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In this work we analyze the properties of the gravitational Kaluza-Klein (KK) modes in two stringlike
braneworlds, the thin Gherghetta-Shaposhnikov (GS) model and the thick string-cigar model. The string-
cigar model is a smooth generalization of the GS model that undergoes a Ricci geometrical flow. We find a
new massless mode in both models satisfying the respective Schrödinger equations. By means of a
numerical analysis, we obtain the complete graviton spectrum and its respective eigenfunctions. The KK
spectrum exhibits the usual linear regime for large discrete index n and we find a new decreasing regime for
small n. Moreover, there is an asymmetric mass gap between the massless mode and the massive KK tower.
The mass gap in the GS model is bigger than in the string-cigar model. In addition, the mass gap remains
invariant upon the geometrical flow. It turns out that in the string-cigar model the brane structure smoothes
and amplifies the KK modes near the brane core. The presence of a potential well in the string-cigar
scenario allows the existence of resonant massive gravitons for small masses.
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I. INTRODUCTION

Among the high energy theories proposed in the last
years, the braneworld models gained prominence due to
their fundamental basis in string theory and because they
provide a solution for the gauge hierarchy and the cosmo-
logical constant problems [1–4]. The assumption of extra
dimensions proposed by the Kaluza-Klein (KK) models [5]
has allowed the development of several models where the
four-dimensional observable space-time is regarded as a
membrane embedded in a higher-dimensional space-time
[6–8]. The Randall-Sundrum (RS) model enhanced this
hypothesis by assuming an infinite extra dimension whose
warped geometry yields to a compact transverse space [2].
Soon after, some models appeared proposing branes
generated by topological defects. In five dimensions,
domain walls have been used to represent the brane
[7,9,10], whereas in six dimensions, with axial symmetry,
the scenario is the so-called stringlike braneworld [11,12].
Stringlike objects, such as the vortices and the cosmic

strings, are often described as systems composed by a
complex scalar field (global) and gauge field (local) [13].
However, unlike the domain walls, there is not a complete
(interior and exterior) stringlike solution analytically
known, even in flat space-time. In warped braneworlds,
Cohen-Kaplan [14], Gregory [15], and Olaganesi-Vilenkin
[16] studied the exterior solution of a global stringlike
brane with and without the bulk cosmological constant. The

local case was addressed numerically by Giovaninni et al.
who obtained a smooth geometry satisfying the dominant
energy condition [17].
Regardless of the particular model used to compose the

brane core, the exterior warped stringlike solution with
cosmological constant has a conformally flat behavior that
extends the five-dimensional Randall-Sundrum model [18].
In the infinitely thin core brane limit, the resulting
scenario is called the Gherghetta-Shaposhnikov (GS)
model [19]. This model provides a correction to the
Newtonian potential smaller than in the RS model [19].
Moreover, the KK massless mode of the vector gauge field
is naturally localized in the GS braneworld [20,21].
The fermionic field, in its turn, requires a minimal coupling
with the vector gauge field to localize the massless
mode [20–22].
Besides the interesting features of the fields, the string-

like braneworlds also exhibit a rich geometric structure. In
fact, the two extra dimensions form a transverse manifold
with internal symmetries and properties that reflect on the
brane tension and geometry [12]. The transverse manifold
used in the GS model is a disc [19]. On the other hand,
Kehagias proposed a conical space to provide an explan-
ation for the cosmological constant problem [23]. Garriga-
Porrati studied the effects generated by a football-shaped
manifold [24] and Gogberashvili et al. addressed the
fermion generations problem by means of an apple-shaped
space [25]. In a supersymmetric model, de Carlos and
Moreno found a localized gravity solution without cosmo-
logical constant. Since this model considers a geometry that
asymptotically has a constant transverse radius, the model
is named as a cigarlike universe [26].
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In Ref. [27], the so-called cigar soliton is used to
construct an attractive smooth interior and exterior string-
like geometry referred to as the string-cigar model. The
cigar soliton is a two-dimensional self-similar solution of
the Ricci flow, a geometric flux driven by the Ricci tensor
[28,29]. There are important applications of the Ricci flow
in different branches of physics as in the sigma models
[30], Euclidean black holes [31], topological massive
gravity [32], add–drop multiplexer mass [33], and the
Heisenberg model in statistical mechanics [34]. The
Ricci flow defines a family of geometries developing under
an evolution parameter. Therefore, the string-cigar scenario
changes its brane properties due to the geometric flow [35].
Since the Ricci soliton extends the Einstein manifolds, the
string-cigar geometry can also be realized as an augmented
Randjbar-Daemi and Shaposhnikov model [36].
Another smooth stringlike model that leads to a geo-

metrical flow in the transverse space was built with a
section of the resolved conifold, an important orbifold in
string theory [35]. The string-cigar and the resolved
conifold models yield to regular geometries that asymp-
totically recover the GS model [27]. The string-cigar model
satisfies all the regularity conditions required to ensure a
well-behaved 3-brane at the origin. In the resolved conifold
model, the resolution parameter plays the role of the radius
of the fifth dimension that violates the conical behavior
near the origin [35].
The string-cigar scenario enables the existence of a

