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We consider the coordinate-space matrix elements that correspond to fixed-angle scattering amplitudes
involving partons and Wilson lines in coordinate space, working in Feynman gauge. In coordinate space,
both collinear and short-distance limits produce ultraviolet divergences. We classify singularities in
coordinate space, and identify neighborhoods associated unambiguously with individual subspaces (pinch
surfaces) where the integrals are singular. The set of such regions is finite for any diagram. Within each of
these regions, coordinate-space soft-collinear and hard-collinear approximations reproduce singular
behavior. Based on this classification of regions and approximations, we develop a series of nested
subtraction approximations by analogy to the formalism in momentum space. This enables us to rewrite
each amplitude as a sum of terms to which gauge-theory Ward identities can be applied, factorizing them
into hard, jet and soft factors, and to confirm the multiplicative renormalizability of products of lightlike
Wilson lines. We study in some detail the simplest case, the color-singlet cusp linking twoWilson lines, and
show that the logarithm of this amplitude, which is a sum of diagrams known as webs, is closely related to
the corresponding subtracted amplitude order by order in perturbation theory. This enables us to confirm
that the logarithm of the cusp can be written as the integral of an ultraviolet-finite function over a surface.
We study to what extent this result generalizes to amplitudes involving multiple Wilson lines.
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I. INTRODUCTION

For many purposes, scattering amplitudes and the
expectation values of gauge-theory Wilson lines may be
studied in momentum space or in coordinate space,
although most fixed-order computations are carried out
in momentum space. At the same time, a coordinate-space
perspective may serve as a bridge between scattering
amplitudes and certain observables, often those involving
jets [1,2]. Similarly, analyses in coordinate space have
played a central role in correspondences between gauge
theories and gravity [3], and dual conformal symmetries for
select supersymmetric theories make a direct correspon-
dence between choices of momenta for amplitudes and
assignments of vertices for certain polygonal Wilson loops
[4,5]. These considerations suggest that it may be useful to
reexamine some of the all-orders properties of perturbative
scattering amplitudes and cross sections that have been
derived primarily from momentum-space analyses [6,7] in
terms of coordinate-space integrals. In this spirit, we argued
in Ref. [8] that the cusp formed by two Wilson lines can be
written in a geometrical form to all orders in perturbation
theory, as a surface integral over an ultraviolet-finite
function of the running coupling, whose scale varies with
position on the surface. The surface integrand itself is found
from the web diagrams of the cusp [9–11], which will play
a role in our discussion below. A more general analysis of
partonic amplitudes was undertaken in Ref. [12], which
examined the structure of coordinate-space singularities in

massless gauge theories, by analyzing the pinch singular-
ities of Feynman integrals in coordinate space [13] and
developing a power-counting procedure to identify leading
and nonleading behavior.
In this paper we will apply and extend the results of

Ref. [12], where it was found, for example, that in
renormalized matrix elements of the form

Gνðx1; x2Þ ¼ h0jTðϕðx2ÞJνð0Þϕ†ðx1ÞÞj0i; ð1Þ

singularities occur only when the external points are on
the light cone with respect to the current Jνð0Þ, that is, only
at x2I ¼ 0, I ¼ 1; 2, and that divergences in coordinate-
space integrals are logarithmic, relative to tree level. It
was also argued that integrals in such “leading regions”
factorize into hard, soft, and jet functions, in much the same
way as in the well-known factorizations of momentum
space [14,15].
In coordinate space, collinear and short-distance diver-

gences are both of ultraviolet nature [12], requiring D < 4
in dimensional regularization, while the factorized soft
function is finite when the external points are kept at finite
distances from each other. In contrast to short-distance
singularities, collinear ultraviolet divergences are by their
very nature nonlocal, and are not removed by the standard
renormalization procedures for quantum field theory. It is
natural, however, to expect that they may be treated by
analogy to collinear singularities in momentum space,
where they are infrared, requiringD > 4, and are factorized
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into universal functions [16]. To derive and interpret the
corresponding factorization properties for coordinate-space
amplitudes, we will introduce a subtraction procedure that
is similar to constructions in momentum space [7,14,15].
The subtractions will enable us to reorganize perturbative
amplitudes for gauge theories in a manner that makes their
singularity structure and factorization properties manifest,
after using the Ward identities of the theory.
We work in Feynman gauge, to preserve Lorentz

invariance and causality in the physical spacetime structure
of the amplitudes we study. Our construction is for gauge-
theory amplitudes with the geometry of fixed-angle scatter-
ing, and so must overcome the complication that in gauge
theories with massless particles almost any subdiagram
may produce collinear singularities or take part in the
underlying short-distance process, in different parts of
the integration space. This is in contrast to lowest-order
electroweak processes like Drell-Yan, where the hard
scattering is associated only with subdiagrams including
a specific vertex.
Building on the results of Ref. [12], we will study the

ultraviolet singularities of multiparton coordinate-space
Green functions in configurations related to fixed-angle
scattering,

GNðx1;…; xNÞ ¼ h0jTðϕNðxNÞ � � �ϕ1ðx1ÞÞj0i: ð2Þ

These Green functions, of course, are not gauge invariant,
but as we will observe, their leading singularities in
coordinate space have the same gauge-invariance properties
as S-matrix amplitudes, as a result of the same Ward
identities.
The arguments that we give below carry over almost

without change from coordinate space to momentum space,
and we provide in this way a new all-orders analysis of
factorization for scattering amplitudes in massless QCD
and related theories in Feynman gauge. Our work thus
complements the momentum-space analyses carried out
in physical gauge long ago in Ref. [17] for scattering
amplitudes, and recently in Ref. [18], which uses physical
gauges to analyze a large set of amplitudes and observables
involving outgoing jets. Our analysis of field theory
perturbative amplitudes, based on an all-orders subtraction
procedure to isolate, organize and cancel singular behavior,
can also play a role in improving and extending existing
factorization proofs for electroweak annihilation [14,15],
jet and single-particle inclusive cross sections in hadron-
hadron collisions [19].
We also study the closely related multieikonal products

of path-ordered exponentials or Wilson lines [20,21], in
representations f,

Φ½f�
_ξC
ðτf; τiÞ ¼ P exp

�
−ig

Z
τf

τi

dτ _ξCðτÞ · A½f�ðξCðτÞÞ
�
: ð3Þ

Wilson lines that correspond to partonic amplitudes have
constant velocities, _ξC ¼ dξC=dτ ¼ βC. A four-Wilson line
multieikonal vertex, for example, is defined by a constant
matrix, cM in color space that links the color indices of the
ordered exponentials at a point [17,22,23],

Γ½f�
4;MfrkgðΛ1β1;…Λ4β4Þ
¼

X
fdig

h0jΦ½f4�
β4

ðΛ4; 0Þr4;d4Φ
½f3�
β3

ðΛ3; 0Þr3;d3

× ðcMÞd4d3;d2d1Φ
½f2�
β2

ð0;−Λ2Þd2;r2Φ
½f1�
β1

ð0;−Λ1Þd1;r1 j0i:
ð4Þ

For the eikonal Wilson lines of this expression, which are
joined at the origin, constant velocities βI label the curves,
which we can choose to be ξJðτJÞ ¼ βJτJ. They arrive at
the vertex from the past, or emerge from the vertex toward
infinity in the future. In momentum space, Wilson lines
appear as linear, “eikonal” propagators. The corresponding
coordinate-space propagators are simply step functions,
ordering the connections of gluons to the exponential. The
exponentiation properties of these products have received
extensive attention over the past few years [24–28], in no
small part for their relevance to phenomenological appli-
cations of resummation [29–31].
We begin Sec. II with a review of the sources of

ultraviolet poles in the coordinate-space calculation of
multieikonal and partonic amplitudes [12,13]. We go on
to define a series of approximation operators [7,32] adapted
to coordinate integrals. Using these operators, we construct
a set of nested subtractions. This is followed by a proof of
the cancellation of coordinate-space overlapping divergen-
ces that are analogous to those in momentum space. In
Sec. III we show how the approximation operators match
and organize singularities, and enable the renormalization
of multieikonal amplitudes like Eq. (4) and the factorization
of partonic amplitudes like Eq. (2) in appropriate limits,
to all orders in perturbation theory. Section IV deals with
the special case of the two-eikonal amplitude, the singlet
“cusp.” We will relate the subtraction procedure of Sec. II
directly to the logarithm of the cusp, given by the so-called
web prescription [9–11]. In this context, the ultraviolet
finiteness of the web function, and its relation to a surface
integral [8] are confirmed. We then turn in Sec. V to fixed-
angle multieikonal amplitudes, and study their exponen-
tiation properties and geometrical interpretation in the
large-Nc limit and the general case. We conclude with a
summary and brief comments on possible applications.

II. THE REGULARIZATION OF COLLINEAR
SINGULARITIES IN COORDINATE SPACE

We begin this section with a review of the results of
Ref. [12] regarding the coordinate-space singularities of
partonic and eikonal amplitudes that remain after standard
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perturbative renormalization. We follow this with the
construction of a set of nonlocal ultraviolet subtractions,
adapted in analogy to the Bogoliubov-Parasiuk-Hepp-
Zimmerman momentum-space renormalization procedure
[32], and in the spirit of the all-orders, all-logs treatment of
infrared divergences in momentum space in Ref. [7]. In the
subsequent sections we will relate this additive regulari-
zation to the renormalization and factorization properties of
eikonal and partonic amplitudes in coordinate space.

A. Leading regions, ultraviolet divergences
and gauge invariance

In Ref. [12], the most general regions from which
divergences arise in coordinate-space integrals were deter-
mined from their analytic structure and a corresponding
power-counting technique. Divergences arise from pinches
in the integrations over the positions of internal vertices
considered as variables in complex coordinate space. This
is the direct analog of pinches in loop momenta [7,33,34].
As in momentum space, at each such leading region, the
diagram describes a physical process with a fully consistent
classical propagation for the set of lines that connect
vertices that are lightlike separated. We will refer to a
manifold in coordinate space with a definite set of vertices
pinched at lightlike or vanishing separations as a pinch
surface (PS). (We use this notation in the same sense as
“PSS” in Ref. [7].)
In Ref. [12] it was shown that at such pinch surfaces,

diagrams are characterized by subdiagrams of soft, jet-like
and short-distance (hard) sets of lines, as depicted in Fig. 1,
which is similar to the familiar structure of diagrams at
pinch surfaces in momentum space both in direct QCD
treatments [7,14,15,34] and in soft-collinear effective theory
[35,36]. In the case of the massless cusp [Fig. 1(a)], for
example, nonlocal ultraviolet subdivergences occur when
subsets of vertices align along the Wilson lines, and these
configurations define jet subdiagrams. Other vertices remain

at finite distances from both Wilson lines and the cusp in the
soft subdiagram, while the remaining vertices move to the
cusp and form the hard subdiagram [8].
The same factorization into the same types of subdia-

grams also occurs for multieikonal vertices with more
Wilson lines and in partonic amplitudes in coordinate space
whenever a single point in spacetime (the “hard scattering”)
is related to a set of external positions by lightlike distances,
as illustrated in Fig. 1(b). (We assume that no pair of
external vertices is related by a lightlike distance.) To
anticipate, at these leading regions or PSs, one can make
the coordinate-space soft-collinear and hard-collinear
approximations, as defined in Ref. [12], which lead to
the factorization of these subregions by the application of
Ward identities in the same way as in momentum space
[14,15]. We will give the expressions for these approx-
imations for a leading PS below. We use the term “leading”
to denote an ultraviolet logarithm or a pole in the dimen-
sionally regulated case, and where necessary to distinguish
PSs that produce such divergences from those that do not.
As we quantify in the next subsection, for partonic
amplitudes at leading PSs in Feynman and other covariant
gauges, a single line from each jet carries a physical
polarization (transverse for the gauge particle) into the
hard subdiagram. All other gauge lines attached to the hard
scattering are scalar or longitudinally polarized [12]. We
will use this result extensively below, and will assume that
the external gauge fields of partonic amplitudes [Eq. (2)]
are projected onto transverse polarizations. We note that in
physical gauges, only a single line connects each jet to the
hard subdiagram [18,34].
A complication for amplitudes involving physical proc-

esses with both incoming and outgoing external partons or
Wilson lines is that PSs can have disconnected hard
subdiagrams, as illustrated by the diagrams of Fig. 2.
We will confirm below, however, that these PSs are not
associated with leading behavior. As in momentum space
[7], their suppression follows from the Ward identities of

(a) (b)

FIG. 1. Leading pinch surfaces represented by soft, jet and hard subdiagrams for (a) cusp and (b) a typical multieikonal or multiparton
amplitude. Gauge lines represent an arbitrary number of connections between the subdiagrams. In (b) the double line represents either
Wilson lines or partonic propagators connected to the external vertices.
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the theory, which require that each jet subdiagram is
connected to every connected component of the hard
subdiagram by at least one line that is not a scalar-polarized
gauge propagator. Similar suppressions are described for
cross sections in Refs. [37,38]. Leading pinch surfaces for
partonic amplitudes involve at most a single, simply
connected hard scattering. Similarly, for multieikonal
amplitudes, the local multieikonal vertex must be part of
every hard subdiagram. Nevertheless, we will encounter
diagrams like Fig. 2 in the full classification of leading
regions and the elimination of double counting.
Before specifying the approximations, we pause to draw

a few consequences of the observation that a physical
picture associated with a pinch surface requires that the
“external” propagators, beginning at the positions of fields,
xI in Eq. (2), be on the light cone with respect to the
position of the physical hard scattering. The hard scattering
may be mediated, for example, by exchange of a gluon in
QCD or by an electroweak current. For multieikonal
amplitudes, we can always set the vertex joining the eikonal
lines to the origin. In the case of partonic scattering, with
external fields ϕI at points xI , as in Eq. (2), we consider
2 → N scattering, where x01; x

0
2 are large and negative and

all x0I , I > 2 are large and positive. In this case, the
requirement of a physical process allows hard scattering
at a single, unique point, which, by translation invariance
may also be taken as the origin. A short proof is given in the
Appendix. In this coordinate system, all x2I ¼ 0 at the pinch
surfaces, and we may identify velocity vectors by βμI ∼
xμI =x

0
I for each external field, with β2I ¼ 0. These βI fix the

directions of jets in the reduced diagrams of Fig. 1(b), for
partonic scattering amplitudes, in the same way that Wilson
lines fix jet directions for multieikonal amplitudes. For each
such line we introduce an additional, “complement” vector,
β̄I , β̄2I ¼ 0, normalized by βI · β̄I ¼ 1. The leading singu-
larity of the diagram requires that the light-cone singularity
of each external propagator remains uncanceled. We may
think of this as the analog of the requirement that the
S-matrix is the residue of the leading pole in every
external line.
The foregoing considerations on external propagators

enable us to argue that the leading behavior in coordinate

space is gauge invariant, once external vector fields are
projected onto transverse polarizations. This follows the
same way as in the diagrammatic proof of the gauge
invariance of the S-matrix [39]. In momentum space,
an infinitesimal gauge transformation produces a sum of
terms in which either external propagators are canceled, or
vectors are projected onto scalar polarizations, proportional
to their own momenta. The Fourier transformations of these
relations are contributions in which an external propagator
is replaced by a four-dimensional delta function, fixing its
position at an internal vertex, or the divergence is taken of
an external vector field, and hence a gradient of the external
propagator. The former case gives a suppression by x2I
relative to leading behavior, while the latter is eliminated by
the same transverse projection that defines the S-matrix.
The general form of a coordinate amplitude can be

written as

Gaðx1; x2;…; xaÞ

¼
Ya
I¼1

Z
d4yIG2ðxI − yIÞḠaðy1; y2;…; yaÞ; ð5Þ

where Ḡa is one-particle irreducible in each of the xI
channels. For much of the following analysis, we shall
suppress the self-energies, which are factorized topologi-
cally, and whose renormalization is already included in the
Lagrangian of the theory. Except where indicated, there-
fore, our discussion will apply to the perturbative expansion
of diagrams that contribute to Ḡaðy1;…; yaÞ, in convolu-
tion with lowest-order propagators. In the same way, for
multieikonal amplitudes, our analysis will apply to single-
eikonal-irreducible diagrams Γ̄a, related to the complete
amplitudes by

ΓaðΛ1β1;Λ2β2;…;ΛaβaÞ

¼
Ya
I¼1

Z
ΛI

0

dτIΓ2ððΛI − τIÞβIÞΓ̄aðτ1β1; τ2β2;…; τaβaÞ;

ð6Þ
where τIβI is the position of the outermost vertex on the Ith
Wilson line in Γ̄a, and where the Γ2 represent self-energies

(a) (b)

FIG. 2. Examples of disconnected hard subdiagrams, representing: (a) disconnected gluon-gluon and fermion-fermion scattering
and (b) two disconnected gluon-fermion scattering subdiagrams. The solid lines in (a) may also represent Wilson lines.

OZAN ERDOĞAN AND GEORGE STERMAN PHYSICAL REVIEW D 91, 065033 (2015)

065033-4



of the Wilson lines. Here all τI are taken positive, with the
signs of the velocities βμI adjusted as necessary for incom-
ing lines.

B. Variables, power counting and neighborhoods
for pinch surfaces

In the analysis of the pinch singularities of coordinate-
space integrals, the soft, jet, and hard regions are specified
by the identification of “intrinsic” and “normal” variables,
which parametrize a pinch surface and its normal space,
respectively [6,7,12,34]. At a pinch surface, normal vari-
ables are constructed to vanish as a distance scaling
factor, λ → 0 while intrinsic variables remain finite. In
the amplitudes that we discuss, at lowest order in normal
variables, the propagator denominators of jet lines are
linear in normal variables, those of the hard lines are
quadratic in normal variables, and the soft lines are of
zeroth order in normal variables. (Our specific choices of
normal variables for the amplitudes under consideration
will be described shortly.) Power counting can be per-
formed by factoring out the lowest powers of λ from each
factor of the integrand and the integration measure for each
normal variable, si,

si ≡ λs0i: ð7Þ

Then, near a pinch surface, the integral for some quantity
gðxIÞ, depending on external parameters xI has the form
[12,34],

gðxIÞ ∼
Z

d0

0

dλ λp−1
Z Y

i

ds0iδ
�
1 −

X
i

js0ij2
�

×
Z Y

j

drjðĪgðs0i; rj; xIÞ þOðληÞÞ; ð8Þ

where η > 0. The integrals over the intrinsic variables rj of
the “homogenous” integrand Īgðs0i; rj; xIÞ, found by keep-
ing only the lowest powers of λ in each factor [12,34], will
either be nonsingular or will have pinch surfaces generated
when subsets of the si0 vanish (in our case where a subset
of vertices approaches the light cone or hard scattering
faster than the others). The scale d0, which quantifies the
maximum distance from the pinch surface, may be thought
of as arbitrary at this point. The analysis of the homo-
geneous integrand determines the choice of normal vari-
ables near each PS [12]. As found using the power counting
developed in Ref. [12], the leading overall degree of
divergence is p ¼ 0 for pinch surfaces of both eikonal
and partonic amplitudes, relative to lowest order, indicating
logarithmic divergences of their integrals in coordinate
space. We will review these results shortly, and only note
here that when p > 0, the PS is integrable.
In these terms, leading regions are characterized by

gauge vector propagators connecting the soft subdiagram

to jet subdiagrams, with the following properties of the
homogeneous integrals [12].

