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In a scheme originally proposed by Gell-Mann, and subsequently shown to be realized at the
SUð3Þ × Uð1Þ stationary point of maximal gauged SO(8) supergravity by Warner and one of the present
authors, the 48 spin-1

2
fermions of the theory remaining after the removal of eight Goldstinos can be

identified with the 48 quarks and leptons (including right-chiral neutrinos) of the Standard model, provided
one identifies the residual SU(3) with the diagonal subgroup of the color group SUð3Þc and a family
symmetry SUð3Þf. However, there remained a systematic mismatch in the electric charges by a spurion

charge of� 1
6
. We here identify the “missing” U(1) that rectifies this mismatch, and that takes a surprisingly

simple, though unexpected form.
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Maximal gaugedN ¼ 8 supergravity [1] admits six anti–
de Sitter (AdS) vacua (critical points) at which the SO(8)
symmetry is broken to a subgroup containing SU(3) [2].
Of these, the one with unbroken SUð3Þ × Uð1Þ symmetry is
in several ways the most interesting [3]. In addition to the
residual gauge symmetry, it preserves N ¼ 2 supersym-
metry, such that its properties can be fully analyzed by
means of N ¼ 2 AdS supermultiplets [3,4]. Furthermore,
the group SUð3Þc × Uð1Þem is the gauge symmetry that
survives to the lowest energies in the Standard model.
However, a naive identification of the supergravity SU(3)
with the color group SUð3Þc does not work, as is immedi-
ately obvious from the decompositions displayed below
[cf. Eq. (7)]. For this reason, Gell-Mann introduced an
additional family symmetry SUð3Þf that acts between
the three particle families (generations) and proposed to
identify the residual SU(3) of supergravity with the
diagonal subgroup of color and family [5]. This scheme
“almost” works in the sense that, after the removal of eight
Goldstinos (as required for a complete breaking of super-
symmetry) there is complete agreement of the SU(3)
assignments, but there remains a systematic mismatch
between the U(1) charges: the electric charges of the
supergravity fermions are systemically off by � 1

6
from

those of the quarks and leptons. Nevertheless, and espe-
cially in view of the persistent failure by LHC to detect
any new fundamental spin-1

2
degrees of freedom (so we

“may have already seen it all”), the agreement between the
observed number of quarks and leptons, and the number of
physical spin-1

2
fermions in maximal supergravity remain-

ing after complete breaking of supersymmetry is a tanta-
lizing coincidence [6].
In this article we identify the “missing” U(1) symmetry

[designated by Uð1Þq] that rectifies the mismatch in the

electric charge assignments. As it turns out its action on the
original 56 fermions is surprisingly simple, but requires
a “deformation” of the residual SUð3Þ × Uð1Þ symmetry
reminiscent of the deformation that appears in nontrivial
coproducts. We do not know whether and how such a
deformation could be realized dynamically, but the final
result [see (14) below] is of such a suggestive simplicity
that we may take it as a hint of some nontrivial underlying
dynamics that could also lead to new ways of dynamically
breaking supersymmetry, possibly in a framework beyond
maximal supergravity. Consequently, one main message
here is that the “linear” decompositions of group repre-
sentations commonly employed (often in cascadelike
sequences of symmetry breakings) to obtain the particle
content of the low energy theory may not suffice to explain
the emergence of the Standard model from a unified Planck
scale theory.
Let us begin by briefly recalling some basic properties of

N ¼ 8 supergravity. In its original ungauged version [7] the
theory possesses a linearly realized global E7ð7Þ symmetry
and a local chiral SU(8) symmetry, with composite SU(8)
gauge fields. Upon choosing a special SU(8) gauge the
local SU(8) symmetry collapses to a global (or “rigid”)
SU(8); in this gauge the noncompact part of E7ð7Þ is realized
nonlinearly. There is no potential for the scalar fields
(“moduli”), hence there remains a large vacuum degen-
eracy. This degeneracy is lifted by gauging the theory. To
this aim one promotes an SO(8) subgroup of E7ð7Þ to a local
symmetry, with the 28 spin-1 fields of N ¼ 8 supergravity
as the Yang-Mills vector bosons [1] [thanks to modern
techniques based on the embedding tensor there now exists
a large variety of other gaugings, see e.g. [8,9], but the
SO(8) gauging remains the only one with a compact simple
gauge group]. To maintain full local supersymmetry, the
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Lagrangian must be modified by Yukawa couplings and a
scalar potential, which has been found to display a wealth
of stationary points (see Ref. [10], which lists 41 extrema,
and Ref. [11] for a more recent survey that also discusses
other gaugings). Properties of the SUð3Þ × Uð1Þ stationary
point are discussed at length in [3], to which we refer for
further details. Let us also note that the group theoretical
decompositions presented here are independent of the
dynamics, and thus to some extent also independent of
the specifics of the stationary point. They could thus also
apply to some of the SUð3Þ × Uð1Þ extrema of the new
gaugings recently studied in [11].
In the remainder we focus on the fermionic sector of the