localized gravitational massless (or zero) mode that effec-
tively describes the gravity on the brane [27]. The massless
mode in this scenario has the same asymptotically expo-
nential behavior of the massless mode in the GS model.
Furthermore, near the brane core it has a smooth bell shape
[27]. Hence, the string-cigar scenario smoothes the geom-
etry and zero mode near the origin. As the geometry
undergoes the Ricci flow in the transverse space, the
massless mode changes its width and amplitude [27]. In
this work, we find a new massless mode for the GS and the
string-cigar models by means of the Schrödinger approach.
This new massless mode exhibits a more localized
behavior.
Another noteworthy feature of the string-cigar model is

its inhomogeneous source [27]. Indeed, the maximum of
the stress-energy tensor components is displaced from the
origin, which suggests that the brane core is shifted [27].
Giovaninni et al. found a similar behavior for an Abelian
vortex with a higher winding number [17]. In the string-
cigar model, the gravitational massless mode and the
energy density share similar profiles. Such behavior shows
the influence of the geometric changes on the physics of the
brane [27].
As pointed out by Tinyakov and Zuleta, the source for the

GS model does not satisfy the dominant energy condition
[37]. On the other hand, the string-cigar source undergoes
a phase transition whereupon some configurations fulfil

all the energy conditions [27]. Furthermore, the string-cigar
model recovers the GS one for high values of the bulk
cosmological constant.
Nonetheless, the complexity of the differential equation

for the KK modes turns the numerical analysis into the
most subtle approach to obtain the whole spectrum of
masses and eigenfunctions [38]. Thus, the main purpose of
this work is to attain the massive KK spectrum and analyze
how it behaves on the Ricci flow that the cigar undergoes.
Although Gherghetta and Shaposhnikov have found a

complete set of eigenfunctions for a stringlike braneworld,
the corresponding KK masses expression for the discrete
states is valid only for large values of a discretization index
n [19]. In this limit, the masses increase linearly, but for
small n the behavior is yet unknown. Using numerical
analysis we obtain the complete KK mass spectrum of
the GS and string-cigar scenarios. Both models show a
decreasing behavior for small n with a mass gap between
the linear and decreasing regimes. Moreover, the GS model
presents a massive mode with a small mass and amplitude
that is absent in the string-cigar model.
The numerical analysis of these two models provides

more information on how the fields behave on singular and
smooth scenarios in six dimensions. Giovaninni et al. have
numerically studied the interior and exterior geometry of a
stringlike braneworld, but they have not been concerned
with the KK spectrum [17]. In this article, we also use
numerical methods to find and study gravitational resonant
massive modes on both GS and string-cigar models. The
analogous Schrödinger potential for the string-cigar model
exhibits the usual volcano shape with an infinite potential
well around the origin. It turns out that resonant modes are
allowed for small masses, in contrast with the GS model
where they are absent.
This paper is organized as follows: in Sec. II the main

characteristics and results of the GS and string-cigar
models are presented. Next, in Sec. III, we present the
numerical results which concern to the spectrum and
eigenfunction. In Sec. IV, we develop the study of KK
massive modes as resonant states. Finally, in Sec. V, some
final remarks and perspectives are outlined.

II. STRINGLIKE BRANEWORLDS

Consider a six-dimensional space-time M6 built
from the warped product between a four-dimensional
Lorentzian manifold M4 and a two-dimensional
Riemannian manifold M2. Hereinafter, we refer to M4

as a 3-brane and M2 as the transverse space. A stringlike
braneworld is a static six-dimensional M6 with an axial
symmetry in the transverse space. A subtle metric for this
model is given by [12,14–17,19,20]

ds26 ¼ gABðx; ρ; θÞdxAdxB
¼ σðρÞgμνðxÞdxμdxν − dρ2 − γðρÞdθ2; ð1Þ
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where x are brane coordinates, ρ ∈ ½0;∞Þ and θ ∈ ½0; 2π�
are the extra dimensions, and σ and γ are the so-called warp
factors.
The additional regularity conditions,

σð0Þ ¼ 1; σ0ð0Þ ¼ 0;

γð0Þ ¼ 0; ð
ffiffiffiffiffiffiffiffiffi
γð0Þ

p
Þ0 ¼ 1; ð2Þ

are imposed in order to avoid singularities [12], where the
( 0) stands for the derivative ∂ρ. The conditions for σ in
Eq. (2) are already present in the RS models [1,2], whereas
the further assumption for γ reflects the smooth correction
behavior near the origin [12,17,19,37].

Regardless of the particular model for the source, an
axisymmetric stress-energy tensor is adopted as follows
[12,17,19]:

TA
B ¼ diagðt0; t0; t0; t0; tρ; tθÞ: ð3Þ

For a global string, for instance, tρ ¼ −tθ [14–16]. In the
presence of a bulk cosmological constant Λ and for a flat
brane M4, the Einstein equation reads

Rab −
R
2
gab ¼ −κ6ðΛgab þ TabÞ; ð4Þ

which for the metric ansatz (1) yields to

3

2

�
σ0

σ

�0
þ 3

2

�
σ0

σ

�
2

þ 3

4

σ0

σ

γ0

γ
þ 1

4

�
γ0

γ

�
2

þ 1

2

�
γ0

γ

�0
¼ −κ6ðΛþ t0ðρÞÞ; ð5Þ

3

2

�
σ0

σ

�
2

þ σ0

σ

γ0

γ
¼ −κ6ðΛþ tρðρÞÞ; ð6Þ

2

�
σ0

σ

�0
þ 5

2

�
σ0

σ

�
2

¼ −κ6ðΛþ tθðρÞÞ; ð7Þ

where κ6 is the six-dimensional gravitational constant
related to the six-dimensional energy scale by κ6 ¼ 8π

M4
6

[27].

