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We consider the electromagnetic field in the presence of polarizable point dipoles. In the corresponding
effective Maxwell equation these dipoles are described by three dimensional delta function potentials.
We review the approaches handling these: the self-adjoint extension, regularization/renormalization and the
zero range potential methods. Their close interrelations are discussed in detail and compared with the
electrostatic approach which drops the contributions from the self fields. For a homogeneous two
dimensional lattice of dipoles we write down the complete solutions, which allow, for example, for an easy
numerical treatment of the scattering of the electromagnetic field on the lattice or for investigating
plasmons. Using these formulas, we consider the limiting case of vanishing lattice spacing, i.e., the
transition to a continuous sheet. For a scalar field and for the TE polarization of the electromagnetic field
this transition is smooth and results in the results known from the continuous sheet. Especially for the TE
polarization, we reproduce the results known from the hydrodynamic model describing a two dimensional
electron gas. For the TM polarization, for polarizability parallel and perpendicular to the lattice, in both
cases, the transition is singular. For the parallel polarizability this is surprising and different from the
hydrodynamic model. For perpendicular polarizability this is what was known in literature. We also
investigate the case when the transition is done with dipoles described by smeared delta function, i.e.,
keeping a regularization. Here, for TM polarization for parallel polarizability, when subsequently doing the
limit of vanishing lattice spacing, we reproduce the result known from the hydrodynamic model. In case of
perpendicular polarizability we need an additional renormalization to reproduce the result obtained
previously by stepping back from the dipole approximation.
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I. INTRODUCTION

Recently in [1–3], the interaction of the electromagnetic
field with a monoatomically thin sheet polarizable perpen-
dicularly was considered and different results were found.
As an attempt to understand these results we start from a
two dimensional lattice of polarizable point dipoles in three
dimensional space and reconsider the standard treatment. In
this way, for a scalar field one arrives at the equation

�
−ω2 − Δþ g

X
n

δ3ðx − anÞ
�
ΦðxÞ ¼ 0; ð1Þ

where the points an [n ¼ ðn1; n2; 0Þ, ni integer] form a
plane two dimensional lattice of delta functions (“Dirac
lattice”).
Equations of such type, with delta function potential, are

known in different areas:
(1) The one-dimensional analog of Eq. (1) with an

equally spaced lattice, an ¼ an, is the well-known
Kronig-Penney model (“Dirac comb”) [4], which
now serves as a popular textbook example.

(2) In two and three dimensions, the delta functions in
(1) are ill defined. For a single delta function this

was observed in [5] and solved by the method of
self-adjoint extensions.

(3) In quantummechanics, puttingω2 ¼ 2mE=ℏ2, Eq. (1)
is a Schrödinger equation with delta function poten-
tials. It appeared as a generalization of the Kronig-
Penney model and provides an approximation for
scattering of short wavelength particles. It is known as
method of zero-range potential (see [6] and references
therein). Also, sometimes it is called point interaction.

(4) In quantum mechanics, in two or three dimensions,
using methods known from quantum field theory,
this equation is considered with some regularization
supplemented by subsequent renormalization of the
coupling g. This was discussed in [7], and more
recently in [8], in application to delta functions on a
manifold using a regularization in terms of separable
potentials and application of renormalization group
techniques. A finite dimensional analog of this is
known as Koster-Slater perturbation technique [9].

(5) In classical electrodynamics with appropriate ex-
pression for g (see below), this equation describes
the electric field in the presence of point dipoles,
polarized by an applied field and by the field from all
other dipoles. In this case, renormalization is equiv-
alent to removing the self force.

It must be mentioned that in each area the above-
mentioned methods are well developed, however, the
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communities using these are quite disjunct. We find it
useful to represent these methods together in one place
demonstrating their close interrelation. We keep formulas
as simple as possible to facilitate broader understanding
and restrict ourselves to the examples relevant to the
discussion of the polarizable sheets.
The recent discussion of thin polarizable sheets started

with [1,10]. For a polarizability perpendicular to the sheet
no interaction with the electromagnetic field was found. In
[2] a response was found starting from a plane lattice of
dipoles polarizable perpendicularly to the sheet. However,
for a shrinking of the lattice spacing to zero, which
corresponds to the long wavelengths limit, it became
singular. In [3], also starting from a lattice, the limit of
vanishing lattice spacing was taken in the equations. For
polarizability parallel to the sheet, equations result which
are equivalent to those of the hydrodynamic model, studied
in [11]. These are of the type of Eq. (1), however with a one
dimensional delta function, δðzÞ, and have a well defined,
unique solution. For perpendicular polarizability, however,
an equation results, which has in addition a term with the
second derivative of the delta function, δ00ðzÞ. In order to
match this term in the equation, the ansatz for the solution
must itself contain a delta function. This is physically
sound since the field ΦðxÞ describes in this case the normal
component of the electric field of a double layer which
is known to have a delta function on the sheet. However,
in this case the product ΦðxÞδðzÞ is singular. As a way out,
in [3] it was discussed that one needs to step back from the
underlying dipole approximation. This way, a finite result
was obtained, which is different from [1] and from [2]. It is
an aim of the present paper to discuss the limit of vanishing
lattice spacing in a broader context and to gain more insight
into the different limiting procedures involved.
We mention that interest is these limiting procedures

comes also from the question, to which extent one can
approximate a lattice of dipoles by a continuous sheet. The
standard reference is here the perfect conductor, which
serves as good approximation to the real conductor for long
wavelengths.
In electrodynamics, we consider the electric field in the

presence of polarized point dipoles. The corresponding
formulas are well known (see, e.g., [12]). Here we follow
the notations used in [3]. Putting c ¼ 1 and assuming
harmonic time dependence ∼ expð−iωtÞ, we have two
equations,

ð−ω2 − ΔÞEðxÞ ¼ 4πðω2 þ∇∘∇ÞX
n

pnδðx − anÞ;

pn ¼ α̂EðanÞ; ð2Þ

where the first line is the equation for the electric field in the
presence of the point dipoles pn located at an, and the
second line describes the polarization of one dipole by
the electric field at the location of the dipole. In this way,

the commonly used dipole approximation is assumed. In
Eq. (2), ∇∘∇ is the dyadic product of the gradients. In
general, all vectors are denoted by bold letters, for instance,

x ¼ ðx; y; zÞ ¼ ðxjj; zÞ; xjj ¼ ðx; yÞ; ð3Þ

and similar for the momenta. The sheet is always in the
(x; y)-plane and the lattice

an ¼ an; n ¼ ðn1; n2; 0Þ ð4Þ

is quadratic with spacing a. In the second line in (2), α̂ is the
polarizability. It has the dimension of length3. We take it as
a diagonal matrix and consider two cases,

α̂ ¼ diagðαjj; αjj; 0Þ for in-plane polarizability;

α̂ ¼ diagð0; 0; α3Þ for perpendicular polarizability: ð5Þ

If thinking of the dipoles as bound charges e with non-
relativistic motion, for αjj and α3 known expressions of
the type

α ¼ e2

mðω2
0 − ω2Þ ð6Þ

with intrinsic frequency ω0 hold in the simplest case. It is to
be mentioned that the sign may change in dependence on
the frequency. For ω0 ¼ 0 we get the polarizability for free
charges as assumed in the hydrodynamic model [11].
However, in this paper we do not use these details.
Next we insert the dipole moments from the second line

in (2) into the first line and we obtain an equation like (1),

�
−ω2 − Δ − 4πðω2 þ∇∘∇Þα̂X

n

δðx − anÞ
�
EðxÞ ¼ 0;

ð7Þ

and get an effective Maxwell equation. It must be men-
tioned that this equation is a direct consequence of Eq. (2).
However, it is common not to use this equation in
electrodynamics, see for example Chapter 17 in [12].
Below we will comment more on this point. Keeping aside
for a moment the difficulties with the singularity, this is a
vector equation. It can be diagonalized since the polar-
izations separate for the polarizabilities (5) and the geom-
etry (4) into TE and TM modes,

EðxÞ ¼

0
B@

−∂y

∂x

0

1
CAETEðxÞ þ

0
B@

∂x∂z

∂y∂z

−Δjj

1
CAETMðxÞ ð8Þ

with Δjj ¼ ∂2
x þ ∂2

y. For in-plane polarizability we get an
equation for the TE mode where ∇∘∇ does not contribute,
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whereas for the TM mode it becomes the in-plane Laplace operator, ∇∘∇ → Δjj. For perpendicular polarizability we have
for parity reasons only the TM mode. In the following we denote this case be “P.”We consider the equation for the normal
component of the electric field, E3ðxÞ, and here we have to substitute ∇∘∇ → ∂2

z . Together, in all three cases we get the
modification �

−ω2 − Δþ gP
X
n

δðx − anÞ
�
ΦðxÞ ¼ 0 ð9Þ

of Eq. (1) or (7) where for g and P one needs to substitute according to

mode coupling field

TE g → α∥; P ¼ −4πω2; ΦðxÞ → ETEðxÞ;
TM g → α∥; P ¼ −4πðω2 þ Δ∥Þ; ΦðxÞ → ETMðxÞ;
P g → α3; P ¼ −4πðω2 þ ∂2

zÞ; ΦðxÞ → E3ðxÞ:
ð10Þ

Wemention that the TEmodediffers from the scalar case only
by the substitution of the coupling constant, while the other
two cases have in addition derivatives in their couplings.
The paper is organized as follows. In the next section we

consider the equation with a single delta function and
discuss in detail the singularity, the regularization and
renormalization, which are used in Sec. III for multiple
centers. As an application we consider then the scattering
on a two dimensional lattice. In Sec. V we discuss the
transition to a continuous sheet with different orders of the
limits involved.