(i) The polarization tensors of all gauge vector propa-
gators that attach the soft subdiagram to jet subdia-
gram K are contracted only to the jet velocity
vector, βK .

(ii) The denominators of gauge propagators that attach
the soft subdiagram to jet subdiagram K depend
on the positions, zðKÞμ of the jet vertices to which
they attach only through a vector that depends on a
single coordinate: β̄K · zðKÞβμK .

Together, these properties specify the “soft-collinear
approximation,” summarized by an operator, scðKÞ, whose
action is defined in Feynman gauge and dimensional
regularization with D ¼ 4 − 2ε, by

scðKÞ½Dμνðx − zðKÞÞ�JνðzðKÞÞ

¼ scðKÞ
�

−gμν

½−ðx − zÞ2 þ iϵ�1−ε
�
JνðzðKÞÞ

¼ βμK
−1

½−2β̄K · ðx − zðKÞÞβK · xþ x2⊥ þ iϵ�1−ε β̄
ν
KJνðzðKÞÞ;

ð9Þ

where x is the position of a soft vertex, or in the case of a
gauge line exchanged between Wilson lines or jets, a point
on the other line or in the other jet. The soft-collinear
approximation drops terms that are of order λ1=2 near the
pinch surface, where the denominator is finite. It is then
convenient to define coordinates that link the soft and jet
subdiagrams in convolution for each vertex position, zðKÞ,

dDzðKÞ ≡ dτðKÞdD−1zðKÞ;

τðKÞ ¼ β̄K · zðKÞ: ð10Þ

Here, τðKÞ and the azimuthal angle of zðKÞ⊥ are intrinsic

variables, while βK · zðKÞ and zðKÞ2⊥ =β̄K · zðKÞ can be chosen
as normal variables for this jet [12,15,34]. For the special
case of zðKÞ being a vertex on the Kth Wilson line, we can
identify zðKÞμ ¼ τðKÞβμK.
In a similar fashion, we identify approximations that

reproduce the homogeneous integral for lines that attach jet
subdiagrams to the hard-scattering subdiagram at leading
PSs [12].

(i) Gauge field propagators that attach jet subdiagram
JI to the hard subdiagram are either physically
polarized or are contracted only to the complemen-
tary vector, β̄μI .

(ii) The denominators of propagators attaching jet sub-
diagram I to the hard subdiagram depend on the
coordinates yðIÞ of the hard vertices to which they
attach only through vectors βI · yðIÞβ̄

μ
I .
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These conditions define the “hard-collinear approxima-
tion,” represented by an operator hcðIÞ, which acts on
scalar-polarized gauge propagators as

hcðIÞ½Dμνðz − yðIÞÞ�HνðyðIÞÞ

¼ hcðIÞ
�

−gμν

½−ðz − yðIÞÞ2 þ iϵ�1−ε
�
HνðyðIÞÞ

¼ β̄μI
−1

½−2βI · ðz − yðIÞÞβ̄I · zþ z2⊥ þ iϵ�1−ε β
ν
IHνðyðIÞÞ:

ð11Þ

As we have noted above, in the case of partonic amplitudes,
a leading PS requires that (exactly) one partonic propagator
attaches each jet subdiagram to the hard scattering with a
physical polarization for fermions or vectors. For these
propagators, the corresponding hard-collinear approxima-
tion may be represented as

hcðIÞ½Δωσðz − yðIÞÞ�HσðyðIÞÞ
¼ Δωσðz − βI · yðIÞβ̄IÞT σ

σ0Hσ0 ðyðIÞÞ; ð12Þ

where T σ
σ0 is an appropriate projection for the leading

physical polarizations, and Δωσ is the corresponding
propagator, depending on the spin of the field. The hard-
collinear approximation drops terms that are of order λ3=2

near the pinch surface in the denominators, whose leading
behavior is order λ. Then, similarly to Eq. (10) we define

dDyðIÞ ≡ dηðIÞdD−1yðIÞ;

ηðIÞ ¼ βI · yðIÞ: ð13Þ

In the hard subdiagram, all components of the positions yμ

are normal variables. In the generic case, where all
components of yμ appear linearly in the denominators of
jet lines shown in Eq. (11), all of these components are
naturally taken to scale linearly in λ. When there are
precisely two incoming and two outgoing jets at the pinch
surface hard scattering, however, one spacelike component
of yμ, which we may call yout, does not appear in any factor
βI · y, I ¼ 1;…; 4. Rather, it appears quadratically in every
propagator attached to thevertex at yμ. This coordinate defines
the direction normal to the scattering plane in a center-of-
momentum frame of the physical picture at the pinch surface.
In this case, the single variable yout scales as λ1=2, and the
integral is correspondingly enhanced. This enhancement is
also a feature of the lowest-order, tree-level scattering, how-
ever, and does not change the logarithmic nature of radiative
corrections [12], which are the focus of our discussion.
In summary, for a partonic amplitude with hard scatter-

ing at the origin and external points on the light cone
x2I → 0, all pinch surfaces are specified by lists of vertices

fzðKÞμ g that specify jet subdiagrams JK , and a list of vertices

fyμg that specifies the hard subdiagram H, while the
remaining vertices fxμg specify the soft subdiagram S.
From these lists of vertices, we find the normal variables of
an arbitrary pinch surface ρ,

fsðρÞi g ¼
��

βK · zðKÞ;
zðKÞ2⊥

β̄K · zðKÞ

�
; fyμg

�
; ð14Þ

that is, the opposite-moving and squared perpendicular
components normalized by the longitudinal distance from
the origin for each vertex in each jet, and all components of
vertices in the hard subdiagram. All other independent
components are intrinsic variables,

frðρÞj g ¼ ffxμi g; fβ̄K · zðKÞ;ϕðzKÞgg; ð15Þ

with ϕðzKÞ azimuthal angles for the transverse components
of jet vertices. We emphasize that the number of pinch
surfaces is finite for any diagram of finite order, which are
enumerated simply by the ways of assigning vertices to the
jet, soft and hard subdiagrams.
The choice of subdiagrams and hence PSs can be

pictured directly in coordinate space. In Fig. 3, each point
represents the projection of the position of an interaction
vertex in some very high-order diagram onto the plane
defined by two noncollinear Wilson lines, for example.
The closed curves represent the jets and hard scatterings
in a transparent fashion. The normal variables for vertices
in either jet are given simply by their distances to the
corresponding lines in this diagram, and normal variables
for vertices in the hard function are their distances from the
origin, as in Eq. (14). We denote these subdiagrams by SðρÞ,
JðρÞI and HðρÞ, respectively. We suppress their explicit
orders, which are implicit in the choice of PS ρ. It is clear
from the figure that assignments of vertices to jet, hard and

FIG. 3. Representation of the arrangement of vertices near a
leading pinch surface ρ directly in coordinate space and their

assignments to jet, JðρÞI , hard, HðρÞ, and soft, SðρÞ subdiagrams.

For every region, the direction of the jet JðρÞI is determined by the
relative position of the external point xI with respect to the
position of the hard scattering.
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soft subdiagrams are shared by many diagrams, that is, all
the perturbative diagrams that are found by connecting the
points in the figure.
We can now quantify the identification of leading regions,

as derived in Ref. [12] and illustrated in Fig. 1. It was shown
in Ref. [12] that in massless gauge theories, the scaling
power p of Eq. (8) associated with an arbitrary pinch
surface is independent of the order in perturbation theory,
and depends only on the numbers of lines connecting the
hard, jet and soft subdiagrams associated with the PS in
question, and on the polarizations carried by gauge lines that
connect the jet subdiagrams with the soft and hard subida-
gram. To be specific, we adopt the following notation:

(i) Let jfI and j
A
I be respectively the numbers of fermion

jet lines and gauge jet lines that connect jet subdia-

gram JðρÞI to the hard subdiagramHðρÞ, and let jAþI ≤
jAI be the number of these gauge lines that carry
scalar polarizations, proportional to βI , the velocity
vector associated with jet I. In these numbers, we
suppress the PS label “ρ,” because the result will
hold for all PSs [12].

(ii) Let sfI and s
A
I be, respectively the number of fermion

and gauge soft lines attached to jet subdiagram JðρÞI ,
and sAþI ≤ sAI the number of these soft gauge lines
that are coupled to the velocity vector associated
with jet I, βI.

(iii) Let sfH and sAH be, respectively the number of
fermion soft and gauge soft lines that are attached
to the hard subdiagram HðρÞ.

In this notation, in Ref. [12] it was shown that the
minimum scaling power p in Eq. (8) for an arbitrary PS can
be expressed as a sum over contributions from each jet
subdiagram, plus a contribution when the soft subdiagram
is attached to the hard subdiagram directly,

pmin ¼
X
jets I

1

2
½ðjAI − jAþI Þ þ jfI − 1þ sfI þ ðsAI − sAþI Þ�

þ 3

2
sfH þ sAH: ð16Þ

Since divergences are associated only with p ≤ 0, a PS is
nonleading unless there are no direct connections between
the soft and hard subdiagrams,

sfH ¼ sAH ¼ 0; ð17Þ

and unless for each jet I,

jAI − jAþI þ jfI ¼ 1; and sfI ¼ 0 ¼ ðsAI − sAþI Þ: ð18Þ

The first relation in Eq. (18) reflects the Ward identities of
the theory, which eliminate the case when all the lines of a
jet that attach to the hard subdiagram are unphysically
polarized gauge propagators (jAI ¼ jAþI , jfI ¼ 0). As a

result, pmin ≥ 0 after gauge-invariant sets of diagrams
are combined (in the hard subdiagram, specifically).
Each jet is coupled to the hard subdiagram by at most a
single physically polarized gauge vector or a single jet
fermion in addition to an arbitrary number of scalar-
polarized gauge vectors, and the coupling of all jets to
the soft subdiagram is entirely through soft gauge lines with
polarizations in the jet direction.
Equation (16) holds for PSs withmultiple, disconnected as

well as simply connected hard subdiagrams. This confirms
that, as noted above, any PS with more than one connected
hard part is power suppressed relative to leadingbehavior. It is
also worth noting, however, that in elastic amplitudes for
bound-state scattering, where there is more than one physi-
cally polarized parton in each incoming andoutgoingparticle,
PSs with disconnected hard-scattering subdiagrams actually
dominate leading behavior [40,41] because of the tree-level
power-counting enhancement noted just after Eq. (13).
By Eq. (18), no soft fermions attach the soft subdiagram to

jet subdiagrams at leading PSs. This implies that at leading
PSs, jet functions are diagonal in the flavor of the external
partons; that is, for each jet the same quantum numbers
entering the diagram appear at the hard subdiagram.
Taken together, these considerations justify restricting

our considerations to PSs with the structure illustrated in
Fig. 1. We note that for the purposes of this discussion, we
have varied the notation of Ref. [12] slightly, and include
several terms that are discussed in Ref. [12], but not
included in the relation analogous to Eq. (16) given there,
which is an inequality, rather than an equality.
To organize integrals in the presence of this large but

finite number of pinch surfaces, we define neighborhoods
n½ρ� of pinch surfaces ρ by requirements on normal

variables, sðρÞi , given in Eq. (14), and intrinsic variables

rðρÞj from Eq. (15),X
i

jsðρÞi j2 ≤ d20;

jrðρÞj j2 ≥
�X

i
jsðρÞi j2

�
δj
d
2−2δj
0

≥ λ2δj
�X

i
js0ðρÞi j2

�
δj
d
2−2δj
0 ; ð19Þ

for some finite distance scale d0. A power 0 < δj < 1=2 is

chosen for each intrinsic variable rðρÞj , where the si0ðρÞ are
rescaled normal variables [Eq. (7)]. The inequalities for
power δj ensure that the leading terms involving normal
variables in the soft-collinear and hard-collinear approx-
imations, Eqs. (9) and (11), remain dominant by a power
over the first corrections to these approximations, which
are relatively suppressed by λ1=2 in both cases. With this
definition, the soft-collinear and hard-collinear approxima-
tions associated with pinch surface ρ remain accurate for
λ → 0 in Eq. (8) throughout neighborhood nðρÞ, in the
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absence of cancellations between leading terms at pinches
of the homogeneous integral. We can think of Eq. (19) as
specifying the closed curves of Fig. 3.
We close this subsection by noting that the homogeneous

integrals (8) for PSs with normal variables identified as in
Eq. (14), have lower-order pinches that are precisely the
same structure as those in the original diagrams. This can
be seen by considering vertices in each of the subdiagrams
associated with an arbitrary PS, ρ. For vertices xμ in the soft
subdiagram, the only approximations are for denominators
attached to the jets, for which jet vertices are set on the light
cones, βI . In neighborhood n½ρ�, the xμ stay away from all
of the light cones, and the physical picture correspondence
eliminates PSs involving vertices in SðρÞ, just as in the

original integral. For vertices zðKÞμ in jet K, the integrals are
unchanged, except for lines attached directly to the hard
scattering, where terms that are nonleading in the scaling
variable are neglected. No approximations are made for
lines internal to HðρÞ. Pinches of the homogeneous integral
are still controlled by the distances of the external vertices

xK of JðρÞK to the relevant light cone, and these pinches
develop in the same manner in the homogeneous as in the
original integral. In the homogeneous integral, defined as in
Eq. (8), however, one or more of the rescaled normal
variables are always order unity. Thus, the pinch surfaces of
the homogeneous integral will involve fewer vanishing
denominators than those of the original PSs. We will use
this observation in our construction of nested subtractions.

C. Approximation operators and
region-by-region finiteness

We will now employ the approximations identified
above to define a new set of approximation operators,
denoted by tρ, one for each leading pinch surface ρ. Each
operator tρ is defined to act onanydiagram γðnÞ that possesses
the corresponding PS and to give an expression that
corresponds to the leading, singular behavior of γðnÞ in the
neighborhood of PS ρ. Of course, this condition defines the
operator tρ only up to a finite ambiguity. For our purposes it
will be most useful to construct subtractions similar to those
employed in proofs of factorization in Ref. [7].
We define the action of the approximation operator tργðnÞ

as the imposition of the soft-collinear and hard-collinear
approximations given above in Eqs. (9), (11) and (12) on all
lines to which they apply at PS ρ of diagram γðnÞ. This
action can be represented schematically by

tργðnÞ ≡
Y
I

Z
dτðIÞSðρÞfμIgðfτðIÞgÞβ

μI
I β̄I;μ0I

×
Z

dηðIÞ
Z

dD−1zðIÞJðρÞμ
0
Iν

0
I

I ðzðIÞ; ηðIÞÞβ̄I;ν0Iβ
νI
I

×
Z

dD−1yðIÞHðρÞ
fνIgðyðIÞÞ: ð20Þ

In this expression, each vector index or vertex position, for
example, μI or zðIÞ, respectively, represents arbitrary numbers
of such indices and positions for gluons connecting the

subdiagrams specific to this leading region, SðρÞ, JðρÞI and
HðρÞ.Theneteffectoftρ is toreplace thefull integralofdiagram
γðnÞ by the homogeneous integral that corresponds to PS ρ.
Asmentioned above, the soft-collinear and hard-collinear

approximations defined for coordinate-space integrals in
Ref. [12] are equivalent to approximations with similar
names in discussions of factorization in momentum space
[15,42]. In this case, the approximation isolates ultraviolet
divergences in the neighborhood of the PS in coordinate
space, so long as the soft-collinear and hard-collinear
approximations apply. We represent this result by

tργðnÞjdiv n½ρ� ¼ γðnÞjdiv n½ρ�; ð21Þ
where the subscript “div n½ρ�” represents the divergent UV
behavior, from short-distance and/or collinear configura-
tions of PS ρ. This relation is not guaranteed to apply on
subsurfaces where the homogeneous integral in tργðnÞ

develops pinches of its own. In the following we will
generalize Eq. (21) by introducing a system of nested
subtractions. We emphasize first, however, that although
the relation (21) refers to the result of an integral over the
neighborhood, n½ρ� of PS ρ, where the approximation is
accurate, the definition tργðnÞ refers to the full integral,
extended over the full integration region in coordinate space,
including other PSs and regions where tρ no longer gives a
good approximation to the integrand in general [7].
In any multiloop diagram, multiple ultraviolet divergen-

ces can arise from sets of vertices that approach the hard
scattering or the collinear directions in partonic amplitudes,
or the cusp and/or the Wilson lines in multieikonal
amplitudes, at different rates, just as loop momenta may
go to infinity faster in some subdiagrams than in others. As
for the renormalization of Green functions, we can classify
sets of divergences as either nested or overlapping, in terms
of the limiting process in coordinate space.
Nesting in coordinate space can be classified directly in

terms of pinch surfaces.We sayPSρ1 is nested in PSρ2when
a subset of vertices of ρ2, which defines ρ1, approaches the
light cone and/or the origin faster than other vertices in ρ2.
The smaller nested PS has larger subdiagrams with vertices
near the light cone (jets) or the origin (hard subdiagram), but
it defines a smaller region in coordinate space.
To be specific, for two leading pinch surfaces, ρ1 is a

nested subsurface of ρ2, denoted by

ρ1 ⊆ ρ2; ð22Þ
if and only if

Hðρ2Þ ⊆ Hðρ1Þ;

Hðρ2Þ ∪ Jðρ2ÞI ⊆ Hðρ1Þ ∪ Jðρ1ÞI ; ð23Þ
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for all jets JI. That is, the jet and/or hard subdiagrams grow
as the dimension of the pinch surface decreases. The
equality holds only when ρ1 ¼ ρ2, in which case all these
relations are equalities. Otherwise, we say that ρ1 is
contained in ρ2. Without specifying their ordering, we
say that ρ1 and ρ2 nest. The subsurface, or nesting, relation
of course is transitive,

