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We investigate the leptonic decay constants of the pion and its excitations with a 5-d holographic model
for quantum chromodynamics. We prove numerically that the leptonic decay constants of the excited states
of the pion vanish in the chiral limit when chiral symmetry is dynamically broken. This nontrivial result is
in agreement with a solid prediction of quantum chromodynamics and is based on a generalized Gell-
Mann–Oakes–Renner relationship involving the decay constants and masses of the excited states of the
pion. We also obtain an extended partially conserved axial-vector current relation that includes the fields of
the excited states of the pion, a relation that was proposed long ago in the context of current algebra.
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I. INTRODUCTION

There is a solid prediction of quantum chromodynamics
(QCD) that the leptonic decay constant of the excited states
of the pion vanish in the chiral limit when chiral symmetry
is dynamically broken [1]. The real world is not chirally
symmetric, as the masses of the u and d quarks are not
zero. But these masses are much smaller than the strong-
interaction scale ΛQCD and it is therefore natural to expect
that the leptonic decay constants of the excited states of the
pion are dramatically suppressed in nature. At first sight
this prediction might seem surprising. Within a quark
model perspective a suppression of the leptonic decay
constants for excited states is expected; the leptonic decay
constant for an S-wave state is proportional to the
configuration-space wave function at the origin and,
compared to the ground state, excited states have sup-
pressed wave functions at the origin. However, within this
perspective there is no obvious physical mechanism that
suggests a dramatic reduction of the decay constants for the
excited states. The key point behind the suppression of
the decay constants, as we shall elaborate shortly ahead, is
the dynamical breaking of chiral symmetry in QCD and the
(pseudo) Goldstone boson nature of the ground-state pion.
The suppression of the leptonic decay constants of the

pion’s excited states is an interesting feature of nonpertur-
bative QCD. Lattice QCD and models of nonperturbative
QCD can benefit from this feature by using it as a gauge to
validate techniques and truncation schemes in approximate
calculations. A first lattice result from 2006 [2] for the

pion’s first radial excitation, extrapolated to the chiral limit,
gives fπ1=fπ0 ∼ 0.08 MeV; experimentally [3], fπ1=fπ0 <
0.064—the decay constant of the nth excited state is
denoted in the present paper by fπn and that of the ground
state by fπ0. At about the same time, another lattice
collaboration reports [4] a very small value for fπ1, with
an extrapolated value to the chiral limit consistent with
zero. Finally, a very recent publication [5] reports lattice
results for the three lowest excited states: fπ1 is modestly
suppressed, fπ2 is significantly suppressed, and fπ3 ≃ fπ1 .
Calculations based on sum rules [6–8], effective chiral
Lagrangians [9], and a chiral quark model [10] also find
strongly suppressed values for fπ1.
In recent years a new class of models for tackling

nonperturbative problems in QCD has received great
attention in the literature. These are holographic models
inspired on the gauge-gravity duality, in that a strongly
coupled gauge theory in d dimensions is assumed to be
described equivalently in terms of a gravitational theory in
dþ 1 dimensions. The assumed duality is based on the
anti–de Sitter/conformal field theory (AdS/CFT) corre-
spondence [11–13], a conjectured relationship between
conformal field theories and gravity theories in anti–de
Sitter spaces—for recent reviews, see Refs. [14,15].
Although the holographic dual of QCD remains unknown,
there exist several models attempting to construct the five-
dimensional holographic dual of QCD by incorporating
known nonperturbative features of QCD. Confinement, for
example, can be modeled [16] by truncating the AdS space
with the introduction of an infrared cutoff z0 ∼ 1=ΛQCD in
the fifth dimension (the other four coordinates belong to the
flat Minkowski spacetime). In such a “hard-wall” model,
one considers a slice 0 ≤ z ≤ z0 of AdS space, and imposes
boundary conditions on the fields at the infrared border z0.
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Dynamical chiral symmetry breaking (DCSB) can be
incorporated [17,18] in the hard-wall model with the use
of scalar and vector fields in the AdS space which are in
correspondence, respectively, to the chiral order parameter
and left- and right-handed currents of the SUð2ÞL×SUð2ÞR
chiral flavor symmetry of QCD in Minkowski space-
time. In this model the pion corresponds to the zero mode
in the Kaluza-Klein expansion of the scalar field, it has a
finite leptonic decay constant, and its mass satisfies the
Gell-Mann–Oakes–Renner (GOR) relationship.
A particularly interesting approach in the holographic