II. APPROACHES FOR A SINGLE THREE
DIMENSIONAL DELTA FUNCTION

In this section we consider the approaches to Eq. (1) for a
single delta function located at the origin, an ¼ 0,

ð−ω2 − Δþ gδ3ðxÞÞΦðxÞ ¼ 0; ð11Þ

where δðxÞ ¼ δðxÞδðyÞδðzÞ is a three dimensional delta
function, x ¼ ðx; y; zÞ ∈ R3 and Δ is the three dimensional
Laplace operator. As it stands, this equation is not well
defined. In three (and in two) dimensions this equation can
be given a precise meaning by several of the methods,
which we review in this section.

A. Self-adjoint extension

We begin with the method of self-adjoint extensions.
This was first done in [5], later generalized in [13] and quite
a number of further places. The idea is, roughly speaking,
to restrict the domain of the operator to regular solutions
where it is only symmetric, and then to add a singular
solution which makes the operator self-adjoint. In doing so,
a new parameter αSE appears which can be called extension
parameter and the original one, g, loses any meaning. In
this way, any potential with support in one point is

described. This solution appears only in the s-wave (orbital
momentum l ¼ 0). Higher l are not affected (these “do not
feel” the delta function) since any regular solutions behave
∼rl for r → 0. In this way, the solution has an expansion

ΦðxÞ ¼ c

�
1

jxj þ αSE þOðxÞ
�
; ð12Þ

where c is an overall normalization constant and αSE is the
extension parameter. This extension is unique in the s-wave
sector (see Sec. II B). Another, equivalent form of writing,

lim
jxj→0

�
−αSE þ

d
djxj

�
jxjΦðxÞ ¼ 0; or

αSE ¼ lim
jxj→0

d
djxj ln ðjxjΦðxÞÞ; ð13Þ

is in terms of a boundary condition at the origin.
The solution to Eq. (11) for x ≠ 0, i.e., outside the delta

function, can be written in the form

ΦðxÞ ¼ eikx þ f
eiωjxj

jxj : ð14Þ

It can be interpreted as incoming plane wave with wave
vector k and an outgoing spherical wave with frequency ω
[with ω ¼ jkj from Eq. (11)], which is centered around the
delta function. In this setup, f is the scattering amplitude.
Expanding this solution,

ΦðxÞ ¼ 1þ f
jxj þ iωf þ � � � ; ð15Þ

and comparing with Eq. (12), we identify

αSE ¼ 1

f
þ iω; or f ¼ 1

αSE − iω
; ð16Þ
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which is a relation between the extension parameter αSE
and the scattering amplitude. In this way, the solution (14)
is extended to the whole plane, i.e., including x ¼ 0.
The scattering amplitude f has the appropriate analytic

properties. It is a meromorphic function with a single pole
on the imaginary axis in ω ¼ ið−αSEÞ, which for αSE < 0
corresponds to a bound state. The normalized bound state
wave function is

ϕbsðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
−αSE
2π

r
eαSEjxj

jxj ð17Þ

and ð−αSEÞ is the binding energy.

B. The three dimensional delta function in the general
theory of self-adjoint extensions

In the past years Asorey, Munoz-Castaneda et al. devel-
oped a new formalism to characterize the most general case
of self-adjoint extensions for operators relevant in math-
ematical physics in terms of an unitary operator U (see
Refs. [14–18]). Here, we apply this formalism to a three
dimensional delta function, which was not done so far.
In general, if M is a d-dimensional manifold with

boundary ∂M≡ Σ, the set of self-adjoint extensions of
the Laplace operator onM is in one-to-one correspondence
with the unitary group UðL2ðMÞÞ. This correspondence
allows to characterize each self-adjoint extension by an
unitary operator U. In particular, for a given unitary
operator U ∈ UðL2ðMÞÞ, the corresponding self-adjoint
extension ΔU is fully determined by the domain of
functions DðΔUÞ ⊂ L2ðMÞ that satisfy the boundary
condition

μψ jΣ − i∂nψ jΣ ¼ Uðμψ jΣ þ i∂nψ jΣÞ; ð18Þ
where the constant μ is a positive coupling constant with
units of L−1 that characterizes the interaction with the
boundary Σ. When the size of the boundary is finite, the
coupling constant μ can be set to unity without loss of
generality since the spectrum of ΔU and its eigenfunctions
only depend on the unitary operatorU that characterizes the
self-adjoint extension (see Refs. [15,16]). In particular, the
existence of bound states in the spectrum of Δu only
depends on the matrix U and not in the value of μ.
In the case of a singularity concentrated on a point as it is

the delta function, one must introduce a regularization in
order to define the singular pointlike potential. For this
reason it cannot be set to one. Assuming that the singularity
is placed at the origin, the operatorU is defined on a sphere
of radius ϵ around the singularity. Note that in such a case
the boundary Σ is a sphere of radius ϵ and the physical
space of the system is given by the condition r > ϵ.
Therefore we have ∂n ¼ −∂r and Eq. (18) turns into

μϵψ jr¼ϵ þ i∂rψ jr¼ϵ ¼ Uϵðμϵψ jr¼ϵ − i∂rψ jr¼ϵÞ: ð19Þ

The radius ϵ is here the regularizing parameter that must be
made 0 at the end. As it will be seen below, we need to
allow the coupling constant μ to depend on the regulari-
zation parameter, μ → με. Therefore Eq. (19) can be written
as a boundary condition,

lim
ϵ→0

ðμϵψ jr¼ϵ þ i∂rψ jr¼ϵÞ ¼ lim
ϵ→0

Uϵðμϵψ jr¼ϵ − i∂rψ jr¼ϵÞ:
ð20Þ

When the singularity preserves spherical symmetry, the
operator U, that characterizes the corresponding self-
adjoint extension, is box-diagonal when the wave function
is decomposed in spherical components. Therefore for each
value of the orbital angular momentum L, we will have one

boundary condition characterized by a finite matrix UðLÞ
M;M0

of order 2L × 2L (see Refs. [19,20]). Any quantum state
ψkðxÞ with defined energy k2 can be decomposed in
spherical coordinates as

ψkðxÞ ¼
X∞
L¼0

XL
M¼−L

Rk;LMðrÞYLMðΩÞ; ð21Þ

where YLMðΩÞ are the spherical harmonics, and Rk;LM is
the radial function that obeys the differential equation,

−
1

r2
d
r

�
r2
d
r
RLMðrÞ

�
þ LðLþ 1Þ

r2
RLMðrÞ ¼ k2RLMðrÞ:

ð22Þ

The general solution to the radial differential equation is
given by

RLMðrÞ ¼ ALMðkÞjLðkrÞ þ BLMðkÞyLðkrÞ; ð23Þ

where jLðrÞ and yLðrÞ are the spherical Bessel functions.
Notice that since the boundary condition in general does
not require regularity of the radial function at the origin, the
coefficient of yLðkrÞ cannot be made equal to zero. Hence,
for fixed L, the corresponding boundary conditions have
the form

μϵψ jr¼ϵ � i∂rψ jr¼ϵ

¼
XL
M¼−L

ðμϵRk;LMðϵÞ � iR0
k;LMðϵÞÞYLMðΩÞ ð24Þ

for any L. Since the spherical harmonics are orthonormal,
these should be taken as the basis of a 2L vector space of
boundary data for fixed L. The boundary data can be
represented as two 2L-dimensional column vectors,
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ΦðLÞ
� ≡

0
BBBBBBBBBB@

μϵRk;L−LðϵÞ � iR0
k;L−LðϵÞ

..

.

μϵRk;LMðϵÞ � iR0
k;LMðϵÞ

..

.

μϵRk;LLðϵÞ � iR0
k;LLðϵÞ

1
CCCCCCCCCCA
: ð25Þ

Now, the most general boundary condition that preserves
the total angular momentum can be written as

ΦðLÞ
þ ¼ ULΦðLÞ

− ; UL ∈Uð2Lþ 1Þ; L¼ 0;1;2;3;…:

ð26Þ

This boundary condition is characterized by a set of
matrices fULjUL ∈ Uð2Lþ 1ÞgL∈Zþ . Notice, that when
the boundary condition is defined by UL ¼ I2Lþ1×2Lþ1, one
obtains the boundary condition R0

k;L−LðϵÞ ¼ 0 which is a
Neumann boundary condition. If UL ¼ −I2Lþ1×2Lþ1 gives
rise to ϵRk;LLðϵÞ ¼ 0 which must be satisfied for any ϵ > 0

before taking the limit ϵ → 0 which happens if and only if
Rk;LLðϵÞ ¼ 0 which is a Dirichlet boundary condition.
When taking the limit ϵ → 0 for the cases of Dirichlet
and Neumann boundary conditions, the coefficient BLM in
Eq. (23) must be equal to zero which gives rise to functions
regular at the origin. It is of note that when the point
potential is spherically symmetric, the matrices UL must be
diagonal and the boundary condition (26) becomes

R0
k;LMðϵÞ ¼ μϵ tan ðθϵðL;MÞ=2ÞRk;LMðϵÞ ð27Þ

for each radial function Rk;LM.
Within this formalism, it is also possible to

define a multipole boundary condition by interpreting
the L-decomposition of the boundary condition given
above as a multipole decomposition of the point potential.
Therefore, whenUL ≠ −I2Lþ1×2Lþ1 just for a given L0 ≥ 0,
then one should interpret the point potential as the short
range approximation for the potential of a L-multipole
(L0 ¼ 0 would be the monopole or point charge, L0 ¼ 1
the dipole, L ¼ 2 the quadrupole, and so on). As it is well
known the delta function potential represents the short
range approximation of a point charge (this is the same as
the zero range approximation discussed in the next sub-
section). Therefore, to represent the delta function potential
as a boundary condition, only the monopole term in the
multipole decomposition of the boundary condition should

be nontrivial and UðδÞ
L ¼ −I for all L > 0.