ρ3 ⊂ ρ2 and ρ2 ⊂ ρ1 ⇒ ρ3 ⊂ ρ1: ð24Þ

We note that the smaller the pinch surface in the sense of
Eq. (23), the larger the number of its normal variables, and
the smaller the number of its intrinsic variables. Another
way of putting this is that smaller pinch surfaces have larger
codimension. We will denote any fully nested set with MN
pinch surfaces by N ¼ fσ1 ⊂ σ2 ⊂ � � � ⊂ σMN

g, and the set
of all such nested sets for diagram γ as N ½γ�.
We now use the nesting of pinch surfaces and the

definitions of neighborhoods, n½ρ� in Eq. (19) to construct
a set of regions in coordinate space that cover all pinch
surfaces, and in each of which an operator, tρ gives a valid
approximation to the singular behavior of the diagram
throughout. Starting from the n½ρ�, our choice for these
“reduced neighborhoods” is

n̂½ρ� ¼ n½ρ�n ∪σ⊃ρ ðn½ρ� ∩ n½σ�Þ: ð25Þ

By construction, region n̂½ρ� is n½ρ� less its intersections with
the neighborhoods n½σ� of all larger pinch surfaces, σ ⊃ ρ.
As we have argued at the end of the previous subsection, the
PSs of the homogeneous integral of region ρ correspond to
PSs σ, at which only a proper subset of the lines that are on
the light cone or at the origin on PSs ρ remain on the light
cone or at the origin. Such pinch surfaces σ have more
intrinsic (and fewer normal) variables than pinch surface ρ,
and one or more of the intrinsic variables of each σ are

normal variables of ρ. In addition, by the construction of
Eq. (19), in neighborhood n½σ� the normal variables of ρ that
are intrinsic variables of σ do not vanish rapidly enough to
produce a divergence. Correspondingly, the homogeneous
integral for PS ρ, Eq. (8) integrated over the reduced region
n̂½ρ� is finite. Note that although the PS ρ itself is a subspace
of lower dimension in surface σ, the neighborhoods n½ρ� and
n½σ� are of the same dimension, and ρ ⊂ σ does not imply
that n½ρ� ⊂ n½σ�. The neighborhoods n̂½ρ� cover all pinch
surfaces.
Not all pairs of regions can satisfy the nesting criterion

(23). We say two pinch surfaces are overlapping when ρ⊄σ
and σ⊄ρ, which we denote as

ρ∶o∶σ: ð26Þ

By definition, if ρ∶o∶σ, then ρ and σ cannot appear in any
set N of nested PSs of γ. The overlap relation, “∶o∶” has a
property analogous to transitivity of nesting, Eq. (24),
which also follows easily from the defining properties of
nesting, Eq. (23),

given∶ σ1 ⊂ σ2 ⊂ σ3; where σ3∶o∶ρ and σ1∶o∶ρ

then∶ σ2∶o∶ρ: ð27Þ

Any pair of PSs is either nested or overlapping. Note that
the pinch surface where all vertices are in the hard
subdiagram is nested with all other pinch surfaces, so that
no pair of pinch surfaces is fully disjoint. Figures 4(a)
and 4(b) illustrate two overlapping regions.
As we have seen, each pinch surface, and corresponding

neighborhood is associated with a distinct matching of the
list of vertices to the jet, hard and soft subdiagrams. In these
terms, we can give an explicit form for the requirement of
Eq. (21), namely that the divergences from PS ρ are equal
for γðnÞ and tργðnÞ,

γðnÞjdiv n̂½ρ� − tργðnÞjdiv n̂½ρ� ¼
Y
I

Z
dτðIÞ

Z
dD−1zðIÞ

Z
dηðIÞ

Z
dD−1yðIÞΘðn̂½ρ�Þ × ½SðρÞfμIgðzðIÞÞJ

ðρÞμIνI
I ðzðIÞ; yðIÞÞHðρÞ

fνIgðyðIÞÞ

−SðρÞfμIgðτðIÞÞβ
μI
I β̄I;μ0I J

ðρÞμ0Iν0I
I ðzðIÞ; ηðIÞÞβ̄I;ν0Iβ

νI
I H

ðρÞ
fνIgðyðIÞÞ�jdiv n̂½ρ� ¼ 0; ð28Þ

(a) (b) (c)

FIG. 4. (a) and (b) are examples of overlapping regions. (c) shows the enclosing region specified by Eqs. (47)–(49).
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where Θðn̂½ρ�Þ restricts the integration to the reduced
neighborhood n̂½ρ� [Eq. (25)]. This integral over the
reduced neighborhood converges because of the accuracy
of the soft-collinear and hard-collinear approximations in
the entire reduced neighborhood n̂½ρ�. The PSs internal to
the original neighborhoods n½ρ� have been removed by
construction.
Equation (28) is the main result we will use for

applications in the following sections, treating the neigh-
borhood of each PS separately. As a more general result,
however, we will show that all divergent contributions to
amplitudes can be written without restriction to specific
regions, in terms of a construction based on nested
subtractions [7], which we now discuss.

D. Nested subtractions

The quantities tργ [Eq. (20)] can also be thought of as
counterterms for ultraviolet divergences associated with the
limits x2I → 0 in the partonic matrix elements [Eq. (2)] and
with multieikonal amplitudes [Eq. (4)]. We will denote an
arbitrary n-loop diagram that is one-particle irreducible in
the xI channel as γðnÞ. Following the momentum-space
procedure of Ref. [7], we define a regulated version of
γðnÞ by

RðnÞγðnÞ ¼ γðnÞ þ
X

N∈N ½γðnÞ�

Y
ρ∈N

ð−tρÞγðnÞ; ð29Þ

where N ½γ� is the set of all nonempty nestings for diagram
γ. We will refer to RðnÞ as the subtraction operator at
nth order. We may then write for the full nth-order
xI-irreducible partonic amplitude (5), ḠðnÞ ¼ P

γðnÞ,

ḠðnÞ ¼
X
γðnÞ

�
−

X
N∈N ½γðnÞ�

Y
ρ∈N

ð−tρÞγðnÞ þ RðnÞγðnÞ
�
: ð30Þ

The products in Eqs. (29) and (30) are ordered with the
larger PSs to the right of smaller PSs. Thus, the first
approximation operators tρ to act on γðnÞ involve the fewest
points on the light cones or at short distances. As in
Eq. (20), the approximation operators act on the diagram
over the full integration region, and are not restricted to the
neighborhood of the corresponding pinch surface.
Among the approximation operators that appear in

RðnÞγðnÞ, we may identify the smallest, ργ , for which all
vertices approach the origin, that is, for whichHðσγÞ ¼ γðnÞ.
Now because ργ is the smallest PS, it nests with every other
pinch surface. Its approximation operator, which we denote
by tuv for any diagram, always appears to the left of every
other operator in Eq. (30). Operator tuv acts only on the
external propagators that attach to γðnÞ. We can thus
separate it in the sum over nestings, and we find

ḠðnÞ ¼
X
γðnÞ

�
tuvγðnÞ þ ð1 − tuvÞ

×

�
−

X
N∈N P½γðnÞ�

Y
ρ∈N

ð−tρÞγðnÞ þ RðnÞ
P γðnÞ

��
; ð31Þ

where now N P refers to the set of all proper nestings, not

including tuv, and RðnÞ
P is the corresponding “proper”

subtraction operation, defined by Eq. (29) withN replaced
by N P,

RðnÞ
P γðnÞ ¼ γðnÞ þ

X
N∈N P½γðnÞ�

Y
ρ∈N

ð−tρÞγðnÞ: ð32Þ

The operator RðnÞ
P is related to RðnÞ by

RðnÞγðnÞ ¼ ð1 − tuvÞRðnÞ
P γðnÞ: ð33Þ

In the following, we will show that RðnÞ
P γðnÞ is free of

subdivergences.
Specifically, we will show that the nesting, from regions

to subregions, eliminates double counting, allowing the
subtractions tρ for each leading PS ρ to be extended from
n̂½ρ� to the full space, as in the momentum-space discussion
in Ref. [7]. We can also think of individual subtractions
acting region by region; the purpose of the nested products
is to cancel the action of subtractions outside their
corresponding reduced neighborhoods n̂½ρ�. In summary,
we claim that for each diagram γðnÞ, the action of the proper
subtraction operation, RðnÞ

P is to remove divergences from
leading pinch surfaces ρ,

RðnÞ
P γðnÞjdiv n̂½ρ� ¼

�
γðnÞ þ

X
N∈N P½γðnÞ�

Y
ρ∈N

ð−tρÞγðnÞ
�����

div n̂½ρ�
¼ 0;

ð34Þ

for any PS ρ with HðρÞ ⊂ γðnÞ. Assuming this result, the

proper-subtracted diagram RðnÞ
P γðnÞðy1;…; yaÞ is free of all

subdivergences. In particular, because all collinear singu-
larities have been canceled, it remains finite when any of
the yμI approach the light cone, and because all soft
subdiagrams are subtracted, it vanishes on dimensional
grounds when the positions of external vertices go to
infinity,

lim
fy2I→0g

RðnÞ
P γðnÞðy1;…; yaÞ ¼ fðnÞðyI · yJ; μ2Þ;

lim
fyK ·yL→∞g

fðnÞðyI · yJ; μ2Þ ¼ 0; ð35Þ

in terms of some function fðnÞ that depends on the inner
products yI · yJ and in general on μ2, the renormaliza-
tion scale.
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This result has important consequences for the full
nested set of subtractions, including nestings that include
tuv, acting on the full nth-order amplitude, GðnÞðx1…xaÞ
[Eq. (5)]. For this “improper” PS, the soft function in
Eq. (28) is taken as unity and the jet subdiagrams are
truncated propagators. The approximation associated with
tuv is, by Eq. (12), to replace yμI by β̄μI y · βI on the external

propagators of GðnÞ
a . In schematic form, we can then

represent the action of the full set of nested subtractions as

RðnÞGðnÞ
a ðx1;…; xaÞ

¼ ð1 − tuvÞ
Y
I

Z
d4yIG2ðxI − yIÞRðnÞ

P ḠaðfyIgÞ

¼
Y
I

Z
d4yI

�
1 −

G2ðxI − yI · βIβ̄IÞ
G2ðxI − yIÞ

�
RðnÞ
P GaðfyIgÞ;

ð36Þ
where the fraction represents the matrix inverse for fields
with spin. We now recall that poles in x2I come about only
from pinches in the integrals over the internal vertices of
Ga, at configurations associated with physical processes.
For such configurations, xI · yI ∼ xI · β̄IyI · βI , and the
right-hand side vanishes when the xμI approach the light
cone. Thus, the full set of nested subtractions acting on the

amplitudes, RðnÞGðnÞ
a lack poles in x2I , and their Fourier

transforms will not contribute to the S-matrix,

RðnÞGðnÞ
a jdiv ¼ 0; ð37Þ

where in this case “div” refers specifically to the leading
light-cone singularity in all external coordinates xI .
Equivalently, from Eq. (29), we have

γðnÞjdiv ¼ −
X

N∈N ½γðnÞ�

Y
ρ∈N

ð−tρÞγðnÞjdiv: ð38Þ

This conclusion is analogous to the result of Collins in
Ref. [7] that the Sudakov form factor is power suppressed
when subtracted according to the momentum-space pro-
cedure on which our approach is based. Here we extend the
reasoning to the general class of multiparton amplitudes.
Returning to the sum of proper subtractions, we first note

that for multieikonal amplitudes, the absence of subdiver-
gences [Eq. (34)] is easy to prove, because the largest
PS for such an amplitude is one in which all noneikonal
vertices are in the soft subdiagram. As usual the approxi-
mation operator, teik for this PS takes the soft-collinear
approximation (9) for all external lines of the soft subdia-
gram, and because all such lines are attached to the Wilson
lines, in this case, teik ¼ 1 when acting on the amplitude.
Thus, since this PS can nest with every other PS, all terms
in Eq. (42) cancel pairwise. Indeed, the cancellation is
exact, and for multieikonal amplitudes, we have

RðnÞ
P γðnÞeikonal ¼ 0; n > 0; ð39Þ

with no remainder, or, equivalently, for n ≥ 1,

ΓðnÞ ¼ −
X
γðnÞeikonal

X
N∈N P½γðnÞ�

Y
ρ∈N

ð−tρÞγðnÞeikonal: ð40Þ

For n ¼ 0, of course, there are no subtractions. This
reasoning does not apply to partonic amplitudes, for which
the largest soft approximation is not accurate in general.
Before going to the proof of Eq. (34) for partonic

amplitudes, it is worth noting the relationship between
the subtraction approach here and the momentum-space
“strategy of regions” [43]. In the latter, approximations
tailored to regions of loop momenta that are the sources of
leading behavior are also extended to all of loop momen-
tum space. We are doing something very similar here; each
of the subtraction terms in each nesting is associated with a
particular leading PS, but we extend each such expression
over the full coordinate integration space. The list of PSs
specifies the list of regions each of which defines an
expansion in kinematic variables. By showing that all
double counting is eliminated in the sum over all nestings,
we will verify that the sum of subtractions is an acceptable
representation of the original amplitude, up to well-defined
finite corrections. There is also a connection to the
organizations of the various subtraction methods that
underly next-to-next-to-leading-order calculations of
amplitudes and cross sections [44].

E. Proof of the cancellation of subdivergences

To derive Eq. (34) for an arbitrary PS ρ of diagram γðnÞ,
we start by reorganizing the sum over nestings in RðnÞ

P γðnÞ,
Eq. (32), to highlight the role of an individual approxima-
tion tρ,

RðnÞ
P γðnÞ ¼ γðnÞ þ ð−tρÞγðnÞ

þ
X
Nρ≠ρ

�Y
σ∈Nρ

ð−tσÞ þ
Y

σ∈Nρnρ
ð−tσÞ

�
γðnÞ

þ
X
N̄ρ

Y
σ∈N̄ρ

ð−tσÞγðnÞ: ð41Þ

In the sum, we have separated those nestings denoted byNρ

that include ρ, along with the set Nρnρ, in which region ρ
can nest but is excluded, and finally the set of nestings
with PSs that overlap with ρ, denoted by, N̄ρ, which cannot
include ρ because ρ∶o∶σ for at least one element σ ∈ N̄ρ.
We now look at the contribution to Eq. (41) from region

n̂½ρ�, where we wish to verify Eq. (34), i.e., that the
divergence from this region should vanish. We already
know from Eq. (28) that the divergent parts of the first two
terms on the right-hand side of Eq. (41) cancel in n̂½ρ�, so
that Eq. (34) implies
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X
Nρ≠ρ

�Y
σ∈Nρ

ð−tσÞ þ
Y

σ∈Nρnρ
ð−tσÞ

�
γðnÞjdiv n̂½ρ�

þ
X
N̄ρ

Y
σ∈N̄ρ

ð−tσÞγðnÞjdiv n̂½ρ� ¼ 0: ð42Þ

We see that for Eq. (34) to hold in each neighborhood n̂½ρ�,
the divergent parts of all subtraction terms except for tργðnÞ

alone must cancel (or vanish) in region n̂½ρ� defined by

Eq. (25). To prove the absence of divergences in RðnÞ
P GðnÞ

for an arbitrary n̂½ρ�, we must examine all nestings
in Eq. (42).
We start with those nestings, Nρ in which ρ appears

along with at least one other PS. For all such nestings, in
neighborhood n̂½ρ�, the term corresponding to nesting Nρ

cancels the nesting, Nρnρ. This is because the action of tρ is
equivalent to the identity in region n̂½ρ�, so that

X
Nρ≠ρ

�Y
σ∈Nρ

ð−tσÞ þ
Y

σ∈Nρnρ
ð−tσÞ

�
γðnÞjdiv n̂½ρ� ¼ 0; ð43Þ

where, as in Eq. (21), the subscript “div n̂½ρ�” refers to
the sum of all divergent parts from the integral over n̂½ρ�.
This implies that the proof of Eq. (34) reduces to showing
that the sum of all overlapping subtractions cancels
independently,

X
N̄ρ

Y
σ∈N̄ρ

ð−tσÞγðnÞjdiv n̂½ρ� ¼ 0: ð44Þ

Again, nestings N̄ρ cannot include PS ρ because one or
more of its PSs σ overlap with ρ. Because we are interested
in singular contributions, we need to treat only those
nestings, N̄ρ that are divergent in region ρ, and we will
use this condition below.
Consider, then, an arbitrary nesting N̄ρ that contains

some set of PSs σ that overlap with PS ρ. Because of the
transitive properties of nesting [Eqs. (24) and (27)], we can
partition the PSs σi ∈ N̄ρ into three ordered sets [7]: those
that are larger than ρ, those that are smaller than ρ and those
that overlap with ρ,

N̄ρ ¼ NL ∪ No ∪ NS;

NL½ρ� ¼ fσj ⊃ ρg;
No½ρ� ¼ fσk∶o∶ρg;
NS½ρ� ¼ fσl ⊂ ρg; ð45Þ

where all σj ⊃ σk ⊃ σl. By Eq. (27), there is only a single
subset No½ρ�.
In the following, we will identify an “enclosing” PS τenc,

which is intermediate between the sets No½ρ� and NL½ρ� in
Eq. (45). This PS, τenc will contain both PS ρ and every
element σk ∈ No. It will at the same time be contained in

every element σj ∈ NL½ρ�, including the case when it
equals the smallest element of NL½ρ�. Specifically, for
any element σ of No½ρ�, the enclosing region, τenc½σ; ρ�
will be constructed to act as the identity when combined
with tσγðnÞ in neighborhood n̂½ρ�, up to finite corrections,
that is,

tσð1 − tτenc ½σ; ρ�ÞγðnÞjdiv n̂ðρÞ ¼ 0: ð46Þ

This is the basic property we will need.
The appropriate enclosing PS, τenc½σ; ρ� is defined as

usual by its hard, jet and soft subdiagrams. These subdia-
grams are determined in turn by the subdiagrams of PSs σ
and ρ in the following manner:

SðτencÞ ¼ SðσÞ ∪ SðρÞ ∪ Y
I;K;I≠K

ðJðσÞI ∩ JðρÞK Þ; ð47Þ

JðτencÞL ¼ JðσÞL ∪ JðρÞL nSðτencÞ; ð48Þ

HðτencÞ ¼ HðσÞ ∩ HðρÞ

¼ γn
�
SðτencÞ ∪ Y

L

JðτencÞL

�
: ð49Þ

We claim that τenc constructed in this manner satisfies
Eq. (46). Equation (46) will hold in region ρ if two sets of
conditions are met by τenc. First, the construction must be
self-consistent, which requires that τenc represents a PS in
the class already included in the nestings of Eq. (29). This
will be the case if the following is true:
(1) Whenever tσγ is singular in region ρ, the overlap of

HðσÞ and HðρÞ is not empty.
(2) Whenever tσγ is singular in region ρ, SðτencÞ is not

connected to HðτencÞ.
In addition, for Eq. (46) to hold, we must also have the
following:
(3) The hard-collinear approximations of Eq. (11),

applied by tτenc are accurate at PS ρ.
(4) The soft-collinear approximations of Eq. (9), applied

by tτenc are accurate at PS ρ.
If all of these conditions are satisfied up to corrections that
vanish as a power of one or more of the normal variables of
PS ρ, then Eq. (46) holds, because the overall integral is
logarithmically divergent and we have constructed the
reduced neighborhood n̂½ρ� [Eq. (25)] to remove its sub-
divergences. A simple example illustrating Eqs. (47)–(49)
is given by Figs. 4(a)–4(c).
Much of the subtlety in the construction of τenc involves

“overlapping jets” in different directions, in which some
subsets of lines shift from one light cone in σ to another

light cone in ρ. Many such subdiagrams, JðσÞI ∩ JðρÞK , are
possible, and are defined by the list of PSs of each diagram
γ. We make two preliminary observations regarding these
overlaps.
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First, lines that carry physical polarization from each jet
to the hard part do not contribute to these overlaps. This is
easiest to see for fermionic external lines. The shift of a
fermion line of jet I in region σ to jet K in region ρ would
require that the line pass through the soft subdiagram of
region ρ, and we have seen in Eq. (18) that fermion lines
cannot connect jet and soft subdiagrams at leading PSs.
Similarly, also by Eq. (18), a physically polarized gauge
propagator of jet I in region σ cannot pass through SðρÞ to
jet K if ρ is to remain a leading PS.
Second, in the coordinate-space integrals of tσγ, certain

PSs are modified by tσ. Specifically, PSs ρ involving

overlaps JðσÞI ∩ JðρÞK are replaced by PSs where the vertices

of JðσÞI ∩ JðρÞK are either pinched at the origin, or align only

in the direction β̄I , complementary to the direction of JðσÞI
and independent of the direction βK (that is, of the precise
direction of the jet in region ρ). This is because the soft-
collinear [Eq. (9)] and hard-collinear [Eq. (11)] approx-

imations that act on the external lines and vertices of JðσÞI

eliminate dependence on all vectors except for βI and β̄I .
With these observations in mind, we can now give proofs

of conditions (1–4) above.