description of QCD is light-front holography (LFH),
introduced in Refs. [19,20]. In LFH, hadronic amplitudes
in AdS space are mapped to frame-independent light-front
wave functions in Minkowski space. This is made possible
with the identification of the coordinate z in AdS space with
a Lorentz-invariant coordinate that measures the separation
of the constituents within a hadron at equal light-front time.
The way chiral symmetry is treated in LFH is nonstandard,
as the vanishing of the pion mass in the chiral limit is not a
result of the dynamical breaking of the symmetry; rather,
it follows from the precise cancellation of the light-front
kinetic energy and light-front potential energy terms for
the quadratic confinement potential in a Schrödinger-like
equation [21]. The same feature of obtaining a massless
pion without DCSB is possible in a soft-wall LFH approach
[22], in which confinement is modeled with a soft cutoff
provided by a background dilaton field in the AdS space.
The experimental values of the masses of the lowest
radially and orbitally excited states of the pion are well
reproduced, but the leptonic decay constants of the excited
states do not vanish in the chiral limit.
Motivated by these results in LFH, in the present paper

we obtain the leptonic decay constants of the pion and its
excitations in a five-dimensional holographic hard-wall
model for QCD. The decay constants are obtained directly
from the Kaluza-Klein expansion of the holographic
currents, without resorting to LFH. We use the model of
Ref. [17] and prove numerically that the leptonic decay
constants of the excited states of the pion vanish in the
chiral limit. In particular, we show that these results follow
from a generalized GOR relationship whose counterpart in
QCD is [1]

fπnm2
πn ¼ 2mqρπn ; ð1:1Þ

where mπn is the mass of the pion’s nth excited state,
mq ¼ mu ¼ md (we work in the approximation of isospin
symmetry), and ρπn is the gauge-invariant residue at the
pole P2 ¼ −m2

πn in the pseudoscalar vertex function; it is
related to the matrix-valued Bethe-Salpeter wave function
χaπnðP; qÞ via

iρπnδab ≔
Z

d4k
ð2πÞ4 Tr½taγ5χbπnðq; PÞ�; ð1:2Þ

with the SUð2Þ generators ta, a ¼ 1; 2; 3, normalized as
2TrðtatbÞ ¼ δab. Although mq and ρπn are scale dependent,
the product mqρπn is renormalization group invariant. For
the ground-state pion, DCSB implies [23]

ρπ0 ¼ −
1

fπ0
hq̄qi; ð1:3Þ

where hq̄qi ¼ hūui ¼ hd̄di is the vacuum quark conden-
sate; when this is used in Eq. (1.1), the GOR relationship is
obtained

f2
π0
m2

π0
¼ 2mqjhq̄qij: ð1:4Þ

As mentioned above, this key result of DCSB is obtained
in holographic QCD in a rather straightforward way [17].
On the other hand, the vanishing of the leptonic decay
constants of the pion’s excited states is more subtle in
holographic QCD, as we discuss in the present paper. In
QCD, this key result follows via the following chain of
arguments [1]: (1) the existence of excited states entails
finite matrix-valued χπnðP; qÞ wave functions; (2) the
integral in Eq. (1.2) is finite (this follows from the ultra-
violet behavior of the QCD quark-antiquark scattering
kernel); (3) then