To determine the L ¼ 0 component we have to take into
account that in this case UL¼0 ¼ eiθ ∈ Uð1Þ. Therefore the
boundary condition for the L ¼ 0 components reads

μϵRk;0ðϵÞ þ iR0
k;0ðϵÞ ¼ eiθϵμϵRk;0ðϵÞ − iR0

k;0ðϵÞ: ð28Þ

To determine μϵ and θϵ in terms of ϵ and the extension
parameter αSE introduced in (12), we need to write down
condition (13) in a suitable manner. Previous to taking the
limit jxj → 0 in Eq. (14) we can write condition (13) over a
small sphere of radius ϵ,

ð1 − ϵαSEÞRk;0ðϵÞ þ ϵR0
k;0ðϵÞ ¼ 0

⇒ R0
k;0ðϵÞ ¼

ϵαSE − 1

ϵ
Rk;0ðϵÞ: ð29Þ

Provided eiθ ≠ �1, we can write the condition (28) as

R0
k;0ðϵÞ ¼ μϵ tan ðθϵ=2ÞRk;0ðϵÞ: ð30Þ

Comparing the last two expressions we obtain the condition

μϵ tan ðθϵ=2Þ ¼
ϵαSE − 1

ϵ
: ð31Þ

Keeping in mind that the only dimensional parameter
entering the boundary condition (18) is μϵ, we obtain
the relations

μϵ ¼ 1=ϵ; tan ðθϵ=2Þ ¼ ϵαSE − 1; ð32Þ

connecting the parameters of the self-adjoint extension in
Sec. II B and in the present subsection.
It is of note that the renormalization group equations for

the parameters μϵ and θϵ are

dμϵ
dϵ

¼ −1=μ2ϵ ;
dθϵ
dϵ

¼ αSE
1 − tan2ðθϵÞ

: ð33Þ

This dynamical system also characterizes the three dimen-
sional delta function up to two integration constants.
The generalization of the definition of the delta function

potential for an electromagnetic field can be achieved using
the theory of self-adjoint extensions for the quadratic Yang-
Mills operator around a pointlike configuration (see
Refs. [21–23]).

C. Zero-range potential

In quantum mechanics, Eq. (11) with ω ¼ ffiffiffiffiffiffiffiffiffiffi
2mE

p
=ℏ is a

Schrödinger equation for a particle with mass m moving in
a delta function potential. For a generic spherical sym-
metric potential VðrÞ in place of the delta function one
considers the scattering of the particle off the potential and
comes to a partial wave scattering amplitudes flðkÞ
(l ¼ 0; 1; 2;…, k ¼ jkj). For small momenta k, or for
large wavelength of the scattered particle, these can be
expanded,

flðkÞ ¼ −alk2l þ � � � ð34Þ
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(see, e.g., [24], Chapter 11), where al is the scattering
length, which is a property of the potential. For small k,
Eq. (34) provides an approximation for the scattering
amplitude. If restricting in addition to s-wave scattering,
comparison with Eq. (16) shows the relation

a0 ¼ −
1

αSE
ð35Þ

between the extension parameter and the s-wave scattering
length. For the s-wave, in the next term in expansion (34),

f0ðkÞ ¼ −a0 þ
1

2
r0k2 þ � � � ; ð36Þ

the parameter r0 is interpreted as range of the potential.
Putting r0 ¼ 0motivates the naming “method of zero-range
potential.”
This method was actively used since the mid 1960s; see,

for example, [6] and also the more recent paper [25], which
has an exhaustive bibliography. Some most recent appli-
cations are [26] and [27]. The equivalence to the method of
self-adjoint extension was shown in [28].

D. Regularization and renormalization

In this subsection we consider another approach which
follows a line of reasoning known in quantum field theory.
Following [7], we start with a Fourier transform,

ΦðxÞ ¼
Z

d3p
ð2πÞ3 e

ipx ~ϕðpÞ; ð37Þ

and get from (11)

ð−ω2 þ p2Þ ~ϕðpÞ þ gΦð0Þ ¼ 0 ð38Þ

with ω2 ¼ k2. This equation can be easily solved,

~ϕðpÞ ¼ ð2πÞ3δðp − kÞ − gΦð0Þ
p2 − ω2

; ð39Þ

assuming ℑω > 0. The first term is the homogeneous
solution. Inserting (39) into (37) we get for x ¼ 0 the
equation

Φð0Þ ¼ 1 − gΦð0ÞIð−ω2 − i0Þ; ð40Þ

where

IðzÞ ¼
Z

d3p
ð2πÞ3

1

p2 þ z
ð41Þ

carries the divergence. This divergence is one way to see
that the delta function in Eq. (12) is ill defined in
dimensions higher than one. At once, this integral gives

the opportunity to introduce a regularization, i.e., to change
the initial formal expression in a way that it becomes well
defined. A convenient way is to change the dimension,
3 → n, in the integration and, following the aim of dimen-
sional regularization, to consider the analytic continuation
of IðzÞ in n. Another way is to restrict the integration,
jpj < Λ, by a momentum cutoff with Λ → ∞ at the end.
Thus one substitutes

IðzÞ → IΛðzÞ ¼
Z
jpj<Λ

d3p
ð2πÞ3

1

p2 þ z
¼ Λ

2π2
−

ffiffiffi
z

p
4π

þO

�
1

Λ

�

ð42Þ

and has explicitly the singularity for Λ → ∞. Rewriting
Eq. (40) with this regularization and solving for gΦð0Þ,

gΦð0Þ ¼ 1
1
g þ Λ

2π2
þ iω

4π þ � � � ; ð43Þ

one defines by

1

gr
¼ 1

g
þ Λ
2π2

ð44Þ

a new, renormalized coupling constant gr which is sup-
posed to be finite for Λ → ∞. This is on expense of the
initial coupling constant g, which is now g ¼ ð 1gr − Λ

2π2
Þ−1

and which goes to zero. Finally, inserting gΦð0Þ from (43)
with (44) for Λ → ∞ into (39) we get the solution which
after Fourier transform back becomes

ΦðxÞ ¼ eikx −
1

1
gr
þ iω

4π

eiωjxj

4πjxj : ð45Þ

This is just the solution (16) with the identification

f ¼ −1
4π
gr
þ iω

; respectively; αSE ¼ 4π

gr
: ð46Þ

In this way, one obtains after renormalization the same
result as from self-adjoint extension, Eq. (16). The freedom
in the renormalization [one can add to (44) any constant]
corresponds to the freedom in the choice of the extension
parameter αSE.
At this place it should be repeated that the initial

parameter g in the process of renormalization loses its
meaning completely. The new, renormalized parameter gr
can be given a meaning by relating it via (46) with the
scattering amplitude or using (17) with a bound state level.
The cutoff regularization introduced with Eq. (42) is

equivalent to the use of a regularized delta function δðε;xÞ
in Eq. (11) which is nonsingular and has the property

lim
ε→0

δðε;xÞ ¼ δðxÞ: ð47Þ
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However, for any nonzero ε, one comes this way to an
equation with a generic potential. Especially when con-
sidering several such potentials in an equation like Eq. (1),
variables do not separate and the equation becomes hard to
investigate. There is a way to avoid this difficulty by
considering the regularized equation in the form

ð−ω2 − ΔÞΦðxÞ þ gδ1ðε;xÞ
Z

dyδ2ðε; yÞΦðyÞ ¼ 0; ð48Þ

where we introduced two regularized delta functions which
may be different from one another.
Starting from here, we consider in parallel to the scalar

case, Eq. (1), also the electric field obeying Eq. (2), with s
single dipole located at the origin, an ¼ 0. We use this
freedom in the choice of the regularized delta functions for
accommodating the cases we are interested in. Thus we
demand

lim
ε→0

δ1ðε;xÞ ¼ PδðxÞ; lim
ε→0

δ2ðε;xÞ ¼ δðxÞ; ð49Þ

with P ¼ 1 for the scalar case and with P either P →
−4πðω2 þ∇∘∇Þ (and g → −4πα̂) or, according to formula
(10), for the electromagnetic case. Clearly, for ε → 0, using
(49), we get back to Eq. (11) for the scalar case. For the
electric field we substitute ΦðxÞ → EðxÞ in (48) and get
back Eq. (7).
Rewriting Eq. (48) in the formZ

dyKðx; yÞΦðyÞ ¼ 0; ð50Þ

with the integral kernel

Kðx; yÞ ¼ ð−ω2 − ΔÞδðx − yÞ þ gδ1ðε;xÞδ2ðε; yÞ; ð51Þ

it is seen that we have an equation with a separable
potential. Defining the Green function byZ

dzKðx; zÞGðz; yÞ ¼ δðx − yÞ; ð52Þ

the explicit solution is

Gðx; yÞ ¼ G0ðx − yÞ −
Z

dx0dy0G0ðx − x0Þδ1ðε;x0Þ

× ϕ−1
0 δ2ðε; y0ÞG0ðy0 − yÞ ð53Þ

with

ϕ0 ¼
1

g
þ
Z

dxdyδ2ðε;xÞG0ðx − yÞδ1ðε; yÞ ð54Þ

and the free Green function obeying ðω2 − ΔÞG0ðx − yÞ ¼
δðx − yÞ. Its explicit form is