1. Overlap of hard subdiagrams

The construction of the enclosing PS, τenc using Eq. (49)
requires a nonvanishing overlap between the hard subdia-
grams HðσÞ and HðρÞ. As we have seen in Sec. II A, for
leading regions σ and ρ, the hard subdiagramsHðσÞ andHðρÞ
are themselves simply connected. For the cusp or processes
initiated by a single external current, the hard subdiagrams
of all leading regions overlap at the current, as illustrated by
Fig. 1(a). For scattering amplitudes, however, there aremany
cases where regions σ and ρ have disjoint hard subdiagrams.
This happens whenever the hard subdiagram in σ, HðσÞ, is
entirely contained in the union of soft and jet subdiagrams in

ρ, SðρÞ ∪ Q
LJ

ðρÞ
L . We now show that in all such cases, either

PS ρ is suppressed, or ρ is actually not a PS of tσγ.
Let us suppose that HðσÞ and HðρÞ are disjoint. We then

consider the external lines ofHðσÞ, onwhich the hard-collinear
approximations (11) and (12) have acted. Because the hard
subdiagrams are disjoint, neither these lines nor the vertices of
HðσÞ to which they attach can be inHðρÞ. Then, each external
vertex of the hard subdiagram HðσÞ either appears as an

internal vertex in some jet subdiagram JðρÞL of ρ, or is an
internal vertex of the soft function, SðρÞ of ρ. We will see that
when any such vertex is in a jet subdiagramof ρ, thenρ is not a
PSfor tσγ.Wewill thenshowthatwhenall theexternal vertices
ofHðσÞ are in SðρÞ, then ρ is not a leading PS of tσγ. The only
possibility left is that at least one vertex ofHðσÞ is also a vertex
in HðρÞ, so that the hard subdiagrams are not disjoint.
Consider first Fig. 5, which illustrates the possibility that

an external vertex of HðσÞ is in a jet subdiagram of PS ρ.

In the figure, we identify the hard scattering HðσÞ as the
propagator y1 − y2, along with the vertices y1 and y2 which
it connects. In HðσÞ, y1 → y2 → 0, while y3 and y4 remain
at finite distances from each other with ðy3 − y4Þ2 ≠ 0, and
approach the light cones defined by x3 and x4, respectively.
We then let HðρÞ be defined by y3 − y4 and ρ by the limit
y3 → y4 → 0while y1 and y2 remain at finite distances with
ðy1 − y2Þ2 ≠ 0, such that the lines ðy1; y3Þ and ðy2; y4Þ are
in the jet subdiagrams associated with external points x1
and x2, respectively. These two regions clearly cannot be
nested, and their hard subdiagrams are disjoint. Now in the
neighborhood of PS ρ, as y3 and y4 approach the origin, y1
should move to the β1 light cone, which requires a pinch
in the y1 integral. Since ðy1 − y2Þ2 ≠ 0 at ρ, this pinch
can come from the denominators x1 − y1 and y1 − y3.
The action of tσ , however, partially decouples the internal
integrals of the hard subdiagram ðy1; y2Þ from the σ jet
subdiagrams. For the subtracted diagram, tσγ, tσ applies
the hard-collinear approximation hcð1Þ from Eq. (12) to
ðx1 − y1Þμ, which is then replaced by a line ðx1 − y1·
β1β̄1Þμ. Similarly, it applies hcð3Þ to y1 − y3, which is
replaced by ðy1 · β3β̄3 − y3Þμ. The two lines thus depend on
different components of yμ1, and the y1 integrals cannot be
pinched at y1 · β1 ¼ 0. The lines x1 − y1 and y1 − y3 are
therefore not pinched in region ρ after the action of tσ.
The feature of the example in Fig. 5 that extends to more

general cases is that operator tσ acts on the line y1 − y3 with
the hard-collinear approximation hcð3Þ, which eliminates

the pinch that fixes vertex y1 in JðρÞ1 . In the original
integral, the coordinate y1 · β1 is pinched at the origin
between poles from the propagators of x1 − y1 and y1 − y3
when they are in JðρÞ1 . After the action of tσ, however, the
propagator associated with line y1 − y3 no longer has a pole
when y1 · β1 ¼ 0 because y1 · β3 ≠ 0 when y1 ∝ β1. To
extend this result to higher orders, we must treat general
hard-scattering subdiagrams, and allow the possibility that
more than one external vertex of HðσÞ appears in the jet

subdiagrams JðρÞL of PS ρ.
Suppose then, that in the general case more than one

external vertex of HðσÞ attaches to lines in a subdiagram

JðρÞL . Now, becauseHðσÞ is connected, and because in region

FIG. 5. An example of disjoint hard subdiagrams.
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ρ each jet corresponds to physically propagating lines, one

or more lines in jet JðρÞL must enter subdiagram HðσÞ at one
of its external vertices, and leave at another external vertex.
Since these lines are external toHðσÞ, they must be included

in jet subdiagrams JðσÞK of PS σ. At all such external
vertices, then, the approximation operator tσ will have
applied the hard-collinear approximation [Eq. (11) or (12)]
that is appropriate for the directions and polarizations of
these external lines of HðσÞ in PS σ. As we have observed
above, however, the imposition of the hard-collinear

approximation for jet JðσÞK , say, by tσ eliminates pinches
in that subdiagram except in the βK and β̄K directions. (We
assume for simplicity that no pair of jets satisfies βI ¼ β̄L.).
As a result, no pinch that sets these lines to the light cone in

ρ is possible, unless the overlap of HðσÞ with jet JðρÞL

involves only external lines that are also in JðσÞL , i.e. in

JðρÞL ∩ JðσÞL . This requires some of the lines of JðσÞL to change

direction. At PS σ, the lines in JðσÞL all flow in or all flow out
of HðσÞ, but at PS ρ, some would have to flow in and some
out. In the physical picture corresponding to PS ρ, the
relevant vertices of HðσÞ are all either before HðρÞ, or after.
For definiteness, we assume they are before, so that JðρÞL is
an incoming jet.

On the other hand, the external lines of jet JðσÞL ∩ JðρÞL ,
can carry at most one physical polarization from the
external point xL into subdiagram HðσÞ. All other lines

that attach JðσÞL to HðσÞ must be scalar polarized. This
physical polarization is then eliminated by the net action of
the hard-collinear approximation in diagram HðσÞ, because
only one external line of JðσÞL can be physically polarized. In
the case where the vertex at which the physical polarization

reachesHðσÞ is in JðσÞL ∩ JðρÞL , the physical polarization then
cannot reach the hard subdiagram HðρÞ (which is by

assumption disjoint from HðσÞ) because all the other JðρÞL
lines are scalar polarized. But then PS ρ is nonleading.

These considerations imply that the jet subdiagrams JðρÞL of
PS ρ cannot share lines or vertices with the hard subdia-
gram HðσÞ, unless all the vertices that attach the individual

lines that carry physical polarization from jets JðσÞK to HðσÞ

are in SðρÞ. As a result, if HðσÞ ∩ HðρÞ were to be empty, the
“physical” vertices of HðσÞ would all have to be in SðρÞ.
We now treat the possibility that the vertices that bring

physical polarizations to the hard subdiagram HðσÞ in
region σ are entirely in SðρÞ, and show that in this case ρ
is nonleading. The reason is illustrated by the example of
Fig. 2(a), assuming that the PS σ describes the scattering
of (massless) fermions. The alternative physical process in
the figure, with a hard scattering involving gluons, would
require the fermions to be in the soft subdiagram SðρÞ, a
configuration that is always nonleading by Eq. (18) [see

Eq. (16) and Ref. [12]]. This reasoning applies to any order
and diagram: restricting ourselves to fermion-fermion
scattering to be specific, at any leading PS, the external
fermions must only appear as jet lines, and as external lines
of both hard subdiagramsHðσÞ andHðρÞ. But then, since the
fermion lines are continuous, the hard subdiagrams must be
connected by these jet lines, which must be in different
directions in the two PSs. The definition of Eq. (49) is then
guaranteed to give a connected hard subdiagramHðτencÞ. In a
similar fashion, for external gluons, the role of fermion
lines is taken by gluon lines that carry the external physical
polarizations of the gluons. From the general power-
counting result (16), such polarizations cannot be radiated
into soft subdiagrams at leading PSs, and the same
conclusion as for external fermions applies.
In summary, HðσÞ ∩ HðρÞ is never empty.

2. Soft and hard disjoint

The external lines of SðτencÞ are either external lines of the
soft subdiagrams SðσÞ and/or SðρÞ or of the overlaps of jet

subdiagrams
Q

I;KJ
ðσÞ
I ∩ JðρÞK . Now the external lines of SðσÞ

can only attach to the jet subdiagrams of σ, JðσÞI and hence are
separated from HðρÞ ∩ HðσÞ, and similarly for lines in SðρÞ.
To verify that lines in JðσÞI ∩ JðρÞK cannot attach to HðτencÞ

at leading PSs, we consider a gauge line in the Ith jet

subdiagram, JðσÞI , attached at one end to an arbitrary vertex
at a point in HðσÞ, and at the other end to a vertex that is in

subdiagram JðσÞI . It is easy to see that if this line is also inQ
I;KJ

ðσÞ
I ∩ JðρÞK , it cannot attach directly to HðτencÞ, because

tσ acts by hcðIÞ [Eq. (11)] on the external lines of JðσÞI , and
produces a β̄I polarization at HðσÞ. This polarization is

suppressed when coupled to the lines of JðσÞI ∩ JðρÞK , which,
as we have observed below conditions (1–4) for the
consistency of the construction of τenc, can have PSs
only in the β̄I direction in region ρ. As β̄2I ¼ 0, leading

contributions are eliminated when JðσÞI ∩ JðρÞK attaches to
HðτencÞ. Thus, none of the elements of SðτencÞ can attach
directly to HðτencÞ, and the two subdiagrams are disjoint.

3. Hard collinear

Any line from JðτencÞL that is attached to HðτencÞ either

attaches JðρÞL toHðρÞ or JðσÞL toHðσÞ (or possibly both). If the
line is from JðρÞL , tτenc will apply the hard-collinear approxi-
mation hcðLÞ [Eq. (11)], which is a good approximation in

region ρ. If the line is from JðσÞL , both tσ and tτenc apply the
hard-collinear approximation, hcðLÞ, whether or not the

line is in JðρÞL , that is, whether or not hcðLÞ is a good
approximation at PS ρ. The result, however, is the same for
tσtτencγ or tσγ alone because, as we easily verify from
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Eq. (11), hcðLÞ2 ¼ hcðLÞ. Thus, all hard-collinear con-
nections are consistent with Eq. (46).

4. Soft collinear

The soft-collinear approximation must work for all
external lines of SðτencÞ. By Eq. (49), these external lines

are either in SðσÞ ∪ SðρÞ or in
Q

I;K;I≠KðJðσÞI ∩ JðρÞK Þ.
The first case, lines in SðσÞ ∪ SðρÞ, is relatively straight-

forward. The external lines of SðρÞ attach only to jet lines

from subdiagrams JðρÞL that are also in JðτencÞL and those from

SðσÞ attach only to JðσÞL lines that are in JðτencÞL . The operator
tτenc applies the soft-collinear approximation to all such
lines. Applied to lines in SðρÞ, this is a good approximation
in region ρ. For lines in SðσÞ, both tτenc and tσ apply the
soft-collinear approximation scðLÞ [Eq. (9)], and since
scðLÞ ¼ scðLÞ2, they are consistent with Eq. (46).

The case of SðτencÞ lines in
Q

I;K;I≠KðJðσÞI ∩ JðρÞK Þ is
somewhat more complex. The external lines of the inter-

sections JðσÞI ∩ JðρÞK ∈ SðτencÞ, I ≠ K are attached to jet lines

of subdiagrams JðτencÞL of τenc, and will have the soft-
collinear approximation scðLÞ applied to them by tτenc.
The action of tσ, however, depends on whether (a) I ≠ L or
(b) I ¼ L. We treat these cases in turn, using the examples
of Fig. 6 to illustrate the method. The figure represents two
pairs of overlapping PSs, σ and ρ, in a two-loop correction
involving two partonic or eikonal lines, labeled I and K in
the figure. We should think of this example as embedded in
a larger diagram with any number of external lines,
connected at a hard subdiagram denoted by 0 in the figure.

(a) Figure 6(a) is an example of L ≠ I. As indicated by
the positions of the vertices in the figure, in PS σ of

Fig. 6(a), JðσÞI consists of the lines connecting vertices
in the set fa; b; c; 0g except for the line fc; 0g. In this

notation, jet JðσÞK is fc; dg, SðσÞ is fb; dg, and the hard

subdiagramHðσÞ is f0; cg. OnPS ρ, JðρÞI is f0; ag, JðρÞK is
f0; c; b; dg and SðρÞ is fa; bg and HðρÞ ¼ f0g. For this
example, the overlap of the jets is JðσÞI ∩ JðρÞK ¼ fb; cg,
a single line. Following Eqs. (47)–(49), PS τenc has all
of its gauge lines in its soft subdiagram,
SðτencÞ ¼ fa; b; c; dg. Its hard subdiagram is just the
vertex at the origin, HðτencÞ ¼ f0g, and its jets are

JðτencÞI ¼ f0; ag and JðτencÞK ¼ f0; c; dg. Clearly, the

intersection, JðσÞI ∩ JðρÞK ¼ fb; cg of jets from σ and
ρ attaches to the jet line L ¼ K.
Turning to the general case, when L ≠ I, then in PS

σ, the vertex at which the line in JðσÞI ∩ JðρÞK ∈ SðτencÞ

connects to JðτencÞL must also connect either a line in JðσÞL

and a line in JðρÞL ∩ HðσÞ or to two lines in JðρÞL ∩ HðσÞ,

since in PS σ a line in JðσÞI can only be attached to a line

from the distinct jet JðσÞL at a vertex that is part of the
hard subdiagram HðσÞ, as in the example. In addition,

because one or more lines in JðρÞL ∩ HðσÞ attach to the

same vertex as the line in SðτencÞ, which is in JðρÞK , we
must have L ¼ K, again as in the example. Otherwise,

the vertex would connect lines from different jets JðρÞK

and JðρÞL , which would force it to be part ofHðρÞ. Such a

(a)

(b)

FIG. 6. Example of nested overlapping subdivergences in PSs σ and ρ and their enclosing PS τenc½σ; ρ�, where in panel (a) L ≠ I and in
panel (b) L ¼ I.
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vertexwould then be inHðσÞ ∩ HðρÞ ¼ HðτencÞ, contrary
to our assumptions.

We are thus restricted to the case JðσÞI ∩ JðρÞL quite

generally. Now, when lines from JðσÞI ∩ JðρÞL attach to

JðτencÞL , as at vertex c in Fig. 6(a), the hard-collinear
approximation, hcðIÞ is applied by tσ, after the appli-
cation of the soft-collinear approximation scðLÞ from
tτenc in the product tσtτenc . In this case, applying the
definitions of the soft-collinear and hard-collinear
approximations [Eqs. (9) and (11)], we readily verify
that the product of operations hcðIÞð1 − scðLÞÞ pro-
duces a nonleading contribution, as an identity of
the integrand, so that Eq. (46) holds.

To be specific, suppose that the vertex where JðσÞI ∩
JðρÞL attaches to JðτencÞL is at point u, and the other end of

the line in JðρÞL is at point w. In the example, u ¼ c and
w ¼ b, but in complete generality, if we denote these
vertices by vμðuÞ and v0νðwÞ, respectively, we get

hcσðIÞð1 − scτencðLÞÞv0μðwÞ
−gμν

ðw − uÞ2 vνðuÞ

¼ v0ðwÞ · β̄IβIμ
�

−gμν

ðw − u · βI β̄IÞ2
β̄IνβI · vðuÞ

−
−gμν

ðw − u · β̄LβL · βIβ̄IÞ2
β̄IνβI · βLβ̄L · vðuÞ

�
; ð50Þ

where the superscripts in hcσðIÞ and scτencðLÞ indicate
the PS associated with the soft-collinear and hard-
collinear approximations. Note that in the special case
of “back-to-back” jets, βI ¼ β̄L, the right-hand side of
Eq. (50) vanishes identically. This is the case of the
Sudakov form factor. Let us suppose, more generally,
that βI ≠ β̄L, or equivalently, βL · β̄I ≠ 0. Since line

w − u and vertex u are both in jet JðρÞL , the point wmay

be in JðρÞL or in the hard-scattering subdiagramHðρÞ. Let
us first treat the case when vertex v0ðwÞ is also in JðρÞL .
Then, up to terms that vanish as a power of the normal
variables of PS ρ, wemay approximate for both ends of
line w − u,

wμ ¼ βμLβ̄L · w;

uμ ¼ βμLβ̄L · u: ð51Þ

We consider first the two denominators that represent
the linew − u in Eq. (50) individually. At PS ρ this line
was originally on the light cone and the denominator
ðw − uÞ2 vanishes linearly in the scaling variable ðλÞ, in
terms of the normal variables introduced in Eq. (14) of
Sec. II B. Also, the presence of two three-point vertices
in the jet subdiagramwould ensure an additional factor

of λ in the numerator (see Ref. [12]). After the action of
the soft-collinear and hard-collinear approximations,
however, both the denominator corresponding to this
line, and the numerator factor are order λ0 near PS ρ.
The net effect is that both terms on the right-hand side
of Eq. (50) are leading power (λ0) at PS ρ. At the same
time, using Eq. (51), we find that in neighborhood n̂½ρ�,

ðw − u · βI β̄IÞ2 ¼ ðw − u · β̄LβL · βI β̄IÞ2 þOðλ1=2Þ;
ð52Þ

so that the right-hand side of Eq. (50) is suppressed by a
power of the scaling variable at PS ρwhen vertex vðwÞ
is in jet L.

For the alternative case, the limit that vðwÞ is inHðρÞ,
that is, when wμ → 0, the denominators still vanish on
PS ρ even after the approximations, while the leading
power behavior corresponds to a finite numerator
involving a scalar-polarized gauge propagator. The
denominators still cancel to leading power in the
scaling variable λ, however, and the difference is again
subleading.