ρ0πn ≔ lim
mq→0

ρπn ¼ finite; ð1:5Þ

and (4) since, by hypothesis, m2
πn ≠ 0 in the chiral limit,

Eq. (1.1) implies fπn ¼ 0 for mq ¼ 0.
The paper is organized as follows. In the next section we

present the hard-wall model we use; we present the action
and discuss how DCSB is implemented in the model, derive
the equations of motion and holographic currents, and
present the Kaluza-Klein expansion of the bulk fields. In
Sec. III we derive the expressions for the leptonic decay
constants via the Kaluza-Klein expansions for the holo-
graphic currents; we obtain an extended partially conserved
axial-vector current relation that includes the fields of the
excited states of the pion and derive the generalized GOR
relationship (1.1). Numerical results are presented in
Sec. IV. We discuss how the field equations are solved
numerically and present results for the masses of the pion’s
ground and excited states, for the normalization of the field
equations, and for the function ρπn which appears in the
generalized GOR relationship (1.1). Finally, we present
the results for the leptonic decay constants and discuss
the consistency of the results with the generalized GOR
relationship. Section V presents our conclusions and
perspectives for future work.

II. THE HARD-WALL MODEL

The AdS/QCD approach deals with the construction of
5-d holographic models for QCD-like theories by consid-
ering deformations of the AdS5=CFT4 correspondence.
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This bottom-up approach has proved to be very useful in
describing many nonperturbative aspects of QCD and is
complementary to the top-down approach, where 5-d
holographic models arise as gravitational solutions of
critical or noncritical string theories.
In the AdS/QCD approach, the simplest way to imple-

ment confinement is the so called hard-wall model, which
consists of a slice of 5-d anti–de Sitter spacetime [16]:

ds2 ¼ 1

z2
ðημνdxμdxν − dz2Þ; 0 < z ≤ z0 ð2:1Þ

where ημν ¼ diagð1;−1;−1;−1Þ is the metric of 4-d flat
spacetime. We are working in units where the AdS radius
is unity.
The hard-wall cutoff z0 in the 5-d geometry corresponds

to an infrared mass gap in the 4-d gauge theory, z0 ¼
1=ΛQCD. As a consequence, conformal symmetry is broken
and the theory is confining, as can be shown through
the holographic calculation of the quark-antiquark
potential [24].

A. DCSB implementation in holographic QCD

DCSB was first implemented in holographic QCD in
Refs. [17,18]. A first application of the model to study
ground-state properties of the pion in the chiral limit, in
particular the form factor and charge density distribution,
was performed in Ref. [25]. Here we will follow the
conventions and notation of Ref. [17]. The AdS/CFT
correspondence maps 4-d field theory operators OðxÞ to
5-d fields ϕðx; zÞ. In the case of QCD the relevant
operators for describing DCSB are the left- and right-
handed currents JaLμ ¼ q̄LγμtaqL, JaRμ ¼ q̄RγμtaqR, corre-
sponding to the SUðNfÞL × SUðNfÞR chiral flavor
symmetry and the quark bilinear operator q̄RqL related
to DCSB. In the dual theory, these 4-d operators
correspond to 5-d gauge fields La

mðx; zÞ, Ra
mðx; zÞ and

a 5-d bifundamental scalar field Xðx; zÞ, both living in an
AdS slice described by Eq. (2.1).
Since the mass of a p-form in 5-d AdS spacetime is

related to the dimension Δ of the dual 4-d operator via the
relation m2 ¼ ðΔ − pÞðΔþ p − 4Þ, one has that the gauge
fields La

mðx; zÞ, Ra
mðx; zÞ are massless whereas the scalar

field Xðx; zÞ has a negative mass squared m2 ¼ −3.
The action in Ref. [17] can be written as

