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We consider the coordinate-space matrix elements that correspond to fixed-angle scattering amplitudes
involving partons and Wilson lines in coordinate space, working in Feynman gauge. In coordinate space,
both collinear and short-distance limits produce ultraviolet divergences. We classify singularities in
coordinate space, and identify neighborhoods associated unambiguously with individual subspaces (pinch
surfaces) where the integrals are singular. The set of such regions is finite for any diagram. Within each of
these regions, coordinate-space soft-collinear and hard-collinear approximations reproduce singular
behavior. Based on this classification of regions and approximations, we develop a series of nested
subtraction approximations by analogy to the formalism in momentum space. This enables us to rewrite
each amplitude as a sum of terms to which gauge-theory Ward identities can be applied, factorizing them
into hard, jet and soft factors, and to confirm the multiplicative renormalizability of products of lightlike
Wilson lines. We study in some detail the simplest case, the color-singlet cusp linking two Wilson lines, and
show that the logarithm of this amplitude, which is a sum of diagrams known as webs, is closely related to
the corresponding subtracted amplitude order by order in perturbation theory. This enables us to confirm
that the logarithm of the cusp can be written as the integral of an ultraviolet-finite function over a surface.

We study to what extent this result generalizes to amplitudes involving multiple Wilson lines.
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I. INTRODUCTION

For many purposes, scattering amplitudes and the
expectation values of gauge-theory Wilson lines may be
studied in momentum space or in coordinate space,
although most fixed-order computations are carried out
in momentum space. At the same time, a coordinate-space
perspective may serve as a bridge between scattering
amplitudes and certain observables, often those involving
jets [1,2]. Similarly, analyses in coordinate space have
played a central role in correspondences between gauge
theories and gravity [3], and dual conformal symmetries for
select supersymmetric theories make a direct correspon-
dence between choices of momenta for amplitudes and
assignments of vertices for certain polygonal Wilson loops
[4,5]. These considerations suggest that it may be useful to
reexamine some of the all-orders properties of perturbative
scattering amplitudes and cross sections that have been
derived primarily from momentum-space analyses [6,7] in
terms of coordinate-space integrals. In this spirit, we argued
in Ref. [8] that the cusp formed by two Wilson lines can be
written in a geometrical form to all orders in perturbation
theory, as a surface integral over an ultraviolet-finite
function of the running coupling, whose scale varies with
position on the surface. The surface integrand itself is found
from the web diagrams of the cusp [9-11], which will play
a role in our discussion below. A more general analysis of
partonic amplitudes was undertaken in Ref. [12], which
examined the structure of coordinate-space singularities in
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massless gauge theories, by analyzing the pinch singular-
ities of Feynman integrals in coordinate space [13] and
developing a power-counting procedure to identify leading
and nonleading behavior.

In this paper we will apply and extend the results of
Ref. [12], where it was found, for example, that in
renormalized matrix elements of the form

G (x1.x7) = (O|T(#(x2)(0)p" (x1))[0). (1)

singularities occur only when the external points are on
the light cone with respect to the current J*(0), that is, only
at x% =0, I =1,2, and that divergences in coordinate-
space integrals are logarithmic, relative to tree level. It
was also argued that integrals in such “leading regions”
factorize into hard, soft, and jet functions, in much the same
way as in the well-known factorizations of momentum
space [14,15].

In coordinate space, collinear and short-distance diver-
gences are both of ultraviolet nature [12], requiring D < 4
in dimensional regularization, while the factorized soft
function is finite when the external points are kept at finite
distances from each other. In contrast to short-distance
singularities, collinear ultraviolet divergences are by their
very nature nonlocal, and are not removed by the standard
renormalization procedures for quantum field theory. It is
natural, however, to expect that they may be treated by
analogy to collinear singularities in momentum space,
where they are infrared, requiring D > 4, and are factorized
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into universal functions [16]. To derive and interpret the
corresponding factorization properties for coordinate-space
amplitudes, we will introduce a subtraction procedure that
is similar to constructions in momentum space [7,14,15].
The subtractions will enable us to reorganize perturbative
amplitudes for gauge theories in a manner that makes their
singularity structure and factorization properties manifest,
after using the Ward identities of the theory.

We work in Feynman gauge, to preserve Lorentz
invariance and causality in the physical spacetime structure
of the amplitudes we study. Our construction is for gauge-
theory amplitudes with the geometry of fixed-angle scatter-
ing, and so must overcome the complication that in gauge
theories with massless particles almost any subdiagram
may produce collinear singularities or take part in the
underlying short-distance process, in different parts of
the integration space. This is in contrast to lowest-order
electroweak processes like Drell-Yan, where the hard
scattering is associated only with subdiagrams including
a specific vertex.

Building on the results of Ref. [12], we will study the
ultraviolet singularities of multiparton coordinate-space
Green functions in configurations related to fixed-angle
scattering,

Gy(x1soosxy) = (O|T(Pn(xn) -+ 1 (x1))[0).  (2)
These Green functions, of course, are not gauge invariant,
but as we will observe, their leading singularities in
coordinate space have the same gauge-invariance properties
as S-matrix amplitudes, as a result of the same Ward
identities.

The arguments that we give below carry over almost
without change from coordinate space to momentum space,
and we provide in this way a new all-orders analysis of
factorization for scattering amplitudes in massless QCD
and related theories in Feynman gauge. Our work thus
complements the momentum-space analyses carried out
in physical gauge long ago in Ref. [17] for scattering
amplitudes, and recently in Ref. [18], which uses physical
gauges to analyze a large set of amplitudes and observables
involving outgoing jets. Our analysis of field theory
perturbative amplitudes, based on an all-orders subtraction
procedure to isolate, organize and cancel singular behavior,
can also play a role in improving and extending existing
factorization proofs for electroweak annihilation [14,15],
jet and single-particle inclusive cross sections in hadron-
hadron collisions [19].

We also study the closely related multieikonal products
of path-ordered exponentials or Wilson lines [20,21], in
representations f,

¥ (e7.5) = Pexp | -ig [ arécle) AV (et )
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Wilson lines that correspond to partonic amplitudes have

constant velocities, - = dé¢/dr = f. A four-Wilson line
multieikonal vertex, for example, is defined by a constant
matrix, ¢y, in color space that links the color indices of the
ordered exponentials at a point [17,22,23],

FE]M{rk}<A1ﬂ1, o Nupy)

=S (087 (A,.0), , @L)(A5,0)
o Pa 4> M rydy = By 39 Y rs.dy
d;

X (1) dyds oty @7 (0.~ M) g, @10, =Ay ), [0
4)

For the eikonal Wilson lines of this expression, which are
joined at the origin, constant velocities f; label the curves,
which we can choose to be &;(z;) = f,7;. They arrive at
the vertex from the past, or emerge from the vertex toward
infinity in the future. In momentum space, Wilson lines
appear as linear, “eikonal” propagators. The corresponding
coordinate-space propagators are simply step functions,
ordering the connections of gluons to the exponential. The
exponentiation properties of these products have received
extensive attention over the past few years [24-28], in no
small part for their relevance to phenomenological appli-
cations of resummation [29-31].

We begin Sec. II with a review of the sources of
ultraviolet poles in the coordinate-space calculation of
multieikonal and partonic amplitudes [12,13]. We go on
to define a series of approximation operators [7,32] adapted
to coordinate integrals. Using these operators, we construct
a set of nested subtractions. This is followed by a proof of
the cancellation of coordinate-space overlapping divergen-
ces that are analogous to those in momentum space. In
Sec. III we show how the approximation operators match
and organize singularities, and enable the renormalization
of multieikonal amplitudes like Eq. (4) and the factorization
of partonic amplitudes like Eq. (2) in appropriate limits,
to all orders in perturbation theory. Section IV deals with
the special case of the two-eikonal amplitude, the singlet
“cusp.” We will relate the subtraction procedure of Sec. II
directly to the logarithm of the cusp, given by the so-called
web prescription [9-11]. In this context, the ultraviolet
finiteness of the web function, and its relation to a surface
integral [8] are confirmed. We then turn in Sec. V to fixed-
angle multieikonal amplitudes, and study their exponen-
tiation properties and geometrical interpretation in the
large-N,. limit and the general case. We conclude with a
summary and brief comments on possible applications.

II. THE REGULARIZATION OF COLLINEAR
SINGULARITIES IN COORDINATE SPACE

We begin this section with a review of the results of
Ref. [12] regarding the coordinate-space singularities of
partonic and eikonal amplitudes that remain after standard
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perturbative renormalization. We follow this with the
construction of a set of nonlocal ultraviolet subtractions,
adapted in analogy to the Bogoliubov-Parasiuk-Hepp-
Zimmerman momentum-space renormalization procedure
[32], and in the spirit of the all-orders, all-logs treatment of
infrared divergences in momentum space in Ref. [7]. In the
subsequent sections we will relate this additive regulari-
zation to the renormalization and factorization properties of
eikonal and partonic amplitudes in coordinate space.

A. Leading regions, ultraviolet divergences
and gauge invariance

In Ref. [12], the most general regions from which
divergences arise in coordinate-space integrals were deter-
mined from their analytic structure and a corresponding
power-counting technique. Divergences arise from pinches
in the integrations over the positions of internal vertices
considered as variables in complex coordinate space. This
is the direct analog of pinches in loop momenta [7,33,34].
As in momentum space, at each such leading region, the
diagram describes a physical process with a fully consistent
classical propagation for the set of lines that connect
vertices that are lightlike separated. We will refer to a
manifold in coordinate space with a definite set of vertices
pinched at lightlike or vanishing separations as a pinch
surface (PS). (We use this notation in the same sense as
“PSS” in Ref. [7].)

In Ref. [12] it was shown that at such pinch surfaces,
diagrams are characterized by subdiagrams of soft, jet-like
and short-distance (hard) sets of lines, as depicted in Fig. 1,
which is similar to the familiar structure of diagrams at
pinch surfaces in momentum space both in direct QCD
treatments [7,14,15,34] and in soft-collinear effective theory
[35,36]. In the case of the massless cusp [Fig. 1(a)], for
example, nonlocal ultraviolet subdivergences occur when
subsets of vertices align along the Wilson lines, and these
configurations define jet subdiagrams. Other vertices remain

FIG. 1.
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at finite distances from both Wilson lines and the cusp in the
soft subdiagram, while the remaining vertices move to the
cusp and form the hard subdiagram [8].

The same factorization into the same types of subdia-
grams also occurs for multieikonal vertices with more
Wilson lines and in partonic amplitudes in coordinate space
whenever a single point in spacetime (the “hard scattering”)
is related to a set of external positions by lightlike distances,
as illustrated in Fig. 1(b). (We assume that no pair of
external vertices is related by a lightlike distance.) To
anticipate, at these leading regions or PSs, one can make
the coordinate-space soft-collinear and hard-collinear
approximations, as defined in Ref. [12], which lead to
the factorization of these subregions by the application of
Ward identities in the same way as in momentum space
[14,15]. We will give the expressions for these approx-
imations for a leading PS below. We use the term “leading”
to denote an ultraviolet logarithm or a pole in the dimen-
sionally regulated case, and where necessary to distinguish
PSs that produce such divergences from those that do not.
As we quantify in the next subsection, for partonic
amplitudes at leading PSs in Feynman and other covariant
gauges, a single line from each jet carries a physical
polarization (transverse for the gauge particle) into the
hard subdiagram. All other gauge lines attached to the hard
scattering are scalar or longitudinally polarized [12]. We
will use this result extensively below, and will assume that
the external gauge fields of partonic amplitudes [Eq. (2)]
are projected onto transverse polarizations. We note that in
physical gauges, only a single line connects each jet to the
hard subdiagram [18,34].

A complication for amplitudes involving physical proc-
esses with both incoming and outgoing external partons or
Wilson lines is that PSs can have disconnected hard
subdiagrams, as illustrated by the diagrams of Fig. 2.
We will confirm below, however, that these PSs are not
associated with leading behavior. As in momentum space
[7], their suppression follows from the Ward identities of

(b)

Leading pinch surfaces represented by soft, jet and hard subdiagrams for (a) cusp and (b) a typical multieikonal or multiparton

amplitude. Gauge lines represent an arbitrary number of connections between the subdiagrams. In (b) the double line represents either
Wilson lines or partonic propagators connected to the external vertices.
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(b)

FIG. 2. Examples of disconnected hard subdiagrams, representing: (a) disconnected gluon-gluon and fermion-fermion scattering
and (b) two disconnected gluon-fermion scattering subdiagrams. The solid lines in (a) may also represent Wilson lines.

the theory, which require that each jet subdiagram is
connected to every connected component of the hard
subdiagram by at least one line that is not a scalar-polarized
gauge propagator. Similar suppressions are described for
cross sections in Refs. [37,38]. Leading pinch surfaces for
partonic amplitudes involve at most a single, simply
connected hard scattering. Similarly, for multieikonal
amplitudes, the local multieikonal vertex must be part of
every hard subdiagram. Nevertheless, we will encounter
diagrams like Fig. 2 in the full classification of leading
regions and the elimination of double counting.

Before specifying the approximations, we pause to draw
a few consequences of the observation that a physical
picture associated with a pinch surface requires that the
“external” propagators, beginning at the positions of fields,
x; in Eq. (2), be on the light cone with respect to the
position of the physical hard scattering. The hard scattering
may be mediated, for example, by exchange of a gluon in
QCD or by an electroweak current. For multieikonal
amplitudes, we can always set the vertex joining the eikonal
lines to the origin. In the case of partonic scattering, with
external fields ¢; at points x;, as in Eq. (2), we consider
2 — N scattering, where x{, x) are large and negative and
all 9, I>2 are large and positive. In this case, the
requirement of a physical process allows hard scattering
at a single, unique point, which, by translation invariance
may also be taken as the origin. A short proof is given in the
Appendix. In this coordinate system, all x? = 0 at the pinch
surfaces, and we may identify velocity vectors by S ~
x4 /x9 for each external field, with 7 = 0. These f3; fix the
directions of jets in the reduced diagrams of Fig. 1(b), for
partonic scattering amplitudes, in the same way that Wilson
lines fix jet directions for multieikonal amplitudes. For each
such line we introduce an additional, “complement” vector,
B1, B3 = 0, normalized by f3; - f; = 1. The leading singu-
larity of the diagram requires that the light-cone singularity
of each external propagator remains uncanceled. We may
think of this as the analog of the requirement that the
S-matrix is the residue of the leading pole in every
external line.

The foregoing considerations on external propagators
enable us to argue that the leading behavior in coordinate

space is gauge invariant, once external vector fields are
projected onto transverse polarizations. This follows the
same way as in the diagrammatic proof of the gauge
invariance of the S-matrix [39]. In momentum space,
an infinitesimal gauge transformation produces a sum of
terms in which either external propagators are canceled, or
vectors are projected onto scalar polarizations, proportional
to their own momenta. The Fourier transformations of these
relations are contributions in which an external propagator
is replaced by a four-dimensional delta function, fixing its
position at an internal vertex, or the divergence is taken of
an external vector field, and hence a gradient of the external
propagator. The former case gives a suppression by x?
relative to leading behavior, while the latter is eliminated by
the same transverse projection that defines the S-matrix.

The general form of a coordinate amplitude can be
written as

G, (x1, X2, ..., Xg)
:H/d4)’1G2(x1—)’1>Ga()’1,)’2~--,)’a)7 (5)
=1

where G, is one-particle irreducible in each of the x;
channels. For much of the following analysis, we shall
suppress the self-energies, which are factorized topologi-
cally, and whose renormalization is already included in the
Lagrangian of the theory. Except where indicated, there-
fore, our discussion will apply to the perturbative expansion
of diagrams that contribute to G,(yy, ...,y,), in convolu-
tion with lowest-order propagators. In the same way, for
multieikonal amplitudes, our analysis will apply to single-
eikonal-irreducible diagrams I, related to the complete
amplitudes by

Fa(Alﬁl’AZﬁZ’ ""Aaﬂa)
a AI _
= H/ dT1F2((A1 - Tl)ﬂl)ra<71.ﬁl772ﬁ27 ---vTaﬂa)’
=170

(6)

where 7;f; is the position of the outermost vertex on the /th
Wilson line in I',, and where the I', represent self-energies
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of the Wilson lines. Here all z; are taken positive, with the
signs of the velocities f; adjusted as necessary for incom-
ing lines.