Let us analyze the vacuum configuration. The third
Einstein equation (7) provides

2

�
σ0

σ

�0
þ 5

2

�
σ0

σ

�
2

¼ −κ6Λ: ð8Þ

Defining

yðρÞ ¼ σ0

σ
; ð9Þ

Eq. (8) turns out to be

y0 þ 5

4
y2 −

κ6jΛj
2

¼ 0; ð10Þ

the solution of which is

yðρÞ ¼ c tanh
5c
4
ðρþ ρ0Þ; ð11Þ

where

c2 ¼ −
2κ6
5

Λ; ð12Þ

and ρ0 is an integration constant. Integrating Eq. (11) yields
to the warp factor

σðρÞ ¼ σ0cosh
4
5

�
5

4
cρ

�
; ð13Þ

with an integration constant σ0. Substituting the warp factor
(13) into the Einstein equations and imposing the regularity
conditions (2), we obtain the angular metric component γ:

γðρÞ ¼
�
4

5c

�
2

sinh2
�
5cρ
4

�
σ−

3
2: ð14Þ

The warp factor in (13) and the angular metric component
in (14) provide an infinite volume to the transverse space
that leads to a non–four-dimensional effective gravitational
theory.
The relation between the bulk Planck mass M6 and the

brane Planck masses M4 is given by

M2
4 ¼ 2πM4

6

Z
∞

0

σðρÞ
ffiffiffiffiffiffiffiffiffi
γðρÞ

p
dρ: ð15Þ

Then, for a stringlike model described by the warp function
(13) and the angular metric component (14), the brane
Planck scale diverges.
Another important characteristic of the stringlike models

is the string tensions μi defined by [17,19]

μiðcÞ ¼
Z

ϵ

0

tiðρ; cÞσ2ðρ; cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γðρ; cÞ

p
dρ; ð16Þ
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which determines the matching between an internal and
external geometric solution, where ϵ is the width of the core
[12,17,19].
Once we have presented the general aspects of the

stringlike scenario, we study the behavior of the small
metric fluctuations around this configuration.
Performing the following conformal invariant perturba-

tion [17,19,27,39],

ds26 ¼ σðρÞðημν þ hμνðx; ρÞÞdxμdxν þ dρ2 þ γðρÞdθ2;
ð17Þ

the first-order perturbed Einstein equation (4) yields to
[17,19,27,39]

□6hμν ¼ ∂Að ffiffiffiffiffiffiffiffi
−g6

p
ηAB∂BhμνÞ ¼ 0: ð18Þ

Thus, the tensorial perturbation hμν can be regarded as a
tensorial field (graviton) propagating in the bulk.
Assuming the usual Kaluza-Klein decomposition

[2,19,20,27]

hμνðx; ρ; θÞ ¼
X∞
l;m¼0

ϕm;lðρÞeilθĥμνðxÞ; ð19Þ

and a free-wave dependence on the 3-brane

□4hμνðxξÞ ¼ m2
0hμνðxξÞ; ð20Þ

the graviton equation of motion (18), for a conformal
scenario where γðρÞ ¼ σðρÞβðρÞ, reads [19,27]

ðσ5
2

ffiffiffi
β

p
ϕ0
m;lðρÞÞ0 þ σ

3
2

ffiffiffi
β

p �
m2

0 −
l2

β2

�
ϕm;lðρÞ ¼ 0: ð21Þ

The function β is responsible for the conical behavior
[27,35]. Equation (21) describes the radial behavior of the
graviton on stringlike scenarios. The presence of the
angular number l turns the spectrum degenerated [19].
In addition, due to the axial symmetry, the boundary
conditions are [17,19,27]

ϕ0ð0Þ ¼ ϕ0ð∞Þ ¼ 0: ð22Þ

The radial equation (21) and the boundary conditions (22)
provide a set of solutions whose orthogonality relation is
given by Z

∞

0

σ
3
4

ffiffiffi
β

p
ϕm;lϕn;l0dρ ¼ δmnδll0 : ð23Þ

The eigenvalues of Eq. (21) satisfying the boundary
conditions (22) are called the KK spectrum (mass) and the
respective eigenfunctions are called the KK states. Among
the KK states there is one for a vanishing mass, called

massless or zero mode. From Eq. (21), the massless mode
has the form

ϕ0ðρÞ ¼ A1

Z
ρ

0

σ−
5
2β−

1
2dρ0 þ A2; ð24Þ

where A1 and A2 are constants. A similar massless mode
was found by Csaki et al. for nonconformally flat
space-times [39].
A suitable way to study the KK spectrum consists of turn

Eq. (21) into a Schrödingerlike equation [9,10,14,27,38–40].
By taking the change of independent variable [27]

zðρÞ ¼
Z

ρ
σ−1=2dρ0 ð25Þ

and of a dependent variable

ϕmðzÞ ¼ uðzÞΨmðzÞ; ð26Þ
where

_u
u
þ _σ

σ
þ 1

4

_β

β
¼ 0; ð27Þ

for which the overdot means derivatives with respect to the z
coordinate, the radial equation (21) yields to