S ¼
Z

d5x
ffiffiffiffiffi
jgj

p
Tr

�
ðDmXÞ†ðDmXÞ þ 3jXj2

−
1

4g25
ðLmnLmn þ RmnRmnÞ

�
; ð2:2Þ

where

DmX ≔ ∂mX − iLmX þ iXRm; ð2:3Þ

Lmn ≔ ∂mLn − ∂nLm − i½Lm; Ln�; ð2:4Þ

Rmn ≔ ∂mRn − ∂nRm − i½Rm; Rn�: ð2:5Þ

The action includes the Nf gauge fields Lm and Rm,
corresponding to the left and right flavor currents in
QCD, and the bifundamental scalar X dual to the quark
bilinear operator q̄RqL. In this paper we restrict the
discussion to the case Nf ¼ 2, corresponding to the quark
flavors u and d. The dynamics of the 5-d fields Lm, Rm,
and X is described by the action in Eq. (2.2) and the
classical solution that describes chiral symmetry breaking
is given by

L0
m ¼ R0

m ¼ 0; 2X0 ¼ ζMzþ Σ
ζ
z3; ð2:6Þ

with

M ¼
�
mu 0

0 md

�
; Σ ¼

�
σu 0

0 σd

�
: ð2:7Þ

The parameter ζ ¼ ffiffiffiffiffiffi
Nc

p
=ð2πÞ in Eq. (2.6) is introduced to

be consistent with the counting rules of large-Nc QCD [26].
The AdS/CFT dictionary leads to identification of the
coefficients M and Σ with the 4-d quark mass and chiral
condensate terms responsible for the explicit and dynamical
breaking of chiral symmetry.
To investigate the consequences of DCSB on the mesons

we consider perturbations around the background fields in
Eq. (2.6). First of all it is convenient to rewrite the gauge
field fluctuations in terms of vectorial and axial fields

Lm ¼ Vm þ Am; Rm ¼ Vm − Am: ð2:8Þ

The bifundamental field X is decomposed into the classical
part X0 and a pseudoscalar fluctuation π in the following
form [27]:

X ¼ eiπ
ataX0eiπ

ata : ð2:9Þ

We will work in the isospin symmetrical limit, mu ¼ md ≕
mq and σu ¼ σd ≕ σd; in this limit the matrix X0 is
proportional to the unit matrix and X becomes

X ¼ X0e2iπ
ata : ð2:10Þ

The meson spectrum is obtained from the kinetic terms;
we expand the original action (2.2) up to quadratic order in
Vm ¼ Va

mta, Am ¼ Aata and the fluctuation πa:
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SKin ¼
Z