B. Variables, power counting and neighborhoods
for pinch surfaces

In the analysis of the pinch singularities of coordinate-
space integrals, the soft, jet, and hard regions are specified
by the identification of “intrinsic” and “normal” variables,
which parametrize a pinch surface and its normal space,
respectively [6,7,12,34]. At a pinch surface, normal vari-
ables are constructed to vanish as a distance scaling
factor, A — 0 while intrinsic variables remain finite. In
the amplitudes that we discuss, at lowest order in normal
variables, the propagator denominators of jet lines are
linear in normal variables, those of the hard lines are
quadratic in normal variables, and the soft lines are of
zeroth order in normal variables. (Our specific choices of
normal variables for the amplitudes under consideration
will be described shortly.) Power counting can be per-
formed by factoring out the lowest powers of 1 from each
factor of the integrand and the integration measure for each
normal variable, s;,

§; = As'. (7)

Then, near a pinch surface, the integral for some quantity
9(x;), depending on external parameters x; has the form
[12,34],

ENES /0 * drar / Hds;5<1_zi:|sé|z>
X/Hdr/(ig(#,rj,x,)+(9(/1'1)), (8)

where 77 > 0. The integrals over the intrinsic variables r; of
the “homogenous” integrand I,(s}, r;, x;), found by keep-
ing only the lowest powers of 1 in each factor [12,34], will
either be nonsingular or will have pinch surfaces generated
when subsets of the s;” vanish (in our case where a subset
of vertices approaches the light cone or hard scattering
faster than the others). The scale d, which quantifies the
maximum distance from the pinch surface, may be thought
of as arbitrary at this point. The analysis of the homo-
geneous integrand determines the choice of normal vari-
ables near each PS [12]. As found using the power counting
developed in Ref. [12], the leading overall degree of
divergence is p = 0 for pinch surfaces of both eikonal
and partonic amplitudes, relative to lowest order, indicating
logarithmic divergences of their integrals in coordinate
space. We will review these results shortly, and only note
here that when p > 0, the PS is integrable.

In these terms, leading regions are characterized by
gauge vector propagators connecting the soft subdiagram

PHYSICAL REVIEW D 91, 065033 (2015)

to jet subdiagrams, with the following properties of the
homogeneous integrals [12].

(i) The polarization tensors of all gauge vector propa-
gators that attach the soft subdiagram to jet subdia-
gram K are contracted only to the jet velocity
vector, fk.

(i) The denominators of gauge propagators that attach
the soft subdiagram to jet subdiagram K depend
on the positions, z(¥* of the jet vertices to which
they attach only through a vector that depends on a
single coordinate: f - z(K) ..

Together, these properties specify the ‘“soft-collinear
approximation,” summarized by an operator, sc(K), whose
action is defined in Feynman gauge and dimensional
regularization with D = 4 — 2¢, by

se(K)[D* (x = 2XN)]7, (%)

J,(25)

=Pl (),

©)

Kl=2Bx - (x = 28y - x + 22 + ie]

where x is the position of a soft vertex, or in the case of a
gauge line exchanged between Wilson lines or jets, a point
on the other line or in the other jet. The soft-collinear
approximation drops terms that are of order A!/2 near the
pinch surface, where the denominator is finite. It is then
convenient to define coordinates that link the soft and jet
subdiagrams in convolution for each vertex position, 7\K),

dDz(K) = dT(K)dD_IZ(K>,

&) = By - 78, (10)

(K)

K) and the azimuthal angle of z|

Here, 7 are intrinsic
variables, while S - z(X) and z(f)z /Bx - z\5) can be chosen
as normal variables for this jet [12,15,34]. For the special
case of z(K) being a vertex on the Kth Wilson line, we can
identify zK# = ¢(K) gk
In a similar fashion, we identify approximations that
reproduce the homogeneous integral for lines that attach jet
subdiagrams to the hard-scattering subdiagram at leading
PSs [12].
(i) Gauge field propagators that attach jet subdiagram
J; to the hard subdiagram are either physically
polarized or are contracted only to the complemen-
tary vector, f3].
(i) The denominators of propagators attaching jet sub-
diagram [ to the hard subdiagram depend on the
coordinates y!) of the hard vertices to which they

attach only through vectors f; - y! )B’,‘
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These conditions define the ‘“hard-collinear approxima-
tion,” represented by an operator hc(I), which acts on
scalar-polarized gauge propagators as

he(D[D*(z - y )] H, (y")

g

e
-1

(2B - (2= y)By -z + 22 + ie]'*

= he(l) H,(y")

_ pH
—FI

prH,(y\).
(11)

As we have noted above, in the case of partonic amplitudes,
aleading PS requires that (exactly) one partonic propagator
attaches each jet subdiagram to the hard scattering with a
physical polarization for fermions or vectors. For these
propagators, the corresponding hard-collinear approxima-
tion may be represented as

he(1)[A(z = y)]H,(y ")
=A"(z-p ‘y(I)BI)Tf’Ha’ (y(l)), (12)

where 7,7 is an appropriate projection for the leading
physical polarizations, and A®° is the corresponding
propagator, depending on the spin of the field. The hard-
collinear approximation drops terms that are of order 13/
near the pinch surface in the denominators, whose leading
behavior is order A. Then, similarly to Eq. (10) we define

dDy(]) = d;z](UdD_]y(I)’
D =p, -y, (13)

In the hard subdiagram, all components of the positions y*
are normal variables. In the generic case, where all
components of y* appear linearly in the denominators of
jet lines shown in Eq. (11), all of these components are
naturally taken to scale linearly in A. When there are
precisely two incoming and two outgoing jets at the pinch
surface hard scattering, however, one spacelike component
of y#, which we may call y,,, does not appear in any factor
pr-y, I =1,...,4. Rather, it appears quadratically in every
propagator attached to the vertex at y*. This coordinate defines
the direction normal to the scattering plane in a center-of-
momentum frame of the physical picture at the pinch surface.
In this case, the single variable y,,, scales as 2'/2, and the
integral is correspondingly enhanced. This enhancement is
also a feature of the lowest-order, tree-level scattering, how-
ever, and does not change the logarithmic nature of radiative
corrections [12], which are the focus of our discussion.

In summary, for a partonic amplitude with hard scatter-
ing at the origin and external points on the light cone
x7 = 0, all pinch surfaces are specified by lists of vertices

{z,(,K)} that specify jet subdiagrams J, and a list of vertices

PHYSICAL REVIEW D 91, 065033 (2015)

{y,} that specifies the hard subdiagram H, while the
remaining vertices {x,} specify the soft subdiagram S.
From these lists of vertices, we find the normal variables of
an arbitrary pinch surface p,

)y = L 2 " 4
{sz } ﬂK Z ’BK'Z(K) ’{y} ’ (1)

that is, the opposite-moving and squared perpendicular
components normalized by the longitudinal distance from
the origin for each vertex in each jet, and all components of
vertices in the hard subdiagram. All other independent
components are intrinsic variables,

{1 = {1 By - 290, 901}, (15)

with ¢3x) azimuthal angles for the transverse components
of jet vertices. We emphasize that the number of pinch
surfaces is finite for any diagram of finite order, which are
enumerated simply by the ways of assigning vertices to the
jet, soft and hard subdiagrams.

The choice of subdiagrams and hence PSs can be
pictured directly in coordinate space. In Fig. 3, each point
represents the projection of the position of an interaction
vertex in some very high-order diagram onto the plane
defined by two noncollinear Wilson lines, for example.
The closed curves represent the jets and hard scatterings
in a transparent fashion. The normal variables for vertices
in either jet are given simply by their distances to the
corresponding lines in this diagram, and normal variables
for vertices in the hard function are their distances from the
origin, as in Eq. (14). We denote these subdiagrams by S,

J §f’> and H), respectively. We suppress their explicit
orders, which are implicit in the choice of PS p. It is clear
from the figure that assignments of vertices to jet, hard and

FIG. 3. Representation of the arrangement of vertices near a
leading pinch surface p directly in coordinate space and their
assignments to jet, Jgp ), hard, H”), and soft, S() subdiagrams.
For every region, the direction of the jet Jﬁ” ) is determined by the
relative position of the external point x; with respect to the
position of the hard scattering.
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soft subdiagrams are shared by many diagrams, that is, all
the perturbative diagrams that are found by connecting the
points in the figure.

We can now quantify the identification of leading regions,
as derived in Ref. [12] and illustrated in Fig. 1. It was shown
in Ref. [12] that in massless gauge theories, the scaling
power p of Eq. (8) associated with an arbitrary pinch
surface is independent of the order in perturbation theory,
and depends only on the numbers of lines connecting the
hard, jet and soft subdiagrams associated with the PS in
question, and on the polarizations carried by gauge lines that
connect the jet subdiagrams with the soft and hard subida-
gram. To be specific, we adopt the following notation:

(i) Let j{ and j{ be respectively the numbers of fermion

jet lines and gauge jet lines that connect jet subdia-

gram J ﬁp ) to the hard subdiagram H"), and let j?* <
7+ be the number of these gauge lines that carry
scalar polarizations, proportional to f3;, the velocity
vector associated with jet /. In these numbers, we
suppress the PS label “p,” because the result will
hold for all PSs [12].

(i1) Let sj; and 57 be, respectively the number of fermion

and gauge soft lines attached to jet subdiagram J 5” ),

and 54 < 54 the number of these soft gauge lines
that are coupled to the velocity vector associated
with jet 1, ;.

(iii) Let sj;, and s% be, respectively the number of

fermion soft and gauge soft lines that are attached
to the hard subdiagram H).

In this notation, in Ref. [12] it was shown that the
minimum scaling power p in Eq. (8) for an arbitrary PS can
be expressed as a sum over contributions from each jet
subdiagram, plus a contribution when the soft subdiagram
is attached to the hard subdiagram directly,

1
Puin = > 5[ = 7) +J1 = 1 5] + (s = 577)]

jets]
3 A
+35H + Sp- (16)

Since divergences are associated only with p <0, a PS is
nonleading unless there are no direct connections between
the soft and hard subdiagrams,

st =54 =0, (17)
and unless for each jet 7,
A=t =10 and sf=0=(sp-5"). (18
The first relation in Eq. (18) reflects the Ward identities of

the theory, which eliminate the case when all the lines of a
jet that attach to the hard subdiagram are unphysically

polarized gauge propagators (j4 = j?*, j{ =0). As a
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result, p. =0 after gauge-invariant sets of diagrams
are combined (in the hard subdiagram, specifically).
Each jet is coupled to the hard subdiagram by at most a
single physically polarized gauge vector or a single jet
fermion in addition to an arbitrary number of scalar-
polarized gauge vectors, and the coupling of all jets to
the soft subdiagram is entirely through soft gauge lines with
polarizations in the jet direction.

Equation (16) holds for PSs with multiple, disconnected as
well as simply connected hard subdiagrams. This confirms
that, as noted above, any PS with more than one connected
hard partis power suppressed relative to leading behavior. Itis
also worth noting, however, that in elastic amplitudes for
bound-state scattering, where there is more than one physi-
cally polarized parton in each incoming and outgoing particle,
PSs with disconnected hard-scattering subdiagrams actually
dominate leading behavior [40,41] because of the tree-level
power-counting enhancement noted just after Eq. (13).

By Eq. (18), no soft fermions attach the soft subdiagram to
jet subdiagrams at leading PSs. This implies that at leading
PSs, jet functions are diagonal in the flavor of the external
partons; that is, for each jet the same quantum numbers
entering the diagram appear at the hard subdiagram.

Taken together, these considerations justify restricting
our considerations to PSs with the structure illustrated in
Fig. 1. We note that for the purposes of this discussion, we
have varied the notation of Ref. [12] slightly, and include
several terms that are discussed in Ref. [12], but not
included in the relation analogous to Eq. (16) given there,
which is an inequality, rather than an equality.

To organize integrals in the presence of this large but
finite number of pinch surfaces, we define neighborhoods
nlp] of pinch surfaces p by requirements on normal

variables, sl(/’ >, given in Eq. (14), and intrinsic variables

P from Eq. (15),
Sl <,

3 5 95
’rﬁp)|2 > (} :,-|Sz('p>|2> d(z) 26;
5 2 25
2/125.,<§ i|s;(ﬂ)|2> dg 251’ (19)

for some finite distance scale dj,. A power 0 < §; < 1/2is

chosen for each intrinsic variable r}p ), where the s, ) are

rescaled normal variables [Eq. (7)]. The inequalities for
power §; ensure that the leading terms involving normal
variables in the soft-collinear and hard-collinear approx-
imations, Egs. (9) and (11), remain dominant by a power
over the first corrections to these approximations, which
are relatively suppressed by A!'/2 in both cases. With this
definition, the soft-collinear and hard-collinear approxima-
tions associated with pinch surface p remain accurate for
12— 0 in Eq. (8) throughout neighborhood n(p), in the
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absence of cancellations between leading terms at pinches
of the homogeneous integral. We can think of Eq. (19) as
specifying the closed curves of Fig. 3.

We close this subsection by noting that the homogeneous
integrals (8) for PSs with normal variables identified as in
Eq. (14), have lower-order pinches that are precisely the
same structure as those in the original diagrams. This can
be seen by considering vertices in each of the subdiagrams
associated with an arbitrary PS, p. For vertices x* in the soft
subdiagram, the only approximations are for denominators
attached to the jets, for which jet vertices are set on the light
cones, f3;. In neighborhood n[p], the x* stay away from all
of the light cones, and the physical picture correspondence
eliminates PSs involving vertices in S, just as in the
original integral. For vertices zflk) in jet K, the integrals are
unchanged, except for lines attached directly to the hard
scattering, where terms that are nonleading in the scaling
variable are neglected. No approximations are made for
lines internal to H”). Pinches of the homogeneous integral

are still controlled by the distances of the external vertices

xg of Jgg) to the relevant light cone, and these pinches

develop in the same manner in the homogeneous as in the
original integral. In the homogeneous integral, defined as in
Eq. (8), however, one or more of the rescaled normal
variables are always order unity. Thus, the pinch surfaces of
the homogeneous integral will involve fewer vanishing
denominators than those of the original PSs. We will use
this observation in our construction of nested subtractions.

C. Approximation operators and
region-by-region finiteness

We will now employ the approximations identified
above to define a new set of approximation operators,
denoted by ¢,, one for each leading pinch surface p. Each
operator £, is defined to act on any diagram " that possesses
the corresponding PS and to give an expression that
corresponds to the leading, singular behavior of y*) in the
neighborhood of PS p. Of course, this condition defines the
operator 7, only up to a finite ambiguity. For our purposes it
will be most useful to construct subtractions similar to those
employed in proofs of factorization in Ref. [7].

We define the action of the approximation operator tpy<">
as the imposition of the soft-collinear and hard-collinear
approximations given above in Egs. (9), (11) and (12) on all
lines to which they apply at PS p of diagram y(*). This
action can be represented schematically by

" =TT [ st (0 hpihy
I
X/d;,](l)/dD—IZ(I)JSP)/‘/I”;(Z(I)’n(l))ﬁly/ﬂl;l
T

< [ @ty 0nE, (60), (20)
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In this expression, each vector index or vertex position, for

example, y1; or zU), respectively, represents arbitrary numbers
of such indices and positions for gluons connecting the

subdiagrams specific to this leading region, S®), J 5’) ) and
H ). Theneteffectof t,istoreplace the full integral of diagram

7" by the homogeneous integral that corresponds to PS p.
As mentioned above, the soft-collinear and hard-collinear
approximations defined for coordinate-space integrals in
Ref. [12] are equivalent to approximations with similar
names in discussions of factorization in momentum space
[15,42]. In this case, the approximation isolates ultraviolet
divergences in the neighborhood of the PS in coordinate
space, so long as the soft-collinear and hard-collinear
approximations apply. We represent this result by

tpy(n>|div nlp] — y(n) |div nlp]» (21)

where the subscript “div n[p|” represents the divergent UV
behavior, from short-distance and/or collinear configura-
tions of PS p. This relation is not guaranteed to apply on
subsurfaces where the homogeneous integral in tpy<”)
develops pinches of its own. In the following we will
generalize Eq. (21) by introducing a system of nested
subtractions. We emphasize first, however, that although
the relation (21) refers to the result of an integral over the
neighborhood, n[p] of PS p, where the approximation is
accurate, the definition t/,y(”) refers to the full integral,
extended over the full integration region in coordinate space,
including other PSs and regions where 7, no longer gives a
good approximation to the integrand in general [7].