(b) Figure 6(b) represents the case L ¼ I, that is, when a
line in subdiagram SðτencÞ attaches to a line in subdia-

gram JðσÞI . The assignment of lines and vertices to
subdiagrams is almost the same as in Fig. 6(a), except
that vertex c is now part of the I jet in σ, and is
connected to the K jet on PS ρ.
When L ¼ I, which implies that L ≠ K, tσ does not

impose the hcðLÞ approximation because in PS σ at
least two of the lines [lines fa; cg and fb; cg in the
example of Fig. 6(b)] that meet at the vertex connect-

ing SðτencÞ to JðτencÞI are in JðσÞI , so that the remaining line

must also be in JðσÞI . [This is line f0; cg in Fig. 6(b).] In
PS ρ, we use the fact that the line from SðτencÞ is in JðρÞK .
[This is line fb; cg in Fig. 6(b).] This line attaches to

two lines of JðτencÞI ¼JðσÞI ∪JðρÞI nQI;K;I≠KðJðσÞI ∩JðρÞK ).

Now these lines must be in either JðρÞI or HðρÞ, and at
least one must be in HðρÞ. This is because I ≠ K, so

that in PS ρ, lines from JðρÞI and JðρÞK can join only at
the hard subdiagram HðρÞ. [Again, this is f0; cg in
Fig. 6(b).] As a result, in PS ρ, the hard-collinear
approximation hcσðKÞ is good, and we may invoke
the same analysis as in case (a) above for
hcσðKÞð1 − scτencðIÞÞ, K ≠ I. Again the sum of terms
is suppressed and all soft-collinear connections are
consistent with Eq. (46).

This completes our arguments for conditions (1–4)
below Eq. (49), which ensure the consistency of the
construction τenc.

OZAN ERDOĞAN AND GEORGE STERMAN PHYSICAL REVIEW D 91, 065033 (2015)

065033-16



5. Cancellation from nesting with the enclosing region

So far, we have shown how to construct the enclosing
PS, τenc½σ; ρ� and have confirmed that tσtτencγ is a good
approximation to tσγ in PS ρ, so that Eq. (46),
tσγðnÞjdiv ¼ tσtτencγ

ðnÞjdiv, is satisfied. We note that showing
Eq. (46) for tσγ implies the same result for tσ0tσγ for any
nested pair, σ0 ⊂ σ, because the approximations of tσ0 do
not modify the list of pinch surfaces or power counting in
PS τenc, which was all that was used in the discussion
above. We are now ready to show that with this definition
of τenc, Eq. (44) is satisfied, that is, that the sum of
subtractions cancels for arbitrary overlapping regions. To
proceed, assuming that No½ρ� is not empty, we construct the
enclosing PS for the pair ρ and the largest PS within No½ρ�,
which we denote by σo max½ρ�. By construction, both ρ and
σo max are smaller in the sense of nesting [Eq. (23)] than
every element in NL½ρ�. In fact, τenc½σo max; ρ� is also
smaller than all elements of NL½ρ�, or equal to the smallest,
in the sense of Eq. (23). To confirm this, consider a PS ζ in
NL. For τenc ⊆ ζ, we need

HðζÞ ⊆ HðτencÞ;

SðζÞ⊇SðτencÞ: ð53Þ

The first of these relations follows immediately from the
definition of nesting (23) and the construction (47)–(49), since
anyvertex inHðζÞmust be in bothHðσÞ andHðρÞ, and therefore
in HðτencÞ. The second relation requires us to verify that

SðζÞ⊇SðσÞ ∪ SðρÞ ∪ Y
I≠K

JðσÞI ∩ JðρÞK : ð54Þ

To verify this relation, we note that because PS ζ is larger
than both σ and ρ, SðζÞ ⊃ SðσÞ and SðζÞ ⊃ SðρÞ, so that
SðζÞ ⊃ SðσÞ ∪ SðρÞ. Next, we consider subdiagrams

JðσÞI ∩ JðρÞK . Again, because ζ ⊃ σ, by Eq. (23), any line in

JðσÞI must be in either JðζÞI or SðζÞ, and similarly, because ζ ⊃ ρ

as well, JðρÞK must be in either JðζÞK or SðζÞ. The only possibility
for a line in JðσÞI ∩ JðρÞK is then SðζÞ. Equation (54) then
follows, and we have

ζ⊇τenc: ð55Þ

We conclude that the enclosing PS, τenc is contained by all
of the elements of NL½ρ� or is equal to the smallest element
in NL½ρ�. At the same time, τenc itself contains PS σo max,
the largest of the regions in No½ρ�. Therefore, τenc½σo max; ρ�
nests with all the elements of N̄ðρÞ, and either τenc½σo max; ρ�
is already contained in N̄ρ or the set N̄ρ;τenc ≡
fN̄ρ; τenc½σo max; ρ�g is an acceptable nesting, and is already
included in RðnÞ

P GðnÞ [Eq. (32)]. Also, tσo max
tτenc½σo max;ρ�γ is a

good approximation to tσo max
γ in region ρ, so that Eq. (46)

holds. Then, leading contributions cancel, either between
nesting N̄ρ and N̄ρnτenc½σo max; ρ� if τenc is already in N̄ρ, or
between N̄ρ and N̄ρ;τenc if it is not. Thus, we have verified
the cancellation of the sum over N̄ρ in Eq. (44) and the
ultraviolet finiteness of the subtracted diagram (34), which
is what we were after.

III. RENORMALIZATION OF WILSON-LINE
AMPLITUDES AND FACTORIZATION FOR

PARTONIC AMPLITUDES

In this section, we apply the regularization procedure of
the foregoing section to verify the multiplicative renorma-
lizability of multieikonal vertices involving massless
Wilson lines, thus generalizing the results of Brandt,
Neri and Sato in Ref. [22]. We will also confirm the
factorization of partonic amplitudes in coordinate space,
corresponding to the momentum-space factorization of
S-matrix amplitudes for fixed-angle scattering shown
originally by Sen in Ref. [17].
Our discussion begins by reviewing how the soft-collinear

and hard-collinear approximations in Eqs. (9)–(12) result in
exact scalar polarizations for gauge lines that couple the soft
to jet subdiagrams, and for all unphysically polarized gluons
coupling jets to the hard subdiagrams [12]. We conclude
from gauge-theory Ward identities that the approximation
operators, tρ [Eq. (20)], act to factorize amplitudes into hard,
jet and soft subdiagrams at the level of integrands. We then
use these factorization properties and the nested subtractions
of Eq. (30) to renormalize multieikonal vertices coupling
massless Wilson lines, and factorize amplitudes for massless
partons, when the positions of all external fields define a
physical scattering process.

A. Approximations and Ward identities

We recall that the action of the approximation operator tρ
is to perform the soft- and hard-collinear approximations on
gauge propagators that attach the soft subdiagram for PS ρ to
the jet subdiagrams and on gauge propagators that attach the
jet subdiagrams to the hard subdiagram of PS ρ, such that the
leading singularity of γ in neighborhood n̂½ρ� is given by
Eq. (20). Reference [12] showed how the soft-jet and jet-
hard gluon connections, approximated by their dominant
polarization states as in Eq. (20), may be replaced by scalar
polarizations (equivalent to longitudinal polarizations for
massless particles). We begin with a review of the method.
Consider first a soft-jet connection, as specified by Eq. (9).
We rewrite the propagator given in Eq. (9) as

Dμνðx − τðKÞβKÞ ¼
∂

∂τðKÞ
Z

τðKÞ

∞
dτKDμνðx − τKβKÞ

¼ ∂
∂zðKÞ · β̄K

Z
zðKÞ·β̄K

∞
dτKDμνðx − τKβKÞ;

ð56Þ
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where we have used the definition of τðKÞ in terms of zðKÞ,
which is the position of the vertex in jet subdiagram K to
which this line attaches. We then integrate by parts in
β̄K · zðKÞ in Eq. (20) so that the derivative now acts on the βK
component of the jet function in the soft-collinear approxi-
mation. To this, we are free to add derivatives with respect to

the other coordinate components of zðKÞμ to the integrand,
acting on corresponding components of the jet subdiagram,
because these terms are total derivatives and vanish after
the integration. The soft-collinear approximation (9) then
becomes [12]

scðKÞ½Dμνðx − zðKÞÞ�JνðzðKÞÞ

→
Z

zðKÞ·β̄K

∞
dτKDμν 0 ðx − τKβKÞβKν 0 ð−∂ νJνðzðKÞÞÞ; ð57Þ

where the right-hand side is to be interpreted as the integral
over an eikonal line in the jet direction βK, and parameter τK
is the position of the attachment of the soft line, x − τKβK to
this eikonal, multiplied by the divergence of the jet function
at vertex zðKÞ. This summarizes the soft-collinear approxi-
mation defined in Ref. [12] for coordinate-space integrals,
and can be carried out independently for each gluon to which
we apply the soft-collinear approximation.
Similarly, an unphysical gluon coupling the I jet to the

hard-scattering function, as in Eq. (11) is replaced in the
hard-collinear approximation by a convolution in a single
component of the gluon propagator with the divergence of
the hard-scattering function,

hcðIÞ½Dμνðz − yðIÞÞ�HνðyðIÞÞ

→
Z

yðIÞ·βI

∞
dηIDμν 0 ðz − ηI β̄IÞβ̄Iν 0 ð−∂ νHνðyðIÞÞÞ: ð58Þ

The right-hand sides of Eqs. (57) and (58) are respectively
the Fourier transforms of the soft-collinear and hard-
collinear approximations in momentum space. The
application of the momentum-space approximations was
discussed extensively in Refs. [14,15], for example.
Replacing the jet-soft connections by scalar-polarized
gluon lines that are associated with the scalar operator
∂μAμðxÞ allows us to apply the gauge-theory Ward iden-
tities. After the sum over all diagrams, the Ward identities
then ensure the factorization of the soft lines from jet
subdiagrams in coordinate space, in exactly the same way
as in momentum space in Refs. [14,15]. We note that the
Ward identity we need for showing the factorization in
the case of multieikonal amplitudes was derived as part of
the proof of renormalizability for smooth Wilson lines in
Ref. [45]. The resulting factorization is illustrated in Fig. 7.
The factorized amplitudes illustrated by Fig. 7 are of

course somewhat different in the cases of multieikonal
and partonic amplitudes, and we will begin with the

multieikonals. For multieikonal amplitudes the jets are
themselves singlet cusp operators,

j cuspI ðεÞ ¼ ccuspI ðβI; β̄I; εÞ
× h0jTðΦ½fI �

βI
ð∞; τIβIÞΦ½fI �†

β̄I
ð∞; τIβIÞÞj0i; ð59Þ

which, as indicated by its argument, may be regulated
dimensionally. The vectors τIβI are the positions of the
cusps after the application of the Ward identities, but the
matrix element must be independent of τI by translation
invariance. In addition, because of the symmetry between
velocities βI and β̄I , these jet functions have collinear
singularities in both the βI and β̄I directions if β̄2I ¼ 0, as in
our discussion above. As shown in the previous section, all
β̄I collinear singularities cancel in the sum over nestings,
although this is only true for the full amplitude. The
prefactor cIðβI; β̄I; εÞ is chosen to eliminate overall diver-
gences associated with the choice of vector β̄I in the
factorized form. As we shall review in the following
section, collinear singularities for β̄I occur additively in
the logarithm of jI , and can therefore be compensated by a
multiplicative factor in each of the jets, and correspond-
ingly by the inverse factor in the remaining soft and hard
factors of the amplitude. Collinear singularities associated
with β̄I correspond to the rapidity divergences discussed in
direct QCD and soft-collinear effective theory in the
references cited in Refs. [7,46], for example, where specific
methods of handling these extra divergences were devel-
oped. In general, the factorization of jet and soft functions
requires an additional renormalization, as we introduce
composite operators into the matrix elements for the jet
functions, and also in the soft function. We will show below
that the renormalization of the soft function is also
multiplicative.
For multieikonal amplitudes, the jet, soft and hard

functions are in convolution only with respect to distances
τI from the origin along each of the eikonal velocities, βI .

FIG. 7. Factorization in a leading region of a vertex function,
illustrating Eq. (60). Each line ending in an arrow represents
arbitrary numbers of gluons in the soft-collinear or hard-collinear
approximation defined in the text. As in Fig. 1, the double lines
passing through the jet functions may represent either Wilson
lines or partons.
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The eikonal jet functions, however, are independent of the
position of their cusps, and we may write

tρΓ ¼
�Y

I
jcuspI;ρ ðεÞ

Z
dτIλρðfτIgÞ

�ðn−mÞ

×
X
γðmÞ

γðmÞðfτIβIgÞ; ð60Þ

where the product × indicates a product in color space, and
where the remaining integrals are over light-cone variables
along the directions βI of the jets. After the sum of
diagrams necessary for the Ward identities, the dependence
on ρ of the right-hand side is all in the order, labeledm < n
of the sum over possible hard subdiagrams and in the
choices of the individual jet functions jcuspI and of the soft
subdiagram, labeled λρ. Their total order is denoted by
n −m, for a specific PS ρ. In the spirit of the notation of
Eq. (20) for the approximation operators, the factorized soft
and jet functions may be represented as

λρðfτKgÞ ¼
Y
K

c−1K

Z
τK

duKβ
μK
K SðρÞfμKgðfuKgÞ; ð61Þ

jcuspI;ρ ðεÞ ¼ cI

Z
0

dvIJ
ðρÞν0I
I ðfvIg; εÞβ̄I;ν0I : ð62Þ

Relative to Eq. (20), the integrals over distances along
light-cone directions, uK and vI , corresponding to τðKÞ in
Eq. (10) and ηðIÞ in Eq. (13), act only on the soft and jet
functions, and are no longer in convolution with the jet and
hard functions, respectively, except through the lower limit
τK for the Wilson lines of the soft function, which is set by
the position of the outermost vertex of the hard subdiagram
on each eikonal line βK . In both functions, these integrals
are ordered along the relevant eikonals, which we indicate
by an overline.
The factorized result (60) is by itself suggestive, and also

represents the true behavior of the amplitude in region ρ.
We now turn to a more complete derivation, which starts
from the nested subtraction forms of the multieikonal and
partonic amplitudes. We will derive a single expression that
combines the approximations associated with all PSs. For
multieikonal amplitudes, we will use factorization through
Ward identities to construct a soft function that incorporates
the color coherence properties of the amplitude, and which
is renormalized multiplicatively. We will then go on to use
this result to show that partonic amplitudes factorize into a
form that involves the same soft function.

B. Factorization and renormalization for multieikonal
vertices with massless Wilson lines

So far, all of our integrals were computed using the
renormalized gauge-theory Lagrangian. As a composite
operator, the multieikonal vertex itself produces ultraviolet
divergences, and requires further renormalization. The

multiplicative renormalizability of such vertices was
proved in Ref. [22] for massive Wilson lines. In this
section we confirm that multiplicative renormalization
survives the zero-mass limit in Minkowski space, in spite
of the presence of nonlocal ultraviolet collinear singular-
ities. We will find that the latter factor into universal jet
functions, depending only on the color representations of
the Wilson lines, which can themselves be renormalized
multiplicatively. All color coherence between different
Wilson lines is contained in a standard soft function matrix,
which requires multiplicative renormalization, as shown in
momentum space in Ref. [17]. The discussion below shows
how this renormalization and factorization can be imple-
mented in covariant gauges for massless lines, and in
coordinate space.
Starting from Eq. (30), we consider the sum over

nestings of an arbitrary nth-order diagram, γðnÞ, either
partonic or multieikonal, with external self-energies
removed. We isolate within each nesting the smallest PS
that corresponds to the largest, that is, highest-order, hard
subdiagram, and denote this PS by σ0½N�. In general, σ0 is
not the smallest PS in the nesting, because there may also
be pinch surfaces with the same hard subdiagram, but larger
jet subdiagrams. These differ from PS σ0 by increasing jet
subdiagrams at the expense of soft subdiagrams. Separating
the subtractions smaller and larger than σ0, we rewrite our
expression for the n-loop amplitude in terms of approxi-
mation operators [Eq. (30)] as

GðnÞ ¼
X
γðnÞ

X
σ0½γðnÞ�

X
Ncoll½σ0�

Y
ω∈Ncoll½σ0�

ð−tωÞtσ0

×
X
N>½σ0�

Y
σ∈N>½σ0�

ð−tσÞγðnÞ þ RðnÞGðnÞ; ð63Þ

where Ncoll½σ0� labels nestings smaller than σ0, which share
the same hard subdiagram (after the use of Ward identities),
while N>½σ0� represents all nestings that have σ0 as their
smallest element. At this stage, the symbol GðnÞ may refer
to a partonic as well as a multieikonal amplitude. Each σ0
divides diagram γðnÞ into two subdiagrams. The first, which

we will denote by λðn−mÞ ¼ Sðσ0Þ ∪ Q
IJ

ðσ0Þ
I is an n −mth-

order “outer” subdiagram, consisting of lines in the soft
and jet subdiagrams of σ0. We count in order n −m those
factors of the coupling associated with vertices where jet
lines attach to the hard subdiagram of PS σ0. Subdiagram
λðn−mÞ is connected to the remaining, hard subdiagram,
Hðσ0Þ, by jet lines only. The remaining order of Hðσ0Þ is m.
The approximation operators tω in Eq. (63) take into
account all nestings involving soft-collinear connections
in the outer subdiagram.
For notational purposes, we now identify a “reduced”

hard subdiagram, which we will denote by γ̄ðmÞ½σ0�. This is
the diagram found by deleting unphysically polarized jet
gluons from the hard subdiagram. By construction, γ̄ðmÞ is
irreducible under cuts of the external eikonal lines.
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We now claim, following Collins [7], that the Ward
identities can be applied to the subtracted inner diagrams
just as for the unsubtracted case. We imagine acting with
the approximation operators tσ in Eq. (63) one at a time,
starting with the right most, that is, the one corresponding
to the largest PS in nesting N, which we will refer to as

σðNÞ
max. Summing over diagrams, the application of Ward

identities leads to a factorized form, with a soft subdiagram,

Sðσ
ðNÞ
maxÞ and partonic jets, as in Fig. 7. To this set of diagrams

we apply the approximation operator corresponding to the
next-largest PS. By the nesting construction, this approxi-
mation operator acts only on lines in the jet and soft

subdiagrams of PS σðNÞ
max, leading through the Ward iden-

tities to a new set of jet and hard subdiagrams. In this set,

the nesting requirement allows lines from the jets of σðNÞ
max to

be absorbed into the hard subdiagram, and lines of the soft

subdiagram of σðNÞ
max to be absorbed into new, fully eikonal

jet subdiagrams, which, however, are now disconnected
from the partonic jet subdiagrams that are produced by t

σðNÞ
max
.