d5x
ffiffiffiffiffi
jgj

p �
v2

2
ð∂mπ

a − Aa
mÞ2

−
1

4g25
ðvmn

a vamn þ amn
a aamnÞ

�
; ð2:11Þ

with

vamn≔∂mVa
n−∂nVa

m; aamn≔∂mAa
n−∂nAa

m; ð2:12Þ

and

vðzÞ ≔ ζmqzþ
σq
ζ
z3: ð2:13Þ

B. Equations of motion and holographic currents

Writing SKin as

SKin ¼
Z

d5xLKin; ð2:14Þ

its variation takes the Euler-Lagrange form

δSKin

¼
Z

d5x

��∂LKin

∂Va
l
− ∂mPml

V;a

�
δVa

l

þ
�∂LKin

∂Aa
l

− ∂mPml
A;a

�
δAa

l þ
�∂LKin

∂πa − ∂mPm
π;a

�
δπa

�

þ
Z

d5x∂mðPml
V;aδV

a
l þ Pml

A;aδA
a
l þ Pm

π;aδπ
aÞ; ð2:15Þ

where Pml
V;a and Pml

A;a are the conjugate momenta to the
vector fields Va

l and Aa
l

Pml
V;a ≔

∂LKin

∂ð∂mVa
lÞ
; Pml

A;a ≔
∂LKin

∂ð∂mAa
lÞ
; ð2:16Þ

and Pm
π;a the conjugate momentum to the field πa

Pm
π;a ≔

∂LKin

∂ð∂mπ
aÞ : ð2:17Þ

From Eq. (2.11) we find for the derivatives of LKin with
respect to the fields

∂LKin

∂Va
l

¼ ∂LKin

∂πa ¼ 0; ð2:18Þ

∂LKin

∂Aa
l

¼ −v2
ffiffiffiffiffi
jgj

p
ð∂lπa − Al

aÞ; ð2:19Þ

and for the conjugate momenta

Pml
V;a ¼ −

1

g25

ffiffiffiffiffi
jgj

p
vml
a ; ð2:20Þ

Pml
A;a ¼ −

1

g25

ffiffiffiffiffi
jgj

p
aml
a ; ð2:21Þ

Pm
π;a ¼ v2

ffiffiffiffiffi
jgj

p
ð∂mπa − Am

a Þ: ð2:22Þ

Imposing the stationarity condition δSKin ¼ 0, we
find from the first three terms in Eq. (2.15) the field
equations

∂mð
ffiffiffiffiffi
jgj

p
vmn
a Þ ¼ 0; ð2:23Þ

∂mð
ffiffiffiffiffi
jgj

p
amn
a Þ − g25v

2
ffiffiffiffiffi
jgj

p
ð∂nπa − An

aÞ ¼ 0; ð2:24Þ

∂m½v2
ffiffiffiffiffi
jgj

p
ð∂mπa − Am

a Þ� ¼ 0: ð2:25Þ

The mass spectrum of the vector and axial-vector mesons
and pions can be found by solving these equations of
motion in momentum space under appropriate boundary
conditions. We will choose, however, a different method
based on the Kaluza-Klein expansion. As explained in
the next subsection, the advantage of the Kaluza-Klein
method is the extraction of a 4-d off-shell action for the
mesons.
The last three terms in (2.15) form a surface term, whose

nonvanishing contribution can be written as

δSKinBdy ¼
Z

d4xðPzμ
V;aδV

a
μ þ Pzμ

A;aδA
a
μ þ Pz

π;aδπ
aÞz¼z0

z¼ϵ :

ð2:26Þ

The terms at z ¼ z0 vanish under Neumann boundary
conditions

∂zVa
μjz¼z0 ¼ ∂zAa

μjz¼z0 ¼ ∂zπ
ajz¼z0 ¼ 0; ð2:27Þ

and for the gauge choice Va
z ¼ Aa

z ¼ 0. The boundary
terms at z ¼ ϵ can be written as (we distinguish vectorial
Minkowski indices μ̂ and vectorial AdS indices μ)

δSKinBdy ¼ −
Z

d4x½hJμ̂V;aiðδVa
μ̂Þz¼ϵ

þ hJμ̂A;aiðδAa
μ̂Þz¼ϵ

þ hJπ;aiðδπaÞz¼ϵ�; ð2:28Þ

where we find the holographic currents

hJμ̂V;aðxÞi ¼ Pzμ
V;ajz¼ϵ ¼ −

1

g25
ð

ffiffiffiffiffi
jgj

p
vzμÞz¼ϵ; ð2:29Þ

hJμ̂A;aðxÞi ¼ Pzμ
A;ajz¼ϵ ¼ −

1

g25
ð

ffiffiffiffiffi
jgj

p
azμÞz¼ϵ; ð2:30Þ
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hJπ;aðxÞi ¼ Pz
π;ajz¼ϵ ¼ ½

ffiffiffiffiffi
jgj

p
v2ð∂zπa − Az

aÞ�z¼ϵ

¼ ∂μhJμA;aðxÞi: ð2:31Þ

These holographic currents are identified with the vacuum
expectation values of the 4-d vectorial, axial, and pion
current operators in Minkowski spacetime.

C. The Kaluza-Klein expansion

First of all we evaluate the metric (2.1) to write the action
of Eq. (2.11) in the form

SKin ¼
Z

d4x
Z

dz
z

�
v2

2z2
½−ð∂zπ

a − Aa
z Þ2 þ ð∂ μ̂π

a − Aa
μ̂Þ2�

−
1

4g25
½−2ðvazμ̂Þ2 þ ðvaμ̂ ν̂Þ2 − 2ðaazμ̂Þ2 þ ðaaμ̂ ν̂Þ2�

�
:

ð2:32Þ

The axial-vector field Aa
μ̂ can be decomposed into trans-

verse and longitudinal parts:

Aa
μ̂ ¼ A⊥;a

μ̂ þ ∂ μ̂ϕ
a; ð2:33Þ

where ∂ μ̂A
μ̂
⊥;a ¼ 0. The transverse part will be associated

with the axial-vector mesons whereas the longitudinal part
will be associated with the pions. The action (2.32) is
invariant under the gauge transformations

Va
m → Va

m − ∂mλ
a
V; ð2:34Þ

Aa
m → Aa

m − ∂mλ
a
A; ð2:35Þ

πa → πa − λaA: ð2:36Þ

Because of this, we can fix the gauge as Va
z ¼ Aa

z ¼ 0 and
then Eq. (2.32) reduces to

SKin ¼
Z

d4x
Z

dz
z

�
v2

2z2
½−ð∂zπ

aÞ2 þ ð∂ μ̂π
a − ∂ μ̂ϕ

aÞ2

þ ðA⊥;a
μ̂ Þ2� þ ∂ μ̂ð…Þ − 1

4g25
½−2ð∂zVa

μ̂Þ2 þ ðvaμ̂ ν̂Þ2

− 2ð∂zAa
μ̂Þ2 − 2ð∂z∂ μ̂ϕ

aÞ2 þ ða⊥;a
μ̂ ν̂ Þ2�

�
; ð2:37Þ

where the terms in ð…Þ vanish by choosing appropriate
boundary conditions.
The action (2.37) is in a suitable form for the Kaluza-

Klein expansion. This consists in expanding the 5-d fields
in an infinite discrete set of modes. Each mode will be a
product of a pure wave function in the radial coordinate z
and a meson field depending on the Minkowski coordinates
x. For the present case, the Kaluza-Klein expansion for the
bulk fields Va

μ̂, A
⊥;a
μ̂ , πa, and ϕa take the form

Va
μ̂ðx; zÞ ¼ g5

X∞
n¼0

va;nðzÞV̂a;n
μ̂ ðxÞ; ð2:38Þ

A⊥;a
μ̂ ðx; zÞ ¼ g5

X∞
n¼0

aa;nðzÞÂa;n
μ̂ ðxÞ; ð2:39Þ

πaðx; zÞ ¼ g5
X∞
n¼0

πa;nðzÞπ̂a;nðxÞ; ð2:40Þ

ϕaðx; zÞ ¼ g5
X∞
n¼0

ϕa;nðzÞπ̂a;nðxÞ: ð2:41Þ

The wave functions ϕa;nðzÞ and πa;nðzÞ are not indepen-
dent. The relation between them can be obtained from the
5-d field equations in Eqs. (2.23)–(2.25) or via an off-shell
integration, as described below.
Using the Kaluza-Klein expansions (2.38)–(2.41) in the

action (2.37), one can separate the z and x integrals and
write the action as

SKin ¼
X∞
n;m¼0

Z
d4x

�
1

2
Δa;nm

π ½∂ μ̂π
a;nðxÞ�∂ μ̂πa;mðxÞ

−
1

2
Ma;nm

π π̂a;nðxÞπ̂a;mðxÞ − 1

4
Δa;nm

V v̂a;nμ̂ ν̂ ðxÞv̂μ̂ ν̂a;mðxÞ

þ 1

2
Ma;nm

V V̂a;n
μ̂ ðxÞV̂ μ̂

a;mðxÞ − 1

4
Δa;nm

A âa;nμ̂ ν̂ ðxÞâμ̂ ν̂a;mðxÞ

þ 1

2
Ma;nm

A Âa;n
μ̂ ðxÞÂμ̂

a;mðxÞ
�
; ð2:42Þ

where the coefficients for the 4-d fields are given by the
following z integrals

Δa;nm
π ¼

Z
dz
z
f½∂zϕ

a;nðzÞ�∂zϕ
a;mðzÞ

þ βðzÞ½πa;nðzÞ − ϕa;nðzÞ�½πa;mðzÞ − ϕa;mðzÞ�g;
ð2:43Þ

Δa;nm
V ¼

Z
dz
z
va;nðzÞva;mðzÞ;