In any multiloop diagram, multiple ultraviolet divergen-
ces can arise from sets of vertices that approach the hard
scattering or the collinear directions in partonic amplitudes,
or the cusp and/or the Wilson lines in multieikonal
amplitudes, at different rates, just as loop momenta may
go to infinity faster in some subdiagrams than in others. As
for the renormalization of Green functions, we can classify
sets of divergences as either nested or overlapping, in terms
of the limiting process in coordinate space.

Nesting in coordinate space can be classified directly in
terms of pinch surfaces. We say PS p, is nested in PS p, when
a subset of vertices of p,, which defines p;, approaches the
light cone and/or the origin faster than other vertices in p.
The smaller nested PS has larger subdiagrams with vertices
near the light cone (jets) or the origin (hard subdiagram), but
it defines a smaller region in coordinate space.

To be specific, for two leading pinch surfaces, p; is a
nested subsurface of p,, denoted by

P1 S P2, (22)
if and only if
H2) < g

= ’

HP) U ¥ < Hieo g g, (23)
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for all jets J;. That is, the jet and/or hard subdiagrams grow
as the dimension of the pinch surface decreases. The
equality holds only when p; = p,, in which case all these
relations are equalities. Otherwise, we say that p; is
contained in p,. Without specifying their ordering, we
say that p; and p, nest. The subsurface, or nesting, relation
of course is transitive,

p3Cpy and p, Cpy = p3 Cpy. (24)
We note that the smaller the pinch surface in the sense of
Eq. (23), the larger the number of its normal variables, and
the smaller the number of its intrinsic variables. Another
way of putting this is that smaller pinch surfaces have larger
codimension. We will denote any fully nested set with My
pinch surfaces by N = {6, C 6, C -+ C oy, }, and the set
of all such nested sets for diagram y as N[y|.

We now use the nesting of pinch surfaces and the
definitions of neighborhoods, n[p] in Eq. (19) to construct
a set of regions in coordinate space that cover all pinch
surfaces, and in each of which an operator, 7, gives a valid
approximation to the singular behavior of the diagram
throughout. Starting from the n[p], our choice for these
“reduced neighborhoods” is

Alp] = nlp]\ Uy, (nlp] N nlo]). (25)

By construction, region 7i[p] is n[p] less its intersections with
the neighborhoods n|s] of all larger pinch surfaces, ¢ D p.
As we have argued at the end of the previous subsection, the
PSs of the homogeneous integral of region p correspond to
PSs o, at which only a proper subset of the lines that are on
the light cone or at the origin on PSs p remain on the light
cone or at the origin. Such pinch surfaces ¢ have more
intrinsic (and fewer normal) variables than pinch surface p,
and one or more of the intrinsic variables of each ¢ are
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normal variables of p. In addition, by the construction of
Eq. (19), in neighborhood n[s] the normal variables of p that
are intrinsic variables of ¢ do not vanish rapidly enough to
produce a divergence. Correspondingly, the homogeneous
integral for PS p, Eq. (8) integrated over the reduced region
flp] is finite. Note that although the PS p itself is a subspace
of lower dimension in surface o, the neighborhoods n[p| and
nlo| are of the same dimension, and p C ¢ does not imply
that n[p] C n[o]. The neighborhoods i[p] cover all pinch
surfaces.

Not all pairs of regions can satisfy the nesting criterion
(23). We say two pinch surfaces are overlapping when pZ o
and o¢p, which we denote as

pio.o. (26)

By definition, if p:o:o, then p and ¢ cannot appear in any
set N of nested PSs of y. The overlap relation, “:0:” has a
property analogous to transitivity of nesting, Eq. (24),
which also follows easily from the defining properties of
nesting, Eq. (23),

given: 6y C o, Co3, whereos:o:p and oy:0ip

then: o,:0:p. (27)

Any pair of PSs is either nested or overlapping. Note that
the pinch surface where all vertices are in the hard
subdiagram is nested with all other pinch surfaces, so that
no pair of pinch surfaces is fully disjoint. Figures 4(a)
and 4(b) illustrate two overlapping regions.

As we have seen, each pinch surface, and corresponding
neighborhood is associated with a distinct matching of the
list of vertices to the jet, hard and soft subdiagrams. In these
terms, we can give an explicit form for the requirement of
Eq. (21), namely that the divergences from PS p are equal
for ") and tpy(”),

|
Pl = 1o = [1 [ ae [ @120 [ an® [ a2 1500a0p)) x 55, (20, 5D, ()
1

11 (P . vy
=S @DV Bryd " 2D DVB B HE) (D) i = 0. (28)

(a)

FIG. 4.

(©)

(a) and (b) are examples of overlapping regions. (c) shows the enclosing region specified by Eqgs. (47)-(49).
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where O(7i[p]) restricts the integration to the reduced
neighborhood #[p] [Eq. (25)]. This integral over the
reduced neighborhood converges because of the accuracy
of the soft-collinear and hard-collinear approximations in
the entire reduced neighborhood 7i[p]. The PSs internal to
the original neighborhoods n[p] have been removed by
construction.

Equation (28) is the main result we will use for
applications in the following sections, treating the neigh-
borhood of each PS separately. As a more general result,
however, we will show that all divergent contributions to
amplitudes can be written without restriction to specific
regions, in terms of a construction based on nested
subtractions [7], which we now discuss.

D. Nested subtractions

The quantities 7,y [Eq. (20)] can also be thought of as
counterterms for ultraviolet divergences associated with the
limits x? — 0 in the partonic matrix elements [Eq. (2)] and
with multieikonal amplitudes [Eq. (4)]. We will denote an
arbitrary n-loop diagram that is one-particle irreducible in

the x; channel as y"). Following the momentum-space
procedure of Ref. [7], we define a regulated version of

RMym) = () 4 Z H(_’ﬂ)y(")’ (29)

NeN[y™] peEN

where N[y] is the set of all nonempty nestings for diagram

y. We will refer to R as the subtraction operator at
nth order. We may then write for the full nth-order

x;-irreducible partonic amplitude (5), G = >y

== ¥ T

yW L NeN[yW] pEN

y 4 Ry (30)

The products in Egs. (29) and (30) are ordered with the
larger PSs to the right of smaller PSs. Thus, the first
approximation operators 7, to act on ¥ involve the fewest
points on the light cones or at short distances. As in
Eq. (20), the approximation operators act on the diagram
over the full integration region, and are not restricted to the
neighborhood of the corresponding pinch surface.
Among the approximation operators that appear in
R<”>y(”), we may identify the smallest, Py for which all

vertices approach the origin, that is, for which H(%) = ().
Now because p, is the smallest PS, it nests with every other
pinch surface. Its approximation operator, which we denote
by t,, for any diagram, always appears to the left of every
other operator in Eq. (30). Operator ¢,, acts only on the
external propagators that attach to y. We can thus
separate it in the sum over nestings, and we find
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C <n) - Z{tuvy(n) + (1 - [MU)

70

|- ¥ Ty

NeN p[y™] pEN

o] e

where now N p refers to the set of all proper nestings, not
including ¢,,, and Rl(f) is the corresponding ‘“proper”

subtraction operation, defined by Eq. (29) with A/ replaced

by NP’

NeN [y ]/’EN

The operator RE;") is related to R by

ROy = (1 =1, )RW . (33)

In the following, we will show that RI(D")}/(”) is free of
subdivergences.

Specifically, we will show that the nesting, from regions
to subregions, eliminates double counting, allowing the
subtractions 7, for each leading PS p to be extended from
i|p] to the full space, as in the momentum-space discussion
in Ref. [7]. We can also think of individual subtractions
acting region by region; the purpose of the nested products
is to cancel the action of subtractions outside their
corresponding reduced neighborhoods 7i[p]. In summary,
we claim that for each diagram 7", the action of the proper
subtraction operation, R}
leading pinch surfaces p,

SN CAZ

NeN [y PeEN

is to remove divergences from

e 0’
divip]

Rgl)y(n”divﬁb;] = [
(34)

for any PS p with H®”) c y"). Assuming this result, the

proper-subtracted diagram Rg')y“‘) (Y1 .-, ¥,) is free of all
subdivergences. In particular, because all collinear singu-
larities have been canceled, it remains finite when any of
the y;7 approach the light cone, and because all soft
subdiagrams are subtracted, it vanishes on dimensional
grounds when the positions of external vertices go to
infinity,

{hmo}RP)V( Y01 ya) = Sy 1),
lim  f)(y; -y, u*) =0, (35)
{}’K}L—’W}

in terms of some function f") that depends on the inner
products y; -y, and in general on p”, the renormaliza-
tion scale.
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This result has important consequences for the full
nested set of subtractions, including nestings that include
t.» acting on the full nth-order amplitude, G(")(xl...xa)
[Eq. (5)]. For this “improper” PS, the soft function in
Eq. (28) is taken as unity and the jet subdiagrams are
truncated propagators. The approximation associated with
t4y is, by Eq. (12), to replace y; by By - f; on the external

propagators of Gl(ln). In schematic form, we can then

represent the action of the full set of nested subtractions as

R<">G£1")(x1, e Xg)

=0-u)]] [ 6ot = 30RE G ()
_H/d4 < Yr- ﬂlﬁl))

Gy (xr = y1)
where the fraction represents the matrix inverse for fields
with spin. We now recall that poles in x? come about only
from pinches in the integrals over the internal vertices of
G,, at configurations associated with physical processes.
For such configurations, x;-y; ~x;-f;y;-f;, and the
right-hand side vanishes when the x; approach the light

cone. Thus, the full set of nested subtractions acting on the

Gz Xy —

Ga({yr}),

(36)

amplitudes, R G\ lack poles in x?, and their Fourier
transforms will not contribute to the S-matrix,

RMGY |4y =0, (37)

where in this case “div” refers specifically to the leading
light-cone singularity in all external coordinates x;.
Equivalently, from Eq. (29), we have

14 n)|div = Z H ")|div- (38)

NeNTy™) PEN

This conclusion is analogous to the result of Collins in
Ref. [7] that the Sudakov form factor is power suppressed
when subtracted according to the momentum-space pro-
cedure on which our approach is based. Here we extend the
reasoning to the general class of multiparton amplitudes.

Returning to the sum of proper subtractions, we first note
that for multieikonal amplitudes, the absence of subdiver-
gences [Eq. (34)] is easy to prove, because the largest
PS for such an amplitude is one in which all noneikonal
vertices are in the soft subdiagram. As usual the approxi-
mation operator, f. for this PS takes the soft-collinear
approximation (9) for all external lines of the soft subdia-
gram, and because all such lines are attached to the Wilson
lines, in this case, 7., = 1 when acting on the amplitude.
Thus, since this PS can nest with every other PS, all terms
in Eq. (42) cancel pairwise. Indeed, the cancellation is
exact, and for multieikonal amplitudes, we have
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R,

eikonal

n>0, (39)

with no remainder, or, equivalently, for n > 1,

Z Z H yelkonal (40)

(n) n)] peN
ye|k0ml EN [}, /7

For n =0, of course, there are no subtractions. This
reasoning does not apply to partonic amplitudes, for which
the largest soft approximation is not accurate in general.

Before going to the proof of Eq. (34) for partonic
amplitudes, it is worth noting the relationship between
the subtraction approach here and the momentum-space
“strategy of regions” [43]. In the latter, approximations
tailored to regions of loop momenta that are the sources of
leading behavior are also extended to all of loop momen-
tum space. We are doing something very similar here; each
of the subtraction terms in each nesting is associated with a
particular leading PS, but we extend each such expression
over the full coordinate integration space. The list of PSs
specifies the list of regions each of which defines an
expansion in kinematic variables. By showing that all
double counting is eliminated in the sum over all nestings,
we will verify that the sum of subtractions is an acceptable
representation of the original amplitude, up to well-defined
finite corrections. There is also a connection to the
organizations of the various subtraction methods that
underly next-to-next-to-leading-order calculations of
amplitudes and cross sections [44].

E. Proof of the cancellation of subdivergences

To derive Eq. (34) for an arbitrary PS p of diagram y"),
we start by reorganizing the sum over nestings in Rg')y(’”,
Eq. (32), to highlight the role of an individual approxima-

tion 7,

ngw>:ym>+(_%wm>
n Z(H(—tm I <—r,,>)y<>
NP#p \cENP GEN\p
+ 3 [T to)r™. (41)
N7 ceN’

In the sum, we have separated those nestings denoted by N*
that include p, along with the set N”\p, in which region p
can nest but is excluded, and finally the set of nestings
with PSs that overlap with p, denoted by, N”, which cannot
include p because p:o:o for at least one element ¢ € N”.

We now look at the contribution to Eq. (41) from region
ilp], where we wish to verify Eq. (34), i.e., that the
divergence from this region should vanish. We already
know from Eq. (28) that the divergent parts of the first two
terms on the right-hand side of Eq. (41) cancel in 7i[p], so
that Eq. (34) implies
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Z <H (=to) + H (_[6)>7<n>|divﬁ[p]

NP#p NoeN’ GENP\p
+ Z H <_ta)7(n)|divfz[p] =0. (42)
NP ceN?

We see that for Eq. (34) to hold in each neighborhood 7i[p],
the divergent parts of all subtraction terms except for tpy(”>
alone must cancel (or vanish) in region 7i[p] defined by

Eq. (25). To prove the absence of divergences in Rgf)G(”)
for an arbitrary 7i[p], we must examine all nestings
in Eq. (42).

We start with those nestings, N” in which p appears
along with at least one other PS. For all such nestings, in
neighborhood #[p], the term corresponding to nesting N”
cancels the nesting, N”\p. This is because the action of 7, is
equivalent to the identity in region 7i[p], so that

3 (H )+ I <—ta>)y<">|dwﬁm —0. (43)

Ni#p \oEN? cEN"\p

where, as in Eq. (21), the subscript “divii[p]” refers to
the sum of all divergent parts from the integral over 7i[p].
This implies that the proof of Eq. (34) reduces to showing
that the sum of all overlapping subtractions cancels
independently,

Z H (_tzr)y(n)ldivﬁ[p] =0. (44)

NP ceN?

Again, nestings N” cannot include PS p because one or
more of its PSs ¢ overlap with p. Because we are interested
in singular contributions, we need to treat only those
nestings, N that are divergent in region p, and we will
use this condition below.

Consider, then, an arbitrary nesting N that contains
some set of PSs ¢ that overlap with PS p. Because of the
transitive properties of nesting [Eqs. (24) and (27)], we can
partition the PSs ¢; € N” into three ordered sets [7]: those
that are larger than p, those that are smaller than p and those
that overlap with p,

N’ =N, UN, U Ng,

Nilpl = {e; 2 p},

Nolp] = {ox:0:p},

Nslp] = {o1 C p}, (45)
where all 6; D 6, D 0;,. By Eq. (27), there is only a single
subset N, [p].

In the following, we will identify an “enclosing” PS 7.,
which is intermediate between the sets N,[p] and N, [p] in

Eq. (45). This PS, 7.,. will contain both PS p and every
element o, € N,,. It will at the same time be contained in
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every element ¢; € N [p], including the case when it
equals the smallest element of N, [p]. Specifically, for
any element o of N,[p|, the enclosing region, 7..[o,p]
will be constructed to act as the identity when combined
with #,y(") in neighborhood 7[p], up to finite corrections,
that is,

to(1 =t [O-vay(n)‘divﬁ(p) =0. (46)

This is the basic property we will need.

