susceptibilities as a quartic polynomial of the form

X = Xpeak + a(U - Upeak)2 + b(U - Upeak)3
+ C(U - Upeak)47 (37)

near the location of the peak. Table II gives our fitting
results and the fits are shown as solid lines in Fig. 6. For
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FIG. 5 (color online).
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FIG. 6 (color online). Plots of y; as a function of U for various
values of L near the peak. The dashed lines are fits to Eq. (37)
given in Table II. The location of the peaks is shown with open
circles.

the small-x data we consider four sets extracted from
Table I, using two slightly different lattice sizes and two
slightly different coupling regions. The first two sets
consist of 0.93 < U < 1.0 and the latter two sets focus
on 0.95 < U <£1.0. In each of these we choose one set
containing all L > 16 data while the other contains only
L > 20 data. These ranges are shown in the first column of
Table III.

Armed with the knowledge of Upey and y; peq from
Table II we have performed combined fits of Eqgs. (34),
(35), and (36) with each of the four sets of small-x data. Our
results are tabulated in Table III. In the first two rows we
combine the small-x data with only those values of the
large-x data that have the same range of L. However, in the
third and the fourth rows we combine the small-x data with
all the large-x data except for L = 8. This is because the
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Plots of the susceptibilities y; (left) and y, (right) as a function of the coupling constant U for lattice sizes

ranging from L = 8 to L = 28. The inset shows the finite size scalings in the critical region. There is no sign of the L divergence
expected in the presence of a nonzero fermion bilinear condensate. A roughly linear divergence appears in the critical region consistent

with a second-order critical scaling.
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TABLEIIL. Peak values of y; and y, and the value of U where the peaks occur. These values are obtained by fitting Monte Carlo data to
Eq. (37). The fits for y; are shown in Fig. 6 as an example.

L X 1.peak Upeak a b c )fz/dOf L X 2.peak Upeak a b c }(Z/dOf
8 2.16(1) 1.181(2) —67(7) 20(60)  2(1)x10% 0.03705 8 1.95(1) 1.182(2) —67(6) 40(60)  2(1)x10% 0.05666
12 3.66(1) 1.118(1) —210(20) 210(80) 11(3)x10* 0.02933 12 3.45(1) 1.118(1) —210(20) 220(80) 10(3)x10* 0.04093
16 5.12(5) 1.084(4) —460(60) 2(2)x10° 4(3)x10* 0.2583 16 4.90(4) 1.084(4) —450(60) 2(2)x10°> 4(3)x10* 0.2553
20 6.43(5) 1.065(1) —550(30) 0.06176 20 6.21(5) 1.065(1) —550(30) . 0.02792
24 7.81(4) 1.047(1) —1030(80) 7(4)x 103 0.1983 24 7.60(4) 1.048(2) —990(80) 6(5)x10° 0.003722

TABLE III.  Results for the critical exponents 7, v and the critical coupling U, from combined fits of four data sets as explained in the
text. The (*) in the last two rows indicates that data in Table Il at L = 12, 16 were included in the fit, unlike the first two fits where data in

Table II from smaller lattice sizes were dropped consistently.

Fit Range of U and L n v Uc Xpeak fl (xpeak) fl (xpeak) ){2
U: 0.93-1.0, L > 16 0.940(5) 0.93(3) 0.957(1) 2.6(1) 0.28(1) 0.27(1) 24
U: 093-1.0, L >20 0.94009) 0.95(5) 0.957(1) 2.5(1) 0.27(3) 0.26(3) 1.1
U: 0.95-1.0, L > 16(x) 0.884(1) 1.21(3) 0.959(1) 1.24(5) 0.228(3) 0.217(3) 2.4
U: 0.95-1.0, L > 20(x) 0.884(1) 1.24(2) 0.958(1) 1.20(5) 0.228(3) 0.217(3) 1.9
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FIG. 7 (color online). Universal scaling plots of y/L>" as a function of (U — U,.)L'/* using all Monte Carlo data in the critical region.
The top two figures use n = 0.94, v = 0.95, and U, = 0.957 while the bottom two figures use 7 = 0.884, v = 1.24 and U, = 0.958.
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U peax data fits remarkably well to Eq. (35) as an individual
fit for all values of L > 12. Hence we wanted to explore if
emphasizing that feature in the combined fit yielded
different results. Indeed, as seen from Table III, the critical
exponents do change significantly if we emphasize the
scaling from large-x data. The best combined fit, in terms of
the lowest y*/d.o.f., is the one where we allow only lattice
sizes L > 20 (second row of the table). However, if we
include the large-x data at L = 12, 16 and drop the data at
U = 0.93 the y%/d.o.f. goes up slightly but the fit continues
to be reasonable (fourth row of the table). Including the
L =16 data makes the fit worse but things do not
completely break down. Remarkably, the critical point is
stable among all the fits and we estimate it to be
U, = 0.958(2). In contrast there is a large systematic error
in the critical exponents and they seem very sensitive to the
range of couplings and whether we emphasize the large-x
data or not. For these reasons we can only estimate them in
a range at the moment: # = 0.88-0.94 and v = 0.9-1.25.
Further calculations on larger lattices along with measure-
ments of other observables will be necessary to determine
them accurately. This is currently being done and we hope
to accomplish it in the near future.