−Ψ̈mðzÞ þ UðzÞΨmðzÞ ¼ m2ΨmðzÞ; ð28Þ
where

UðzÞ ¼ σ̈

σ
þ 1

2

_σ

σ

_β

β
−

3

16

�
_β

β

�2

þ 1

4

β̈

β
þ l2

β
: ð29Þ

The boundary conditions (22) imply the following
boundary conditions for ΨðzÞ:

u0ð0ÞΨð0Þ þ uð0ÞΨ0ð0Þ ¼ 0;

u0ð∞ÞΨð∞Þ þ uð∞ÞΨ0ð∞Þ ¼ 0: ð30Þ

Besides the bijective relation between the Sturm-
Liouville and Schrödinger approaches, the last method
provides information about resonant modes that we con-
sider in Sec. IV. In the following, we study the geometrical
features and the properties of Eq. (21) in the GS model and
the string-cigar model.

A. The GS model

Gherghetta and Shaposhnikov found a vacuum solution
of the Einstein equations that localizes the gravity on the
stringlike brane [19]. Assuming that [19]

σ0

σ
¼ −c; ð31Þ
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which can be obtained from the hyperbolic tangent function
in Eq. (11) in one of its asymptotic values, Eq. (8) yields to
the following warp function:

σðρÞ ¼ e−cρ: ð32Þ
Moreover, for

βðρÞ ¼ R2
0; ð33Þ

the GS model describes a AdS6 space-time [19]. Since the
GS model is built from the vacuum solution, it can be
regarded as the space-time of a thin stringlike braneworld
[17,37]. In addition, the GS solution does not satisfy the
regularity conditions at the origin presented in Eq. (2).
In theGSmodel, thegravitonobeys the radial equation [19]

ϕ00
m −

5

2
cϕ0

m þ ðm2
0 − l2=R2

0Þecρϕm ¼ 0: ð34Þ

Changing the independent variable to u ¼ 2m
c e

c
2
ρ and the

dependent variable to ϕm ¼ e
5
4
cρχm, the χm function satisfies

the Bessel differential equation

d2χm
du2

−
1

u
dχm
du

þ
�
1 −

�
5

2

�
2 1

u2

�
χm ¼ 0: ð35Þ

Thus, the general solution of Eq. (34) can be written as [19]

ϕmðρÞ ¼ e
5
4
cρ

�
B1J5=2

�
2m
c

e
1
2
cρ

�
þ B2Y5=2

�
2m
c

e
1
2
cρ

��
;

ð36Þ
where B1 and B2 are arbitrary constants and m ¼
m2

0 − l2=R2
0. This solution grows exponentially, revealing

that massive modes are not localized on the brane [19].
From Eq. (24), the general GS massless mode has the

form

ϕ0ðρÞ ¼ A1e
5
2
cρ þ A2: ð37Þ

Among the two solutions in Eq. (37), only ϕ0 ¼ A2

satisfies the orthogonality relation (23) [19]. Then
Gherghetta and Shaposhnikov defined an orthonormal
solution by [19]

ψmðρÞ ¼ e−
3
4
cρϕmðρÞ; ð38Þ

so that the zero mode becomes

ψ0ðρÞ ¼
ffiffiffiffiffiffiffiffi
3c
2R0

s
e−

3
4
cρ: ð39Þ

The massless mode in Eq. (39) is localized in the thin-string
brane [19]. However, this solution does not satisfy the

boundary conditions (22) at ρ ¼ 0, because the warp factor
(32) does not obey the usual regularity conditions.
On the other hand, by means of the Schrödinger

approach, we find another more localized massless mode.
Indeed, the Schrödinger equation (28) for the GS model is
given by

−Ψ̈m þ 6

z2
Ψm ¼ m2Ψm; ð40Þ

where z ¼ 2
c e

c
2
ρ and by Eq. (27), the relation between ϕm

and Ψm is

ϕm ¼ C0ecρΨm: ð41Þ
For m ¼ 0, Eq. (40) has the solutions

Ψ0 ¼ C1z3 þ C2z−2

¼ C1e
3
2
cρ þ C2e−cρ; ð42Þ

which, using Eq. (41), yields to the zero mode (37). In order
for Ψ0 to be normalized, we set C1 ¼ 0. Therefore, we find
a localized zero mode satisfying the analogous Schrödinger
equation in the GS model given by

Ψ0ðρÞ ¼
ffiffiffiffiffiffiffiffi
7c
2R0

s
e−cρ: ð43Þ

It is worthwhile to mention that at the origin, the zero mode
Ψ0 in Eq. (43) is higher than the zero mode ψ0 proposed in
Ref. [19]. The rate of decay of the zero mode Ψ0 is also
higher than the zero mode ψ0. Furthermore, the massless
mode (43) satisfies the boundary conditions (30).
The solution of the GS model Schrödinger-like equation

for m ≠ 0 is

ΨmðzÞ ¼
ffiffiffiffiffiffiffi
2

mπ

r �
1

mz

�
2

× ½ðm2z2 − 3mz − 3ÞðcosðmzÞ − sinðmzÞÞ�: ð44Þ
SinceΨmðzÞ is not defined form ¼ 0, we cannot obtain the
massless mode (43) from the massive mode in Eq. (44).
This shows a mass gap in the GS model that we explore
numerically in Sec. III. Moreover, in the asymptotic
limit, the massive modes Ψm assume the plane wave form
given by