This procedure can be repeated as many times as there are
approximation operators in any nesting, and at each stage,
the Ward identities can be used. As a result of the nesting,
all lines and vertices of the soft subdiagram corresponding
to σ0, the smallest PS that has the hard subdiagram shared
by all smaller PSs in the nesting, are already in a subdia-

gram of Sðσ
ðNÞ
maxÞ. Similarly, all jet lines of σðNÞ

max are in the
corresponding jet subdiagrams of σ0. The approximation
operator, tσ0 acts to separate the lines of diagrams, λðn−mÞ

from the remaining diagrams, γ̄ðmÞ as in Fig. 7 and as in the
partonic case [Eq. (60)], and also factorizes the soft and jet
subdiagrams within λðn−mÞ. At each stage in this process,
the subdiagrams that are left behind as subdiagram λðn−mÞ
is factorized are independent of the number of scalar-
polarized lines to which we have applied the Ward
identities. The series of diagrams that result from this
procedure is thus identical to the diagrams that would be
found by the proper subtractions of diagram γ̄ðmÞ. Then,
once λðm−nÞ is factored, we may replace the sum over
nestings N>½σ0� of γ

ðnÞ in Eq. (63) by a sum over the proper
nestings of γ̄ðmÞ.
All these considerations apply as well to partonic and

multieikonal amplitudes, but for now we restrict our
discussion to multieikonal amplitudes, and return to the
partonic case in the following subsection. Applied to the
multieikonal case, the Ward identities factorize subdiagram
λeikonal from the remainder of the nth-order diagram, giving

ΓðnÞ¼
Y
I

Z
dτI

X
λðn−mÞ
eikonal

Y
ω∈Ncoll½λðn−mÞ

eikonal�
ð−tωÞt̂σ0½Ncoll�λ

ðn−mÞ
eikonalðfτIβIgÞ

×HðmÞ
eikonalðfτIβIgÞþRðnÞΓðnÞ; ð64Þ

where the function HðmÞ
eikonal absorbs the action of all proper

subtractions on γ̄ðmÞ
eikonal. Precisely because γ̄

ðmÞ
eikonal is eikonal,

we have for m > 0

HðmÞ
eikonalðfτIβIgÞ
¼

X
γ̄ðmÞ

X
NP½γ̄ðmÞ

eikonal�

Y
σ∈NP½γ̄ðmÞ

eikonal�
ð−tσÞγ̄ðmÞ

eikonalðfτIβIgÞ

¼
X
γ̄ðnÞ

RðnÞ
P γ̄ðnÞeikonal

¼ 0; ð65Þ

where we have used the vanishing of the sum of proper
subtractions in the eikonal approximation (39). Term by
term, however, the variables τI are the positions of the
Ith Wilson line vertices farthest from the multieikonal
vertex in each diagram. These are the only integration
variables that link the diagrams λeikonal with those

of Heikonal ¼ Hð0Þ
eikonal ¼

Q
IδðτIÞ.

The operator t̂σ0 in Eq. (64) represents the remaining
action of tσ0 on diagrams λðn−mÞ, which consists of the
union of the soft and collinear subdiagrams of PSs σ0.
In the case where λðn−mÞ is entirely soft on PS σ0, we
define t̂σ0 ¼ 1.
Summing Eq. (64) over all orders, and using Eq. (65),

now gives for multieikonal amplitudes,

Γ ¼
Ya
I¼1

Z
dτIΛðfτIβIgÞ; ð66Þ

with

FIG. 8. Factorization in a leading region of a multieikonal or
partonic amplitude, illustrating Eqs. (64) and (81), at fixed values
of τI , τJ and ηI , ηJ , which are coordinates of the outermost
vertices of the hard subdiagram along each external line. In
multieikonal amplitudes, the ηI are all identically zero. Only two
external lines are shown, but the result generalizes to any number.
The jet functions are given by the perturbative expansions of the
matrix element in Eq. (59). The hard function on the right
contains all proper subtractions and reduces to the lowest-order
vertex for multieikonal amplitudes, but retains a full perturbative
expansion in partonic amplitudes.
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ΛðfτIβIgÞ

¼
X∞
i¼0

X
λðiÞ

X
Ncoll½λðiÞ�

Y
ω∈Ncoll

ð−tωÞt̂σ0½Ncoll�λ
ðiÞðfτIβIgÞ; ð67Þ

where i ¼ n −m in Eq. (64) and λðiÞ represents an arbitrary
i-loop diagram. This factorization is illustrated by Fig. 8,
with two external lines shown explicitly. After the sum over
all proper subtractions, the eikonal lines of the soft function
Λ meet at a point as in Fig. 7.
The action of the Ward identities on any sum of ith-order

multieikonal diagrams λðiÞ by any tω, including t̂σ0 is

− tω
X
λ

λðiÞðfλIβIgÞ

¼
�
−
Ya
I¼1

t̂ðiIωÞI

�X
λ

λðiÞðfτIβIgÞ

¼ −
Ya
I¼1

jðiIωÞðτIβIÞ
X
λ

λði−
P

a
I¼1

iIωÞðfτIβIgÞ; ð68Þ

where
P

λ applies to all diagrams of the same order, and
where in the first equality the approximation operator tω is

resolved into independent approximation operators t̂ðiIωÞI ,
each implementing the soft-collinear approximation on a
subdiagram connected to the Ith Wilson line. Each
approximation operator t̂I includes information on the loop
order of this subdiagram, which we denote by iIω. Operator

t̂ðiIωÞI factorizes jet subdiagram jðiIω Þ, and replaces it by a
Wilson line attached to the remaining soft subdiagram. The
jets found this way are, up to a constant, the order-by-order
expansion of the matrix elements of Eq. (59), and are
independent of the positions τI of the cusps for the

multieikonal case. This is not, however, the case for the
remaining soft subdiagram, which is singular whenever
more than one τI vanishes in general. This procedure can be
repeated for each of the jets, and for the action of the nested
(smaller) pinch surfaces.
We now define a notation for products of jet functions,

evaluated at fixed loop order, l. These products depend
on the vectors that define the jets, their end points τI , and
the number of loops, but not on the relative ordering
(labeled ω above) of the subtraction within the specific
nesting,

J ð0ÞðfβI; β̄IgÞ ¼ 0;

J ðlÞðfβI; β̄IgÞ ¼
X
flIg

δl;
P

lI

Ya
I¼1

jðlIÞI ðfβI; β̄IgÞ; l > 0;

ð69Þ

where the jet functions jðlIÞI are the sum of all lI-loop-order
diagrams for the jet function. Summing over loop order l,
we find that 1þ J is the product of jet functions,

1þ
X∞
l¼1

J ðlÞ ¼
Ya
I¼1

�X∞
lI¼0

jðlIÞI

�

¼
Ya
I¼1

jI: ð70Þ

In fact, all massless jet functions are equivalent, differing
only in multiplicative color factors that depend on the
representation of the Wilson line.
Appling Eqs. (68) and (69) to the right-hand side of the

relation (67) that defines Λ, we find

ΛðfτI; βI; β̄IgÞ ¼
X∞
i¼0

Xi

l¼0

Xl

nJ¼0

Xl

l0¼0

� � �
Xl

lnJ ¼0

δl−l0;
PnJ

k¼1
lk
ðδl0;0 þ J ðl0ÞðfβI; β̄IgÞÞ

×

�
δl−l0;0 þ

YnJ
k¼1

ð−J ðlkÞðfβI; β̄IgÞÞ
�
λði−lÞðfτIβIgÞ

¼ E
X∞
i0¼0

λði0ÞðfτIβIgÞ; ð71Þ

where in the first equality nJ is the number of nontrivial
approximation operators t̂I from Eq. (68) that act as we sum
over all nestings, and l0 is the number of loops in the jet
functions of σ̂0. The case when the operator t̂σ0 ¼ 1 in
Eq. (63) is represented by the product of Kronecker delta
terms. In the second equality, we have changed the
summation over the total order, i to one over the order
of the function λ that remains after the factorization of all
jet functions, which is i0 ¼ m − l. This factorizes the

sums over orders for the jets from the remaining diagram.
The complete sum over jet functions is now
represented by

E ¼
X∞
l¼0

Xl

l0¼0

Xl−l0
nJ¼0

Xl−l0
l1¼0

� � �
Xl−l0
lnJ ¼0

δl−l0;
PnJ

k¼1
lk
ðδl0;0 þ J ðl0ÞÞ

×

�
δl−l0;0 þ

YnJ
k¼1

ð−J ðlkÞÞ
�
: ð72Þ
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Here and below we drop the arguments of the collective jet
functions J , leaving their dependence implicit.
In fact, we easily see that E ¼ ð1þ J Þ=ð1þ J Þ ¼ 1,

where J ≡P
l≥1J

ðlÞ. In detail, starting from Eq. (72), the
proof is

E ¼
X∞
l0¼0

ðδl0;0 þ J ðl0ÞÞ

×

�
1þ

X∞
nJ¼1

X∞
l1¼0

� � �
X∞
lnJ ¼0

YnJ
k¼1

ð−J ðlkÞÞ
X∞
l0¼nJ

δl0;
PnJ

k¼1
lk

�

¼
X∞
l0¼0

ðδl0;0 þ J ðl0ÞÞ
�
1þ

X∞
nJ¼1

�
−
X∞
l¼0

J ðlÞ
�nJ

�

¼ 1: ð73Þ

In the first equality, l0 ¼ l − l0 in Eq. (72) is the total order
of all the nontrivial jet functions, J , and is always greater
than or equal to nJ by the definitions (69). Equation (73)
is useful because first, from Eq. (70), 1þ J ¼ Q

Ij
cusp
I is

the product of jet functions, so that we have shown
the factorization of jet functions, and second, ð1þ
J Þ−1Pmλ

ðmÞ is precisely the collinear-subtracted multi-
eikonal amplitude when the limit τI ¼ 0; I ¼ 1;…; a is
taken. We illustrate the repeated use of nested approxima-
tion operators in Fig. 9.
Back in Eq. (66), we can use Eqs. (70) and (71) to rewrite

the full amplitude as

Γ ¼
Ya
I¼1

Z
dτIEðfτIβIgÞ

X∞
i¼0

λðiÞðfτIβIgÞ

¼
Ya
I¼1

j cuspI

Z Ya
I¼1

dτI
1Q

a
I¼1 j

cusp
I

λðfτIβIgÞ

≡Ya
I¼1

j cuspI SðfβIgÞ; ð74Þ

where λ≡P
iλ

ðiÞ, and where S is a “soft function,” a matrix
in color space that is free of collinear singularities, but
which requires renormalization for its purely short-distance

UV divergences. In identifying the products of jet functions
in the numerator and denominator, we multiply and divide
by the products of normalization constants cI , as in Eq. (59)
to properly normalize the jet functions. Here, we have again
used the independence of the jet functions 1þ J ¼ Q

jcuspI
from the positions of their cusps.
The renormalization of the soft function now follows the

standard procedure, as outlined for products of spacelike
eikonal lines in Ref. [22]. We define Sð1Þ as the overall
UV divergence of the one-loop soft function, and use the
iterative construction

SðnÞjdiv ¼
Xn
m¼1

Sðn−mÞSðmÞjdiv; ð75Þ

where, SðmÞ is themth-order soft function after multiplicative
renormalization up to m − 1 loops. This is possible because
the soft function has only local, UV divergences. The
original matrix S can now be renormalized by defining [22]

SrenðfβI · βJgÞ ¼ Z−1
S S ⇒ SðnÞren ¼ Z−1ðnÞ

S þ SðnÞ

þ
Xn−1
m¼0

Sðn−mÞZ−1ðmÞ
S : ð76Þ

The inductive construction of the matrix renormalization

constant Z−1
S then follows by choosing Z−1ðmÞ

S ¼ −SðmÞjdiv
starting with m ¼ 1.
From Eq. (74), the full multieikonal amplitude is renor-

malized by the same matrix Z−1
S , and is proportional to a

product of jet functions times the renormalized soft matrix,

Γren ¼ Γ × Z−1
S ¼

Y
I

jI Sren: ð77Þ

This relation was the starting point for investigations of
color evolution, for example, in Ref. [23]. In the following
subsection, we will apply essentially the same procedures to
partonic amplitudes, and will find that the same renormal-
ized soft matrix reappears.

FIG. 9. The action of a pair of approximation operators in a given nesting. The resulting subsequent jets are eikonal.
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C. Factorization for partonic amplitudes

Proceeding as for Wilson-line amplitudes, we have for
partonic amplitudes,

GðnÞ ¼
X
γðnÞ

X
σ0½γðnÞ�

X
Ncoll½σ0�

Y
ω∈Ncoll½σ0�

ð−tωÞtσ0

×
Y

σ∈Nσ0
½γðnÞ�

ð−tσÞγðnÞ þ RðnÞḠðnÞ; ð78Þ

which is the analog of Eq. (64), in terms of partonic
diagrams, γðnÞ. Again, operators tσ are ordered from left to
right in increasing size of PS, or equivalently decreasing jet
and hard subdiagrams, and PS σ0 is the smallest PS with the
largest hard subdiagram in the nesting. As for the multi-
eikonal amplitude, the action of approximation operators
tσ0 and larger is to factor subdiagrams λðn−mÞ from an mth-
order short-distance function CðmÞ,

GðnÞ ¼
Y
I

Z
dηI

X
λðmÞ

Y
ω∈Ncoll½σ0�

ð−tωÞt̂σ0λðn−mÞðfτIβIg; fxI − ηI β̄IgÞCðmÞðfτIβIg; fηI β̄IgÞ þ RðnÞGðnÞ; ð79Þ

where as in Eq. (64), t̂σ0 represents the action of tσ0
restricted to subdiagram λðn−mÞ. In this expression, the
subdiagrams λ now depend on two sets of variables. As in
the multieikonal case, the factorized soft subdiagram
depends on the longitudinal variables τI along the direc-
tions of the Ith jet. The factorized jet subdiagrams remain
independent of the τI, but in the partonic case they depend
on distances ηI along the complementary directions for
each jet, ηI β̄I . The ηI dependence in partonic jets is due to
the variability of the jet functions with the position of the
vertex at which the physical parton line attaches the jet to
the hard subdiagram (here at PS σ0), as in Eq. (12). Note
that in multieikonal amplitudes this dependence is absent.
In effect the physically polarized parton is given infinite
energy and is replaced by a Wilson line, on which ηI ¼ 0
identically.
The partonic short-distance function CðmÞ in Eq. (79) is

given by

CðmÞðfτIβIg; fηI β̄IgÞ

¼
Y
I

Z
d4yIδðyI · βI − ηIÞδðyI · β̄I − τIÞ

×
X
γ̄ðmÞ

X
NP½γ̄ðmÞ�

Y
σ∈NP½γ̄ðmÞ�

ð−tσÞγ̄ðmÞðfyIgÞ; ð80Þ

where γ̄ðmÞ is the set of diagrams of order m, with external
vertices yI , at which physically polarized partons attach.
As in the multieikonal case, summing Eq. (79) over all

orders gives a factorized form

G ¼
Ya
I¼1

Z
dηI

Z
dτIΛpartðfτIβIg; fηI β̄IgÞ

× CðfτIβIg; fηIβ̄IgÞ; ð81Þ

with a partonic soft-collinear function given by

ΛpartðfτIβIg; fηI β̄IgÞ

¼
X∞
i¼0

X
LðiÞ

X
Ncoll½LðiÞ�

Y
ω∈Ncoll

ð−tωÞt̂σ0LðiÞðfτIβIg; fηI β̄IgÞ;

ð82Þ
now in terms of partonic diagrams LðiÞ. The same analysis
of the approximation operators in t̂σ0 and the nestings Ncoll

leading to Eq. (71) in the multieikonal case now gives

ΛpartðfτIβIg; fηI β̄IgÞ

¼
Y
I

j partI ðηI β̄IÞ
1Q

Ij
cusp
I

X
m

X
λðmÞ

λðmÞðfτIβIgÞ: ð83Þ

After the factorization of the partonic jet functions (by the
operator tσ0), the functions λ

ðmÞ here are again multieikonal
diagrams, the same as in Eq. (67). As in the multieikonal
case, the partonic jet functions in the numerator and the
eikonal jet functions in the denominator can be normalized
by the same constants cI in Eq. (59). All partonic
information has been factorized into overall jet factors
by the action of tσ0 in Eq. (78). These partonic jet functions
are given by vacuum expectation values of partonic fields,
ϕ, recoiling against a Wilson line in the conjugate color
representation,

j
part½fϕ�
I ðxI; ηI β̄IÞ
¼ ccuspI ðβI; β̄IÞh0jTðϕðxIÞϕ†ðηIβ̄IÞΦ½fϕ�†

β̄I
ð∞; ηI β̄IÞÞj0i;

ð84Þ
where fϕ is the color representation of parton ϕ, β̄I is again
the complementary lightlike vector defined by xI, and x2I
serves to regulate collinear singularities in the β̄I direction.
The factorization of Eq. (81) is illustrated in Fig. 8,
where now the hard subdiagram is nontrivial. The function
CðmÞ is the set of all proper nested subtractions of the
mth-order diagrams γ̄ðmÞ, which, by Eq. (42), cancels all
subdivergences.
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In Eq. (81), we can now use Eq. (83) to rewrite the full
amplitude as

G ¼
Ya
I¼1

Z
dηIj

part
I ðxI; ηIβ̄IÞ

×
Z

dτI
1Q

Ij
cusp
I

λðfτIβIg; fηI β̄IgÞCðfτIβIg; fηI β̄IgÞ;

ð85Þ
where the prefactor is now a product of partonic jet
functions, which result from the approximation operator
tσ0 , while the denominator is the same product of eikonal jet
functions as in the multieikonal case.
There is an additional difference between the partonic

and multieikonal amplitudes. For multieikonal amplitudes,
the subtraction of subdivergences at each order organizes
ultraviolet singularities, which require renormalization, as
in Eqs. (76) and (77). In contrast, before subtractions, the
partonic hard-scattering subdiagram is ultraviolet finite
after taking into account the counterterms of the gauge-
theory Lagrangian. Correspondingly, at fixed values of
the ηI, the τI integrals of CðmÞ converge, since all collinear
and soft regions have been subtracted. At the same
time, when the τI are much smaller than these scales,
the eikonal diagrams λ and C in Eq. (79) both develop
ultraviolet singularities as a result of the subtractions,
which must cancel, since they result from adding and
subtracting singular behavior. This pattern is familiar from
momentum-space factorizations [17,23]. These singular-
ities, however, are removed from the soft matrix S by the
multiplicative renormalization of Eq. (76). We can therefore
regularize both the soft and hard subdiagramsby introducing
Z−1
S ZS between λ and C in Eq. (85). Once this is done, the

soft subdiagram λ becomes independent of the τI for τI → 0,
and we can treat it as a constant, while integrating the
hard subdiagram over the τI at fixed ηI . The result is now the
final coordinate-space factorized form,

G ¼
Ya
I¼1

Z
dηIj

part
I ðxI; ηIβ̄IÞSrenðfβI · βJgÞHðfηI β̄IgÞ;

ð86Þ
withSren the same function as inEq. (76) for themultieikonal
amplitudes, and with a short-distance coefficient function
given by

HðfηI β̄IgÞ ¼ ZS

Y
I

Z
0

dτICðfτIβIg; fηIβ̄IgÞ: ð87Þ

Taken together, the Fourier transforms of Eqs. (86) and (87)
specify factorized amplitudes in momentum space [17,47].