The appropriate enclosing PS, 7...[o,p| is defined as
usual by its hard, jet and soft subdiagrams. These subdia-
grams are determined in turn by the subdiagrams of PSs o
and p in the following manner:

§lee) = §(0) U §0) U H ( Jg") N Jﬁ?))’ (47)
LKI#K

J%Tenc) — ]26) U J&p)\S(Tenc)’ (48)

Hed) = H0) n H0P)

— },\ (S(Tem) U HJE%M)) ) (49)

L

We claim that 7.,. constructed in this manner satisfies
Eq. (46). Equation (46) will hold in region p if two sets of
conditions are met by 7.,.. First, the construction must be
self-consistent, which requires that 7., represents a PS in
the class already included in the nestings of Eq. (29). This
will be the case if the following is true:
(1) Whenever t,y is singular in region p, the overlap of
H@ and H") is not empty.
(2) Whenever t,y is singular in region p, S(e) is not
connected to H (%),
In addition, for Eq. (46) to hold, we must also have the
following:
(3) The hard-collinear approximations of Eq. (11),
applied by 7, are accurate at PS p.
(4) The soft-collinear approximations of Eq. (9), applied
by 1, are accurate at PS p.
If all of these conditions are satisfied up to corrections that
vanish as a power of one or more of the normal variables of
PS p, then Eq. (46) holds, because the overall integral is
logarithmically divergent and we have constructed the
reduced neighborhood #i[p] [Eq. (25)] to remove its sub-
divergences. A simple example illustrating Eqs. (47)—(49)
is given by Figs. 4(a)—4(c).
Much of the subtlety in the construction of 7, involves
“overlapping jets” in different directions, in which some
subsets of lines shift from one light cone in ¢ to another

light cone in p. Many such subdiagrams, J;”) N Jgf), are

possible, and are defined by the list of PSs of each diagram
y. We make two preliminary observations regarding these
overlaps.
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First, lines that carry physical polarization from each jet
to the hard part do not contribute to these overlaps. This is
easiest to see for fermionic external lines. The shift of a
fermion line of jet I in region o to jet K in region p would
require that the line pass through the soft subdiagram of
region p, and we have seen in Eq. (18) that fermion lines
cannot connect jet and soft subdiagrams at leading PSs.
Similarly, also by Eq. (18), a physically polarized gauge
propagator of jet I in region ¢ cannot pass through S®) to
jet K if p is to remain a leading PS.

Second, in the coordinate-space integrals of 7y, certain
PSs are modified by 7, Specifically, PSs p involving

overlaps J §6> nJ 5?) are replaced by PSs where the vertices

of J') 1 JY¥) are either pinched at the origin, or align only

in the direction /3;, complementary to the direction of JE")

and independent of the direction f (that is, of the precise
direction of the jet in region p). This is because the soft-
collinear [Eq. (9)] and hard-collinear [Eq. (11)] approx-
imations that act on the external lines and vertices of JEG>
eliminate dependence on all vectors except for 8, and ;.

With these observations in mind, we can now give proofs
of conditions (1-4) above.

1. Overlap of hard subdiagrams

The construction of the enclosing PS, 7, using Eq. (49)
requires a nonvanishing overlap between the hard subdia-
grams H ©) and H®). As we have seen in Sec. 1l A, for
leading regions o and p, the hard subdiagrams H'*) and H(*)
are themselves simply connected. For the cusp or processes
initiated by a single external current, the hard subdiagrams
of all leading regions overlap at the current, as illustrated by
Fig. 1(a). For scattering amplitudes, however, there are many
cases where regions ¢ and p have disjoint hard subdiagrams.
This happens whenever the hard subdiagram in o, H®), is
entirely contained in the union of soft and jet subdiagrams in

p, W UTLLI (Lﬂ). We now show that in all such cases, either
PS p is suppressed, or p is actually not a PS of #,y.

Let us suppose that H(®) and H") are disjoint. We then
consider the external lines of H(®), on which the hard-collinear
approximations (11) and (12) have acted. Because the hard
subdiagrams are disjoint, neither these lines nor the vertices of
H'®) to which they attach can be in H”). Then, each external
vertex of the hard subdiagram H(®) either appears as an
internal vertex in some jet subdiagram J <L/)) of p, or is an
internal vertex of the soft function, @) of p. We will see that
when any such vertex is in a jet subdiagram of p, then p is nota
PS for z,;y. We will then show that when all the external vertices
of H() are in S?), then p is not a leading PS of #,y. The only
possibility left is that at least one vertex of H(®) is also a vertex
in H), so that the hard subdiagrams are not disjoint.

Consider first Fig. 5, which illustrates the possibility that
an external vertex of H(®) is in a jet subdiagram of PS p.
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1 T3
\yl " /
Y2 Ya
T2 T4
FIG. 5. An example of disjoint hard subdiagrams.

In the figure, we identify the hard scattering H®) as the
propagator y; — y,, along with the vertices y; and y, which
it connects. In H®), y, — y, — 0, while y; and y, remain
at finite distances from each other with (y; — y4)? # 0, and
approach the light cones defined by x; and x,, respectively.
We then let H”) be defined by y; — y, and p by the limit
y3 = y4 — 0 while y; and y, remain at finite distances with
(y1 — y2)? # 0, such that the lines (y;,y3) and (y,,y4) are
in the jet subdiagrams associated with external points x;
and x,, respectively. These two regions clearly cannot be
nested, and their hard subdiagrams are disjoint. Now in the
neighborhood of PS p, as y; and y, approach the origin, y,
should move to the f; light cone, which requires a pinch
in the y, integral. Since (y, —y,)> # 0 at p, this pinch
can come from the denominators x; —y; and y; — ys.
The action of 7, however, partially decouples the internal
integrals of the hard subdiagram (y;,y,) from the o jet
subdiagrams. For the subtracted diagram, t,y, t, applies
the hard-collinear approximation hc(1) from Eq. (12) to
(x; — y;)#, which is then replaced by a line (x; —y;-
p1B1)*. Similarly, it applies hc(3) to y; —y;, which is
replaced by (y; - B33 — y3)*. The two lines thus depend on
different components of y/, and the y; integrals cannot be
pinched at y; - #; = 0. The lines x; —y; and y; — y; are
therefore not pinched in region p after the action of 7.
The feature of the example in Fig. 5 that extends to more
general cases is that operator 7, acts on the line y; — y; with
the hard-collinear approximation Ac¢(3), which eliminates

the pinch that fixes vertex y; in J (1’)). In the original
integral, the coordinate y; - f; is pinched at the origin
between poles from the propagators of x; — y; and y; — y3

when they are in J 5’) ). After the action of 7, however, the

propagator associated with line y; — y; no longer has a pole
when y, -, =0 because y; - i3 #0 when y; « ;. To
extend this result to higher orders, we must treat general
hard-scattering subdiagrams, and allow the possibility that
more than one external vertex of H(®) appears in the jet

subdiagrams JY)) of PS p.
Suppose then, that in the general case more than one
external vertex of H®) attaches to lines in a subdiagram

J<Lp ). Now, because H (©) is connected, and because in region
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p each jet corresponds to physically propagating lines, one

or more lines in jet J 2’)) must enter subdiagram H(%) at one

of its external vertices, and leave at another external vertex.
Since these lines are external to H?), they must be included

in jet subdiagrams J <,?> of PS o. At all such external
vertices, then, the approximation operator f, will have
applied the hard-collinear approximation [Eq. (11) or (12)]
that is appropriate for the directions and polarizations of
these external lines of H®) in PS 6. As we have observed
above, however, the imposition of the hard-collinear
approximation for jet Jf,?), say, by ?, eliminates pinches
in that subdiagram except in the ¢ and Sy directions. (We
assume for simplicity that no pair of jets satisfies 8, = f5,..).
As aresult, no pinch that sets these lines to the light cone in

p is possible, unless the overlap of H(® with jet JE’) )

involves only external lines that are also in J(L"), i.e. in

I (LG). This requires some of the lines of J (LU) to change

direction. At PS o, the lines in J (L”) all flow in or all flow out
of H), but at PS p, some would have to flow in and some
out. In the physical picture corresponding to PS p, the
relevant vertices of H are all either before H (P), or after.

For definiteness, we assume they are before, so that J,(_p) is
an incoming jet.

On the other hand, the external lines of jet J<L”) N J(Lp>,
can carry at most one physical polarization from the
external point x; into subdiagram H(®. All other lines

that attach J(L”) to H®) must be scalar polarized. This
physical polarization is then eliminated by the net action of
the hard-collinear approximation in diagram H(%), because
only one external line of J (L”) can be physically polarized. In
the case where the vertex at which the physical polarization
reaches H(® is in J\” N JV). the physical polarization then
cannot reach the hard subdiagram H") (which is by
assumption disjoint from H(%)) because all the other J(L")
lines are scalar polarized. But then PS p is nonleading.

These considerations imply that the jet subdiagrams J (Lp ) of
PS p cannot share lines or vertices with the hard subdia-
gram H(®)_ unless all the vertices that attach the individual

lines that carry physical polarization from jets J S?) to H)
are in S©). As a result, if H®) N H®) were to be empty, the
“physical” vertices of H®) would all have to be in S?).
We now treat the possibility that the vertices that bring
physical polarizations to the hard subdiagram H®) in
region o are entirely in S*), and show that in this case p
is nonleading. The reason is illustrated by the example of
Fig. 2(a), assuming that the PS ¢ describes the scattering
of (massless) fermions. The alternative physical process in
the figure, with a hard scattering involving gluons, would
require the fermions to be in the soft subdiagram S, a
configuration that is always nonleading by Eq. (18) [see
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Eq. (16) and Ref. [12]]. This reasoning applies to any order
and diagram: restricting ourselves to fermion-fermion
scattering to be specific, at any leading PS, the external
fermions must only appear as jet lines, and as external lines
of both hard subdiagrams H(®) and H¥). But then, since the
fermion lines are continuous, the hard subdiagrams must be
connected by these jet lines, which must be in different
directions in the two PSs. The definition of Eq. (49) is then
guaranteed to give a connected hard subdiagram H %e«) In a
similar fashion, for external gluons, the role of fermion
lines is taken by gluon lines that carry the external physical
polarizations of the gluons. From the general power-
counting result (16), such polarizations cannot be radiated
into soft subdiagrams at leading PSs, and the same
conclusion as for external fermions applies.

In summary, H®) N H") is never empty.

2. Soft and hard disjoint

The external lines of S(%e«) are either external lines of the
soft subdiagrams S(®) and/or S®) or of the overlaps of jet
subdiagrams [ [; xJ gg) nJ gf). Now the external lines of S(°)

can only attach to the jet subdiagrams of ¢, J EG) and hence are

separated from H”) N H®), and similarly for lines in ).
To verify that lines in J 5”) nJ 55) cannot attach to H (fenc)
at leading PSs, we consider a gauge line in the Ith jet

subdiagram, J ;”), attached at one end to an arbitrary vertex
at a point in H®), and at the other end to a vertex that is in

subdiagram J§”>. It is easy to see that if this line is also in

L/ 5{;) nJ 5?), it cannot attach directly to H(%x), because

t, acts by hc(I) [Eq. (11)] on the external lines of J§”>, and
produces a f; polarization at H(®). This polarization is
suppressed when coupled to the lines of J 56) nJ gf), which,
as we have observed below conditions (1-4) for the
consistency of the construction of 7., can have PSs
only in the f;, direction in region p. As 7 = 0, leading
contributions are eliminated when JE") N Jf,f) attaches to
H() . Thus, none of the elements of S(e) can attach

directly to H(%), and the two subdiagrams are disjoint.

3. Hard collinear

Any line from J\") that is attached to H(%) either

attaches J(L”) to H”) or J(Lﬂ) to H') (or possibly both). If the

line is from J (Lp), t,,. will apply the hard-collinear approxi-

mation Ac(L) [Eq. (11)], which is a good approximation in
region p. If the line is from J(La), both 7, and 7, apply the

hard-collinear approximation, hc(L), whether or not the

line is in J(Lp), that is, whether or not hc(L) is a good

approximation at PS p. The result, however, is the same for
tst; ¥ or fyy alone because, as we easily verify from
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(Tenc)

FIG. 6. Example of nested overlapping subdivergences in PSs ¢ and p and their enclosing PS z.,.[o, p|, where in panel (a) L # I and in

panel (b) L = 1.

Eq. (11), he(L)* = he(L). Thus, all hard-collinear con-
nections are consistent with Eq. (46).

4. Soft collinear

The soft-collinear approximation must work for all
external lines of S, By Eq. (49), these external lines
are either in $() U §®) or in H,,,(’,;H((JE‘7> nJeh.

The first case, lines in $(© U S®), is relatively straight-
forward. The external lines of S?) attach only to jet lines

from subdiagrams /) that are also in J "/
(Teﬂc)

S() attach only to J (L”) lines that are in J; **’. The operator
t... applies the soft-collinear approximation to all such
lines. Applied to lines in S, this is a good approximation
in region p. For lines in S(®), both t.,. and 7, apply the
soft-collinear approximation sc(L) [Eq. (9)], and since
sc(L) = sc(L)?, they are consistent with Eq. (46).

The case of S(er) lines in HLK’,#K(JY) nJYY s
somewhat more complex. The external lines of the inter-
sections Jf,”) N Jgf) € Se) | [ # K are attached to jet lines
of subdiagrams J<LT“““) of 7., and will have the soft-
collinear approximation sc(L) applied to them by 7, .
The action of t,,, however, depends on whether (a) I # L or
(b) I = L. We treat these cases in turn, using the examples
of Fig. 6 to illustrate the method. The figure represents two
pairs of overlapping PSs, ¢ and p, in a two-loop correction
involving two partonic or eikonal lines, labeled / and K in
the figure. We should think of this example as embedded in
a larger diagram with any number of external lines,
connected at a hard subdiagram denoted by O in the figure.

and those from

(a) Figure 6(a) is an example of L # I. As indicated by
the positions of the vertices in the figure, in PS ¢ of
Fig. 6(a), J §U> consists of the lines connecting vertices
in the set {a, b, ¢, 0} except for the line {c, 0}. In this
notation, jet J? is {c,d}, S\ is {b, d}, and the hard
subdiagram H(?) is {0, c}.OnPS p, Jﬁ”) is {0, a}, Jgf) is
{0,¢,b,d} and SV is {a, b} and H”) = {0}. For this
example, the overlap of the jets is Jy’) N Jgf) ={b,c},
a single line. Following Eqgs. (47)—(49), PS 7., has all
of its gauge lines in its soft subdiagram,
§(Tenc) = {a,b,c,d}. Tts hard subdiagram is just the
vertex at the origin, H(%«) = {0}, and its jets are
Je) = 10,4} and JE) = {0,c,d}. Clearly, the
intersection, Jﬁ") N Jgf) = {b,c} of jets from ¢ and
p attaches to the jet line L = K.

Turning to the general case, when L # I, then in PS

o, the vertex at which the line in J\” N J¥) € S
(0)

connects to J (er) must also connect either a line in J;;

and aline in ¥ N H@ or to two lines in J¥) N H(©),

since in PS o a line in J”

from the distinct jet J\”

can only be attached to a line

at a vertex that is part of the
hard subdiagram H (©), as in the example. In addition,

because one or more lines in J f,‘p) N H') attach to the

same vertex as the line in S(e) | which is in J %’), we

must have L = K, again as in the example. Otherwise,

the vertex would connect lines from different jets J gf)

and J (Lp), which would force it to be part of H (»), Such a
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vertex would then be in H(®) N H?) = H(e), contrary
to our assumptions.

@) A J)

We are thus restricted to the case J; | quite

generally. Now, when lines from J\” 1 J¥) attach to

J(Lfe“), as at vertex ¢ in Fig. 6(a), the hard-collinear
approximation, ic(I) is applied by t,, after the appli-
cation of the soft-collinear approximation sc(L) from
t,.. in the product 7.z, . In this case, applying the
definitions of the soft-collinear and hard-collinear
approximations [Egs. (9) and (11)], we readily verify
that the product of operations hc(I)(1 — sc(L)) pro-
duces a nonleading contribution, as an identity of
the integrand, so that Eq. (46) holds.