Ψmðz → ∞Þ ¼
ffiffiffiffiffiffiffi
2

mπ

r
ðcosðmxÞ − sinðmxÞÞ: ð45Þ

Since the massive modes are not normalizable, the KK
spectrum can be obtained only by inserting a finite radial
distance cutoff ρmax and imposing the boundary conditions
(22) [19,20]. As performed in Ref. [20], the spectrum is
obtained by the zeros of the Bessel function
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J3
2

�
2m ~n

2
e
c
2
ρmax

�
¼ 0 ð46Þ

that for large index ~n yields to [19]

m ~n ≃ c

�
~n −

1

2

�
π

2
e−

c
2
ρmax : ð47Þ

The linear relation between the mass and the index ~n is
rather important in the Newtonian potential correction [19].
Nevertheless, the formula (47) is valid only for great
values of the discrete index ~n [19]. In Sec. III we obtain
the eigenfunctions of the GS model and a complete
spectrum m ~n.
It is worthwhile to mention that the massive KK

spectrum in Eq. (47) is strongly dependent on the cutoff
distance ρmax. For a model with finite radial coordinate
0 ≤ ρ ≤ R, the cutoff distance is ρmax ¼ R. Note that when
the cutoff distance ρmax increases, the magnitude of the KK
masses, given by expression (47), is reduced. For an infinite
radial coordinate ρ, the KK spectrum m ~n vanishes for all ~n
[20]. Thus,m2

0 ¼ ð l
R0
Þ2, i.e., the KK masses depend only on

the angular number l, which is similar to the factorizable
Kaluza-Klein model expression for the massive spectrum.

B. The string-cigar model

An extension to the GS model, the so-called string-cigar
braneworld [27], is built from a warped product between
the 3-brane and cigar soliton space [27]. The cigar soliton is
a two-dimensional stationary solution for the Ricci flow

∂
∂λ gabðλÞ ¼ −2RabðλÞ; ð48Þ

where λ is a metric parameter and Rab is the Ricci tensor
[28]. An axisymmetric metric for the cigar soliton can be
written as [29]

ds2λ ¼ dρ2 þ 1

λ2
tanh2ðλρÞdθ2: ð49Þ

It is straightforward to see that the cigar soliton is a smooth
manifold.
The main idea of the string-cigar model is to use the cigar

soliton as the transverse space in order to smooth the GS
model [27]. The Ricci flow defines a family of stringlike
branes whose evolution of the transverse space yields to
variations on the physical properties of the brane [27].
Since the asymptotic value of the scalar curvature depends
on the evolution parameter [27], the geometric flow
represents a variation of the bulk cosmological constant.
Then λ and c can be regarded as equivalent evolution
parameters. The string-cigar scenario is asymptotically flat,
as well as the disc of radius 1=λ ¼ R0 used in the GS model

[28]. However, near the origin, the tanh2 ρ term smoothes
the geometry and provides a thickness to the brane [27].
The warp factor and the angular metric component

proposed are, respectively, [27]

σðρ; cÞ ¼ e−ðcρ−tanhðcρÞÞ ð50Þ

and

γðρ; cÞ ¼ 1

c2
tanh2ðcρÞσðρ; cÞ: ð51Þ

The metric (1) with Eqs. (50)–(51) represents a space-
time inside and outside a stringlike defect that satisfies all
the regularity conditions [27].
The Einstein equation provides the stress-energy tensor

components [27]:

t0ðρ;cÞ ¼
c2

κ6

�
7sech2cρþ 13

2
sech2cρ tanhkρ−

5

2
sech4cρ

�
;

ð52Þ

tρðρ; cÞ ¼
c2

κ6

�
5sech2cρþ 2sech2cρ tanh cρ −

5

2
sech4cρ

�
;

ð53Þ

tθðρ; cÞ ¼
c2

κ6

�
5sech2cρþ 4sech2cρ tanh cρ −

5

2
sech4cρ

�
:

ð54Þ

The components are all non-negative and dependent on
the evolution parameter c [27]. In Ref. [27], a detailed
analysis showed that, as long as the geometry undergoes the
Ricci flow, the source passes through different phases, all of
them satisfying the weak, strong and dominant energy
conditions [27]. Since c is related to the cosmological
constant, the Ricci flow governs how a flow of the bulk
cosmological constant changes the source of this smoothed
stringlike braneworld [27].
Figure 1 shows the energy density t0ðρ; cÞ for some

values of the evolution parameter. It is important to mention
that the core is shifted from the origin. A similar behavior
was found by Giovannini et al. for an Abelian vortex
braneworld [17]. Giovannini et al. considered the vortex
generated by a λϕ4 potential [17]; we argue that the string-
cigar model can be generated by a vortex with a deformed
potential. The width of the core of the brane ϵ can be
estimated as ϵ ¼ ρ̄, where ρ̄ stands for the half-maximum
position of t0. Furthermore, the higher the value of c, the
smaller the width of the core ϵ. Then, for c → ∞, the string-
cigar solution approaches the GS model.
In the string-cigar geometry, the radial KK equation

takes the form
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ϕ00
m þ c

�
−
5

2
tanh2ðcρÞ þ sech2ðcρÞ

tanhðcρÞ
�
ϕ0
m

þ eðcρ−tanh ðcρÞÞ
�
m2

0 −
l2c2

tanh2ðcρÞ
�
ϕm ¼ 0: ð55Þ

Note that the mass term has a radial dependence that
diverges at the origin and converges asymptotically to the
GS value. For ρ → ∞, Eq. (55) has the same form of
Eq. (34), with a rescaled mass m → e−1=2m. Hence, the
asymptotic solutions of (55) have the same behavior of
Eq. (36) [27].
Following the Schrödinger approach, we can redefine the