If our estimate of the critical quantities are meaningful,
all of our data in the critical region including those that
were not used in the analysis must follow the critical
scaling form given in Eq. (34). In Fig. 7 we plot y/L* as a
function of (U — U,.)L'" for both y, and y, using the
values from the two best fits (second and fourth rows of
Table III). Using the second row values (top two figures)
we find good scaling in the small-x region but the data
becomes scattered in the large-x region unless L > 20. On
the other hand with the fourth row values (bottom two
figures), a good scaling is observed in the large-x region,
but the data becomes more scattered in the small-x region
especially for y,. Interestingly, we find that y, with the
fourth row values (bottom right figure) shows the best
scaling (to the eye) if we ignore the L = 8 data. Based on
this we suspect that taking the lowest y?/d.o.f. to extract
the critical exponents may be a bit premature. Although, we
are unable to give accurate estimates for the critical
exponents in this work, we do believe the universal plots
shown in Fig. 7 provide strong evidence for a second-order
transition separating the PMW and the PMS phases.

VII. LOCAL ORDER PARAMETERS

An interesting aspect of the phase transition we have
uncovered here, is the absence of an obvious local lattice
order parameter that distinguishes the two phases. By
definition a local lattice order parameter O, is made with
Grassmann fields in the vicinity of the lattice site x. It is
zero in one phase for a symmetry reason, but becomes
nonzero in the other phase because the symmetry is
spontaneously broken. A simple intuitive argument shows
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that fermion bilinear order parameters cannot exist. First we
note that in a finite volume by definition we must have
(0,) = 0 for symmetry reasons. In order to study whether
the symmetry can break spontaneously, one has to compute
the behavior of the two-point correlation function of order
parameters at large separations,

lim (0,0,). (38)

|x=y|—c0

If the symmetry is spontaneously broken the above
expression becomes nonzero. At weak couplings, since
U couples to an irrelevant operator, the physics is governed
by the U =0 fixed point where we know that fermion
bilinear order parameters do not exist. At the other extreme,
when U is very large, the whole lattice is filled with
monomers and no lattice symmetries of the interacting
theory are broken in this trivial state. Further, if we compute
the above two-point correlation function, as discussed in
Sec. IV we expect x and y to be in different free fermion
bags and the calculation reduces to computing (O,) and
(0,) in two distant fermion bags with one containing x and
the other containing y. Monomers fill the remaining lattice
sites. Each of these calculations is very similar to the
calculation of (O,) in a finite volume, except that the
fermion bag has an arbitrary shape with Dirichlet boundary
conditions. If the boundaries do not break a symmetry, then
we must have (O,) = 0. If the boundaries do break the
symmetry we can restore the symmetry by summing over
fermion bag configurations obtained by symmetry trans-
formations. We can do this because there is only a single
fermion bag and the remaining lattice sites are filled with
monomers. The other fermion bag containing the site y is
far away. This again implies that (O,) = 0. In the above
argument we have assumed that the integration measure
remains symmetric under the symmetry transformations.
Chiral symmetries can be broken by boundary effects,
because the measure becomes noninvariant. However, in
our model the measure remains invariant under the SU(4)
symmetry transformations inside a fermion bag. Hence in
our model (O,) = 0 for all fermion bilinear lattice order
parameters at least for sufficiently large values of U. When
these facts are combined with the assumption that there is
only a single phase transition, we find that there cannot be a
fermion bilinear order parameter that distinguishes between
the phases.