G0ðx − yÞ ¼
Z

dp
ð2πÞ3

eipx

p2 − ω2 − i0
¼ eiωjxj

4πjxj : ð55Þ

The solution (53) can be easily checked by inserting
into (52).
From (53), a solution corresponding to an incoming

plane wave with wave vector k can be obtained by

ΦðxÞ ¼
Z

dydzGðx; yÞG−1
0 ðy − zÞeikz ð56Þ

and with (53) it can be written in the form

ΦðxÞ ¼ eikx −
Z

dx0G0ðx − x0Þδ1ðε;x0Þϕ−1
0

×
Z

dy0δ2ðε; y0Þe−iky0 : ð57Þ

For ε → 0 it turns into the solution (14) with the
identification

f ¼ lim
ε→0

−1
4πϕ0

: ð58Þ

This way, the equivalence of the separable regularization
with the previously considered approaches is seen.
An especially convenient choice for the regularized delta

function is the heat kernel,

KεðxÞ ¼
exp ð− x2

4sÞ
ð4πsÞ3=2 ; ð59Þ

with its property limε→0KεðxÞ ¼ δðxÞ and the pleasant
formulas

G0ðxÞ ¼
Z

∞

0

dse−sξ
2

KsðxÞ;Z
dzG0ðx − zÞKεðz − yÞ ¼

Z
∞

0

dse−sξ
2

Ksþεðx − yÞ;

ð60Þ

which follow from (55) and (59). The parameter ε regu-
larizes the singularity in the integration over the proper time
s at s ¼ 0. We use imaginary frequency, ω ¼ iξ, in order to
avoid inconvenience with powers of i. We use the heat
kernel regularization in the following way. For the scalar
case we take δ1ðε;xÞ ¼ KεðxÞ. For the polarizations of the
electromagnetic case we take δ1ðε;xÞ ¼ PKεðxÞ which
with (10) turns into

TE∶ δ1ðε;xÞ ¼ 4πξ2KεðxÞ;
TM∶ δ1ðε;xÞ ¼ 4πðξ2 − ΔjjÞKεðxÞ;
P∶ δ1ðε;xÞ ¼ 4πðξ2 − ∂2

zÞKεðxÞ; ð61Þ
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and for all cases we take δ2ðε;xÞ ¼ KεðxÞ. Now we insert
these definitions into Eq. (54). For the scalar case we get

ϕ0 ¼
1

g
þ
Z

∞

0

dse−sξ
2

Ksþ2εð0Þ ð62Þ

and for the electromagnetic cases we get

ϕTE
0 ¼ 1

αjj
þ 4π

Z
∞

0

dse−sξ
2

ξ2Ksþ2εðxÞjx¼0;

ϕTM
0 ¼ 1

αjj
þ 4π

Z
∞

0

dse−sξ
2ðξ2 − ΔjjÞKsþ2εðxÞjx¼0;

ϕP
0 ¼

1

α3
þ 4π

Z
∞

0

dse−sξ
2ðξ2 − ∂2

zÞKsþ2εðxÞjx¼0: ð63Þ

Calculated for ε → 0, these expressions become divergent
according to

ϕscalar
0 ¼ 1

g
þ 1

ð2πÞ3=2 ffiffiffi
ε

p þ iω
4π

þOð ffiffiffi
ε

p Þ;

ϕTE
0 ¼ 1

αjj
þ −

ω2ffiffiffiffiffiffiffiffi
2πε

p þ iω3 þOð ffiffiffi
ε

p Þ;

ϕTM
0 ¼ 1

αjj
þ þ 1

6
ffiffiffiffiffiffi
2π

p
ε3=2

−
ω2

3
ffiffiffiffiffiffiffiffi
2πε

p þ iω3

3
þOð ffiffiffi

ε
p Þ;

ϕP
0 ¼ 1

α3
þ 1

12
ffiffiffiffiffiffi
2π

p
ε3=2

−
ω2

6
ffiffiffiffiffiffiffiffi
2πε

p þ 2iω3

3
þOð ffiffiffi

ε
p Þ;

ð64Þ

where we turned back to real frequencies, ξ ¼ −iω, and
give rise to the renormalizations of the couplings,

1

gren
¼ 1

g
þ 1

ð2πÞ3=2 ffiffiffi
ε

p ; for scalar;

1

αrenjj
¼ 1

αjj
−

ω2ffiffiffiffiffiffiffiffi
2πε

p ; for TE;

1

αrenjj
¼ 1

αjj
þ 1

6
ffiffiffiffiffiffi
2π

p
ε3=2

−
ω2

3
ffiffiffiffiffiffiffiffi
2πε

p ; for TM;

1

αren3

¼ 1

α3
þ 1

12
ffiffiffiffiffiffi
2π

p
ε3=2

−
ω2

6
ffiffiffiffiffiffiffiffi
2πε

p ; for P: ð65Þ

It is seen that all these renormalizations are different one
from another and depend in the electromagnetic case on
frequency. In terms of the renormalized couplings, we get

ϕscalar
0 ¼ 1

gren
þ iω
4π

; ϕTE
0 ¼ 1

αrenjj
þ iω3;

ϕTM
0 ¼ 1

αrenjj
þ iω3

3
; ϕP

0 ¼ 1

αren3

þ 2iω3

3
: ð66Þ

Finally we consider the wave functions which follow from
Eq. (57) with ε → 0 and (55). In the scalar case we get

ΦðxÞ ¼ eikx −
1

4πϕscalar
0

eiωjxj

jxj ; ð67Þ

repeating the identification (58) and Eq. (67) coincides
with Eq. (14).
In the electromagnetic cases we get, using (61),

ETEðxÞ ¼ eikx þ ω2

ϕTE
0

eiωjxj

jxj ;

ETMðxÞ ¼ eikx þ 1

ϕTE
0

ðω2 þ ΔjjÞ
eiωjxj

jxj ;

EPðxÞ ¼ eikx þ 1

ϕP
0

ðω2 þ ∂2
zÞ
eiωjxj

jxj ; ð68Þ

which are the expressions for the electric fields in the
presence of one point dipole with polarizability according
to (5), provided proper definition of the ϕ0

0s which will be
given in the next subsection.

E. Electrostatic approach

In electrostatics, also if including retardation, one con-
siders an applied electric field, in our case a plane wave,

EapplðxÞ ¼ E0eikx: ð69Þ

It polarizes the dipole with dipole moment p, located at the
origin, whose electric field ðω2 þ∇∘∇Þ eiωjxj

4πjxjp, together

with EapplðxÞ, adds up to the total electric field,

EðxÞ ¼ E0eikx þ ðω2 þ∇∘∇Þ e
iωjxj

4πjxjp: ð70Þ

The dipole is assumed to be polarized by a local field,
ElocðxÞ, according to the second line in (2),

p ¼ α̂Elocð0Þ; ð71Þ

at the location of the dipole. Now, in case of a single dipole,
the local field is assumed to coincide with the applied field
at this position,

Elocð0Þ ¼ Eapplð0Þ ð72Þ

and from (70) one comes to

EðxÞ ¼ EapplðxÞ þ
�
ðω2 þ∇∘∇Þ e

iωjxj

4πjxj
�
α̂Eapplð0Þ: ð73Þ

This is the electric field including the response of the
dipole. It is to be mentioned that in this procedure no
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singularities appear and that the result is perfectly fine and
in (73) the polarizability α̂ is the original one from Eq. (2).
For instance, from the second term one can derive the
scattering amplitudes of Thomson scattering, Rayleigh
scattering etc. The properties of the dipole enter through
its polarizability and no ambiguity appears.
Now we compare this approach with the previously

considered ones. Inserting for α̂ from (5) and selecting with
(8) the corresponding modes and components of the
electric field, one comes to the conclusion that one needs
to include the terms with iω3 in (64) into the renormaliza-
tion, thus defining

1

αrenjj
¼ 1

αjj
−

ω2ffiffiffiffiffiffiffiffi
2πε

p þ iω3; for TE;

1

αrenjj
¼ 1

αjj
þ 1

6
ffiffiffiffiffiffi
2π

p
ε3=2

−
ω2

3
ffiffiffiffiffiffiffiffi
2πε

p þ iω3

3
; for TM;

1

αren3

¼ 1

α3
þ 1

12
ffiffiffiffiffiffi
2π

p
ε3=2

−
ω2

6
ffiffiffiffiffiffiffiffi
2πε

p þ 2iω3

3
; for P; ð74Þ

and one comes to

ϕTE
0 ¼ 1

αrenjj
; ϕTM

0 ¼ 1

αrenjj
; ϕP

0 ¼ 1

αren3

ð75Þ

in place of (66) and for the αren. we have to take the original
ones appearing in (73), or with (5) from (2). As already
mentioned, the renormalization is not unique. In the approach
of using an equation like (7) with subsequent renormalization
of the parameters α̂, like in the scalar case, these lose their
meaning. The renormalized parameters αren, (65), can be
related via Eq. (68) with the scattering amplitudes like in the
scalar case. In the electrostatic approach, because of dis-
regarding the self fields, one does not have an equation like
(7) but the system (2) with the prescription resulting in (73).
In this case no renormalization is needed. It is, if comparing
this approach with that of Sec. II D, that the renormalization
(74) is suggested in order to obtain the same result.
It must be mentioned that this electrostatic approach is a

kind of workaround. It is a known fact that Eqs. (2),
considered together, are singular like Eq. (7). The work-
around is generally accepted and it gives in all known cases
the correct result. For detail we refer to Chapter 17 in [12].