KK eigenfunctions by

ϕm ¼ σðρ; cÞ
�
tanh cρ

c

�
1=4

Ψm; ð56Þ

and the independent variable by

z ¼ zðρÞ ¼
Z

ρ
e
cρ0−tanh cρ0

2 dρ0: ð57Þ

The transformation (57) cannot be written explicitly.
However, it turns out that, for m ¼ 0, the solution of the
Schrödinger equation is given by [27]

Ψ0ðρ; cÞ ¼ Nσðρ; cÞ
�
tanh cρ

c

�
1=4

; ð58Þ

where N is a normalization factor. The solution (58) can be
realized as a smoothed GS massless mode (37). Indeed, in
the string cigar the massless mode has the same asymptotic
behavior of the GS massless mode. On the other hand, in
contrast with the GS model, the string-cigar massless mode
vanishes at the origin because of the conical behavior
provided by the tanh cρ factor. This behavior agrees with
the shift of the brane core.
The complexity of the radial equation (55) makes

necessary the use of numerical methods to derive solutions
for the complete domain. The numerical solutions are
presented in Sec. III. Moreover, the Schrödinger-like equa-
tion (28) for the string-cigar scenario must be solved on the z
coordinate, which may not be written down explicitly. The
numerical solutions for the KK modes in the string-cigar
model are presented in Sec. IV. Nevertheless, the analogue
quantum potential (29) may be expressed as a function of ρ:

ŪðρÞ ¼ c2
�
3

2
tanh2cρ −

9

4
sech2cρ tanh cρ −

1

4

sech4cρ
tanh cρ

− sech2cρ

�
e−ðcρ−tanh cρÞ þ c2l2

tanh2cρ
: ð59Þ

III. MASS SPECTRUM AND KK
EIGENFUNCTIONS

We solved the KK equations (34) and (55) by the matrix
method [41] with second-order truncation error in order to
attain the complete KK spectra of the GS and string-cigar
scenarios. Since the angular number l leads to a degenerate
spectrum, we are interested in the l ¼ 0 solutions (which
are referred to s waves). Henceforward, we label the
graviton mass as m instead of m0. Furthermore, the present
Sturm-Liouville problems are extremely sensible on c
parameter variations due to the exponential terms. Then,
in order to prevent overflow errors, we fixed c ¼ 1.0.
For the GS model, the domain ρ was discretized in [0.0,
5.7] with N ¼ 500 uniform subdivisions. However, since
Eq. (55) is singular at the origin, and the first- (zeroth-)

order derivative coefficient is strongly active for small
(large) ρ values, the optimum domain for the string-cigar
model is [0.01, 5.70].
The number of subdivisions of the interval ½a; b ¼ ρmax�,

n, is intrinsically related with the number of zeros of
the Bessel function ~n in this range. In fact, the higher n is,
the more zeros exist in the interval. These zeros split the
interval into a partition. Therefore, the eigenvalues mn are
labeled by the number of subdivisions. Henceforward, n
and ~n are equivalent labels.
Figures 2–3 show the complete spectrum mn for GS and

string-cigar models, respectively. The eigenvalues are all
real and thus the models do not carry tachyons. For large
values of the discretization index n (on the present case,
n > 455) the mass spectrum for both models grows
linearly, which agrees with the GS model [19]. On the

FIG. 1. Energy density of the string-cigar braneworld.
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other hand, for n ≤ 455, the mass values decrease as
mn ≈ 1

n, an important new behavior that can lead to
corrections on the Newtonian potential [19]. The decreas-
ing behavior for small n agrees with the analytical
expression for the zeros of the Bessel functions
J3

2
ð2mn

c e
1
2
cρÞ ¼ 0, namely [42],

mn ¼
c
2

��
n −

1

2

�
π þ 1

4½ðn − 1
2
Þπ� þ � � �

�
e−

cρ
2 : ð60Þ

Hence, for small n, the decreasing behavior prevails over
the linear regime.
For n ¼ 455, the minimum mass value is

m455 ¼ 5.172 × 10−7, rather small compared to the whole

set. The respective eigenfunction ϕ455 is plotted in Fig. 4.
This eigenfunction possesses a tiny amplitude and is similar
to the GS localized massless mode. Then this massive state
can be seen as a transient state between the massless mode
and the massive KK tower. However, unlike the GS zero
mode, the ϕ455 satisfies the boundary conditions (22).
The numerical analysis revealed another feature of the

GS model not present in Ref. [19], a mass gap between the
decreasing and linear regimes. It turns out that there are two
asymmetric mass gaps on the GS model between the
transient state m455 and its neighbors in the massive KK
tower. Table I shows that the difference between m455 and
m456 is higher than the subsequent ones that are approx-
imately δm ≈ 0.094. Therefore, the transition between the
decreasing and linear regimes is not continuous and passes
through a transient state of tiny mass.
The existence of a mass gap and the transient massive

mode agrees with the analytical solutions for the massive
modes (36) and for the massless mode (37). Indeed, for
small masses it can expand the massive mode as

ϕm→0ðρÞ ¼ D1

�
c
2m

�5
2 þD2

�
c
2m

�1
2

ecρ þD3

�
2m
c

�1
2

e
3
2
cρ

þO
�
e
5
2
cρ
�
; ð61Þ

FIG. 3. Mass spectrum of the string-cigar model obtained by
the matrix method. It is very similar to the GS model except for
the absence of a transient state.