Of course the above arguments do not rule out a four-
fermion order parameter, the simplest being p,,. But it
cannot be an order parameter in the strict sense of the word
since it is nonzero for all values of U except U = 0.
However, it does play the role of an order parameter in the
sense that it changes quite rapidly as one passes through the
phase transition. Hence we refer to it as a pseudo-order
parameter. Since the small-U theory and the U = oo theory
seem to have exactly the same lattice symmetries, we are
tempted to conclude that no lattice symmetries are broken
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as a function of U. Yet there are massless particles at weak
couplings, which are absent at strong couplings. The
situation seems to be similar to certain metal insulator
transitions where there are no clear order parameters that
govern the phase transition [52].

VIII. CONCLUSIONS

In this work we have provided strong evidence that a
simple four-fermion model containing two flavors of
staggered fermions on a cubic lattice contains a phase
where a nonzero fermion mass arises although all fermion
bilinear condensates vanish. While such an exotic scenario
of mass generation was known before, previous work had
suggested that the exotic phase was only a lattice artifact
since fermion masses could not be made small compared to
the lattice spacing. In contrast our work shows that one may
indeed be able to make fermions light by tuning close to the
second-order critical point that exists in the model. We
located the critical point with an error of about a percent.
Although we were able to perform calculations up to lattice
sizes of L = 28, scaling seems to set in only for L > 20,
unlike other staggered four-fermion models that were
solved recently, where the data begin to show scaling
behavior even for L > 12 [43,51]. For this reason we
were only able to bound the critical exponents within a
range. Our rough estimates are 0.95 <vr <12 and
0.88 <7 <£0.94. Larger lattice calculations along with
new observables are necessary to provide a more complete
picture of the critical behavior. This work is currently in
progress. We have also argued that in our model there is no
symmetry that distinguishes the massless phase from the
massive phase. This suggests that fermion mass generation
in our model is related only to dynamics and not to
symmetries. The quantity that comes close to a definition
of the order parameter is the four-fermion condensate or
the monomer density p,,. Although it is nonzero in both the
phases it changes rapidly over a small region of the
couplings.

Our work can be extended in different directions. For
example, it is possible to explore if a similar second-order
critical point exists in four space-time dimensions. Mean-
field theory, which becomes accurate in higher dimensions,
suggests that the transition would become first order at a
sufficiently large number of dimensions. Is four large
enough? We plan to return to this question in a future
publication. Another possible direction is to view our
model within the context of Yukawa models with a variety
of symmetries. From this perspective our critical point has
many relevant and marginal directions that break a variety
of symmetries. It would be interesting to compute the
critical exponents associated with all these directions. It is
also interesting to explore what would happen if the SU(4)
symmetry of our model is gauged.

Finally, the quantum-field-theoretic description of the
second-order critical point that we have found remains
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unknown. As we mentioned in the Introduction, an exotic
transition very similar to ours was recently discovered in an
extended Hubbard model on a bilayer honeycomb lattice
[34]. It was argued that the critical point there could be
viewed as a multicritical point where three different
topological transitions meet. Interestingly, both the models
contain the same number of massless fermions in the weak-
coupling phase. It is also easy to argue that a simpler model
on the honeycomb lattice with an SU(4) symmetry, than the
one considered by the authors, shows a similar exotic phase
transition. Hence, we believe the two transitions are closely
related and perhaps even belong to the same universality
class. If true, this should mean that our staggered fermion
model can be deformed to introduce topological phase
transitions as in the honeycomb lattice model. Such an
extension could give further insight into staggered fermions
and its connections to honeycomb lattice models, while at
the same time helping us uncover the field theory that
governs the critical point.
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APPENDIX: TESTING THE MONTE CARLO
ALGORITHMS

In order to test our Monte Carlo algorithms we have
performed a series of checks which we describe here. As
discussed in Sec. V we developed three algorithms to
perform these checks: a block algorithm (ALG1), a worm
algorithm (ALG2) and a heat-bath sweep algorithm
(ALG3). Among these three, the worm algorithm is the
most efficient and has been used for our production runs.
However, we can run the worm algorithm in two ways:
perform many sweeps on a single core (ALG2S), or
perform a few sweeps on hundreds of parallel cores each
starting from an equilibrated configuration (ALG2P).
Clearly, the latter is very efficient and we show here that
it is a reliable approach. Among the three algorithms,
ALG3 is the most time consuming but has the lowest
fluctuations. Also it is the only algorithm that works on a 2*
lattice for technical reasons. Since we can compute every-
thing analytically on this small lattice we can test ALG3
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against exact results and use it as a benchmark algorithm to
test others.