IV. WEBS AND REGULARIZATION

In this section we give a detailed treatment of the
simplest of the eikonal amplitudes, the “cusp,” defined

by Eq. (59), with a gauge-singlet vertex. Our goal is to
relate the regularization procedure developed in Sec. II,
where we exhibited an expression for the cusp and other
amplitudes in terms of nested approximation operators
[Eq. (30)] to the exponentiation properties of the cusp. We
first recall the graphical interpretation of exponentiation.

A. Cusp webs and exponentiation

All multieikonal amplitudes, of the type of Eqs. (4)
and (59) may conveniently be written as exponentials

Γ ¼ expW; ð88Þ

where W is determined by a set of rules that define the
so-called web diagrams, which were first identified and
analyzed for the special case of the cusp matrix element
(59). In all cases, the exponent W is a sum of eikonal
diagrams with modified color factors. For the special case
of the cusp, these diagrams, which we label by w, are
irreducible under cuts of the two Wilson lines [9–11]
(thus the name, “webs”). Webs can be used to show the
exponentiation of double logarithms and double poles, and
of power corrections related to singularities in the pertur-
bative running coupling [47–51]. They help organize
calculations at two loops and beyond in the cusp and in
closed Wilson loops [8,52,53]. The concept of webs can be
generalized beyond the color-singlet cusp and can also
serve as a starting point for a beyond-eikonal expansion
[54–57].
For the cusp, the exponent can be represented as

W ¼
X
websw

C̄ðwÞIðwÞ; ð89Þ

where IðwÞ is the corresponding diagrammatic integral
over the positions of internal vertices of web w. Each web
integral is multiplied by a color factor C̄ðwÞ, modified
relative to the factor CðwÞ that would normally be asso-
ciated with diagram w. It is possible to give a closed form
for C̄ðwÞ [54], but in the following discussion, we will use
the recursive definition [10], given for each diagram by

C̄ðwðnÞÞ ¼ CðwðnÞÞ −
X
d∈D

Y
w
ðniÞ
i ∈d

C̄ðwðniÞ
i Þ; ð90Þ

where the wðniÞ
i are lower-order webs, of order ni, in the

decompositions d of the original diagrams wðnÞ into lower-
order webs, with

P
ini ¼ n. As usual, we denote the

coefficient of ðαs=πÞn in W as WðnÞ, and similarly for all
other functions.
The sum in Eq. (90) is over all “proper” web decom-

positions D½wðnÞ�, not including wðnÞ itself, and the right-
hand side vanishes identically for diagrams γðnÞ that are not
webs, for which we have [10,11]
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X
D½γðnÞ�

Y
wi∈D½γðnÞ�

C̄ðwiÞ ¼ CðγðnÞÞ: ð91Þ

As a result, the nth-order contribution, WðnÞ, to the sum of
all diagrams that contribute to the cusp at the same order
can be written as

WðnÞ ¼
X
γðnÞ

�
γðnÞ − IðγðnÞÞ

X
D½γðnÞ�

Y
w∈D½γðnÞ�

C̄ðwÞ
�
: ð92Þ

Wewill use this form below. From now on, all diagrams are
eikonal, and we drop subscripts to identify this. The web
prescription forW, the logarithm of the cusp, was originally
identified in momentum space [10,11], but also has a very
simple coordinate-space derivation [55].
Web diagrams for cusps with massive eikonals have only

a single, overall ultraviolet (and infrared) divergence [22],
up to multiple poles associated with the running of the
coupling. In the massless limit, they develop a double pole
times the cusp anomalous dimension, again with higher-
order poles that can be predicted by the running of the
coupling order by order [49,50,52]. The treatment of
vanishing mass in the cusp was developed in Ref. [52]
in momentum space, employing physical gauges.
We now study the fully massless case in Feynman gauge.

Each diagram w in Eqs. (89) or (92) can be written as an
integral over its “leading” vertices, that is, vertices at the
furthest distances from the cusp vertex along each Wilson
line [8],

W ¼
Z
0

dτdτ̄
ττ̄

fWðαsðμ2Þ; μ2ττ̄; εÞ; ð93Þ

where in the absence of masses, the dependence of the
integrand reduces to just a few variables. Standard pertur-
bative renormalization introduces dependence on the
renormalization scale μ2 as the positions of vertices are
integrated over at fixed τ and τ̄. On a diagram-by-diagram
basis these integrals have many nonlocal subdivergences,
involving jet and hard subdiagrams, which show up as
logarithmic enhancements, as analyzed in Ref. [12]. We
may think of these integrals as cut off at some large length
scale to avoid explicit infrared singularities. The resulting
integrand fW is a renormalization-scale-independent func-
tion that is the result of all the remaining integrals, as in the
two-loop example treated in detail in Ref. [8]. For the sum
of web diagrams we can thus write

W ¼
Z
0

dτdτ̄
ττ̄

fWðαsð1=ττ̄Þ; 1; εÞ: ð94Þ

We will refer to the sum over webs at fixed τ and τ̄ as the
“web integrand,” and we will show that after a sum over all
diagrams, the full web integrand fW is ultraviolet finite
for ε → 0. Renormalization for the web functions is then

manifestly additive, and associated with the singular τ and/
or τ̄ → 0 limits of the integral. The connection between
multiplicative renormalizability and the structure of web
functions has been reviewed recently for both color-singlet
cusps and multieikonal vertices in Ref. [56]. In Sec. V, we
will use the exponentiation in terms of webs to revisit
factorization for multieikonal amplitudes, and discuss
subdivergences in web integrands for these cases. First,
however, we discuss the web construction for the cusp in its
own terms. Although the demonstration below of finiteness
for the cusp function is in some ways more elaborate
than the general discussion of Sec. V, it is more explicit,
and gives insight into the manner in which perturbative
corrections conspire at each order to produce ultraviolet
finiteness.

B. Subtractions, webs and decompositions

Consider the n-loop web,WðnÞ given in Eq. (92). On the
right-hand side of this equation, we replace the simple
sum over diagrams by the sum over all their nested proper
subtractions, as in Eq. (40),

WðnÞ ¼ −
X
γðnÞ

X
NP∈N P½γðnÞ�

Y
ρ∈NP

ð−tρÞγðnÞ

−
X
γðnÞ

IðγðnÞÞ
�X

D½γðnÞ�

Y
w∈D½γðnÞ�

C̄ðwÞ
�
: ð95Þ

The right-hand side is now the difference between the sum
of the proper subtractions for nth-order diagrams (equal to
the diagrams themselves) and the subtractions in Eq. (92)
that define the webs, also summed over all diagrams. In the
following, we will use this form to show that in every
leading region ρ involving a subdivergence, WðnÞ is
integrable. This in turn implies that the nth-order web,
Eq. (92), is itself integrable over all subspaces where
subdiagrams are ultraviolet singular. Ultraviolet divergen-
ces can arise only when all the vertices of the web approach
the origin or the light cone together, which implies the
finiteness of the web integrand fW in Eq. (94).
Let us thus consider WðnÞ in the form (95), restricted to

the reduced neighborhood n̂½ρ� of PS ρ, which we denote by
WðnÞ

ρ . As we have seen in Eq. (28) and the subsequent
discussion, in each region ρ the ultraviolet behavior of the
vertex is well approximated by the single subtraction term,
tρΓðnÞ, while all other nestings cancel. Then, up to non-
singular corrections, when restricted to the neighborhood of
ρ, Eq. (95) becomes

WðnÞ
ρ ¼ −

X
γðnÞ

ð−tρÞγðnÞρ −
X
γðnÞ

IðγðnÞρ Þ
X
D½γðnÞ�

Y
w∈D½γðnÞ�

C̄ðwÞ;

ð96Þ
where here and below we restrict ourselves to divergent
contributions. We will now argue that in region ρ the first
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sum on the right-hand side cancels against those web
decompositions ðD½γðnÞ�Þ in the second sum that “match”
the structure of the leading region ρ, and that other,
“unmatched” contributions to the sum either cancel or
are suppressed in region ρ. We begin our argument by
recalling the action of Ward identities in the first term, as
described in Sec. III A. In this discussion, the integration
region is indicated by a subscript and the perturbative order
by a superscript.
For definiteness, we assume that there is a nontrivial soft

subdiagram at PS ρ, which we now denote by Sρ, as in the
factorized form (60),

tρ
X
γðnÞ

γðnÞρ ¼ S
ðn−mρÞ
ρ × R

ðmρÞ
ρ

¼
X
sρ∈Sρ

s
ðn−mρÞ
ρ ×

X
rρ∈Rρ

r
ðmρÞ
ρ : ð97Þ

In this rewriting of Eq. (60), the soft function Sρ [SðρÞ in
Eq. (61)] multiplies a “remainder” function, Rρ, which (to
avoid clutter) includes sums over the jet and hard subdia-
grams at PS ρ. The function Sρ ¼

P
sρ is the sum of the

soft subdiagrams, sρ, of each γðnÞ in region ρ, connected
directly to β and β̄ Wilson lines, and similarly for the
remainder subdiagram Rρ ¼

P
rρ. We let mρ be the order

of the remainder function in region ρ. In summary, in each
leading region ρ, after a sum over all γðnÞ, Ward identities
factorize the subdiagrams that make up Sρ and Rρ. The sum
over all γðnÞ in region ρ can then be replaced by independent
sums over soft subdiagrams sρ and remainder subdiagrams
rρ, as in Eq. (97).
Next, we separate color and coordinate factors of each

s
ðn−mρÞ
ρ and r

ðmρÞ
ρ in Eq. (97),

tρ
X
γðnÞ

γðnÞρ ¼ S
ðn−mρÞ
ρ × R

ðmρÞ
ρ

¼
X
sρ∈Sρ

Cðsðn−mρÞ
ρ ÞIðsðn−mρÞ

ρ Þ

×
X
rρ∈Rρ

CðrðmρÞ
ρ ÞIðrðmρÞ

ρ Þ: ð98Þ

This is the form that we will compare to the sum of web
subtractions, the second sum in Eq. (95), which becomes

WðnÞ
ρ ¼

X
sρ∈Sρ

Cðsðn−mρÞ
ρ ÞIðsðn−mρÞ

ρ Þ

×
X
rρ∈Rρ

CðrðmρÞ
ρ ÞIðrðmρÞ

ρ Þ

−
X
γðnÞ

IðγðnÞρ Þ
X
D½γðnÞ�

Y
w∈D½γðnÞ�

C̄ðwÞ: ð99Þ

As mentioned below Eq. (96), it is useful to split the set of
decompositions, D½γðnÞ� into the set of those that match the
factorization of soft and remainder functions in the first
term of this expression, and those that do not. More
specifically, matched decompositions of a diagram γðnÞ
are those in which no web contains lines in both the soft
subdiagram sρ½γðnÞ�, and the remainder subdiagram,
rρ½γðnÞ�. Correspondingly, in unmatched decompositions,
at least one web contains lines of both the soft subdiagram
and the remainder in region ρ. In these terms, every
decomposition of diagram γðnÞ is either matched or
unmatched in region ρ. We represent this division of
decompositions for the second term on the right-hand side
of Eq. (99) as

X
γðnÞ

IρðγðnÞÞ
X
D½γðnÞ�

Y
w∈D½γðnÞ�

C̄ðwÞ ¼
X
γðnÞ

IρðγðnÞÞ
� X

DSρ⊗Rρ ½γðnÞ�

Y
w∈DSρ⊗Rρ

C̄ðwÞ þ
X

DSρ∩Rρ ½γðnÞ�

Y
w∈DSρ∩Rρ

C̄ðwÞ
�

≡ wðnÞ
ρ ½Sρ ⊗ Rρ� þ wðnÞ

ρ ½Sρ ∩ Rρ�; ð100Þ
where the first term on the right of the second equality represents the sum over the set of matched decompositions, DSρ⊗Rρ

and the second is the sum over unmatched decompositions, DSρ∩Rρ
.

In the following, we will show that the matched decompositions cancel the factorized subtraction terms of Eqs. (98)
and (99) in region ρ,

0 ¼ tρ
X
γðnÞ

γðnÞρ − wðnÞ
ρ ½Sρ ⊗ Rρ�

¼ S
ðn−mρÞ
ρ × R

ðmρÞ
ρ − wðnÞ

ρ ½Sρ ⊗ Rρ�
¼

X
sρ∈Sρ

Cðsðn−mρÞ
ρ ÞIðsðn−mρÞ

ρ Þ
X
rρ∈Rρ

CðrðmρÞ
ρ ÞIðrðmρÞ

ρ Þ − wðnÞ
ρ ½Sρ ⊗ Rρ�; ð101Þ
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while the unmatched decompositions are suppressed,

wðnÞ
ρ ½Sρ ∩ Rρ� ¼ 0: ð102Þ

Substituted into Eq. (99), these two results show that

WðnÞ
ρ ¼ 0, so that the web integrand is free of ultraviolet

subdivergences.
Before giving our arguments for the results (101) and

(102), we recall that we have assumed that the leading

region ρ has a nontrivial soft subdiagram, S
ðn−mρÞ
ρ . For the

special case of a leading region with no soft subdiagram
(mρ ¼ n), and only jet and hard subdiagrams, we may pick

either of the jet subdiagrams to take the place of S
ðn−mρÞ
ρ ,

with the same result. In the following, we shall suppress the

orders of S
ðn−mρÞ
ρ and R

ðmρÞ
ρ , since these are in principle

fixed by the choice of region ρ.

C. Matched decompositions

It is clear that the sum over matched decompositions of
Eq. (100), DSρ⊗Rρ

½γðnÞ� for each diagram γðnÞ separates into
two independent sums over the web decompositions of
the soft and remainder subdiagrams of γðnÞ. Among these
decompositions are the choices sρ½γðnÞ� and rρ½γðnÞ�, the soft
and remainder subdiagrams themselves, which appear
along with all of the webs made of their decompositions.
Using the general form for webs, Eq. (92), we can thus
separate the color factors associated with the soft and the
remainder subdiagrams,

wðnÞ
ρ ½Sρ ⊗ Rρ� ¼

X
γðnÞ

IρðγðnÞÞ
�
C̄ðsρ½γðnÞ�Þ þ

X
D½sρ½γðnÞ��

Y
d∈D½sρ½γðnÞ��

C̄ðdÞ
�

×

�
C̄ðrρ½γðnÞ�Þ þ

X
D½rρ½γðnÞ��

Y
d0∈D½rρ½γðnÞ��

C̄ðd0Þ
�

¼
X
γðnÞ

IρðγðnÞÞCðsρ½γðnÞ�ÞCðrρ½γðnÞ�Þ; ð103Þ

where in the second equality we have used Eq. (90) for
web-color factors. In effect, after the sum over matched
decompositions, the web-color factors of the soft and
remainder functions revert to their normal form, the same
as in the subtraction terms of Eq. (99), that is, the first term
on the right-hand-side of that equation. As usual, the sum
over D½g� of diagram g refers only to its proper web
decompositions. Note that the color identity in Eq. (103)
extends to all diagrams, g. For a nonweb g0, for which
C̄ðg0Þ ¼ 0, we recall Eq. (91).
Having factorized the product of color factors in the sum

over matched decompositions, we now turn to the coor-
dinate integrals. We reexpress the sum over diagrams γðnÞ in
Eq. (103) as independent sums over soft and remainder
subdiagrams sρ and rρ, and then a sum over all possible
connections of these subdiagrams to the eikonal lines,
respecting relative orderings O½sρ; rρ� along the Wilson
lines of all the vertices that connect gauge lines from
subdiagram sρ and from subdiagram rρ to the Wilson lines,

X
γðnÞ

IρðγðnÞÞ ¼
X
sρ∈Sρ

X
rρ∈Rρ

X
eikonal

orderingsO

IρðO½sρ; rρ�Þ: ð104Þ

In Eq. (103), this gives

wðnÞ
ρ ½Sρ ⊗ Rρ� ¼

X
sρ∈Sρ

X
rρ∈Rρ

X
eikonal

orderingsO

IðO½sρ; rρ�ÞCðsρÞCðrρÞ:

ð105Þ

To this result we apply the coordinate-space eikonal
identity [55], applicable whenever we sum over all con-
nections of a set of web subdiagrams that are attached to
the eikonal lines, respecting the order of gauge lines within
each subdiagram,

X
eikonal

orderingsO

IðO½sρ; rρ;…�Þ ¼ IðsρÞ × IðrρÞ × � � � ; ð106Þ

a “shuffle algebra” identity that generalizes to any numbers
of subdiagrams and any number of eikonal lines. In
Eq. (105), this gives the desired result,

wðnÞ
ρ ½Sρ ⊗ Rρ� ¼

X
sρ∈Sρ

X
rρ∈Rρ

IðsρÞCðsρÞIðrρÞCðrρÞ

¼ Sρ × Rρ; ð107Þ

which shows that Eq. (101) holds for the matched decom-
positions, that is, that the matched decompositions cancel
the subtractions in region ρ.
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D. Unmatched decompositions

We now treat the unmatched decompositions of
Eq. (100), whose sum we have denoted by

wðnÞ
ρ ½Sρ ∩ Rρ�. For any diagram γðnÞ, this sum consists of

decompositions with at least one web that includes one or
more lines in the soft subdiagram sρ½γðnÞ� and one or more
lines in rρ½γðnÞ�. For this discussion, we assume that the
cancellation of subdivergences has been proven to
order n − 1.
From Eq. (100), we have for the unmatched decom-

positions

wðnÞ
ρ ½Sρ ∩ Rρ� ¼

X
γðnÞ

IρðγðnÞÞ
X

DSρ∩Rρ ½γðnÞ�

Y
w∈DSρ∩Rρ ½γðnÞ�

C̄ðwÞ:

ð108Þ
By analogy to our analysis of the matched distributions, we
will exchange the sum over diagrams γðnÞ for sums over
webs. In every element of the unmatched decompositions
D½γðnÞ� ∈ fSρ ∩ Rρg of diagram γðnÞ there is a nonempty
decomposition that includes a subdiagram uρ½γðnÞ� consist-
ing of (one or more) webs, each of which is not all in the

soft subdiagram, and not all in the remainder of γðnÞ. In
general, once subdiagram uρ½γðnÞ� is fixed, there is also a
subdiagram, s0ρ½γðnÞ� whose webs are fully subdiagrams of
S0ρ½γðnÞnuρ�, the soft subdiagram found by removing the
unmatched webs of uρ from γðnÞ, and another subdiagram,
r 0ρ½γðnÞ�, which is fully a subdiagram of the remainder
R0
ρ½γðnÞnuρ�. We can then write for any such decomposition,