TABLE I. Some mass eigenvalues for high values of the
discretization index where the linear regime (for n > 455) is
noticeable. The smallest mass value m455 corresponds to the
transient state.

m454 ¼ 4.295 m458 ¼ 0.317
m455 ¼ 5.172 × 10−7 m459 ¼ 0.411
m456 ¼ 0.130 m460 ¼ 0.504
m457 ¼ 0.224 m461 ¼ 0.598

FIG. 2. GS model mass spectrum obtained by the matrix
method. The subgraph is the linear regime scale magnification.

FIG. 4. GS model numerical eigenfunction form¼5.172×10−7.
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where D1, D2, and D3 are constants determined by the
constants B1 and B2 and the expansion of the Bessel
functions at the origin. It is worthwhile to say that since
limm→0ϕmðρÞ ¼ þ∞, it is not possible to continuously
attain the massless mode (37) from the massive mode
expression (36). Thus, there is a mass gap between the
massless and the first massive modes. Furthermore, the
small amplitude of ϕ455 can be explained by the small
values of the constants, e.g., D3 ≈ 10−32, and by the
boundary conditions that relate the constants.
The string-cigar mass spectrum is very similar to the GS

one, except for the absence of the transient massive mode.
Thus, the near brane correction driven by the conical
geometry provides a more regular gravitational massive
spectrum. Furthermore, it turns out that the mass gap

remained invariant for all the values of c used. This feature
suggests that the geometrical flow does not break the
discontinuity between the two regimes.
The eigenfunctions of the GS and string-cigar models

were plotted for some mass eigenvalues in Figs. 5–6,
respectively. As expected, the massive solutions for both
models match the same behavior asymptotically. Near the
origin, the amplitude of the massive modes in the string-
cigar model is bigger than the amplitude of the massive
modes in the GS model. Moreover, they are smooth in the
core and near the brane, as obtained in Ref. [27] by
qualitative analysis. Around the origin the string-cigar
eigenfunctions behave as Bessel functions of the first kind
J0ðmρÞ. Indeed, a first-order expansion of the coefficients
of Eq. (55) at the origin yields

FIG. 5. GS model numerical eigenfunction for (a) m ¼ 37.156 and (b) m ¼ 22.729.

FIG. 6. String-cigar model numerical eigenfunction for (a) m ¼ 37.022 and (b) m ¼ 22.721.
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ϕ00
m þ

�
1

ρ
−
2

3
c2ρ

�
ϕ0
m þm2ϕm ¼ 0: ð62Þ

For ρ ≈ 0, the term 1
ρ prevails over the term − 2

3
c2ρ. Then

Eq. (62) turns into a Bessel equation, whose solution is

ϕρ→0ðρÞ ¼ E1J0ðmρÞ þ E2Y0ðmρÞ; ð63Þ

where E1 and E2 are integration constants. Since Y0

diverges at the origin, we set E2 ¼ 0. Thus, the behavior
sketched in Fig. 6 agrees with the resulting solution.

IV. KK RESONANT MODES

Despite the fact the massive gravitational modes are not
localizable on the brane, some of these modes can show a
resonant profile [10,43]. The resonant states can be found
by means of the resonance method [44] that consists of
finding solutions of a Schrödinger equation that exhibits
large amplitudes near the brane. Large peaks in the
distribution of the wave function in terms of the KK
masses reveal the existence of resonant states [44].
Massive particles confined on the well may be interpreted
as gravitational resonant states (massive quasilocalized
gravitons highly coupled to the brane) [10,38,39].
The method consists of defining the probability PðmÞ to

find a particle with mass m at the position z0 as

PðmÞ ¼ jΨmðz0Þj2R
zmax
zmin

jΨmðzÞj2dz
; ð64Þ

where zmin and zmax stand for the domain limits. An
extension of this idea was proposed in Ref. [45], where
a relative probability is defined as

PðmÞ ¼
R
zb
za
jΨmðzÞj2dzR

zmax
zmin

jΨmðzÞj2dz
; ð65Þ

evaluated in a narrow range ½za; zb�.
Probability interpretations are possible for the Sturm-

Liouville eigenfunctions by defining the inner product with
the weight function included. However, the change of
variable z ¼ zðρÞ, used to transform the Sturm-Liouville
equation into a Schrödinger equation, improves the treat-
ment for large c. By numerical integration, the change of
coordinate (25) is plotted in Fig. 7. The analogue quantum
potential for the GS model is

UGSðzÞ ¼ 6z−2: ð66Þ
This potential function does not support a bound state and
then there is no probability of finding resonant massive
gravitons in the GS model.
For the string-cigar model, the Schrödinger potential,

plotted in Fig. 8, presents an infinite potential well that

suggests the possibility of resonant modes. Note that for
c ¼ 1.0 the potential for the string-cigar model behaves as a
Coulomb-like potential. As the parameter c increases, a
barrier arises and the potential assumes the usual volcano
shape. Furthermore, for c → ∞, UðzÞ tends to the GS
model potential UGS.
We solved the Schrödinger-like equation (28) using the