To be specific, suppose that the vertex where J 5") N

J (Lp> attaches to JYW) is at point u, and the other end of

the line in J,Y) Vis at point w. In the example, # = ¢ and

w = b, but in complete generality, if we denote these
vertices by v, (u) and v, (w), respectively, we get

heo (I)(1 = st (L)) ) (w) (W_;"” ;)2 v, (1)
— o) Bufs | —— LB B w(u
- ( ) ﬂlﬂ]ﬂ (W— u’ﬂ1ﬂ1)2ﬁ1yﬁl ( )

" _ _
G by A Pib e 6O

where the superscripts in Ac?(I) and sc®<(L) indicate
the PS associated with the soft-collinear and hard-
collinear approximations. Note that in the special case
of “back-to-back” jets, #; = f3,, the right-hand side of
Eq. (50) vanishes identically. This is the case of the
Sudakov form factor. Let us suppose, more generally,
that 3, # ., or equivalently, 3, - §; # 0. Since line

w — u and vertex u are both in jet J (Lp), the point w may

beinJ ép ) orin the hard-scattering subdiagram H®). Let

us first treat the case when vertex v/(w) is also in J(L”>.

Then, up to terms that vanish as a power of the normal
variables of PS p, we may approximate for both ends of
line w — u,

wh = ﬂﬁ/}L s W,

W' = pipy - u. (51)
We consider first the two denominators that represent
the line w — u in Eq. (50) individually. At PS p this line
was originally on the light cone and the denominator
(w — u)? vanishes linearly in the scaling variable (1), in
terms of the normal variables introduced in Eq. (14) of

(b)
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of 1 in the numerator (see Ref. [12]). After the action of
the soft-collinear and hard-collinear approximations,
however, both the denominator corresponding to this
line, and the numerator factor are order A° near PS p.
The net effect is that both terms on the right-hand side
of Eq. (50) are leading power (1°) at PS p. At the same
time, using Eq. (51), we find that in neighborhood 7 [p],

(w—u-BiBr)* = (w—u-Bopr-Bifr)* + O(?),
(52)

so that the right-hand side of Eq. (50) is suppressed by a
power of the scaling variable at PS p when vertex v(w)
isin jet L.

For the alternative case, the limit that »(w) is in H?),

that is, when w* — 0, the denominators still vanish on
PS p even after the approximations, while the leading
power behavior corresponds to a finite numerator
involving a scalar-polarized gauge propagator. The
denominators still cancel to leading power in the
scaling variable 4, however, and the difference is again
subleading.
Figure 6(b) represents the case L = I, that is, when a
line in subdiagram S(%ex) attaches to a line in subdia-
gram JS”). The assignment of lines and vertices to
subdiagrams is almost the same as in Fig. 6(a), except
that vertex ¢ is now part of the I jet in o, and is
connected to the K jet on PS p.

When L = I, which implies that L # K, ¢, does not
impose the hc(L) approximation because in PS ¢ at
least two of the lines [lines {a, c} and {b,c} in the
example of Fig. 6(b)] that meet at the vertex connect-

ing S(texc) 10 J\*) are in J'”), so that the remaining line

must also be in JE”). [This is line {0, ¢} in Fig. 6(b).] In

PS p, we use the fact that the line from S(%e) is in JE,?.

[This is line {b, ¢} in Fig. 6(b).] This line attaches to
two lines of JY“"“) =Ji UJ;’))\HI’K#K(J?’) nJ%.
Now these lines must be in either J§” ) or H®), and at
least one must be in H"”). This is because I # K, so
that in PS p, lines from JE” ) and Jgf) can join only at
the hard subdiagram H). [Again, this is {0,c} in
Fig. 6(b).] As a result, in PS p, the hard-collinear
approximation hc?(K) is good, and we may invoke
the same analysis as in case (a) above for
he?(K)(1 = sc®=(I)), K # I. Again the sum of terms
is suppressed and all soft-collinear connections are
consistent with Eq. (46).

This completes our arguments for conditions (1-4)

Sec. I B. Also, the presence of two three-point vertices
in the jet subdiagram would ensure an additional factor

below Eq. (49), which ensure the consistency of the
construction 7.
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5. Cancellation from nesting with the enclosing region

So far, we have shown how to construct the enclosing
PS, 7oy c[o.p] and have confirmed that 7,7, y is a good
approximation to f,y in PS p, so that Eq. (46),
157" )iy = tote, v |y is satistied. We note that showing
Eq. (46) for t,y implies the same result for 7,7,y for any
nested pair, ¢’ C o, because the approximations of ¢, do
not modify the list of pinch surfaces or power counting in
PS 7., which was all that was used in the discussion
above. We are now ready to show that with this definition
of 7., Eq. (44) is satisfied, that is, that the sum of
subtractions cancels for arbitrary overlapping regions. To
proceed, assuming that N, [p] is not empty, we construct the
enclosing PS for the pair p and the largest PS within N, [p],
which we denote by 6, .« [p]- By construction, both p and
0, max are smaller in the sense of nesting [Eq. (23)] than
every element in Ny [p]. In fact, 7...[0, max.p] is also
smaller than all elements of N, [p], or equal to the smallest,
in the sense of Eq. (23). To confirm this, consider a PS { in
N;. For 7.,. € ¢, we need

H© C Hene)
S D>8§Fenc) (53)

The first of these relations follows immediately from the
definition of nesting (23) and the construction (47)—(49), since
any vertex in H (©) must be in both H(®) and H®), and therefore
in H7e) | The second relation requires us to verify that

S8 U sk U HJS”) N J%)). (54)
1#K

To verify this relation, we note that because PS ¢ is larger
than both ¢ and p, S© 5 5@ and S© 5850 so that
§@ 580 Yy sk, Next, we consider subdiagrams

J;”) N JS?). Again, because ¢ D o, by Eq. (23), any line in

J 5”) must be in either J Eg) or §¢), and similarly, because £ D p

as well, J §5) must be in either J %) or S©). The only possibility

for a line in J\”) N J% is then S©. Equation (54) then
follows, and we have

CQTCHC * (55)

We conclude that the enclosing PS, 7, is contained by all
of the elements of N [p] or is equal to the smallest element
in Ny [p]. At the same time, 7., itself contains PS 6,
the largest of the regions in N, [p]. Therefore, 7.c[0, maxs 2]
nests with all the elements of N”), and either e [0, max 2]
is already contained in N? or the set NPT =
{N?, Tnc[6, max> P} i an acceptable nesting, and is already

included in R G™ [Eq. (32)]. Also, , ¢

O max  Tenc [‘70 max */)]y 15 a

good approximation to #,  y in region p, so that Eq. (46)
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holds. Then, leading contributions cancel, either between
nesting N and N”\ 7 [0 max» £ if Tene i already in N, or
between N” and NP7« if it is not. Thus, we have verified
the cancellation of the sum over N” in Eq. (44) and the
ultraviolet finiteness of the subtracted diagram (34), which
is what we were after.

III. RENORMALIZATION OF WILSON-LINE
AMPLITUDES AND FACTORIZATION FOR
PARTONIC AMPLITUDES

In this section, we apply the regularization procedure of
the foregoing section to verify the multiplicative renorma-
lizability of multieikonal vertices involving massless
Wilson lines, thus generalizing the results of Brandt,
Neri and Sato in Ref. [22]. We will also confirm the
factorization of partonic amplitudes in coordinate space,
corresponding to the momentum-space factorization of
S-matrix amplitudes for fixed-angle scattering shown
originally by Sen in Ref. [17].

Our discussion begins by reviewing how the soft-collinear
and hard-collinear approximations in Egs. (9)—(12) result in
exact scalar polarizations for gauge lines that couple the soft
to jet subdiagrams, and for all unphysically polarized gluons
coupling jets to the hard subdiagrams [12]. We conclude
from gauge-theory Ward identities that the approximation
operators, t, [Eq. (20)], act to factorize amplitudes into hard,
jet and soft subdiagrams at the level of integrands. We then
use these factorization properties and the nested subtractions
of Eq. (30) to renormalize multieikonal vertices coupling
massless Wilson lines, and factorize amplitudes for massless
partons, when the positions of all external fields define a
physical scattering process.

A. Approximations and Ward identities

We recall that the action of the approximation operator ¢,
is to perform the soft- and hard-collinear approximations on
gauge propagators that attach the soft subdiagram for PS p to
the jet subdiagrams and on gauge propagators that attach the
jet subdiagrams to the hard subdiagram of PS p, such that the
leading singularity of y in neighborhood #[p] is given by
Eq. (20). Reference [12] showed how the soft-jet and jet-
hard gluon connections, approximated by their dominant
polarization states as in Eq. (20), may be replaced by scalar
polarizations (equivalent to longitudinal polarizations for
massless particles). We begin with a review of the method.
Consider first a soft-jet connection, as specified by Eq. (9).
We rewrite the propagator given in Eq. (9) as

g [
Dﬂv(x — T(K)ﬁ]() = —a,[(l() / dTKD/“/(x - TKﬁK)
9 e )
:m/oo dTKD” (X_TK:BK)’

(56)
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where we have used the definition of (&) in terms of z(X),

which is the position of the vertex in jet subdiagram K to
which this line attaches. We then integrate by parts in
B - z%) in Eq. (20) so that the derivative now acts on the
component of the jet function in the soft-collinear approxi-
mation. To this, we are free to add derivatives with respect to
the other coordinate components of zf,K) to the integrand,
acting on corresponding components of the jet subdiagram,
because these terms are total derivatives and vanish after
the integration. The soft-collinear approximation (9) then
becomes [12]

se(K)[D* (x = 2)]J, (=)

2K) B )
” / drg D" (X - Tkﬂk)ﬂky'(—a UJu(Z(m))’ (57)

where the right-hand side is to be interpreted as the integral
over an eikonal line in the jet direction fg, and parameter 7
is the position of the attachment of the soft line, x — 7gfk to
this eikonal, multiplied by the divergence of the jet function
at vertex z§). This summarizes the soft-collinear approxi-
mation defined in Ref. [12] for coordinate-space integrals,
and can be carried out independently for each gluon to which
we apply the soft-collinear approximation.

Similarly, an unphysical gluon coupling the I jet to the
hard-scattering function, as in Eq. (11) is replaced in the
hard-collinear approximation by a convolution in a single
component of the gluon propagator with the divergence of
the hard-scattering function,

he(D)[D*(z = y )] H, (y")

y(l)./,'[ , o
—>/ dn, D" (Z_’11,31),3111’(_3”}1»@(1)))- (58)

The right-hand sides of Egs. (57) and (58) are respectively
the Fourier transforms of the soft-collinear and hard-
collinear approximations in momentum space. The
application of the momentum-space approximations was
discussed extensively in Refs. [14,15], for example.
Replacing the jet-soft connections by scalar-polarized
gluon lines that are associated with the scalar operator
d,A*(x) allows us to apply the gauge-theory Ward iden-
tities. After the sum over all diagrams, the Ward identities
then ensure the factorization of the soft lines from jet
subdiagrams in coordinate space, in exactly the same way
as in momentum space in Refs. [14,15]. We note that the
Ward identity we need for showing the factorization in
the case of multieikonal amplitudes was derived as part of
the proof of renormalizability for smooth Wilson lines in
Ref. [45]. The resulting factorization is illustrated in Fig. 7.

The factorized amplitudes illustrated by Fig. 7 are of
course somewhat different in the cases of multieikonal
and partonic amplitudes, and we will begin with the
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FIG. 7. Factorization in a leading region of a vertex function,
illustrating Eq. (60). Each line ending in an arrow represents
arbitrary numbers of gluons in the soft-collinear or hard-collinear
approximation defined in the text. As in Fig. 1, the double lines
passing through the jet functions may represent either Wilson
lines or partons.

multieikonals. For multieikonal amplitudes the jets are
themselves singlet cusp operators,

i)

= C‘;mp(ﬂl,ﬁh €)
X (0]7(@)" (00, 7,870 (00, 7,81))[0),  (59)

which, as indicated by its argument, may be regulated
dimensionally. The vectors 7;; are the positions of the
cusps after the application of the Ward identities, but the
matrix element must be independent of z; by translation
invariance. In addition, because of the symmetry between
velocities 3, and f;, these jet functions have collinear
singularities in both the f; and f3; directions if 7 = 0, as in
our discussion above. As shown in the previous section, all
B, collinear singularities cancel in the sum over nestings,
although this is only true for the full amplitude. The
prefactor ¢;(f3;, ;. €) is chosen to eliminate overall diver-
gences associated with the choice of vector f; in the
factorized form. As we shall review in the following
section, collinear singularities for f;, occur additively in
the logarithm of j;, and can therefore be compensated by a
multiplicative factor in each of the jets, and correspond-
ingly by the inverse factor in the remaining soft and hard
factors of the amplitude. Collinear singularities associated
with f3; correspond to the rapidity divergences discussed in
direct QCD and soft-collinear effective theory in the
references cited in Refs. [7,46], for example, where specific
methods of handling these extra divergences were devel-
oped. In general, the factorization of jet and soft functions
requires an additional renormalization, as we introduce
composite operators into the matrix elements for the jet
functions, and also in the soft function. We will show below
that the renormalization of the soft function is also
multiplicative.

For multieikonal amplitudes, the jet, soft and hard
functions are in convolution only with respect to distances
7; from the origin along each of the eikonal velocities, f3;.
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The eikonal jet functions, however, are independent of the
position of their cusps, and we may write

I = [ i 8)/‘171)“ ({z1}) } o
x ZY ({ziB1}). (60)

a

where the product x indicates a product in color space, and
where the remaining integrals are over light-cone variables
along the directions f; of the jets. After the sum of
diagrams necessary for the Ward identities, the dependence
on p of the right-hand side is all in the order, labeled m < n
of the sum over possible hard subdiagrams and in the
choices of the individual jet functions j;" and of the soft
subdiagram, labeled 4,. Their total order is denoted by
n — m, for a specific PS p. In the spirit of the notation of
Eq. (20) for the approximation operators, the factorized soft
and jet functions may be represented as

(e = e / dufe S8 ({u)).  (61)

() = ¢; / ol (o} By (62)

Relative to Eq. (20), the integrals over distances along
light-cone directions, ug and v;, corresponding to 7(X) in
Eq. (10) and ") in Eq. (13), act only on the soft and jet
functions, and are no longer in convolution with the jet and
hard functions, respectively, except through the lower limit
7 for the Wilson lines of the soft function, which is set by
the position of the outermost vertex of the hard subdiagram
on each eikonal line fx. In both functions, these integrals
are ordered along the relevant eikonals, which we indicate
by an overline.

The factorized result (60) is by itself suggestive, and also
represents the true behavior of the amplitude in region p.
We now turn to a more complete derivation, which starts
from the nested subtraction forms of the multieikonal and
partonic amplitudes. We will derive a single expression that
combines the approximations associated with all PSs. For
multieikonal amplitudes, we will use factorization through
Ward identities to construct a soft function that incorporates
the color coherence properties of the amplitude, and which
is renormalized multiplicatively. We will then go on to use
this result to show that partonic amplitudes factorize into a
form that involves the same soft function.

B. Factorization and renormalization for multieikonal
vertices with massless Wilson lines

So far, all of our integrals were computed using the
renormalized gauge-theory Lagrangian. As a composite
operator, the multieikonal vertex itself produces ultraviolet
divergences, and requires further renormalization. The
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multiplicative renormalizability of such vertices was
proved in Ref. [22] for massive Wilson lines. In this
section we confirm that multiplicative renormalization
survives the zero-mass limit in Minkowski space, in spite
of the presence of nonlocal ultraviolet collinear singular-
ities. We will find that the latter factor into universal jet
functions, depending only on the color representations of
the Wilson lines, which can themselves be renormalized
multiplicatively. All color coherence between different
Wilson lines is contained in a standard soft function matrix,
which requires multiplicative renormalization, as shown in
momentum space in Ref. [17]. The discussion below shows
how this renormalization and factorization can be imple-
mented in covariant gauges for massless lines, and in
coordinate space.