III. MULTIPLE CENTERS

In this section we consider a plane lattice of delta
functions at the locations

xn ¼ an; with n ¼ ðn1; n2; 0Þ; ð76Þ
(ni integer) forming a homogeneous lattice in the ðx; yÞ-
plane with spacing a. This lattice has translational invari-
ance and, for instance, for the difference between two
locations

an − am ¼ an−m ð77Þ

holds.
We start with formulas with are valid for an arbitrary

location of the centers. For the scalar field we have the
equation

�
−ω2 − Δþ g

X
n

δ3ðx − anÞ
�
ΦðxÞ ¼ 0; ð78Þ

which was already mentioned in the Introduction, Eq. (1).
We use the approaches discussed in the preceding section
for a single center. Equation (78) is for the scalar field
which we consider first. The extension to the electric field
is given below.
Within the method of self-adjoint extensions we have first

to restrict thedomain to functions regular at the locations of all
delta functions and then toadd the singularmodes. In thisway,
the solutions have expansions around each delta function,

ΦðxÞ ¼ c

�
1

jx − anj
þ αSE þOðjx − anjÞ

�
; ð79Þ

with extension parameter αSE. This is equivalent to use
boundary conditions (13) at each an. We chose the same
parameter αSE for all locations not to break the homogeneity
of the lattice.
The solutions for x ≠ an, i.e., outside the centers, read

ΦðxÞ ¼ eikx þ
X
n

fn
eiωjx−anj

jx − anj
: ð80Þ

These may be interpreted as an incoming plane wave and
outgoing spherical waves from each center. Expanding this
solution near am,

ΦðxÞ ¼ eikam þ fm

�
1

jx − amj
þ iωþ � � �

�

þ
X
n≠m

fn
eiωjam−anj

jam − anj
; ð81Þ

and comparing with (79), we identify

αSE ¼ eikam

fm
þ iωþ

X
n≠m

fn
fm

eiωjam−anj

jam − anj
; ð82Þ

which is a system of equations for the fn,

ðαSE − iωÞfm −
X
n≠m

eiωjam−anj

jam − anj
fn ¼ eikam : ð83Þ

The inhomogeneous solution of this system, being inserted
into (80), delivers the solution describing the response to
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the applied plane wave. The homogeneous solution, if
existing, describes intrinsic excitations or bound states,
depending on the application considered.
Obviously, in the approach with the zero range potentials

one comes to the same equations. A similar picture appears
with the approach with regularization and renormalization
which we consider now in more detail in terms of separable
potentials. For several centers, the kernel (51) takes the
form

Kðx; yÞ ¼ ð−ω2 − ΔÞδðx − yÞ
þ g

X
n

δ1ðε;x − anÞδ2ðε; am − yÞ ð84Þ

and for the Green function one has

Gðx; yÞ ¼ G0ðx − yÞ −
X
n;m

Z
dx0dy0G0ðx − x0Þ

× δ1ðε;x0 − anÞΦ−1
n;mδ2ðε; am − y0ÞG0ðy0 − yÞ

ð85Þ

with

ϕn;m ¼ 1

g
þ
Z

dxdyδ2ðε; am − yÞG0ðy − xÞδ1ðε;x − amÞ:
ð86Þ

Inserting (85) into (52) results in

X
n

ϕn;n0ϕ−1
n0;m ¼ δn;m; ð87Þ

which is analog to Eq. (83) in the extension approach.
The generalization of the solution (56) corresponding to

an incoming plane wave follows from Eq. (85) in the same
way as before from Eq. (56),

ΦðxÞ ¼ eikx −
X
n;m

Z
dx0G0ðx − x0Þδ1ðε;x0 − anÞ

× ϕ−1
n;m

Z
dyδ2ðε; am − yÞeiky: ð88Þ

Taking ε → 0 in the regularized delta functions in this
formula, one comes to

ΦðxÞ ¼ eikx −
X
n;m

ϕ−1
n;meikam

eiωjx−anj

jx − anj
: ð89Þ

Comparison with Eq. (80) gives

fn ¼ −1
4π

X
m

Φ−1
n;meikam ð90Þ

establishing the relation to the extension method.
Starting from here we restrict the discussion to the plane

lattice given by Eq. (76) and make use of the translational
invariance (77). In that case, solution (80) has a Bloch wave
property,

Φðxþ anÞ ¼ eikanΦðxÞ: ð91Þ
As a consequence,

fn ¼ f0eikan ð92Þ
holds and Eq. (83) turns into

�
ðαSE − iωÞeikam −

X
n≠m

eiωjam−anjþikan

jam − anj
�
f0 ¼ eikam ;

ð93Þ

having simply the solution

f0 ¼
1

αSE − iω − J1ðω;kÞ
: ð94Þ

Here we introduced the notation

Jsðω;kÞ ¼
X
n

1

janjs
eiωjanjþikan ; ð95Þ

which is the generic form of the sums appearing in the
considered type of problems. For ω ¼ 0 and k ¼ 0,
Jsð0; 0Þ is an Epstein zeta function. In (94) the convergence
of the sum comes from ℑω > 0.
With (94), (92) and (90), the solution (89) can be written

as

ΦðxÞ ¼ eikx þ f0Fω;kðxÞ; ð96Þ

where we introduced the notation

Fω;kðxÞ ¼
X
n

expðiωjx − anj þ ikanÞ
jx − anj

; ð97Þ

which is a weighted sum over the spherical waves outgoing
from each center. In (96), the coefficient f0 can be rewritten
using (16) and (94),

f0 ¼
f

1 − fJ1ðω;kÞ
; ð98Þ

where f is the scattering amplitude for a single center. The
denominator in (98) is clearly the result from multiple
scattering within the lattice of delta functions.
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Next we consider the corresponding formulas with the
regularization in terms of separable potentials following
from (85) and (86) making now use of the translational
invariance (77). For the regularized delta functions we use
directly the heat kernel (59). In this way we get

ΦðxÞ ¼ eikx −
X
n;m

Z
∞

0

dse−sξ
2

Ksþεðx − anÞ

× Φ−1
n;me−εk

2þikam ð99Þ

for the solution (88), where we turned again to imaginary
frequencies like in (38). Further we usedZ

dyKεðam − yÞeiky ¼ e−εk
2þikam ð100Þ

following from (59). From (86) we get

ϕn;m ¼ δn;m
g

þ
Z

∞

0

dse−sξ
2

Ksþ2εðan−mÞ; ð101Þ

which is, in fact, a function of the difference,
ϕn;m ¼ ϕn−m;0. This allows one to invert the matrix
ϕn;m by Fourier transform. Defining

~ϕðkÞ ¼
X
n

ϕn;0eikan ð102Þ

we get

X
m

ϕ−1
n;meikam ¼ 1

~ϕðkÞ e
ikan ð103Þ

and the solution (98) takes the form

ΦðxÞ ¼ eikx −
1

4π ~ϕðkÞFε;ω;kðxÞ ð104Þ

with

Fε;ω;kðxÞ ¼ 4π
X
n

Z
∞

0

dse−sξ
2−εk2þikanKsþεðx − anÞ:

ð105Þ

This is the sum of the smeared (regularized) outgoing
spherical waves from each center. For ε → 0 it turns into
(97) and the relation

f0 ¼
−1

4π ~ϕðkÞ ð106Þ

holds.
Next we have to consider the renormalization. It is

hidden in Eq. (101) in the diagonal contributions,

ϕn;n ¼ 1

g
þ
Z

∞

0

dse−sξ
2

Ksþ2εð0Þ; ð107Þ

which is just ϕ0 in Eq. (62). It is obvious that the divergent
contributions come only from the diagonal elements due to
the decrease of the heat kernel in (101) for an−m ≠ 0. In this
way, all formulas of Sec. II. 3 related to the renormalization
apply here too.
Especially for the scalar case we get then in (102)

with (65)

~ϕðkÞ ¼ 1

gr
þ iω
4π

þ
X0

n

Z
∞

0

dse−sξ
2

Ksþ2εðanÞeikan ;

ð108Þ

where the prime at the sum means, as usual, to drop the
term with n ¼ 0. Here we can put ε ¼ 0 and get

~ϕðkÞ ¼ 1

gr
þ iω
4π

þ J1ðω;kÞ
4π

ð109Þ

with J1ðω;kÞ defined in (95). Inserted into (104) and taken
for ε ¼ 0, this repeats just (96) with (94) and (46).
The same can be done for the electric field using the

modes corresponding to (10) and the renormalization
according to Eq. (74). Basically, it amounts in inserting
the operator P defined in (10), in front of the heat kernel in
(108) and carrying out the derivatives. Using Eq. (61), we
get, already for ε ¼ 0,

~ϕTEðkÞ ¼ 1

αrenjj
þ
X0

n

Z
∞

0

ds
e−sξ

2

ð4πsÞ3=2 4πξ
2 exp

�
−
a2n
4s

þ ikan

�
;

~ϕTMðkÞ ¼ 1

αrenjj
þ
X0

n

Z
∞

0

ds
e−sξ

2

ð4πsÞ3=2 4π
�
ξ2 þ 1

s
−

a2n
4s2

�
exp

�
−
a2n
4s

þ ikan

�
;

~ϕPðkÞ ¼ 1

αren3

þ
X0

n

Z
∞

0

ds
e−sξ

2

ð4πsÞ3=2 4π
�
ξ2 þ 1

2s

�
exp

�
−
a2n
4s

þ ikan

�
: ð110Þ

Carrying out the integrations over s and using the notations (95) we come to
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~ϕTEðkÞ ¼ 1