theory, which consists of eight gravitinos ψ i
μ transforming

in the 8, and a trispinor of spin-1
2
fermions χijk transforming

in the 56 of SU(8), whence χijk is fully antisymmetric in the
SU(8) indices i; j; k. We here follow the conventions and
notations of [1], so complex conjugation raises (or lowers)
indices, such that for instance χijk ¼ ðχijkÞ�; at the same
time the upper (lower) position of the SU(8) indices
indicates positive (negative) chirality. Hence the chiral
SU(8) transformations act as

χijk→Ui
lUj

mUk
nχ

lmn; χijk→Ui
lUj

mUk
nχlmn ð1Þ

with U ∈ SUð8Þ, and Ui
j ≡ ðUi

jÞ�, whence the unitarity
relationU†U¼1 is equivalently expressed byUi

kUj
k ¼ δij.

When a special SU(8) gauge is chosen, the remaining local
SO(8) acts by real orthogonal transformationsOi

j, and thus
no longer chirally on the fermions.
The group SO(8) admits a subgroup Uð3Þ × Uð1Þ, via

the embedding SOð6Þ × SOð2Þ ⊂ SOð8Þ. To study the
relevant decompositions we introduce boldface indices
and their complex conjugates according to [3]

V1 ≡ V1 þ iV2; V 1̄ ¼ V1 − iV2;

V2 ≡ V3 þ iV4; V 2̄ ¼ V3 − iV4;

V3 ≡ V5 þ iV6; V 3̄ ≡ V5 − iV6;

V4 ≡ V7 þ iV8; V 4̄ ≡ V7 − iV8

so that the complex conjugate representations are indicated
by putting a bar on these indices. The U(3) acts on the first
three indices a;b;… ¼ 1; 2; 3. The boldface indices thus
furnish a compact way of writing the SU(3) representa-
tions; writing them out in terms of the original SU(8)
fermions χijk we have, for instance,

χ124̄ ¼ χ137 þ iχ237 þ iχ147 − iχ138

− χ247 þ χ238 þ χ148 þ iχ248

χ11̄4 ¼ −2iχ127 þ 2χ128 ð2Þ

and so on. The group Uð1Þ × Uð1Þ is a two parameter
Abelian subgroup whose associated Lie algebra is
embedded as follows into SO(8):

Yðα; βÞ ¼

0
BBBBBBBBBBBBB@

0 α 0 0 0 0 0 0

−α 0 0 0 0 0 0 0

0 0 0 α 0 0 0 0

0 0 −α 0 0 0 0 0

0 0 0 0 0 α 0 0

0 0 0 0 −α 0 0 0

0 0 0 0 0 0 0 β

0 0 0 0 0 0 −β 0

1
CCCCCCCCCCCCCA

: ð3Þ

This matrix commutes with Uð3Þ × Uð1Þ ⊂ SOð8Þ for all
α; β. Consequently, for each choice of α and β the above
matrix defines an SUð3Þ × Uð1Þ subgroup of SO(8) where
we denote Uð1Þ≡ Uð1Þα;β for simplicity.
Given some choice of α; β, one easily reads off the

SUð3Þ × Uð1Þ assignments for the gravitinos

ψa
μ ∈ ð3; αÞ; ψ ā

μ ∈ ð3̄;−αÞ;
ψ4
μ ∈ ð1; βÞ; ψ 4̄

μ ∈ ð1;−βÞ: ð4Þ

The 56 spin-1
2
fermions are split into six Goldstinos:

χa44̄ ∈ ð3; αÞ; χā44̄ ∈ ð3̄;−αÞ; ð5Þ
two “would-be Goldstinos”:

χabc ∈ ð1; 3αÞ; χā b̄ c̄ ∈ ð1;−3αÞ ð6Þ

and the remaining 48 spin-1
2
fermions:

χab4 ∈ ð3̄; 2αþ βÞ; χab4̄ ∈ ð3̄; 2α − βÞ
χā b̄ 4 ∈ ð3;−2αþ βÞ; χā b̄ 4̄ ∈ ð3;−2α − βÞ
χabc̄ ∈ ð3; αÞ ⊕ ð6̄; αÞ; χā b̄ c ∈ ð3̄;−αÞ ⊕ ð6;−αÞ
χab̄4 ∈ ð8; βÞ ⊕ ð1; βÞ; χab̄ 4̄ ∈ ð8;−βÞ ⊕ ð1;−βÞ:

ð7Þ

At the SUð3Þ × Uð1Þ stationary point [2] the N ¼ 8
supersymmetry is broken into N ¼ 2 supersymmetry, with
two massless gravitinos ψ4

μ≡ψ7
μþ iψ8

μ and ψ 4̄
μ ≡ ψ7

μ − iψ8
μ,

while the six Goldstinos (5) are eaten to give six massive
gravitinos ψa

μ and ψ ā
μ. As shown in [3], all particles fit

properly into multiplets of N ¼ 2 AdS supersymmetry. The
mass eigenstates at the stationary point actually mix those
fermions lying in the same SUð3Þ × Uð1Þ representations
(see [3] for explicit formulas and a full analysis of the AdS
mass spectrum), but these would anyhow have to regroup
along the “deformed” SUð3Þ × Uð1Þ to be presented below,
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if the latter is dynamically excited. Furthermore, in terms of
the original chiral SU(8) we still have a residual chiral
U(2) which, in terms of the original SU(8) acts on the
indices i; j;… ¼ 7; 8 and commutes with the SU(3) factor.
To get agreement with the nonsupersymmetric low

energy world, the residual N ¼ 2 supersymmetry must,
of course, also be broken, and this must happen through
some as yet unknown dynamical mechanism. In this last
step the remaining massless gravitinos ψ4

μ and ψ 4̄
μ would eat

the would-be Goldstinos from (6) to become massive,
whence we are left with the fermions listed in (7). The
challenge is then to match these remaining 48 spin-1

2

fermions with those of the Standard model.
Now, as shown in [3], the residualN ¼ 2 supersymmetry

and the structure of (long and short) multiplets of N ¼ 2
AdS supersymmetry [3,4] require

α ¼ 1

6
; β ¼ 1

2
: ð8Þ

Remarkably, this choice is also the one required for the
matching with quarks and leptons, modulo a spurion charge
q [12]. Namely, if—besides the standard color charge
assignments—we assign all fermions to triplets or anti-
triplets of a new family group SUð3Þf in the way indicated
below, the identification (after removing all eight
Goldstinos) with quarks and leptons is [5]

χab̄4∶ ðu;c; tÞL 3c × 3̄f → 8⊕ 1
2

3
¼ 1

2
þ q

χāb4̄∶ ðū; c̄; t̄ÞL 3̄c × 3f → 8⊕ 1 −
2

3
¼ −

1

2
− q

χā b̄ c∶ ðd; s;bÞL 3c × 3f → 6⊕ 3̄ −
1

3
¼ −

1

6
− q

χabc̄∶ ðd̄; s̄; b̄ÞL 3̄c × 3̄f → 6̄⊕ 3
1

3
¼ 1

6
þ q

χab4̄∶ ðνe;νμ;ντÞL 1c × 3̄f → 3̄ 0¼ −
1

6
þ q

χā b̄ 4∶ ðν̄e; ν̄μ; ν̄τÞL 1c × 3f → 3 0¼ 1

6
− q

χā b̄ 4̄∶ ðe−;μ−; τ−ÞL 1c × 3f → 3 − 1¼ −
5

6
− q

χab4∶ ðeþ;μþ; τþÞL 1c × 3̄f → 3̄ 1¼ 5

6
þ q

ð9Þ

where we made use of the fact (well known to grand unified
theory practitioners) that right-chiral particles can be
equivalently described by their left-chiral antiparticles.
The most important feature here is that the SU(3) of
N ¼ 8 supergravity is not identified with the QCD color
group SUð3Þc, but rather with the diagonal subgroup of
color and family symmetry, that is, we identify