Starting from Eq. (30), we consider the sum over
nestings of an arbitrary nth-order diagram, y<”), either
partonic or multieikonal, with external self-energies
removed. We isolate within each nesting the smallest PS
that corresponds to the largest, that is, highest-order, hard
subdiagram, and denote this PS by 6y[N]. In general, oy is
not the smallest PS in the nesting, because there may also
be pinch surfaces with the same hard subdiagram, but larger
jet subdiagrams. These differ from PS ¢ by increasing jet
subdiagrams at the expense of soft subdiagrams. Separating
the subtractions smaller and larger than o, we rewrite our
expression for the n-loop amplitude in terms of approxi-
mation operators [Eq. (30)] as

=22 > I

7 64[y™] Neonloo] @EN con[o0]

X Z H (—=t,)y"™ + RWG™ | (63)

N [00] 6€N. [0¢]

where N i [0] labels nestings smaller than o, which share
the same hard subdiagram (after the use of Ward identities),
while N. [o,] represents all nestings that have o, as their
smallest element. At this stage, the symbol G") may refer
to a partonic as well as a multieikonal amplitude. Each o
divides diagram ") into two subdiagrams. The first, which

we will denote by A=) = §) U [],J\ is an n — mth-
order “outer” subdiagram, consisting of lines in the soft
and jet subdiagrams of 6. We count in order n — m those
factors of the coupling associated with vertices where jet
lines attach to the hard subdiagram of PS 6. Subdiagram
A(=m) s connected to the remaining, hard subdiagram,
H'?), by jet lines only. The remaining order of H) is m.
The approximation operators f, in Eq. (63) take into
account all nestings involving soft-collinear connections
in the outer subdiagram.

For notational purposes, we now identify a “reduced”
hard subdiagram, which we will denote by 7(")[,]. This is
the diagram found by deleting unphysically polarized jet
gluons from the hard subdiagram. By construction, 7" is
irreducible under cuts of the external eikonal lines.
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We now claim, following Collins [7], that the Ward
identities can be applied to the subtracted inner diagrams
just as for the unsubtracted case. We imagine acting with
the approximation operators 7, in Eq. (63) one at a time,
starting with the right most, that is, the one corresponding

to the largest PS in nesting N, which we will refer to as

aﬁﬁl. Summing over diagrams, the application of Ward

identities leads to a factorized form, with a soft subdiagram,

Soms) and partonic jets, as in Fig. 7. To this set of diagrams
we apply the approximation operator corresponding to the
next-largest PS. By the nesting construction, this approxi-
mation operator acts only on lines in the jet and soft

subdiagrams of PS 6[(1{1\’&2(’ leading through the Ward iden-
tities to a new set of jet and hard subdiagrams. In this set,
the nesting requirement allows lines from the jets of 6%2( to
be absorbed into the hard subdiagram, and lines of the soft
subdiagram of afﬁl to be absorbed into new, fully eikonal
jet subdiagrams, which, however, are now disconnected

from the partonic jet subdiagrams that are produced by 7

max

This procedure can be repeated as many times as there are
approximation operators in any nesting, and at each stage,
the Ward identities can be used. As a result of the nesting,
all lines and vertices of the soft subdiagram corresponding
to oy, the smallest PS that has the hard subdiagram shared
by all smaller PSs in the nesting, are already in a subdia-

gram of S(om) Similarly, all jet lines of agﬁl are in the

corresponding jet subdiagrams of ¢y. The approximation
operator, #, acts to separate the lines of diagrams, An=m)

from the remaining diagrams, 7" as in Fig. 7 and as in the
partonic case [Eq. (60)], and also factorizes the soft and jet
subdiagrams within A=) At each stage in this process,
the subdiagrams that are left behind as subdiagram A"~
is factorized are independent of the number of scalar-
polarized lines to which we have applied the Ward
identities. The series of diagrams that result from this
procedure is thus identical to the diagrams that would be
found by the proper subtractions of diagram 7). Then,
once A" is factored, we may replace the sum over
nestings N 4] of y™ in Eq. (63) by a sum over the proper
nestings of 7",

All these considerations apply as well to partonic and
multieikonal amplitudes, but for now we restrict our
discussion to multieikonal amplitudes, and return to the
partonic case in the following subsection. Applied to the
multieikonal case, the Ward identities factorize subdiagram
Acikonal from the remainder of the nth-order diagram, giving

H/dr,

elkondl

x Hf(:l;lilnal({rlﬂl}> +R

(_tw);ﬂo[Nmu e:lko’rr:a]({TIﬂI})
(n m

elkondl]

(m(n) (64)

| 0EN [

PHYSICAL REVIEW D 91, 065033 (2015)

where the function Hgﬁzma] absorbs the action of all proper

subtractions on }7%?0%1. Precisely because 7&:’&11&1 is eikonal,
we have for m > 0

Hiinlgnal({flﬂl})
=2 > o
7 N [}_/iﬁona] GENP[/elknng]]
= ZRED )yilk)onal
A
=0 (65)

where we have used the vanishing of the sum of proper
subtractions in the eikonal approximation (39). Term by
term, however, the variables z; are the positions of the
Ith Wilson line vertices farthest from the multieikonal
vertex in each diagram. These are the only integration
variables that link the diagrams Agyona With those
of Heikonal = elkonal HI (Tl)

The operator 7,, in Eq. (64) represents the remaining
action of 7, on diagrams A=m) " which consists of the
union of the soft and collinear subdiagrams of PSs o.
In the case where A"~ is entirely soft on PS o, we
define 7, = 1.

Summing Eq. (64) over all orders, and using Eq. (65),
now gives for multieikonal amplitudes,

r— H [, (66)

with

FIG. 8. Factorization in a leading region of a multieikonal or
partonic amplitude, illustrating Eqs. (64) and (81), at fixed values
of 7;, 7; and #;, n;, which are coordinates of the outermost
vertices of the hard subdiagram along each external line. In
multieikonal amplitudes, the #; are all identically zero. Only two
external lines are shown, but the result generalizes to any number.
The jet functions are given by the perturbative expansions of the
matrix element in Eq. (59). The hard function on the right
contains all proper subtractions and reduces to the lowest-order
vertex for multieikonal amplitudes, but retains a full perturbative
expansion in partonic amplitudes.
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A{wifr})
9 2 e

i=0 30 ]]M ] ®EN g1

({Tlﬁl}) (67)

00 [Neon)

where i = n — m in Eq. (64) and 1) represents an arbitrary
i-loop diagram. This factorization is illustrated by Fig. 8,
with two external lines shown explicitly. After the sum over
all proper subtractions, the eikonal lines of the soft function
A meet at a point as in Fig. 7.

The action of the Ward identities on any sum of ith-order
multieikonal diagrams 1) by any ), including ?60 1s

- ta}Zﬂ(i) ({/llﬁl})
A
- (— T ) S0 o)
I=1 A

a

= Je) (e fpy Z/I PIELD ({ziBr}).

I=1

(68)

where Y, applies to all diagrams of the same order, and
where in the first equality the approximation operator z,, is

resolved into independent approximation operators tg ’“’>,

each implementing the soft-collinear approximation on a
subdiagram connected to the [Ith Wilson line. Each
approximation operator 7; includes information on the loop
order of this subdiagram, which we denote by i;,,. Operator

(l’“> factorizes jet subdiagram j(%), and replaces it by a
WllSOIl line attached to the remaining soft subdiagram. The
jets found this way are, up to a constant, the order-by-order
expansion of the matrix elements of Eq. (59), and are
independent of the positions z; of the cusps for the

A({z.p1.P1}) =

where in the first equality 7, is the number of nontrivial
approximation operators 7, from Eq. (68) that act as we sum
over all nestings, and [, is the number of loops in the jet
functions of 6,. The case when the operator ?ao =1in
Eq. (63) is represented by the product of Kronecker delta
terms. In the second equality, we have changed the
summation over the total order, i to one over the order
of the function A that remains after the factorization of all
jet functions, which is ¢ = m —[. This factorizes the
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multieikonal case. This is not, however, the case for the
remaining soft subdiagram, which is singular whenever
more than one 7; vanishes in general. This procedure can be
repeated for each of the jets, and for the action of the nested
(smaller) pinch surfaces.

We now define a notation for products of jet functions,
evaluated at fixed loop order, /. These products depend
on the vectors that define the jets, their end points z;, and
the number of loops, but not on the relative ordering
(labeled @ above) of the subtraction within the specific
nesting,

<0)({ﬂ1,ﬁl}) =0

Y4B =D 85, LT A" A B,
{1} I=1

[>0,

(69)
where the jet functions jf,l’ ) are the sum of all / ;-loop-order
diagrams for the jet function. Summing over loop order /,
we find that 1 + 7 is the product of jet functions,

1+ i JV = H <ii§l‘))
=1 ;=0

:
=11
1=1

In fact, all massless jet functions are equivalent, differing
only in multiplicative color factors that depend on the
representation of the Wilson line.

Appling Eqgs. (68) and (69) to the right-hand side of the
relation (67) that defines A, we find

(70)

Z 03 G0 + T W B BID))

—J“ﬂ<{ﬂ,,Zf,}»)w-”({r,ﬂ,})

(71)

sums over orders for the jets from the remaining diagram.
The complete sum over jet functions is now
represented by

Il

Z S1ty, 30,1, B0 + T )

n]

ng
X <5l_[0’0 + H (—j<lk>)> .
k=1

(72)
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FIG. 9. The action of a pair of approximation operators in a given nesting. The resulting subsequent jets are eikonal.

Here and below we drop the arguments of the collective jet
functions 7, leaving their dependence implicit.

In fact, we easily see that E=(1+J)/(1+J) =1,
where J =35, J (), In detail, starting from Eq. (72), the
proof is

1y=0
nz=11,=0 1, ;=0 k=1 I'=ngy -
- i (5100 + j(lo)) <1 + i <_i‘j(1)>w>
1y=0 ng=1 =0
—1. (73)

In the first equality, I’ = [ — I, in Eq. (72) is the total order
of all the nontrivial jet functions, 7, and is always greater
than or equal to n; by the definitions (69). Equation (73)
is useful because first, from Eq. (70), 1 + 7 = [],j;"" i

the product of jet functions, so that we have shown

the factorization of jet functions, and second, (1+
J)~'>2,, A" is precisely the collinear-subtracted multi-
eikonal amplitude when the limit 7; =0,/ =1,....a is

taken. We illustrate the repeated use of nested approxima-
tion operators in Fig. 9.

Back in Eq. (66), we can use Egs. (70) and (71) to rewrite
the full amplitude as

b= ﬁ / dr,E({7,8;}) iﬂ([)({ﬁ/jl})
_ H]cusp/HdTI
_ H]cuspS {ﬁ[ (74)

cusp ({Tlﬂl})

111

where 4 = >_;4(), and where S is a “soft function,” a matrix
in color space that is free of collinear singularities, but
which requires renormalization for its purely short-distance

UV divergences. In identifying the products of jet functions
in the numerator and denominator, we multiply and divide
by the products of normalization constants c;, as in Eq. (59)
to properly normalize the jet functions. Here, we have again
used the independence of the jet functions 1 + J = [] j;"*
from the positions of their cusps.

The renormalization of the soft function now follows the
standard procedure, as outlined for products of spacelike
eikonal lines in Ref. [22]. We define S() as the overall
UV divergence of the one-loop soft function, and use the
iterative construction

SMlgy = St=m Sy, (75)
m=1

where, S is the mth-order soft function after multiplicative
renormalization up to m — 1 loops. This is possible because
the soft function has only local, UV divergences. The
original matrix S can now be renormalized by defining [22]

Sren({ﬁl ﬂl}> = ZEIS = Sggg - Z;l(n) + S(n)

+ 3 sz, (76)

The inductive construction of the matrix renonnalization
constant Z3! then follows by choosing Z = . |
starting with m = 1.

From Eq. (74), the full multieikonal amplitude is renor-
malized by the same matrix Z3'!, and is proportional to a

product of jet functions times the renormalized soft matrix,
[en =1 % ZEI = H.]I Sren- (77)
I

This relation was the starting point for investigations of
color evolution, for example, in Ref. [23]. In the following
subsection, we will apply essentially the same procedures to
partonic amplitudes, and will find that the same renormal-
ized soft matrix reappears.
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C. Factorization for partonic amplitudes

Proceeding as for Wilson-line amplitudes, we have for
partonic amplitudes,

=22 > 1

7™ 64[y™] Neon[6o] @EN con[00]

x [I (~tor™ +ROG,

UENJO [7(")]

(78)

D11 a3 T lias

(") 0EN o1 [00)

where as in Eq. (64), ?0'0 represents the action of 7,

restricted to subdiagram A"~"). In this expression, the
subdiagrams A now depend on two sets of variables. As in
the multieikonal case, the factorized soft subdiagram
depends on the longitudinal variables z; along the direc-
tions of the Ith jet. The factorized jet subdiagrams remain
independent of the z;, but in the partonic case they depend
on distances #; along the complementary directions for
each jet, 7,4;. The n; dependence in partonic jets is due to
the variability of the jet functions with the position of the
vertex at which the physical parton line attaches the jet to
the hard subdiagram (here at PS 6), as in Eq. (12). Note
that in multieikonal amplitudes this dependence is absent.
In effect the physically polarized parton is given infinite
energy and is replaced by a Wilson line, on which #; =0
identically.

The partonic short-distance function C")
given by

in Eq. (79) is

C(’")({ﬁ/ﬁ}v {’71/_31}>
= H/d4)’15()’1 Br=n1)8(yr - Br — 1)

x> > I ™.

}7('") Np [7('")] 6ENp [}7('")]

(30)

where 7" is the set of diagrams of order m, with external
vertices y;, at which physically polarized partons attach.

As in the multieikonal case, summing Eq. (79) over all
orders gives a factorized form

G= ; dn; | dey AP ({78, Y, {nify
H/n/ ek i)

x CHziBry Ambr}). (81)

with a partonic soft-collinear function given by

A= (B} {x
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which is the analog of Eq. (64), in terms of partonic
diagrams, y"). Again, operators ¢, are ordered from left to
right in increasing size of PS, or equivalently decreasing jet
and hard subdiagrams, and PS ¢, is the smallest PS with the
largest hard subdiagram in the nesting. As for the multi-
eikonal amplitude, the action of approximation operators
t,, and larger is to factor subdiagrams A=) from an mth-

order short-distance function C™

— B )C" (L} Amibr}) + RWG™, (79)
|
AP ({7}, {'71,81})
= Z Z H )iaoLU)({TIﬁI}’ {mib1}),
i=0 @) Neo [L(t)]wer“
(82)

now in terms of partonic diagrams L(). The same analysis
of the approximation operators in ?00 and the nestings Ny
leading to Eq. (71) in the multieikonal case now gives

AP ({78}, {mifr})
= H]}pm(ﬂlﬂl

After the factorization of the partonic jet functions (by the
operator 7, ), the functions A here are again multieikonal
diagrams, the same as in Eq. (67). As in the multieikonal
case, the partonic jet functions in the numerator and the
eikonal jet functions in the denominator can be normalized
by the same constants c¢; in Eq. (59). All partonic
information has been factorized into overall jet factors
by the action of 7, in Eq. (78). These partonic jet functions
are given by vacuum expectation values of partonic fields,
¢, recoiling against a Wilson line in the conjugate color
representation,

WZZﬁ

m. (m)

{Tlﬂl (83)

f ) —
Jl;m[ ! (xh ’11,51)

= (1 B OIT () (1)@ (o0, B)0),

(84)

where f 4 is the color representation of parton ¢, f is again
the complementary lightlike vector defined by x;, and x?
serves to regulate collinear singularities in the f3; direction.
The factorization of Eq. (81) is illustrated in Fig. 8,
where now the hard subdiagram is nontrivial. The function
C™ is the set of all proper nested subtractions of the
mth-order diagrams 7", which, by Eq. (42), cancels all
subdivergences.
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In Eq. (81), we can now use Eq. (83) to rewrite the full
amplitude as

G= H/d”lljlpm(xhnI/}1>
=1

< [ ar, %u{nﬂ,}, B e} (b)),

1J]

(85)

where the prefactor is now a product of partonic jet
functions, which result from the approximation operator
!5,» While the denominator is the same product of eikonal jet
functions as in the multieikonal case.