αrenjj
− ω2J1ðω;kÞ;

~ϕTMðkÞ ¼ 1

αrenjj
þ iωJ2ðω;kÞ − J3ðω;kÞ;

~ϕPðkÞ ¼ 1

αren3

− ω2J1ðω;kÞ − iωJ2ðω;kÞ þ J3ðω;kÞ; ð111Þ

which are the formulas coming for the electric field in place
of (109) for the scalar field.
Now the solutions for the electric field are given by

Eq. (104) with inserting P from (10) in front of Fε;ω;kðxÞ,
Eq. (105), which follows from (61) and the substitution of
~ϕðkÞ by that from (111) for the corresponding cases.
Taking the limit ε → 0, one comes to the formulas

ETEðxÞ ¼ eikx þ 1

~ϕTEðkÞω
2Fω;kðxÞ;

ETMðxÞ ¼ eikx þ 1

~ϕTMðkÞ ðω
2 þ ΔjjÞFω;kðxÞ;

EPðxÞ ¼ eikx þ 1

~ϕPðkÞ ðω
2 þ ∂2

zÞFω;kðxÞ; ð112Þ

where for the ~ϕ one needs to insert from (111). We mention
that the polarization vector usually appearing in front of the
plane wave contribution is absorbed in (8) and does not
appear here. In fact, Fω;kðxÞ with P from (10) applied, are
the well-known formulas for the electric field from a dipole,
written here for the specific cases considered.

IV. SCATTERING ON A TWO
DIMENSIONAL LATTICE

In this section we consider the solutions found in the
preceding section for a plane lattice in a scattering setup in
two cases, for outgoing spherical and plane waves. In both
cases, the incoming wave is the same plane wave as before.
For the spherical setup one considers an outgoing

spherical wave at jxj → ∞,

ΦðxÞ ∼
jxj→∞

eikx þ fsc
eiωjxj

jxj ; ð113Þ

where fsc is the scattering amplitude. For a single center,
the solution (14), has already this form since the second
term in the solution is everywhere, except on the origin, a
single outgoing spherical wave and fsc ¼ f holds.
For multiple centers (76) we have as usual for jxj → ∞,

jx − anj ¼ jxj − ax̂nþ � � � ; ð114Þ
where x̂ ¼ x=jxj is the scattering direction. From (97)
we get

Fω;kðxÞ ∼
jxj→∞

eiωjxj

jxj
X
n

e−iaωx̂nþiakn; ð115Þ

and from (96) and (113) the scattering amplitude

fsc ¼ f0
X
n

e−iaωx̂nþiakn ð116Þ

follows. Doing Poisson resummation we get

fsc ¼ f0

�
2π

a

�
2X

n

δ

�
ωx̂∥ − k∥ þ

2π

a
n

�
ð117Þ

with a two dimensional delta function and the subscript “∥”
denotes the directions parallel to the plane. In this way, only
scattering in the directions given by

x̂∥ ¼
1

ω

�
k∥ −

2π

a
n

�
ð118Þ

is allowed. These are just the von Laue conditions. Within
the zero range potential approach this was pointed out
in [29].
Next we consider an outgoing plane wave. For this it is

useful to rewrite Fω;kðxÞ, Eq. (97), using (55),

Fω;kðxÞ ¼
X
n

Z
dp
2π2

eipðx−anÞþikan

p2 − ω2 − i0
: ð119Þ

Doing again Poisson resummation and carrying out the
integrations over p∥, one comes to

Fω;kðxÞ

¼
�
2π

a

�
2X

n

Z
∞

−∞

dp3

2π2
exp ðiðk∥ þ 2π

a nÞx∥ þ ip3zÞ
ðk∥ þ 2π

a nÞ2 þ p2
3 − ω2 − i0

:

ð120Þ

The integration over p3 can be carried out too,

Fω;kðxÞ ¼
4π

a2
X
n

i
2Γn

eiΓnjzjþiðk∥þ2π
anÞx∥ ; ð121Þ

where we defined
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Γn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −

�
k∥ þ

2π

a
n

�
2

s
; ð122Þ

inheriting a positive imaginary part, ℑΓn > 0, from ω.
Inserted into (96), the solution becomes

ΦðxÞ ¼ eikx þ 2πif0
a2

X
n

eiΓnjzjþiðk∥þ2π
anÞx∥

Γn
: ð123Þ

Being interested in scattering solutions not decreasing for
jzj → ∞, one needs to have real Γn. This implies the
restriction

jnj ≤ a
2π

ðω − k∥Þ; ð124Þ

thus restricting the summation in (123) to a finite sum. A
restriction to small n appears, for instance, for a small lattice

spacing a, or, with ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2∥ þ k23

q
, for small k3. However,

scattering with n ¼ 0 is always possible. For the plane wave
scattering setup on a homogeneous plane lattice it is useful to
introduce Bloch waves in the parallel directions. Dividing
the wave vector of the incoming plane wave,

k∥ ¼ qþ 2π

a
m; ð125Þ

where q is the quasi-impulse, qi ≤ π
a (i ¼ 1; 2), we represent

the solution in the form

ΦðxÞ ¼ eiqx∥
X
n

ΦnðzÞei2πa nx∥ ð126Þ

and get from (123)

ΦnðzÞ ¼ δn;meik3z þ
2πif0
a2

1

Γn−m
eiΓn−mjzj: ð127Þ

Here m denotes the zone of the incoming wave. The
response has scattered waves with, in general, all numbers
n. From considering this solution for jzj → ∞, it makes
sense to define the reflection coefficients

rn ¼ 2πif0
a2Γn

; ð128Þ

or, with (106),

rn ¼ −i
2a2Γn

~ϕðkÞ ; ð129Þ

and Γn (122) is the wave number of the scattered wave
moving in the z-direction (123). Since we have to account
here only for functions not decreasing at infinity, the
restriction on n to such values for which Γn is real, holds
as before.
Finally we consider the electric field. The structure of the

formulas for the scattering into a plane outgoing wave
remains the same except for the modifications coming from
the P’s in (10) and for f0 for which we have to use f0 →
−1=ð4π ~ϕðkÞ in (104) with ~ϕðkÞ from (111). Carrying out
the derivatives in P under the sign of the summation, we get
in place of (123)

ETEðxÞ ¼ eikx −
2πi

a2 ~ϕTEðkÞ
X
n

ω2
eiΓnjzjþiðk∥þ2π

anÞx∥

Γn
;

ETMðxÞ ¼ eikx −
2πi

a2 ~ϕTMðkÞ
X
n

�
ω2 −

�
k∥ þ

2π

a
n

�
2
�
eiΓnjzjþiðk∥þ2π

anÞx∥

Γn
;

EPðxÞ ¼ eikx −
2πi

a2 ~ϕPðkÞ
X
n

ðω2 − Γ2
n þ iΓnδðzÞÞ

eiΓnjzjþiðk∥þ2π
anÞx∥

Γn
: ð130Þ

The delta function in the last line is the one known for the
normal component of the electric field on a double layer. It
does not enter, of course, the asymptotics for jzj → �∞,
which we are interested in. Equation (130) can simplified a
bit using (122).
Introducing in parallel to (126) the corresponding

Bloch waves, one comes to the reflection coefficients

given by

rTEn ¼ −2πi
a2 ~ϕTEðkÞΓn

ω2;

rTMn ¼ −2πi
a2 ~ϕTMðkÞΓn;

rPn ¼ −2πi
a2 ~ϕPðkÞΓn

�
k∥ þ

2π

a
n

�
2

; ð131Þ

which come in place of (128).
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V. THE TRANSITION TO A CONTINUOUS SHEET

Formally, for vanishing lattice spacing, a → 0, the
scattering centers become dense and form a continuous
sheet. However, this limiting process is quite singular and
unexpected results may appear. First of all we mention that
in the solution (123), for a → 0 only n ¼ 0 delivers a
nonvanishing solution. From (122), using ω2 ¼ k2

∥ þ k23,
we have then Γ0 ¼ k3 and this solution is

ΦðxÞ ¼ eik∥x∥ðeik3z þ reik3jzjÞ ð132Þ

with

r ¼ 2πif0
a2k3

; ð133Þ

or r ¼ r0 from (128). Here, the factor 1
a2 ¼ ρ has to be

interpreted as density, which must be kept finite.
Using Eq. (98) for f0 and

J1ðω;kÞ ¼
2πi
a2k3

for a → 0; ð134Þ

which follows from (95) by substituting, in leading order,
the summation by integration, we get

r ¼ −1
1 − k3a2

2πif

: ð135Þ

Further we insert from (46),

f
a2

¼ −1
4πa2
gr

þ ia2ω2
; ð136Þ

where the second term in the denominator vanishes for
a → 0 since in the first term a2=gr must be kept finite.
Using that in (135), we get

r ¼ −1
1 − 2ik3

ρgr

; ð137Þ

which is the reflection coefficient r0, (128), resulting from
the solution derived in the preceding section for a → 0.
The transition a → 0 can also be done in Eq. (78).