SUð3Þ≡ ½SUð3Þc × SUð3Þf�diag: ð10Þ

Breaking color and family symmetry to the diagonal
subgroup may look strange, but a not so dissimilar scheme
does appear to work surprisingly well in pure QCD with
three flavors, if one assumes that the product of color and
flavor SU(3) symmetries is broken to the diagonal SU(3)
subgroup by a diquark condensate [13] (“flavor-color
locking”). The last column in (9) shows the physical
electric charges (on the left) in comparison with the U(1)
charges as obtained from the decomposition of the N ¼ 8
fermions [on the right, that is (7) with the particular choice
(8)]. As we see, the latter differ from the quark and lepton
charges systematically by the spurion charge q, with
negative (positive) sign for family triplets (antitriplets).
Accordingly the spurion charge must be taken q ¼ 1

6
to

get agreement with the electric charges of quarks and leptons
[5]. Importantly, the electroweak SUð2Þw would not com-
mute with SUð3Þf, as the upper and lower components of the
would-be electroweak doublets are assigned to opposite
representations of SUð3Þf. More precisely, the upper com-
ponents of the would-be electroweak doublets [that is,
ðu; c; tÞL and ðνe; νμ; ντÞL] are assigned to the 3̄f of
SUð3Þf, while their lower components [that is, ðd; s; bÞL
and ðe−; μ−; τ−ÞLÞ] are assigned to the 3f of SUð3Þf. As a
consequence, the residual chiral SU(2) R symmetry at the
stationary point cannot be identified with the electro-
weak SUð2Þw.
We now look for an implementation of the missing q

rotation on the 56 spin-1
2
fermions of N ¼ 8 supergravity. It

is not immediately obvious that this is possible at all, since
the extra rotation must transform the family triplets 3f and
antitriplets 3̄f with opposite phases, and it is a priori
unclear whether and how such a transformation could be
realized on the original 56 fermions of N ¼ 8 supergravity.
Furthermore, enlarging SO(8) to the chiral SU(8) cannot
help, as we know that the U(1) that is associated with the
electric charges must be vectorlike.
First we write out the correspondence more explicitly:

χα1̄4 ≡ uα; χα2̄4 ≡ cα; χα3̄4 ≡ tα

χα2̄ 3̄ ≡ dα; χα3̄ 1̄ ≡ sα; χα1̄ 2̄ ≡ bα

χ234̄ ≡ νe; χ314̄ ≡ νμ; χ124̄ ≡ ντ

χ2̄ 3̄ 4̄ ≡ e−; χ 3̄ 1̄ 4̄ ≡ μ−; χ 1̄ 2̄ 4̄ ≡ τ− ð11Þ

where the boldface index α is the SUð3Þc index [but
remember that the diagonal SU(3) rotates all indices
different from 4 and 4̄], and where we ignore possible
subtleties concerning the proper mass eigenstates, in
particular possible mixing with the Goldstino and
would-be Goldstino representations in (5) and (6). Idem
for the complex conjugate representations which describe
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the associated antiparticles. Hence, the searched for Uð1Þq
rotation must act as follows:

δuα ¼ −iuα; δcα ¼ −icα; δtα ¼ −itα

δdα ¼ þidα; δsα ¼ þisα; δbα ¼ þibα

δνe ¼ −iνe; δνμ ¼ −iνμ; δντ ¼ −iντ
δe− ¼ þie−; δμ− ¼ þiμ−; δτ− ¼ þiτ−: ð12Þ
To find out whether and how this transformation can be
realized on the original spin-1

2
fermions of the theory, we

express the latter in terms of the physical fermions, then
perform the desired Uð1Þq rotation, and finally transform
back to the original basis. Although the intermediate
expressions are quite messy, the final result takes a very
simple form. To this aim, consider the (vectorlike) SO(8)
generator [same as (3) with α ¼ β ¼ 1]

T ¼ Yð1; 1Þ ¼

0
BBBBBBBBBBBBB@

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

1
CCCCCCCCCCCCCA

:

ð13Þ
Next, introduce the following 56 × 56 matrix acting on the
antisymmetrized product of three 8 representations:

I ≔
1

2
ðT ∧ 1 ∧ 1þ 1 ∧ T ∧ 1þ 1 ∧ 1 ∧ T

þ T ∧ T ∧ TÞ: ð14Þ
Note that this is not the direct coproduct that one would
expect from (1) with U ¼ expðωTÞ acting on each of the
three indices, and thus not even an element of SU(8).
Indeed, the extra term is reminiscent of the modification
(“twist”) required to deform a trivial into a nontrivial
coproduct. We note that, from T2 ¼ −1,

I2 ¼ −1 ð15Þ
with the 56 × 56 unit matrix 1, which shows that (14)
can be trivially exponentiated to a Uð1Þq phase rotation.
Examples of the action of I are

χ137 →
1

2
ðþχ237 þ χ147 þ χ138 þ χ248Þ

χ247 →
1

2
ð−χ147 − χ237 þ χ248 þ χ138Þ

χ125 → χ126; χ346 → −χ345; ð16Þ

and so on. While the commutation of T ∧ T ∧ T with an
arbitrary element of SO(8) or SU(8) in the 56 representation
would enlarge either Lie algebra to a bigger one, this is not
the case for the residual SUð3Þ × Uð1Þ because T (repre-
senting the imaginary unit) commutes with this subgroup.
Hence, it results in a genuine deformation, not an enlarge-
ment, of the residual SUð3Þ × Uð1Þ symmetry at the
stationary point.
Our main observation now is that I does realize (12),

namely the transformation

χijk → ðI ∘ χÞijk ð17Þ
yields precisely the phase rotations shown in (12), as is
most easily verified by observing that the phase is negative
on χ’s with zero or one barred index, and positive on χ’s
with two or three barred indices [without the twist term
in (14), the fermions would transform with a phase factor
expðinqÞ, where n counts the number of barred minus
unbarred indices]. Therefore, assigning all fermions the
charge q ¼ 1

6
under Uð1Þq and combining the action of

Uð1Þq with that of the supergravity U(1), we obtain the
correct electric charges for all 48 quarks and leptons. We
emphasize that the simple formula (14) appears to work
only with the choice (8).
An obvious question at this point concerns the possible

implementation, within the present scheme, of chiral
gauge interactions corresponding to the full electroweak
SUð2Þw × Uð1ÞY symmetry [which our new Uð1Þq would
be part of]. While we have so far no definite answer to
this question, we would like to emphasize the following
point. As already shown in [1], the gauging can be done
while maintaining the “composite” local SU(8) of [7]. In
that formulation the theory has a local SOð8Þ × SUð8Þ
symmetry [1], which might play a role in explaining
the emergence of chirality. Indeed, when embedding the
SU(3) subgroup of SO(8) into the (chiral) SU(8), the
maximal symmetry that commutes with it is a (chiral)
U(2) [3], and this statement remains true with the deformed
U(1) identified here. While it is evident already from the
discussion in [3] that this U(2) by itself cannot produce the
correct electroweak charge assignments, because SUð2Þw
would not commute with SUð3Þf, a twist similar to the
one introduced here may be required to make things work.
What is clear, however, is that in such a scheme theW� and
Z vector bosons would have to be composite, in a partial
realization of the conjecture already made in [7], that SU(8)
becomes dynamical. We recall that the composite chiral
SU(8) symmetry does not suffer from anomalies [14], and
the same should be true for any subgroup of SU(8) that
becomes dynamical.
The results of this article lend further credence to the

remarkable coincidence, already exhibited in [5] and [3],
between the fermionic sector of N ¼ 8 supergravity and
the observed 48 spin-1

2
fermions of the Standard model.
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Evidently this agreement would be spoilt if any new
fundamental spin-1

2
degrees of freedom (as predicted by

all models of N ¼ 1 low energy supersymmetry) were to be
found at LHC. While the numerology is thus very sugges-
tive, there remain, of course, the thorny open problems
already listed in [3] (huge negative cosmological constant,
mass spectrum, etc.), whose resolution would demand
some new, and as yet unknown, dynamics which would
also have to account for the final breaking of N ¼ 2
supersymmetry. So the above coincidence between theory
and observation may yet turn out to be a mirage. At any
rate, and in view of the complete absence so far of any “new
physics” at LHC, it appears worthwhile to search for
unconventional alternatives, of the type considered here,

to currently popular ideas. In particular, the actual reali-
zation of supersymmetry in particle physics may require a
more sophisticated implementation of this beautiful con-
cept than in the N ¼ 1 models currently thought to be
phenomenologically viable.
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