There is an additional difference between the partonic
and multieikonal amplitudes. For multieikonal amplitudes,
the subtraction of subdivergences at each order organizes
ultraviolet singularities, which require renormalization, as
in Egs. (76) and (77). In contrast, before subtractions, the
partonic hard-scattering subdiagram is ultraviolet finite
after taking into account the counterterms of the gauge-
theory Lagrangian. Correspondingly, at fixed values of
the #,, the 7, integrals of C") converge, since all collinear
and soft regions have been subtracted. At the same
time, when the z; are much smaller than these scales,
the eikonal diagrams A and C in Eq. (79) both develop
ultraviolet singularities as a result of the subtractions,
which must cancel, since they result from adding and
subtracting singular behavior. This pattern is familiar from
momentum-space factorizations [17,23]. These singular-
ities, however, are removed from the soft matrix S by the
multiplicative renormalization of Eq. (76). We can therefore
regularize both the soft and hard subdiagrams by introducing
Z§12 s between A and C in Eq. (85). Once this is done, the
soft subdiagram 1 becomes independent of the z; for z; — 0,
and we can treat it as a constant, while integrating the
hard subdiagram over the 7; at fixed ;. The result is now the
final coordinate-space factorized form,

G= Ilill/d”lljlpan(xlvnlﬁl)sren({ﬂl ‘ﬂj})H({’IIBI}),

(86)

with S, the same function as in Eq. (76) for the multieikonal
amplitudes, and with a short-distance coefficient function
given by

i) = 2] [ dncmp). (ubih). (87

Taken together, the Fourier transforms of Egs. (86) and (87)
specify factorized amplitudes in momentum space [17,47].
IV. WEBS AND REGULARIZATION

In this section we give a detailed treatment of the
simplest of the eikonal amplitudes, the “cusp,” defined

PHYSICAL REVIEW D 91, 065033 (2015)

by Eq. (59), with a gauge-singlet vertex. Our goal is to
relate the regularization procedure developed in Sec. II,
where we exhibited an expression for the cusp and other
amplitudes in terms of nested approximation operators
[Eq. (30)] to the exponentiation properties of the cusp. We
first recall the graphical interpretation of exponentiation.

A. Cusp webs and exponentiation

All multieikonal amplitudes, of the type of Eqgs. (4)
and (59) may conveniently be written as exponentials

I'=expW, (88)

where W is determined by a set of rules that define the
so-called web diagrams, which were first identified and
analyzed for the special case of the cusp matrix element
(59). In all cases, the exponent W is a sum of eikonal
diagrams with modified color factors. For the special case
of the cusp, these diagrams, which we label by w, are
irreducible under cuts of the two Wilson lines [9-11]
(thus the name, “webs”). Webs can be used to show the
exponentiation of double logarithms and double poles, and
of power corrections related to singularities in the pertur-
bative running coupling [47-51]. They help organize
calculations at two loops and beyond in the cusp and in
closed Wilson loops [8,52,53]. The concept of webs can be
generalized beyond the color-singlet cusp and can also
serve as a starting point for a beyond-eikonal expansion
[54-57].
For the cusp, the exponent can be represented as

W=>" CwZI(w). (89)

webs w

where Z(w) is the corresponding diagrammatic integral
over the positions of internal vertices of web w. Each web
integral is multiplied by a color factor C(w), modified
relative to the factor C(w) that would normally be asso-
ciated with diagram w. It is possible to give a closed form
for C(w) [54], but in the following discussion, we will use
the recursive definition [10], given for each diagram by

Cow™) =cw) =3~ T ™). (90)

deD wl(.”i)ed

where the wl(."") are lower-order webs, of order n;, in the

decompositions d of the original diagrams w(™) into lower-
order webs, with > ;n; = n. As usual, we denote the
coefficient of (a,/z)" in W as W), and similarly for all
other functions.

The sum in Eq. (90) is over all “proper” web decom-
positions D[w(")], not including w(") itself, and the right-
hand side vanishes identically for diagrams ) that are not
webs, for which we have [10,11]
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Z I ¢ow)=ce). (91)

7] w,eD[y")

As a result, the nth-order contribution, W) to the sum of
all diagrams that contribute to the cusp at the same order
can be written as

). (92)

W — Z(
4
We will use this form below. From now on, all diagrams are
eikonal, and we drop subscripts to identify this. The web
prescription for W, the logarithm of the cusp, was originally
identified in momentum space [10,11], but also has a very
simple coordinate-space derivation [55].

Web diagrams for cusps with massive eikonals have only
a single, overall ultraviolet (and infrared) divergence [22],
up to multiple poles associated with the running of the
coupling. In the massless limit, they develop a double pole
times the cusp anomalous dimension, again with higher-
order poles that can be predicted by the running of the
coupling order by order [49,50,52]. The treatment of
vanishing mass in the cusp was developed in Ref. [52]
in momentum space, employing physical gauges.

We now study the fully massless case in Feynman gauge.
Each diagram w in Egs. (89) or (92) can be written as an
integral over its “leading” vertices, that is, vertices at the
furthest distances from the cusp vertex along each Wilson
line [8],

ZHC

)] weD[y)

drdz

()Ti'

W =

Swlag(@?), w7z, e), (93)

where in the absence of masses, the dependence of the
integrand reduces to just a few variables. Standard pertur-
bative renormalization introduces dependence on the
renormalization scale y” as the positions of vertices are
integrated over at fixed 7 and 7. On a diagram-by-diagram
basis these integrals have many nonlocal subdivergences,
involving jet and hard subdiagrams, which show up as
logarithmic enhancements, as analyzed in Ref. [12]. We
may think of these integrals as cut off at some large length
scale to avoid explicit infrared singularities. The resulting
integrand fy, is a renormalization-scale-independent func-
tion that is the result of all the remaining integrals, as in the
two-loop example treated in detail in Ref. [8]. For the sum
of web diagrams we can thus write

drdr
WI/ —fw(a
0o 77T

We will refer to the sum over webs at fixed z and 7 as the
“web integrand,” and we will show that after a sum over all
diagrams, the full web integrand fy is ultraviolet finite
for e — 0. Renormalization for the web functions is then

s(1/77), 1, €). (94)
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manifestly additive, and associated with the singular z and/
or 7 — 0 limits of the integral. The connection between
multiplicative renormalizability and the structure of web
functions has been reviewed recently for both color-singlet
cusps and multieikonal vertices in Ref. [56]. In Sec. V, we
will use the exponentiation in terms of webs to revisit
factorization for multieikonal amplitudes, and discuss
subdivergences in web integrands for these cases. First,
however, we discuss the web construction for the cusp in its
own terms. Although the demonstration below of finiteness
for the cusp function is in some ways more elaborate
than the general discussion of Sec. V, it is more explicit,
and gives insight into the manner in which perturbative
corrections conspire at each order to produce ultraviolet
finiteness.

B. Subtractions, webs and decompositions

Consider the n-loop web, W) given in Eq. (92). On the
right-hand side of this equation, we replace the simple
sum over diagrams by the sum over all their nested proper
subtractions, as in Eq. (40),

we==3, 2l

yn NPG-/\[P /)ENP

_%:z( (Z H]C ) (95)

)] weD[y!

The right-hand side is now the difference between the sum
of the proper subtractions for nth-order diagrams (equal to
the diagrams themselves) and the subtractions in Eq. (92)
that define the webs, also summed over all diagrams. In the
following, we will use this form to show that in every
leading region p involving a subdivergence, W is
integrable. This in turn implies that the nth-order web,
Eq. (92), is itself integrable over all subspaces where
subdiagrams are ultraviolet singular. Ultraviolet divergen-
ces can arise only when all the vertices of the web approach
the origin or the light cone together, which implies the
finiteness of the web integrand fy in Eq. (94).

Let us thus consider W in the form (95), restricted to
the reduced neighborhood 7i[p] of PS p, which we denote by

Wf,"). As we have seen in Eq. (28) and the subsequent
discussion, in each region p the ultraviolet behavior of the
vertex is well approximated by the single subtraction term,

t/,l“(">, while all other nestings cancel. Then, up to non-
singular corrections, when restricted to the neighborhood of

p, Eq. (95) becomes
RPN | Rt

V=
" 7 D) weDiy ]

(96)

where here and below we restrict ourselves to divergent
contributions. We will now argue that in region p the first
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sum on the right-hand side cancels against those web
decompositions (D[y(™]) in the second sum that “match”
the structure of the leading region p, and that other,
“unmatched” contributions to the sum either cancel or
are suppressed in region p. We begin our argument by
recalling the action of Ward identities in the first term, as
described in Sec. IIT A. In this discussion, the integration
region is indicated by a subscript and the perturbative order
by a superscript.

For definiteness, we assume that there is a nontrivial soft
subdiagram at PS p, which we now denote by S,,, as in the
factorized form (60),

= S

= Zs,, =) Z r,(,m”). (97)

S,,ES/, r/)ER/)

In this rewriting of Eq. (60), the soft function S, [S®) in
Eg. (61)] multiplies a “remainder” function, R,, which (to
avoid clutter) includes sums over the jet and hard subdia-
grams at PS p. The function S, = " s, is the sum of the
soft subdiagrams, s,, of each y(”> in region p, connected
directly to $ and  Wilson lines, and similarly for the
remainder subdiagram R, = r,. We let m, be the order
of the remainder function in region p. In summary, in each
leading region p, after a sum over all "), Ward identities
factorize the subdiagrams that make up S, and R,. The sum
over all ™ in region p can then be replaced by independent
sums over soft subdiagrams s, and remainder subdiagrams
r,, as in Eq. (97).

Next, we separate color and coordinate factors of each

(n—m,)

Sp and r,(,m”) in Eq. (97),

2. 1l em=2 1

D[y\"] weD[y" ™

2T
70

—Wp [S ®R]—|—wp)[S NR,],

2. I cwm+ >

Ds,@r, 1] weDs,er,
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Z}’p _ S (n—m,) (mp)

- ZC (n m,,))
$,ES,
« z C mp m )) (98)
r,ER,

This is the form that we will compare to the sum of web
subtractions, the second sum in Eq. (95), which becomes

=y C T )

s,ES,
(m,) (m,)
X ZC(’"p )Z(rp ")
r, ER
>z Z Cw).  (%9)
y™ [/ ] weD[y™]

As mentioned below Eq. (96), it is useful to split the set of
decompositions, D[y")] into the set of those that match the
factorization of soft and remainder functions in the first
term of this expression, and those that do not. More
specifically, matched decompositions of a diagram y")
are those in which no web contains lines in both the soft
subdiagram s,[y"], and the remainder subdiagram,
r, [y"]. Correspondingly, in unmatched decompositions,
at least one web contains lines of both the soft subdiagram
and the remainder in region p. In these terms, every
decomposition of diagram y") is either matched or
unmatched in region p. We represent this division of
decompositions for the second term on the right-hand side
of Eq. (99) as

[T co)

Ds,nr, [y weDs,nr,

(100)

where the first term on the right of the second equality represents the sum over the set of matched decompositions, D gr,
and the second is the sum over unmatched decompositions, D S,NR, -

In the following, we will show that the matched decompositions cancel the factorized subtraction terms of Eqgs. (98)

and (99) in region p,

0= t/,ZyE,n) — wém (S, ® R)]
/)
= i) R,(, = <”>[S ® R,
n—m/, (n— m/, m[, m,,) n
=3 (s ) >y ) —wi[S, ® R,], (101)
$,ES, r,ER,
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while the unmatched decompositions are suppressed,

wi[S, N R,] = 0. (102)

Substituted into Eq. (99), these two results show that

W,(,”) = 0, so that the web integrand is free of ultraviolet
subdivergences.

Before giving our arguments for the results (101) and
(102), we recall that we have assumed that the leading

region p has a nontrivial soft subdiagram, S;(,n_m”). For the
special case of a leading region with no soft subdiagram
(m, = n), and only jet and hard subdiagrams, we may pick

either of the jet subdiagrams to take the place of S;n_m”),

with the same result. In the following, we shall suppress the
|

w,, S ®R

I

x (é<rp[y<">1> s

Dlr,[y"]] d'€D[r, [r™]]

N, ).

— Zzﬂ(y( NC(s
/1)

where in the second equality we have used Eq. (90) for
web-color factors. In effect, after the sum over matched
decompositions, the web-color factors of the soft and
remainder functions revert to their normal form, the same
as in the subtraction terms of Eq. (99), that is, the first term
on the right-hand-side of that equation. As usual, the sum
over D[g| of diagram ¢ refers only to its proper web
decompositions. Note that the color identity in Eq. (103)
extends to all diagrams, g. For a nonweb ¢, for which
C(¢) = 0, we recall Eq. (91).

Having factorized the product of color factors in the sum
over matched decompositions, we now turn to the coor-
dinate integrals. We reexpress the sum over diagrams ) in
Eq. (103) as independent sums over soft and remainder
subdiagrams s, and r,, and then a sum over all possible
connections of these subdiagrams to the eikonal lines,
respecting relative orderings O[s,,r,] along the Wilson
lines of all the vertices that connect gauge lines from
subdiagram s, and from subdiagram r, to the Wilson lines,

=> > > Z,0Is,.1,).

e S r R, eikonal
PP 4 orderings O

(104)

ST, =
o)

In Eq. (103), this gives
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orders of Sf)”_m”) and R,(,m”), since these are in principle

fixed by the choice of region p.

C. Matched decompositions

It is clear that the sum over matched decompositions of
Eq. (100), Dy, @k, [y(™] for each diagram y(*) separates into
two independent sums over the web decompositions of
the soft and remainder subdiagrams of y"). Among these
decompositions are the choices s,[y")] and r,[y"™)], the soft
and remainder subdiagrams themselves, which appear
along with all of the webs made of their decompositions.
Using the general form for webs, Eq. (92), we can thus
separate the color factors associated with the soft and the
remainder subdiagrams,

fy oI e)

M) deDs,[y"]]
I C(d’))

(103)

W/(7n) [Sp ® Rp} =

3> 5 S 2(0ls,.r))Cls,)Cr,).

s €S r R, -eikonal
P=Ep P 7 orderings O

(105)

To this result we apply the coordinate-space eikonal
identity [55], applicable whenever we sum over all con-
nections of a set of web subdiagrams that are attached to
the eikonal lines, respecting the order of gauge lines within
each subdiagram,

> z(0]

eikonal
orderings O

I(s,) xI(r,)x---, (106)

Spilps.]) =

a “shuffle algebra” identity that generalizes to any numbers
of subdiagrams and any number of eikonal lines. In
Eq. (105), this gives the desired result,

Z > Z(s,)C(s,)Z(r,)C(r,)

s,ES, r,ER,

=S, XR,,

W/(Jn) [S/) ® Rp} =
(107)

which shows that Eq. (101) holds for the matched decom-
positions, that is, that the matched decompositions cancel
the subtractions in region p.
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D. Unmatched decompositions

We now treat the unmatched decompositions of
Eq. (100), whose sum we have denoted by
w,()") [S/, N R/,]. For any diagram ¥, this sum consists of
decompositions with at least one web that includes one or
more lines in the soft subdiagram s, [y] and one or more
lines in r,[y"™]. For this discussion, we assume that the
cancellation of subdivergences has been proven to
order n — 1.

From Eq. (100), we have for the unmatched decom-
positions

WIS, VR, =Y "T,(/") Y I cow.

Ds, g, [ weDs, g, [r"]

(108)

By analogy to our analysis of the matched distributions, we

will exchange the sum over diagrams y(") for sums over
webs. In every element of the unmatched decompositions

D[y € {S, N R,} of diagram ¥ there is a nonempty
decomposition that includes a subdiagram u,, [y")] consist-
ing of (one or more) webs, each of which is not all in the

=3 > > T

mg.my o1 (ms pmy

wi[S, N R, =

x (Zuﬂz (1) <C(“ﬂ) + Znu"[uﬂ] HdeDu,,[u,,] C

where we sum over the orders of the soft and remainder
diagrams. In the final sum over diagrams u,, we group all
fully unmatched decompositions of the unmatched webs u,
of order n — mg; — m,. The coordinate factors of all these
terms are the same. Their color factors, however, get
contributions only from a subset D, [u,] of all decomposi-
tions, Dyy[u,| C Ds g, i.e., those that are fully unmatched.
We now consider the difference, D[u,]\ D, [u,], between this
set and the full set of decompositions of each u,,.