Thereby we ignore the problems that the delta function in
this equation is singular and, thus, that this transition has a
rather formal character. The term with the delta functions
can be written as

g
X
n

δða − anÞ ¼ g
X
n

δðx∥ − anÞδðzÞ: ð138Þ

For a → 0, the summation index n becomes continuous
and the sum turns into an integral, which can be carried out,

g
X
n

δðx∥ − anÞ ∼
aj→0

g
Z

dnδðx∥ − anÞ ¼ g
a2

: ð139Þ

As said above, the ρ ¼ 1=a2 is interpreted as finite density.
With (139), Eq. (78) turns into

ð−ω2 − Δþ gρδðzÞÞΦðxÞ ¼ 0: ð140Þ

It has now a one dimensional delta function potential and is
well defined. Taking Fourier transform,

~Φk∥
ðzÞ ¼

Z
dx∥e−ik∥x∥ΦðxÞ; ð141Þ

the scattering solution is

~Φk∥
ðzÞ ¼ eik3z þ reik3jzj ð142Þ

with

r ¼ −1
1 − 2ik3

gρ

: ð143Þ

These formulas are well known, we use those from the
Appendix in [3]. Comparison with (137) shows the
reflection coefficients are the same provided the relation
g ¼ gr holds. This way, taking the limit a → 0 first in the
equation, or first solving the equation and taking the limit
afterwards delivers the same reflection coefficient and it
provides another relation for the renormalized coupling
constant, and by means of (16), it provides a relation to the
parameter of the self-adjoint extension.
For the electric field we start from Eq. (130) and consider

first the TE mode. Again, for a → 0, only the term with
n ¼ 0 survives at jzj → ∞ in the sum and the reflection
coefficients (131) become r0 → r like in (133). For the TE
mode we get from the first line in (131)

rTE ¼ −2πiω2

a2 ~ϕ0ðkÞk3
ð144Þ

with

~ϕ0ðkÞ ¼
1

αren∥
−
2πiω2

a2k3
; ð145Þ

which can be rewritten in the form

rTE ¼ 1

1 − a2k3
2πiω2αren∥

: ð146Þ

With this reflection coefficient, the scattering solution is the
same as (132) with ETEðxÞ in place of ΦðxÞ. Equally well it
can be obtained from (130) for a → 0.
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Like in the scalar case we consider for comparison the
transition a → 0 in the equation,

�
−ω2 − Δ − 4πα∥ω

2
X
n

δðx − anÞ
�
ETEðxÞ ¼ 0; ð147Þ

following from (9) with (10). Doing the same operations as
in Eqs. (138) and (139), we get

ð−ω2 þ k2
∥ − ∂2

z − 4πα∥ω
2δðzÞÞ ~ETE

k∥ ðzÞ ¼ 0; ð148Þ

where we also introduced the Fourier transform like in
(141). We get the same equation as (140) with the change
g → −4πa∥ω2. This same substitution, as seen, connects
(143) with (146). Thus for the TE mode we have, like in the
scalar case, a well-defined transition to the continuous
sheet. These formulas coincide with the hydrodynamic
model and with [3], which is an expected result.
Now we come to the TM modes for both, parallel and

perpendicular, polarizabilities. The solutions for a lattice
with finite a involve ~ϕTMðkÞ and ~ϕPðkÞ which are given
by Eq. (111). For a → 0, the lattice sum J3ðω; kÞ, (95),
converges and behaves as

J3ðω;kÞ ∼
a→0

1

a3
: ð149Þ

Consequently,

~ϕTMðkÞ ∼
a→0

1

a3
; ~ϕPðkÞ ∼

a→0

1

a3
ð150Þ

hold. This behavior is by one power of 1=a too singular. A
factor 1=a2 can be absorbed into the density as done before,
but any additional factor cannot. As a consequence, we do
not get any sensible result for a → 0. This singularity was
pointed out in [2] for the perpendicular polarizability. A
somehow unexpected result is that it appears also for one of
the polarizations (TM) in the case of parallel polarizability
(which was not considered in [2]).
Let us consider the transition a → 0 also on the level of

the equation (9). For the TM mode, the formal transition
using Eq. (139) cannot be done directly because of the
derivatives in Δ∥. We attempt to handle this by Fourier
transform,

ETMðxÞ ¼
Z

dk∥

ð2πÞ2 e
ik∥x∥ ~ETM

k∥ ðzÞ ð151Þ

and get

ð−ω2 þ k2∥ þ ∂2
zÞ ~ETM

k∥ ðzÞ

− 4πα∥
X
n

�
ω2 −

�
k∥ þ

2π

a
n

�
2
�
~ETM
k∥þ2π

an
ð0ÞδðzÞ ¼ 0;

ð152Þ

where we used

Z
dx∥e−ik∥x∥ðω2 þ Δ∥Þ

X
n

δðx∥ − anÞETMð0Þ

¼
�
2π

a

�
2X

n

�
ω2 −

�
k∥ þ

2π

a
n

�
2
�
~ETM
k∥þ2π

an
ðzÞ: ð153Þ

As expected, the derivatives turned into the corresponding
momenta.
If now doing the transition a → 0, in case the solution

~ETM
k∥þ2π

an
ð0Þ decreases for n ≠ 0, only the term with n ¼ 0

survives. This is just what happened for the scalar case and
for the TE mode, where it resulted in the well-known
result (140).
The decrease of ~ETM

k∥þ2π
an
ð0Þ can be guessed by solving the

equation as in Sec. II. C. In doing so for the TM case, from
the factor ðω2 − ðk∥ þ 2π

a Þ2Þ one observes that this decrease
is not present for the TM mode. A similar observation can
be made if doing Fourier transform (151) with the solution
(130). It is again the factor ðω2 − ðk∥ þ 2π

a nÞ2Þ, which the
TM mode has more, which prevents the decrease. As a
consequence, a transition a → 0 in Eq. (152) does not
restrict the summation to n ¼ 0.
It is to be mentioned that the restriction to n ¼ 0, if doing

it nevertheless, results in the equation

ð−ω2 þ k2
∥ − ∂2

z − 4πα∥ðω2 − k2
∥ÞδðzÞÞETMðxÞ ¼ 0

ð154Þ

for the TM mode. The scattering solution, written in
parallel to (132), has a reflection coefficient

rTM ¼ −1
1 − a2

2πiα∥k3

; ð155Þ

where we used ω2 ¼ k2
∥ þ k23. This equation and this

reflection coefficient are the same as in the hydrodynamic
model for a continuous sheet.
A similar picture appears for the TM mode in the case of

perpendicular polarizability. The equation following for-
mally from (9) is

�
−ω2 − Δ − 4πα3ðω2 þ ∂2

zÞ
X
n

δðx − anÞ
�
EPðxÞ ¼ 0:

ð156Þ
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After doing Fourier transform (151), it becomes

ð−ω2 þ k2∥ − ∂2
zÞ ~EP

k∥ðzÞ
− 4πα3

X
n

ðω2 − ∂2
zÞ ~EP

k∥þ2π
an
ð0ÞδðzÞ ¼ 0: ð157Þ

Here the problem is in the second derivative of the delta
function, δ00ðzÞ, which appears in addition to (154). How
this problem could be handled was shown in [3] by going
beyond the dipole approximation. This is, however, not a
topic of the present paper. In addition to δ00ðzÞ, Eq. (157)
has for a → 0 also the problem that the restriction to n ¼ 0
does not appear either. Here the missing decrease of
~EP
k∥þ2π

a n
ð0Þ for k∥ → ∞ cannot be seen directly from the

equation as before, however from the solution (130). It has
with Γn a nondecreasing factor.
In this way, in both TM cases, the derivatives, resulting

from those in the first line in the right sides of Eq. (2),
prevent a transition to the continuous sheet.

VI. TRANSITION TO CONTINUOUS SHEET
KEEPING A REGULARIZATION

We have seen that after renormalization, the regulariza-
tion can be removed, ε → 0, delivering meaningful results.
These agree with the electrostatic approach where the self
fields are excluded. Further we have seen that a part of these
results becomes singular when the lattice spacing becomes
small, a → 0. In this section we ask the question what
happens if we first take a → 0, keeping ε > 0. The result
should be a sheet of finite thickness given by ε. Further we
consider what happens if we take, after a → 0, also ε → 0.
We start with the scalar case. The solution is given by

(104). For Fε;ω;kðxÞ we use (105) and (59). For a → 0, the
summation over n turns into an two dimensional integra-
tion according to

X
n

gðanÞ → 1

a2

Z
dngðnÞ; ð158Þ

for some function gðnÞ, and we get

ΦðxÞ ¼ eikx þ 1

2ia2k3 ~ϕðkÞ
hεðzÞeik∥x∥ ð159Þ

with

hεðzÞ ¼
−ik3ffiffiffi

π
p

Z
∞

0

dsffiffiffiffiffiffiffiffiffiffiffi
sþ ε

p

× exp

�
−

z2

4ðsþ εÞ − sðξ2 þ k2
∥Þ − 2εk2

∥

�
: ð160Þ

We accounted for ξ ¼ −iω, which givesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ k2

∥

q
¼ −ik3. The function hεðzÞ describes the

z-dependence on the solution to the regularized equation.
It is decreasing,

hεðzÞ ∼
jzj→∞

e−z
2=4ε; ð161Þ

such that the separable regularization gives a sheet of finite
thickness without scattering. It is only for ε ¼ 0 that it turns
into the scattered plane wave,

h0ðzÞ ¼ eik3jzj: ð162Þ

This property gives rise to the definition

rε ¼
1

2ia2k3 ~ϕðkÞ
ð163Þ

of a reflection coefficient such that the solution can be
written in the form

ΦðxÞ ¼ eikx þ rεhεðzÞeik∥x∥ : ð164Þ

In this way, the wave function, if first taking a → 0 and
subsequently ε → 0, turns into the same as when doing the
limits the other way around, Eq. (132), with rε in place of r.
Actually, the same happens with ~ϕðkÞ, entering (163).