In order to compute the exact results on a 23 lattice we
write the partition function as

z ="y UNng([n])(Det(W([n]))), (A1)
]

where the sum is over a class of monomer configurations
[n], not counting configurations with the same number of
monomers that are obtainable by rotations and (or) reflec-
tions. The number of configurations within a given class
(degeneracy) is denoted as ¢([n]), each class contains N,
monomers and Det(W([n])) is the free fermion bag weight
for a single staggered fermion restricted to the bag. Table IV

PHYSICAL REVIEW D 91, 065035 (2015)

gives the various possible equivalence classes along with
their degeneracy factors g([n]), the fermion bag weight from
Det(W([n])), and the corresponding N,, values. Using these
we find that the partition function is given by

Z = 6561 +972U% + 126U* + 12U + U8.  (A2)
The average monomer density can then be easily computed
and is given by

1
P = g7 (194402 + 504U* +- T2U° + 8UF).  (A3)

Note that it is zero for small U and approaches one for large
U. In order to compute the two susceptibilities defined in

TABLEIV. Configuration classes [r] that contribute to the partition function on a 23 lattice. The degeneracies g([n]), and the fermion

bag determinant for each flavor Det(W([n])) are also given.

[] g([n]) Det(W([n])) N, [] 9([n]) Det(W([n])) N, g([n]) Det(W([n])) N,
% 1 81 0 12 9 2 4 0 2
- {--a
6 4 4 24 1 4 6 1 4
12 1 6 4 0 6 1 1 8

TABLE V. Configuration classes [n;, n,] that contribute to y, on a 23 lattice. The degeneracy g;, the fermion bag weight Det(W, W,)

and the total monomer number N,, are also given.

[n1,n] g1 Det(W;W,) N, [n1,n) g1 Det(W;W,) N, g1 Det(WW,) N,
3 729 0 A.‘ 6 36 2 3 9 2
12 9 2 6 4 4 3 1 4
12 1 4 3 1 6 6 9 2
6 1 4 1 0 4 1 0 6
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TABLE VI.  Configuration classes [n;, n,] that contribute to y, on a 23 lattice. The degeneracy g,, the fermion bag weight Det(W, W,)

and the total monomer number N,, are also given.

(71, n,)] g1 Det(W,W,) N, [n1, 5] g1 Det(W,W,) N, g1 Det(W,W,) N,
6 81 1 6 1 3 12 4 3
6 1 3 6 1 3 6 1 3
6 1 5 6 0 5

TABLE VII.
observables p,,, y1 and y,.

Comparison between exact results and those from Monte Carlo calculations using ALG3, on a 2> lattice for the three

Pm X1 X2

U Exact ALG3 Exact ALG3 Exact ALG3
0.1 0.000370... 0.00037(02) 0.166728... 0.16673(01) 0.003703... 0.00369(02)
0.5 0.009517... 0.00952(01) 0.168166... 0.16817(01) 0.018510... 0.01851(02)
0.8 0.025400... 0.02540(04) 0.170310... 0.17032(02) 0.029540... 0.02957(04)
1.0 0.041188... 0.04118(02) 0.172054... 0.17206(01) 0.036757... 0.03675(02)
1.2 0.061937... 0.06192(03) 0.173834... 0.17383(01) 0.043726... 0.04372(02)
1.5 0.104086... 0.10413(04) 0.175961... 0.17598(01) 0.053285... 0.05328(02)
2.0 0.208466... 0.20836(05) 0.174920... 0.17491(01) 0.064497... 0.06448(01)
3.0 0.500000... 0.49996(07) 0.142857... 0.14287(01) 0.059523... 0.05954(01)
5.0 0.838548... 0.83851(05) 0.063477... 0.06348(04) 0.021941... 0.02195(05)
Eq. (9), we consider two monomer configurations n; and n, |

that are naturally defined for each flavor through the 22 = =— (486U + 72U° + 6U°). (A7)

27

knowledge of the location of the two half-monomers. We
then define Det(W,) and Det(W,) as the fermion bag
weights for the two flavors respectively. With these defi-
nitions we see that