The set of missing decompositions, D[u,|\D,,[u,], for a
given u, includes those that have matched soft and
remainder  subdiagrams, which we denote by
w,[S[u,] ® R[u,]], where S[u,] is the soft subdiagram of
u,, and R[u,| is the corresponding remainder. The set
D[u,]\D,,[u,] also includes many more decompositions,
i.e., those that have decompositions involving some
matched and some unmatched webs of lower order. The
inductive hypothesis, however, assumes Eq. (102) for lower
orders, so the sums over unmatched decompositions of
lower order cancel among themselves. Therefore, by
adding and subtracting matched decompositions
w,[S[u,] ® Rlu,]| only, we can derive a factor that consists
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soft subdiagram, and not all in the remainder of y(). In
general, once subdiagram u, [y(”)] is fixed, there is also a
subdiagram, s/,[y")] whose webs are fully subdiagrams of
Sh[y"™\u,], the soft subdiagram found by removing the
unmatched webs of u, from ()
/
R, [y™\u,]. We can then write for any such decomposition,

, and another subdiagram,
[y"], which is fully a subdiagram of the remainder

) = sy U ™) U, ™). (109)

The sum over such unmatched web decompositions of y(%),
then, can be reorganized as a sum over the independent
decompositions of each of these subdiagrams. For decom-
positions of the soft and remainder subdiagrams, s/, and r,),
the diagrams themselves appear in these sums, along with
all of their decompositions. For each unmatched subdia-
gram, u,, however, only those decompositions are included
that leave u,[y(")] fully unmatched. For each choice of u,,
we can sum over all allowed s/, and r;, and using the color
and eikonal identities, derive the analog of Eq. (107),

ST

(110)

(n—mg—m,)
7))
[

of the difference between all decompositions of u, and its
matched decompositions,

D Tw) > ] @

uﬂ Dun [u/)] deDun [“p]

-3 ] c

u,] deDlu,]

[S[u,] ® Rlu,)]. (111)

Substituting this into Eq. (110), we now have the full color
factor for each diagram u, in the sum, and we can use
the web-color identity (90) to confirm that the sum of
unmatched decompositions vanishes,

w,(, )[S’ NR)]

s (Zﬁ) (m,) (Zrﬁl> (m,)

mg,m,

<Z {uy, =w,[S[u,] ® R| /)m)“"ms—m,)

= 0. (112)
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Again, the first factors on the right-hand side are factorized
soft (order-m,) and remainder (order-m,) subdiagrams,
while the third factor is now a sum of all subdiagrams
of order n—m;—m, The third factor vanishes by
Eq. (101), which states that all subdivergences cancel
against those in the sum of matched decompositions, up
to order n. Thus, all unmatched decompositions cancel in
region p to order n, and we confirm Eq. (102) and hence the
absence of subdivergences [Eq. (101)] in the logarithm of
the cusp amplitude [8]. As discussed above, this result
confirms the UV finiteness of the web integrand, fy,
in Eq. (94).

V. MULTIEIKONAL AMPLITUDES

The arguments of the previous section apply specifically
to the cusp, where we have used the inductive construction
of web-color factors, Eq. (90). We go on now to study how
these considerations change for amplitudes with multiple
Wilson lines connected at a local vertex, and to explore
the relationship of their exponentiation properties to the
factorization demonstrated in Sec. III.

A. Cancellation of web subdivergences for large N,

For a multieikonal vertex, I", with @ > 3 Wilson lines,
and a consequent mixing of color tensors [22], it will be
useful to use an alternative expression for webs, introduced
in Ref. [55]. We label each web function with an index
E, which represents a list of the numbers of gauge
lines attached to each Wilson line, E = {e;...e,}
for a Wilson lines. We then express the sum of all

webs with the same index E, wg), as an integral Zp of

integrand W<Ei) s

(113)

where the 15-“) label the locations of the vertices coupling

gauge lines to Wilson line o, ordered as 7\ <73 <. <7\,

The functions Wg) represent sums over all diagrams with
the specified numbers of eikonal connections, and are

symmetric under exchange, including color, of the gauge

lines attached at each vertex 7. Summing over connec-

j
tions, E, we find the complete web, wi)

wg), and the amplitude is given by

T, = exp [ZWE,")}
= exp [Z ZE:IE[Wg)]] .

i

as a sum of the

(114)
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In these terms, we can write an iterative expression for the
nth-order web function with ¢ Wilson lines as [55]

n—1 n
we =S5 - {ow [ ST )
E 7;;”) i=1 E

(115)

where the superscript on the exponential specifies the nth
order in the expansion of the exponential of webs up to

order n— 1. In this expression, the functions Wg) are
ordered web integrands, whose color factors are matrices
that do not commute in general. In the case of two (or three)
Wilson lines, or in the “planar” limit of large N, however,
these factors do commute [58], and the sum over orderings
is equivalent to the modified color factor C(w;) in
Eq. (90) above.

We shall assume that each of the web functions ng) =

Sile [Wg)} for i < n gets finite contributions only from
regions where all of its vertices are integrated over finite
distances from the light cone, and where all of its vertices
move to the light cone together. This is to say, we assume

that all Wg”, i < n are free of subdivergences. We shall see

under what conditions we may infer this result for WE,").

The regularization discussion of Sec. II applies as well to
multieikonal vertices as to the cusp. Similarly, for any

neighborhood 7i[p| for the diagrams of WE;"), defined as in

Egs. (19) and (25), we may construct an expression for

W), by analogy to Eq. (96) above,

Wy =33 (= - {eXp [
E (n)

TE

n—1 . (n)
- (—t/,)l“g'/), - {exp [Z W,(;)} } ,
=1

P

n—1

(n)

zEj:rE[w?]} }

i=1 P

(116)

where now the subscript p on the exponential term denotes
the contribution of the integrals of the expanded exponential

to region p, which defines a potential subdivergence of W,(lm .

In any such region p, the remainder function is defined by
some number r, < n of vertices in the union of integrals
generated by monomials of webs found from the
expansion of the exponential, which shrink to the origin.
Correspondingly, n — r,, vertices are left at finite distances
from the origin, and define a soft function. The webs in
Eq. (116), as defined in Eq. (113), are expressed as integrals
over the positions of all vertices, including those that attach to
the eikonal lines. As a result, we may separate additively the
contribution to each web function in the exponential from
the region where all of its vertices approach the light cone or
the origin. We denote this contribution, which by assumption

contains the only divergences in W<ai), i <n,by ngfw

065033-29



OZAN ERDOGAN AND GEORGE STERMAN

For now, let us assume that all webs commute, in
addition to the assumption of no subdivergences up
to order n — 1. We may then write the result of this
separation as

n n = i i (n)
W= ()= {exp | 00+ Wikl |}, 19
P

i=1

where we define the finite part as

Wik = Wi = Wi,

a,fin

(118)

which in effect is a regulated version of the ith-order web.
The factorization of the finite and ultraviolet terms of the
web exponent is trivial when the web functions commute
(more generally, it requires the application of the Campbell-
Baker-Hausdorf theorem). The situation is equivalent to
that in the renormalization of multieikonal webs outlined in
Ref. [55]. We shall return briefly to this question below, but
here we continue with the case in which all web functions
commute, and we find simply,

(119)

The restriction to region p now acts entirely on the

exponential of the WZ(RW and picks out the sum of order-

r, remainder contributions to the exponential of webs. By

definition, this is the full set of diagrams I“Ef”) restricted to

the neighborhood of the light cone and the origin. Similarly,
the exponential of finite parts gives the finite integral of

FE,”"”, so that

W = (=)0 — TVl

a,fin

(120)

Given the factorization of the full amplitude in region p, we
conclude that the two terms on the right cancel, so that W, ,
is finite when integrated over the neighborhood 7i[p] of any
PS. For large N, then, the full multieikonal web is free of
subdivergences, just as for the cusp. As anticipated above,
the arguments we have given in this section, relying on
exponentiation, are somewhat simpler than those based
directly on the web construction itself.

B. Collinear factorization and web
exponentiation for finite N,

Relaxing the commutativity of the web functions, we can
still rederive an important result for QCD and other theories
beyond the planar limit. For an arbitrary multieikonal
amplitude, the soft-jet-hard factorization derived above
ensures that collinear singularities are color diagonal and
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enter the web function additively. This means that all
subdivergences where some, but not all, vertices approach
the light cone are canceled in multieikonal webs quite
generally. The steps necessary to show this are just the same
as when the webs commute; we need only replace Wg',fw
with nggo, defined as the contribution where all vertices go
to one or more of the light cones,

n n - i i ()
W)= (o = {exp S W s+ W)}

i=1 P

(121)

where nglemral represents the remainder of the web
function, where no vertex approaches the light cone,
although in this case subsets of vertices may approach
the origin. This additive separation is certainly true for
i = 1, because the collinear singularities arise from differ-
ent regions of the same integral. In addition, the sum of all
i = 1 (one-loop) collinear singularities for any multieikonal
vertex is color diagonal (the sum of Casimir invariants, one
for each Wilson line).

We now assume that ngio, i < n is color diagonal and

thus commutes with all Wflj 2emml.
i)

case of Wéuv for large N, then lead to a result analogous to
Eq. (120),

The same steps as for the

W) = (=)0 — ) plo) (122)

a,central
where ¢, is the order of the collinear subdiagram. Given
this result, all subdivergences involving collinear subdia-
grams of order i < n cancel, and the only remaining
collinear divergences are those in which all vertices
approach any set of the light cones. Again, these collinear
singularities separate into color-diagonal factors, and we
conclude that at order n the collinear singularities of the
web function are additive. Thus, to all orders, collinear
singularities factor into a product in the amplitude,

F“ = &Xxp |:Z (W'(fientral + ngZO)]

i=1

= exp | Y Wi [0 S Wik [ (129

i=1 i=1

where W;fio is the additive part of the ith-order web
function that includes its collinear singularities. In princi-
ple, we could define this function up to a constant by
introducing an appropriate factorization scale. In the
second equality, we use the color-diagonal nature of the
collinear singularities.

We can put the factorized expression (123) into a
standard form, simply by multiplying and dividing by an
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appropriate power of a function whose collinear singular-
ities match those of the exponential of WS,’&O For a jet
function corresponding to direction S, let us denote this
function by J,(f.ng), where n; is any other vector
introduced in the definition of J;. As this notation suggests,
there is considerable freedom in the choice of J;. An
acceptable choice for J;, however, is to choose ng = S and
the jet function as the square root of the cusp matrix
element [47,59],

O (0, 7,81))[0)]'"%,
(124)

JS¥(B.ng) = (O[T (D) (00, 7,81 ®

corresponding to a choice

" = (O[T () (0. 7,) 0] " (c0. 7)) |0)] % (125)
in the definition of the eikonal jet, Eq. (59). The square root
reflects the symmetry between the vectors f and /3, giving
the same collinear singularities associated with both direc-
tions in the matrix element, as is manifest in the expo-
nentiated form (94) for the logarithm of the cusp as a web
integral.

Once we have defined the jet functions, we may
reorganize the factorized multieikonal amplitude as

< i eXp i Wd Cco i
I'y= <6Xp |:Z We(l,():entral:| %) H‘Iek

i=1
a

=5, HJeik’
I=1

where S, is a collinear-finite soft function, just as in
Eq. (74). Because the eikonal jets cancel all collinear
singularities in the ratio, the ratio may be factorized into
soft and hard eikonal subdiagrams, which are renormalized
locally, in the same manner as described in Sec. III B, and
in the same way as for massive, or other nonlightlike lines
[22,54,55].

(126)

VI. CONCLUSIONS

We have studied partonic matrix elements along with
cusp and multieikonal amplitudes for massless Wilson
lines, in coordinate space and Feynman gauge. In all these
amplitudes, ultraviolet collinear and short-distance diver-
gences arise when integrals over the positions of vertices
are pinched in configurations set to fixed lightlike direc-
tions or short distances. We have shown that these
divergences are well approximated by the series of nested
subtractions given in Eq. (30) for partonic matrix elements,
and Eq. (40) for multieikonal amplitudes. The subtraction
procedure allowed us to give very general proofs of the
multiplicative renormalizability of multieikonal amplitudes
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and the factorization of partonic amplitudes in Feynman
gauge. These arguments, although presented in coordinate
space, apply as well to the S-matrix in momentum space.

Our discussion confirmed that for the cusp the only
sources of divergences are the limits in which all lines
approach the light cones or the origin together [8]. This is
the content of Eq. (94), with a function f that is finite for
finite values of the variables 7 and 7 that define the positions
of the eikonal vertices that are furthest from the cusp. For a
conformal theory, this integrand is effectively constant.
For QCD and related renormalizable theories, the running
coupling produces nontrivial dependence on the product
(77), which may be chosen as the inverse of the squared
renormalization mass scale. In the general multieikonal
case, due to the nontrivial group structure of the webs the
matching between UV subtraction terms, which factorize,
and decompositions of the exponent no longer holds in
the same fashion. For the large-N, limit of gauge theory,
however, the arguments go through, and each web becomes
a sum of terms involving the two-dimensional integrals
found in cusps. In this case, as for the cusp, a geometrical
interpretation of the web function applies [8]. Further
developments along these lines, and a coordinate-space
picture for the origin of power corrections in infrared-safe
observables [1] may be possible.

A coordinate-space program building on the techniques
developed here would also include revisiting factorization
proofs for electroweak annihilation [14,15], jet and single-
particle inclusive cross sections in hadron-hadron collisions
[19], in which we may look for the cancellation of long-
distance dynamics directly from a spacetime point of view.
In particular, we may look forward to developing explicit
spacetime pictures associated with the cancellation and
survival of Glauber [7,36,60,61], nonglobal [62] and
superleading-logarithmic corrections [63], and to the
coordinate-space content of the dynamics to which jet
vetos [64] may be sensitive. Each of these examples
involves the measurement of energy flow, directly or
indirectly probing its time development. In such cases,
we may hope that a spacetime description of dynamics will
be complementary to momentum-space analyses.
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APPENDIX: UNIQUENESS OF THE
HARD SCATTERING

Here we give a brief discussion of the uniqueness of the
position of the hard scattering in amplitudes with four or
more external fields. We suppose that we have already
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identified a point in spacetime, y, which satisfies the
Landau equations (see Ref. [12]) for all vertices that
connect lines that are on the light cone. We assume that
two lines have y° > x¥, and the rest have y° < x?. For the
vertex y, connecting four jets in particular the Landau
equations are

Zai(x/;_)’”) =0,

i=1

(A1)

for each of the external points, x/, with all a; >0 and
(x; —y)? = 0. Without loss of generality, we may translate
the system so that y = 0, giving

Zaix/; =0.

i=1

(A2)

We now seek another point in spacetime, y#, satisfying
these same Landau equations.
At such a pinch surface we must have simultaneously,

x,2 =0,
(x; =¥')*=0. (A3)
This implies that
Y2 =2xy. (A4)

PHYSICAL REVIEW D 91, 065033 (2015)

Because the x; are all lightlike and noncollinear, it is
not possible that all x;-y" =0 unless y' = 0. Thus, if
yl ;é O, yl2 ;é 0.

We may now search for a solution to Eq. (A4), in terms
of a rescaled vector,

Y
y—/z , (AS)

Zﬂ

in terms of which Eq. (A4) becomes

1=2x;-2z. (A6)
The Landau equations (A2), however, ensure that
det(x#;) =0, (A7)

and this implies that Eq. (A6) has no solution, other
than y' = 0.

To go beyond four external points, x¥, we suppose
we have another external vector, x’s‘ Either x5 is a linear
combination of xi,...,x4 or x,...,x, are themselves
linearly dependent. In the former case, the Landau equa-
tions can be rewritten entirely in terms of the first four x’s,
and in the latter, the first four x’s obey another linear
relation that again ensures that detx! = 0, with the same
result.
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