From (108) we get with (158)

~ϕðkÞja→0 ¼
1

gr
þ 1

a2
ffiffiffiffiffiffi
4π

p
Z

∞

0

dsffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ 2ε

p e−sðξ
2þk2

∥Þ−2εk2
∥ :

ð165Þ

The term iω=4π present in (108) is subleading for a → 0
and was dropped. If now in (165) taking ε → 0, we get

ð ~ϕðkÞja¼0Þjε¼0
¼ 1

gr
þ i
2a2k3

; ð166Þ

which gives in (163) just the same reflection coefficient as
given by (137). Thus, for ~ϕðkÞ, the limits commute too.
Now we consider the TE case for the electric field. Going

through the same formulas which resulted in (112), but
keeping ε, we get

ETEðxÞ ¼ eikx þ rTEε hεðzÞeik∥x∥ ð167Þ

with

rTEε ¼ 2πiω2

a2k3 ~ϕ
TEðkÞ ð168Þ

and
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~ϕTEðkÞ ¼ 1

αren∥
−

ffiffiffiffiffiffi
4π

p
ω2

a2

Z
∞

0

dsffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ 2ε

p e−sðξ
2þk2

∥Þ−2εk2
∥ :

ð169Þ

It can be seen that this integral is finite for ε → 0 and results
in the same reflection coefficient (146) as before. Thus, also
for the TE mode, the limits do commute.
For the TM mode we get the same way as before

from (112)

ETMðxÞ ¼ eikx þ rTMε hεðzÞeik∥x∥ ð170Þ
with

rTMε ¼ 2πik3
a2 ~ϕTMðkÞ : ð171Þ

This formula appears in such a simple way since the
derivatives in Δ∥ act only on eik∥x∥ . A slightly more

complicated picture we observe in ~ϕTMðkÞ. Here we have
from (110), restoring ε, for finite a,

~ϕTMðkÞ ¼ 1

αren∥
−

1ffiffiffiffiffiffi
4π

p
X0

n

Z
∞

0

dse−sξ
2

ðsþ 2εÞ3=2

×

�
ω2 −

1

sþ 2ε
þ a2n
4ðsþ 2εÞ

�
e−

a2n
4ðsþ2εÞþik∥an :

ð172Þ

As long as ε > 0, we can use (158). For ε ¼ 0 we could not
do that because of the singularity at s ¼ 0. This is,
basically, the moment where the limits do not commute.
Using (158) in (172), we get

~ϕTMðkÞja→0 ¼
1

αren∥
−

ffiffiffiffiffiffi
4π

p
k23

a2

Z
∞

0

dsffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ 2ε

p e−sðξ
2þk2

∥Þ−2εk2
∥ ;

ð173Þ
which has also a finite limit for ε → 0,

ð ~ϕTMðkÞja¼0Þjε¼0
¼ 1

αren∥
−
2πik3
a2

ð174Þ

(we remind that the factor a2 is the inverse density and should
be considered as finite). Comparison with (150) shows
now the difference resulting from the orders of the limits.
The reflection coefficient following from (148) is just the

same as (155) and, thus, in the hydrodynamic model,
provided one makes in (174) the choice αren∥ ¼ α∥.
Finally, we consider the TM mode for the perpendicular

polarizability. We get from (112)

EPðxÞ ¼ eikx þ 2πi

a2k3 ~ϕ
PðkÞ ðω

2 þ ∂2
zÞhεðzÞeik∥x∥ : ð175Þ

Again, for ε > 0 we have a decreasing function of z. For
ε → 0 it turns into

lim
ε→0

ðω2 þ ∂2
zÞhεðzÞ ¼ ðk2

∥ − 2δðzÞÞeik3jzj: ð176Þ

This way, the delta function in the normal component of the
electric field returns. However, it does not influence
scattering and we can define a scattering coefficient,

rPε ¼ 2πik2∥
a2k3 ~ϕ

PðkÞ ; ð177Þ

like in the previous cases. The function ~ϕPðkÞ entering here
follows from (110) using (158)

~ϕPðkÞja→0 ¼
1

αren3

−
ffiffiffiffiffiffi
4π

p

a2

Z
∞

0

dsffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ 2ε

p

×

�
ω2 −

1

2ðsþ 2εÞ
�
e−sðξ

2þk2
∥Þ−2εk2

∥ : ð178Þ

However, this function, opposite to (173), does not have a
finite limit for ε → 0,

~ϕPðkÞ ¼ 1

αren3

−
2πik2

∥

a2k3
þ

ffiffiffiffiffiffi
2π

p

a2
ffiffiffi
ε

p þOð ffiffiffi
ε

p Þ: ð179Þ

In this way, for perpendicular polarizability, taking the limit
a → 0 first, does not help.
It is interesting to remark that, when removing the

singular term in (179) by hand, or by including it into
αren3 , insertion of (179) into (177) gives

rP ¼ −1
1 − a2k3

2πik2∥α
ren
3

; ð180Þ

which is just the reflection coefficient obtained in [3],
Eq. (48) (up to a redefinition of α by 4π). This is, given the
singularities, a rather formal coincidence.

VII. CONCLUSIONS

In the preceding sections we considered all known
approaches to a single three dimensional delta function
potential and a two dimensional lattice of such potentials.
There are basically two approaches, the self-adjoint exten-
sion method and regularization/renormalization. Although
different, both approaches are related and deliver the same
results. We reviewed these relations in detail as well as their
relation to the “zero range potential” method in quantum
mechanics. As a nice technical tool we reviewed also the
regularization in terms of separable potentials.
The initial motivation for this paper comes from two

dimensional polarizable sheets in electrodynamics. There
the situation is a bit different. Usually one starts from the
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system (2) of coupled equations for the electric field in the
presence of polarizable point dipoles and for the dipole
moment induced by the electric field in dipole approxi-
mation. Inserting the dipole moment into the equation for
the electric field, an equation with three dimensional delta
function potential results. In the generally accepted electro-
static approach, as discussed in Sec. II E, the last step is
accompanied by dropping the self fields of the dipoles. It is
shown, this is equivalent to a specific choice of renorm-
alization. In fact, by this procedure, the equations alone,
i.e., without dropping the self fields, do not form a closed
set. As discussed in [12], Chapter 17, this procedure gives
the correct result in almost all cases. To our opinion, it is an
open question how this procedure can be justified as a
limiting case from full quantum electrodynamics.
Using any of the above approaches, the problem of the

interaction of the electromagnetic field with a lattice of
dipoles can be formulated correctly. For example, within a
scattering setup, the wave functions and the reflection
coefficients can be written down (Sec. IV) in the form of
known lattice sums, Eq. (95). Formulas like (111) and
(130), (131) allow one to calculate any quantity in question,
plasmons or the Casimir force between two parallel lattices
for instance. Also it should be possible to calculate the
quantum mechanical bound levels on a lattice generalizing
[30], where this was done for a one dimensional lattice of
zero binding energy.
In the limit of vanishing lattice spacing, a → 0, one

comes formally to a continuous polarizable sheet. However,
when using a regularization, there is a second limit. For
example, in the regularized equation (48) it is ε → 0 and a
finite ε corresponds to a smearing out of the delta functions.
As it is easy to imagine, these limits do not commute in
general. It is only for a scalar field and for the electro-
magnetic TE polarization in case of a sheet with parallel
polarizability, that these limits do commute. For TE
polarization, a result comes out which is known from
the hydrodynamic model for a continuous sheet. For the
TM polarization in both cases of polarizability, parallel and
perpendicular to the sheet, these limits do not commute.
In the case of first doing the limit ε → 0 of removing the

regularization first, for the TM polarization the limit a → 0

is singular as seen in Eqs. (149) and (150) for the reflection
coefficients. For the perpendicular polarizability this was
observed in [2], and elaborated in the recent paper [31], for
the parallel polarizability this is new and it was not
expected. One can discuss that the reason for this singu-
larity does not depend on the direction of the polarizability
but results from the derivatives in the couplings in Eq. (10).
It must be mentioned that for parallel polarizability, the

equations turn formally into that of the hydrodynamic
model. Actually, this is the reason to expect for the TM
polarizability a finite result. We showed at which place it is
impossible to do a → 0 in the equations and where the
difference between TE and TM polarizations shows up.
In the case of first doing the limit a → 0 of vanishing

lattice spacing first, for the TM polarization in case of
parallel polarizability, one comes to a well-defined reflec-
tion coefficient and the subsequent limit ε → 0 gives the
result expected from the hydrodynamic model. This result
is a bit counterintuitive since here the smeared delta
functions largely overlap forming a sheet of finite thick-
ness. This sheet is quite specific due to the separable
regularization. For a sheet of finite thickness with homo-
geneous permittivity it is known (see, for instance Sec. V in
[3]) that the limit of thickness to zero must be accompanied
by an increase of the polarizability (or permittivity) in order
to get a nonzero result. In the separable regularization,
considered here, this is not the case.
A similar picture appears for the perpendicular polar-

izability (here we have only the TM polarization). However,
in addition here a singularity appears which results from the
delta function the normal component of the electric field has
on a double layer. By removing this singularity by hand, the
same result appears which was obtained in [3] by stepping
back from the dipole approximation.
In summary, for the electromagnetic field, the results

depend on the order of taking the different limits involved.
In the sense of an approximation, mentioned in the
introduction on the example with the ideal conductor,
we can formulate the results as follows. For the scalar
field and for the electromagnetic with TE polarization, the
continuous sheet is a good approximation. However, in the
other two cases, it is not.
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