1
=5z Z U™ g1 Det(W, W),

[11.15]

1
=5 Z U™ g, Det(W, W),

[n1.17]

(A4)
(AS)

where [n, n,] refer to a class of configurations of monomers
with two half-monomer insertions which are shown in
Tables V and VI, along with the degeneracy factors g;
and g, and the fermion bag weights. Substituting the values
in these tables we find

1
21 =5 (2187 + 405U + 45U +3U°).  (A6)

Table VII gives a comparison of the three observables
computed exactly using the above relations and through
ALGS3. Our algorithm accurately reproduces the results for
various values of U.

Another class of checks that we have performed involves
calculations of observables exactly on slightly larger

TABLE VIII. Comparison between a perturbative calculation
containing up to four-monomers (i.e., up to U*) and results from
ALGI1 which was also restricted to the same monomer sectors.

Pm X1

U L Exact ALG1 Exact ALG1
0.8 6 0.015236... 0.01523(2) 0.44183... 0.4421(05)
1.0 6 0.016367... 0.01636(4) 0.44489... 0.4450(10)
0.8 8 0.007193... 0.00720(1) 0.45619... 0.4559(02)
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TABLE IX. Comparison between results from the three different algorithms: the block algorithm (ALGI1), the worm algorithm
(ALG?2) and a heat-bath sweep algorithm (ALG3). For the worm algorithm we also compare between a single core run with many
sweeps (ALG2S) and a parallel core run on hundreds of cores, but with each core only running for a few sweeps (ALG2P). N/A indicates

the comparison is not available.

Pm X1 X2
L U ALG1 ALG2S  ALG2P ALG3 ALG1 ALG2S ALG2P ALG3 ALG2S ALG2P ALG3
4 095 0.09154) 0.0922(2) N/A 0.0922(1) 0.4533(7) 0.453(1) N/A  0.4543(3) 0.2386(6) N/A 0.2395(5)
4 1.05 0.1237(6) 0.1236(2) N/A 0.1236(1) 0.4922(9) 0.492(1) N/A  0.4920(3) 0.2857(7) N/A 0.2853(4)
4 1.20 0.1936(9) 0.1939(3) N/A 0.1946(2) 0.567(1) 0.564(1) N/A  0.5662(4) 0.3707(7) N/A 0.3721(4)
8 0.95 0.1097(1) 0.1096(1) 0.1098(1) 0.1098(1) 1.017(1) 1.017(2) 1.017(1) 1.017(2) 0.778(1) 0.7781(4) 0.777(3)
8 1.05 0.1685(4) 0.1680(1) 0.1684(3) 0.1678(3) 1.467(5) 1.458(3) 1.461(3) 1.458(4) 1.234(3) 1.236(3) 1.232(4)
8 120 0.3772(8) 0.3751(7) 0.375(1) 0.3769(7) 2.134(6) 2.14(1) 2.128(5) 2.137(3) 1.936(9) 1.928(5) 1.936(3)
12 095 0.111(1) 0.1112(4) 0.1114(5) 0.1119(1) 1.46(4) 1.49(1) 1.48(1) 1.497(4) 1.25(1) 1.24(1) 1.254(4)
16 0.95 0.1131(9) 0.1129(3) 0.1126(4) N/A 2.06(7) 1.95(1) 1.95(2) N/A 1.70(1) 1.70(2) N/A
16 1.00 0.142(1) 0.1428(4) 0.1429(6) N/A 2.96(8)  3.002) 3.01(3) N/A 2.76(2)  2.78(3) N/A
20 0.95 0.1128(7) 0.1133(4) 0.1133(3) N/A 2.36(6) 2.37(3) 2.39(2) N/A 2.13(3) 2.14(2) N/A
20 1.00 0.143(1) 0.1434(5) 0.1436(4) N/A  4.1(1)  4.084) 4.124) NA  3.854) 3.88(4) N/A

lattices, but in perturbation theory up to order U*. In this
case we were able to study lattices up to 8. It is also easy to
restrict the monomer number to the same order in the
algorithms by simply adding a few lines to the entire code.
We used this approach to test ALG1. Table VIII gives a

comparison between ALGI and
results.

Finally we compared all three algorithms at various
couplings at an accuracy of one percent or less. Table IX

gives these comparisons.
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