Numerov method [46,47]. The relative probability function
(65) is more suitable to detect very narrow resonances [48].
According to the energy density given at (52), the brane
distribution is ½za; zb� ¼ ½0.01; 0.50�. The domain is chosen
to be ½zmin; zmax� ¼ ½0.01; 5.0� (ten times the integration
range), for which the plane wave probability would be
PðmÞ ¼ 0.1 [45]. The position of the resonance peak,
where the physical information is stored, does not depend
on zmax, since it is chosen to be sufficiently large [48].
Figure 9 presents the numerical solution of the relative

probability PðmÞ. We find, for c ¼ 2.9, the first resonant

FIG. 7. Numerical integral solution of the transformation zðρÞ.

FIG. 8. The analogue quantum potential UðzÞ.
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state. It is worthwhile to say that, as c increases, the
amplitude of the resonant peaks decreases whereas the
width of the probability distributions increases.
We can interpret the behavior of the resonant modes by

the massive state lifetime. The lifetime of a resonant state
can be estimated as τ ∼ ðΔmÞ−1, where Δm ¼ m2 −m1,
such that Pðm2Þ ¼ Pðm1Þ ¼ 1

2
Pmax [44,49]. Therefore, for

the string-cigar model, the lifetime of the resonant modes
decreases when the bulk cosmological constant increases.
Figure 10 exhibits the solutions of the Schrödinger

equation for the masses indicated with the probability
peaks. The first solution shows that this particular massive
graviton has the highest probability to be found on the
brane. This solution shares a similar behavior to the zero

mode presented on [27] near the origin, albeit it oscillates
asymptotically with large wavelength.
The effects of the brane internal structure on the resonant

modes are also shown in Fig. 10. As we increase the value
of c, the width of the resonance mode is enhanced.
Therefore, as the brane width decreases, the resonant state
lifetimes also decrease. This fact reduces the possibility of
finding massive gravitons. This result agrees with the fact
that for c → ∞ the potential barrier tends to theUGS, where
no massive state is allowed.

V. CONCLUSIONS AND PERSPECTIVES

In this work we have studied the gravitational KK modes
in two stringlike braneworld scenarios, the GS and the
string-cigar braneworlds. By the analysis of the energy
density, the GS model can be realized as a thin-string–like
model. On the other hand, the string-cigar is regarded as an
interior and exterior smoothed GS model.
We have obtained a new massless mode for the GS

model by analyzing the radial equation in the Schrödinger
approach. It turned out that the amplitude and rate of decay
of this massless mode is bigger than that of the GS model.
Furthermore, we found a mass gap between the massive
and massless modes for both models. It turned out that the
mass gap remained constant through the Ricci flow.
We also found, via numerical analysis, the complete

mass spectrum and the corresponding eigenfunctions for
both models. Besides the mass gap between the massless
and massive modes, both models present a gap separating
two regimes in the KK spectrum. For large values of the
discrete index n, the spectrum behaves linearly, as shown in
Ref [19]. However, for small n, the masses decrease as 1=n.
This result can be explained by the behavior of the zeros of
the Bessel function of the first kind in the two regimes.
Asymptotically, the string-cigar eigenfunctions are sim-

ilar to GS states. Near the brane, it turned out that the
amplitude of the modes is higher in the string-cigar model
than in the GS model. Hence, the brane source enhances the
modes near the core.
In the GS model, the eigenfunction corresponding to the

lowest mass eigenvalue resembles the massless mode with
a tiny amplitude. We referred to this state as a transient
mode. This mode is absent in the string-cigar braneworld.
The lack of the transient mode can be regarded as a good
feature of the string-cigar model since this light mode
should already have been detected. Then the resolution of
the GS model naturally eliminates this transient mode.
The string-cigar model allows the existence of resonant

states. Indeed, the correction near the origin yields to a
potential well not presented in the GS model. We found
resonant modes, where the highest one occurred for
c ¼ 2.9 and m ¼ 0.4192. As c increases the resonant
lifetime decreases. The massive mode with the highest
resonance peak has a high probability of interacting with
the brane.

FIG. 10. Solutions of the Schrödinger-like equation for the
masses corresponding to resonant peaks. The first solution has the
highest probability to interact with the brane.

FIG. 9. Plot of the relative probability PðmÞ. The peaks reveal
the resonant massive states. For m2 ≫ Umax, a plateau is formed
at P ¼ 0.1 corresponding to the plane wave regime.
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These results lead to an interesting perspective, namely,
to analyze the effects of the gravitational KK modes in a
correction of the Newtonian potential. In fact, the increased
amplitude of the wave function at the brane core and the
new decreasing behavior of the spectrum may lead to
interesting modifications in the gravitational potential.
Furthermore, Figs. 9–10 suggest that the first resonant
peak provides a great contribution to corrections of the
four-dimensional gravity laws.
Another perspective refers to the analysis of the source.

The energy density profile for the string-cigar model is
quite similar to the Abelian vortex model studied numeri-
cally by Giovannini et al. [17]. This resemblance suggests

that the string-cigar geometry can be generated by a vortex
with a deformed potential.
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