γðnÞρ → s0ρ½γðnÞ� ∪ r 0ρ½γðnÞ� ∪ uρ½γðnÞ�: ð109Þ

The sum over such unmatched web decompositions of γðnÞ,
then, can be reorganized as a sum over the independent
decompositions of each of these subdiagrams. For decom-
positions of the soft and remainder subdiagrams, s0ρ and r 0ρ,
the diagrams themselves appear in these sums, along with
all of their decompositions. For each unmatched subdia-
gram, uρ, however, only those decompositions are included
that leave uρ½γðnÞ� fully unmatched. For each choice of uρ,
we can sum over all allowed s0ρ and r 0ρ, and using the color
and eikonal identities, derive the analog of Eq. (107),

wðnÞ
ρ ½Sρ ∩ Rρ� ¼

X
ms;mr

X
s 0ðmsÞ

ρ

X
r 0ðmrÞ

ρ

Iðs0ðmsÞ
ρ ÞCðs0ðmsÞ

ρ ÞIðr 0ðmrÞ
ρ ÞCðr 0ðmrÞ

ρ Þ

×

�X
uρ
IðuρÞ

�
C̄ðuρÞ þ

X
Dun½uρ�

Y
d∈Dun½uρ� C̄ðdÞ

��ðn−ms−mrÞ
; ð110Þ

where we sum over the orders of the soft and remainder
diagrams. In the final sum over diagrams uρ, we group all
fully unmatched decompositions of the unmatched webs uρ
of order n −ms −mr. The coordinate factors of all these
terms are the same. Their color factors, however, get
contributions only from a subset Dun½uρ� of all decomposi-
tions,Dun½uρ� ⊂ DSρ∩Rρ

, i.e., those that are fully unmatched.
We now consider the difference,D½uρ�nDun½uρ�, between this
set and the full set of decompositions of each uρ.
The set of missing decompositions, D½uρ�nDun½uρ�, for a

given uρ includes those that have matched soft and
remainder subdiagrams, which we denote by
wρ½S½uρ� ⊗ R½uρ��, where S½uρ� is the soft subdiagram of
uρ, and R½uρ� is the corresponding remainder. The set
D½uρ�nDun½uρ� also includes many more decompositions,
i.e., those that have decompositions involving some
matched and some unmatched webs of lower order. The
inductive hypothesis, however, assumes Eq. (102) for lower
orders, so the sums over unmatched decompositions of
lower order cancel among themselves. Therefore, by
adding and subtracting matched decompositions
wρ½S½uρ� ⊗ R½uρ�� only, we can derive a factor that consists

of the difference between all decompositions of uρ and its
matched decompositions,

X
uρ

IðuρÞ
X

Dun½uρ�

Y
d∈Dun½uρ�

C̄ðdÞ

¼
X
uρ

IðuρÞ
X
D½uρ�

Y
d∈D½uρ�

C̄ðdÞ − wρ½S½uρ� ⊗ R½uρ��: ð111Þ

Substituting this into Eq. (110), we now have the full color
factor for each diagram uρ in the sum, and we can use
the web-color identity (90) to confirm that the sum of
unmatched decompositions vanishes,

wðnÞ
ρ ½S0ρ ∩ R0

ρ�

¼
X
ms;mr

�X
s0ρ
s0ρ

�ðmsÞ�X
r0ρ
r 0ρ

�ðmrÞ

×

�X
uρ
fuρ − wρ½S½uρ� ⊗ R½uρ��g

�ðn−ms−mrÞ

¼ 0: ð112Þ
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Again, the first factors on the right-hand side are factorized
soft (order-ms) and remainder (order-mr) subdiagrams,
while the third factor is now a sum of all subdiagrams
of order n −ms −mr. The third factor vanishes by
Eq. (101), which states that all subdivergences cancel
against those in the sum of matched decompositions, up
to order n. Thus, all unmatched decompositions cancel in
region ρ to order n, and we confirm Eq. (102) and hence the
absence of subdivergences [Eq. (101)] in the logarithm of
the cusp amplitude [8]. As discussed above, this result
confirms the UV finiteness of the web integrand, fW
in Eq. (94).

V. MULTIEIKONAL AMPLITUDES

The arguments of the previous section apply specifically
to the cusp, where we have used the inductive construction
of web-color factors, Eq. (90). We go on now to study how
these considerations change for amplitudes with multiple
Wilson lines connected at a local vertex, and to explore
the relationship of their exponentiation properties to the
factorization demonstrated in Sec. III.

A. Cancellation of web subdivergences for large Nc

For a multieikonal vertex, Γa with a > 3 Wilson lines,
and a consequent mixing of color tensors [22], it will be
useful to use an alternative expression for webs, introduced
in Ref. [55]. We label each web function with an index
E, which represents a list of the numbers of gauge
lines attached to each Wilson line, E≡ fe1…eag
for a Wilson lines. We then express the sum of all

webs with the same index E, wðiÞ
E , as an integral IE of

integrand WðiÞ
E ,

wðiÞ
E ¼

Ya
α¼1

Yeα
j¼1

Z
∞

τðaÞj−1

dτðαÞj WðiÞ
E ðfτðαÞj gÞ

≡ IE½WðiÞ
E �; ð113Þ

where the τðαÞj label the locations of the vertices coupling

gauge lines toWilson line α, ordered as τðαÞ1 ≤τðαÞ2 ≤���≤τðαÞeα .

The functions WðiÞ
E represent sums over all diagrams with

the specified numbers of eikonal connections, and are
symmetric under exchange, including color, of the gauge

lines attached at each vertex τðαÞj . Summing over connec-

tions, E, we find the complete web, WðiÞ
a as a sum of the

wðiÞ
E , and the amplitude is given by

Γa ¼ exp
�X

i

WðiÞ
a

�

¼ exp

�X
i

X
E

IE½WðiÞ
E �

�
: ð114Þ

In these terms, we can write an iterative expression for the
nth-order web function with a Wilson lines as [55]

WðnÞ
a ¼

X
E

X
γðnÞE

�
γðnÞE −

�
exp

�Xn−1
i¼1

X
E

IE½WðiÞ
E �

��ðnÞ�
;

ð115Þ
where the superscript on the exponential specifies the nth
order in the expansion of the exponential of webs up to

order n − 1. In this expression, the functions WðiÞ
E are

ordered web integrands, whose color factors are matrices
that do not commute in general. In the case of two (or three)
Wilson lines, or in the “planar” limit of large Nc, however,
these factors do commute [58], and the sum over orderings
is equivalent to the modified color factor C̄ðwiÞ in
Eq. (90) above.

We shall assume that each of the web functions WðiÞ
a ¼P

EIE½WðiÞ
E � for i < n gets finite contributions only from

regions where all of its vertices are integrated over finite
distances from the light cone, and where all of its vertices
move to the light cone together. This is to say, we assume

that allWðiÞ
a , i < n are free of subdivergences. We shall see

under what conditions we may infer this result for WðnÞ
a .

The regularization discussion of Sec. II applies as well to
multieikonal vertices as to the cusp. Similarly, for any

neighborhood n̂½ρ� for the diagrams of WðnÞ
a , defined as in

Eqs. (19) and (25), we may construct an expression for

WðnÞ
a;ρ, by analogy to Eq. (96) above,

WðnÞ
a;ρ ¼

X
E

X
γðnÞE

ð−tρÞγðnÞE −
�
exp

�Xn−1
i¼1

X
E

IE½WðiÞ
E �

��ðnÞ

ρ

¼ ð−tρÞΓðnÞ
a;ρ −

�
exp

�Xn−1
i¼1

WðiÞ
a

��ðnÞ

ρ

; ð116Þ

where now the subscript ρ on the exponential term denotes
the contribution of the integrals of the expanded exponential

to region ρ, which defines a potential subdivergence ofWðnÞ
a .

In any such region ρ, the remainder function is defined by
some number rρ < n of vertices in the union of integrals
generated by monomials of webs found from the
expansion of the exponential, which shrink to the origin.
Correspondingly, n − rρ vertices are left at finite distances
from the origin, and define a soft function. The webs in
Eq. (116), as defined in Eq. (113), are expressed as integrals
over the positions of all vertices, including those that attach to
the eikonal lines. As a result, we may separate additively the
contribution to each web function in the exponential from
the region where all of its vertices approach the light cone or
the origin.We denote this contribution, which by assumption

contains the only divergences in WðiÞ
a , i < n, by WðiÞ

a;uv.
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For now, let us assume that all webs commute, in
addition to the assumption of no subdivergences up
to order n − 1. We may then write the result of this
separation as

WðnÞ
a;ρ ¼ð−tρÞΓðnÞ

a;ρ−
�
exp

�Xn−1
i¼1

½WðiÞ
a;finþWðiÞ

a;uv�
��ðnÞ

ρ

; ð117Þ

where we define the finite part as

WðiÞ
a;fin ¼ WðiÞ

a −WðiÞ
a;uv; ð118Þ

which in effect is a regulated version of the ith-order web.
The factorization of the finite and ultraviolet terms of the
web exponent is trivial when the web functions commute
(more generally, it requires the application of the Campbell-
Baker-Hausdorf theorem). The situation is equivalent to
that in the renormalization of multieikonal webs outlined in
Ref. [55]. We shall return briefly to this question below, but
here we continue with the case in which all web functions
commute, and we find simply,

WðnÞ
a;ρ ¼ð−tρÞΓðnÞ

a;ρ−
�
exp

�Xn−1
i¼1

WðiÞ
a;fin

�
exp

�Xn−1
i¼1

WðiÞ
a;uv

��ðnÞ

ρ

:

ð119Þ

The restriction to region ρ now acts entirely on the

exponential of the WðiÞ
a;uv and picks out the sum of order-

rρ remainder contributions to the exponential of webs. By

definition, this is the full set of diagrams ΓðrρÞ
a restricted to

the neighborhood of the light cone and the origin. Similarly,
the exponential of finite parts gives the finite integral of

Γðn−rρÞ
a , so that

WðnÞ
a;ρ ¼ ð−tρÞΓðnÞ

a − Γðn−rρÞ
a;fin ΓðrρÞ

a;uv: ð120Þ

Given the factorization of the full amplitude in region ρ, we
conclude that the two terms on the right cancel, so thatWa;ρ

is finite when integrated over the neighborhood n̂½ρ� of any
PS. For large Nc, then, the full multieikonal web is free of
subdivergences, just as for the cusp. As anticipated above,
the arguments we have given in this section, relying on
exponentiation, are somewhat simpler than those based
directly on the web construction itself.

B. Collinear factorization and web
exponentiation for finite Nc

Relaxing the commutativity of the web functions, we can
still rederive an important result for QCD and other theories
beyond the planar limit. For an arbitrary multieikonal
amplitude, the soft-jet-hard factorization derived above
ensures that collinear singularities are color diagonal and

enter the web function additively. This means that all
subdivergences where some, but not all, vertices approach
the light cone are canceled in multieikonal webs quite
generally. The steps necessary to show this are just the same

as when the webs commute; we need only replace WðiÞ
a;uv

withWðiÞ
a;co, defined as the contribution where all vertices go

to one or more of the light cones,

WðnÞ
a;ρ ¼ ð−tρÞΓðnÞ

a −
�
exp

�Xn−1
i¼1

½WðiÞ
a;central þWðiÞ

a;co�
��ðnÞ

ρ

;

ð121Þ

where WðiÞ
a;central represents the remainder of the web

function, where no vertex approaches the light cone,
although in this case subsets of vertices may approach
the origin. This additive separation is certainly true for
i ¼ 1, because the collinear singularities arise from differ-
ent regions of the same integral. In addition, the sum of all
i ¼ 1 (one-loop) collinear singularities for any multieikonal
vertex is color diagonal (the sum of Casimir invariants, one
for each Wilson line).

We now assume that WðiÞ
a;co, i < n is color diagonal and

thus commutes with all WðjÞ
a;central. The same steps as for the

case of WðiÞ
auv for large Nc then lead to a result analogous to

Eq. (120),

WðnÞ
a;ρ ¼ ð−tρÞΓðnÞ

a − Γðn−cρÞ
a;centralΓ

ðcρÞ
a;co; ð122Þ

where cρ is the order of the collinear subdiagram. Given
this result, all subdivergences involving collinear subdia-
grams of order i < n cancel, and the only remaining
collinear divergences are those in which all vertices
approach any set of the light cones. Again, these collinear
singularities separate into color-diagonal factors, and we
conclude that at order n the collinear singularities of the
web function are additive. Thus, to all orders, collinear
singularities factor into a product in the amplitude,

Γa ¼ exp

�X∞
i¼1

ðWðiÞ
a;central þWðiÞ

a;coÞ
�

¼ exp

�X∞
i¼1

WðiÞ
a;central

�
exp

�X∞
i¼1

WðiÞ
a;co

�
; ð123Þ

where WðiÞ
a;co is the additive part of the ith-order web

function that includes its collinear singularities. In princi-
ple, we could define this function up to a constant by
introducing an appropriate factorization scale. In the
second equality, we use the color-diagonal nature of the
collinear singularities.
We can put the factorized expression (123) into a

standard form, simply by multiplying and dividing by an
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appropriate power of a function whose collinear singular-

ities match those of the exponential of WðiÞ
a;co. For a jet

function corresponding to direction β, let us denote this
function by JIðβ; nβÞ, where nβ is any other vector
introduced in the definition of JI . As this notation suggests,
there is considerable freedom in the choice of JI. An
acceptable choice for JI, however, is to choose nβ ¼ β̄ and
the jet function as the square root of the cusp matrix
element [47,59],

JeikI ðβ; nβÞ≡ ½h0jTðΦ½fI �
βI

ð∞; τIβIÞΦ½fI �†
β̄I

ð∞; τIβIÞÞj0i�1=2;
ð124Þ

corresponding to a choice

ccuspI ¼ ½h0jTðΦ½fI �
βI

ð∞; τIβIÞΦ½fI �†
β̄I

ð∞; τIβIÞÞj0i�−1=2 ð125Þ

in the definition of the eikonal jet, Eq. (59). The square root
reflects the symmetry between the vectors β and β̄, giving
the same collinear singularities associated with both direc-
tions in the matrix element, as is manifest in the expo-
nentiated form (94) for the logarithm of the cusp as a web
integral.
Once we have defined the jet functions, we may

reorganize the factorized multieikonal amplitude as

Γa ¼
�
exp

�X∞
i¼1

WðiÞ
a;central

�
exp ½P∞

i¼1W
ðiÞ
a;co�Q

a
I¼1 J

eik
I

�Ya
I¼1

JeikI

¼ Sa
Ya
I¼1

JeikI ; ð126Þ

where Sa is a collinear-finite soft function, just as in
Eq. (74). Because the eikonal jets cancel all collinear
singularities in the ratio, the ratio may be factorized into
soft and hard eikonal subdiagrams, which are renormalized
locally, in the same manner as described in Sec. III B, and
in the same way as for massive, or other nonlightlike lines
[22,54,55].

VI. CONCLUSIONS

We have studied partonic matrix elements along with
cusp and multieikonal amplitudes for massless Wilson
lines, in coordinate space and Feynman gauge. In all these
amplitudes, ultraviolet collinear and short-distance diver-
gences arise when integrals over the positions of vertices
are pinched in configurations set to fixed lightlike direc-
tions or short distances. We have shown that these
divergences are well approximated by the series of nested
subtractions given in Eq. (30) for partonic matrix elements,
and Eq. (40) for multieikonal amplitudes. The subtraction
procedure allowed us to give very general proofs of the
multiplicative renormalizability of multieikonal amplitudes

and the factorization of partonic amplitudes in Feynman
gauge. These arguments, although presented in coordinate
space, apply as well to the S-matrix in momentum space.
Our discussion confirmed that for the cusp the only

sources of divergences are the limits in which all lines
approach the light cones or the origin together [8]. This is
the content of Eq. (94), with a function fW that is finite for
finite values of the variables τ and τ̄ that define the positions
of the eikonal vertices that are furthest from the cusp. For a
conformal theory, this integrand is effectively constant.
For QCD and related renormalizable theories, the running
coupling produces nontrivial dependence on the product
ðττ̄Þ, which may be chosen as the inverse of the squared
renormalization mass scale. In the general multieikonal
case, due to the nontrivial group structure of the webs the
matching between UV subtraction terms, which factorize,
and decompositions of the exponent no longer holds in
the same fashion. For the large-Nc limit of gauge theory,
however, the arguments go through, and each web becomes
a sum of terms involving the two-dimensional integrals
found in cusps. In this case, as for the cusp, a geometrical
interpretation of the web function applies [8]. Further
developments along these lines, and a coordinate-space
picture for the origin of power corrections in infrared-safe
observables [1] may be possible.
A coordinate-space program building on the techniques

developed here would also include revisiting factorization
proofs for electroweak annihilation [14,15], jet and single-
particle inclusive cross sections in hadron-hadron collisions
[19], in which we may look for the cancellation of long-
distance dynamics directly from a spacetime point of view.
In particular, we may look forward to developing explicit
spacetime pictures associated with the cancellation and
survival of Glauber [7,36,60,61], nonglobal [62] and
superleading-logarithmic corrections [63], and to the
coordinate-space content of the dynamics to which jet
vetos [64] may be sensitive. Each of these examples
involves the measurement of energy flow, directly or
indirectly probing its time development. In such cases,
we may hope that a spacetime description of dynamics will
be complementary to momentum-space analyses.
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APPENDIX: UNIQUENESS OF THE
HARD SCATTERING

Here we give a brief discussion of the uniqueness of the
position of the hard scattering in amplitudes with four or
more external fields. We suppose that we have already
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identified a point in spacetime, y, which satisfies the
Landau equations (see Ref. [12]) for all vertices that
connect lines that are on the light cone. We assume that
two lines have y0 > x0i , and the rest have y0 < x0i . For the
vertex y, connecting four jets in particular the Landau
equations are

X4
i¼1

αiðxμi − yμÞ ¼ 0; ðA1Þ

for each of the external points, xμi , with all αi ≥ 0 and
ðxi − yÞ2 ¼ 0. Without loss of generality, we may translate
the system so that y ¼ 0, giving

X4
i¼1

αix
μ
i ¼ 0: ðA2Þ

We now seek another point in spacetime, y0μ, satisfying
these same Landau equations.
At such a pinch surface we must have simultaneously,

x2i ¼ 0;

ðxi − y0Þ2 ¼ 0: ðA3Þ

This implies that

y02 ¼ 2xi · y0: ðA4Þ

Because the xi are all lightlike and noncollinear, it is
not possible that all xi · y0 ¼ 0 unless y0 ¼ 0. Thus, if
y0 ≠ 0, y02 ≠ 0.
We may now search for a solution to Eq. (A4), in terms

of a rescaled vector,

zμ ≡ y0 μ

y02
; ðA5Þ

in terms of which Eq. (A4) becomes

1 ¼ 2xi · z: ðA6Þ

The Landau equations (A2), however, ensure that

detðxμiÞ ¼ 0; ðA7Þ

and this implies that Eq. (A6) has no solution, other
than y0 ¼ 0.
To go beyond four external points, xμi , we suppose

we have another external vector, xμ5. Either x5 is a linear
combination of x1;…; x4 or x1;…; x4 are themselves
linearly dependent. In the former case, the Landau equa-
tions can be rewritten entirely in terms of the first four x’s,
and in the latter, the first four x’s obey another linear
relation that again ensures that det xμi ¼ 0, with the same
result.
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