Δa;nm
A ¼

Z
dz
z
aa;nðzÞaa;mðzÞ; ð2:44Þ

Ma;nm
π ¼

Z
dz
z
βðzÞ½∂zπ

a;nðzÞ�∂zπ
a;mðzÞ;

Ma;nm
V ¼

Z
dz
z
½∂zva;nðzÞ�∂zva;mðzÞ;

Ma;nm
A ¼

Z
dz
z
f½∂zaa;nðzÞ�∂zaa;mðzÞ

þ βðzÞaa;nðzÞaa;mðzÞg; ð2:45Þ
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and we have defined βðzÞ as

βðzÞ ≔ g25
z2

vðzÞ2 ¼ g25

�
ζmq þ

σq
ζ
z2
�

2

: ð2:46Þ

Now the goal is to obtain a 4-d action with standard
kinetic terms for the vector V̂a;n

μ̂ and axial-vector Âa;n
μ̂

mesons and pions πa;n. This can be achieved imposing the
conditions

Δa;nm
π ¼ Δa;nm

V ¼ Δa;nm
A ¼ δnm; ð2:47Þ

Ma;nm
π ¼ m2

πa;nδ
nm; Ma;nm

V ¼ m2
Va;nδnm; ð2:48Þ

Ma;nm
A ¼ m2

Aa;nδnm: ð2:49Þ

This way we arrive at the following 4-d action:

SKin ¼
X∞
n¼0

Z
d4x

�
1

2
½∂ μ̂π̂

a;nðxÞ�2 − 1

2
m2

πa;n ½π̂a;nðxÞ�2

−
1

4
½v̂a;nμ̂ ν̂ ðxÞ�2 þ

1

2
m2

Va;n ½V̂a;n
μ̂ ðxÞ�2

−
1

4
½âa;nμ̂ ν̂ ðxÞ�2 þ

1

2
m2

Aa;n ½Âa;n
μ̂ ðxÞ�2

�
: ð2:50Þ

The conditions (2.47) are precisely the normalization rules
for the wave functions va;nðzÞ, aa;nðzÞ, πa;nðzÞ, and ϕa;nðzÞ.
Moreover, the conditions on the masses, Eqs. (2.48) and
(2.49), can be obtained from the normalization conditions
(2.47) as long as we impose the following equations

βðzÞ
z

½πa;nðzÞ − ϕa;nðzÞ� ¼ −∂z

�
1

z
∂zϕ

a;nðzÞ
�
; ð2:51Þ

βðzÞ∂zπ
a;nðzÞ ¼ m2

πa;n∂zϕ
a;nðzÞ; ð2:52Þ

− ∂z

�
1

z
∂zva;nðzÞ

�
¼ m2

Va;n

z
va;nðzÞ; ð2:53Þ

�
−∂z

�
1

z
∂z

�
þ 1

z
βðzÞ

�
aa;nðzÞ ¼ m2

Aa;n

z
aa;nðzÞ: ð2:54Þ

These equations can be interpreted as the on-shell
conditions for the wave functions va;nðzÞ, aa;nðzÞ,
πa;nðzÞ, and ϕa;nðzÞ. It should be noted that these equations
can simply be obtained from the 5-d field equations in
Eqs. (2.23)–(2.25). However, the convenience of our
method is the fact that the final 4-d action (2.50) remains
off shell, a property that can be very useful when consid-
ering scattering amplitudes, which require the knowledge
of Feynman rules.
To conclude, we mention the meson masses mπa;n , mVa;n ,

andmAa;n are completely determined once we find solutions
for Eqs. (2.51)–(2.54). In the following section, solutions to

these equations are found imposing Dirichlet boundary
conditions at z ¼ ϵ:

πa;njz¼ϵ ¼ va;njz¼ϵ ¼ aa;njz¼ϵ ¼ 0; ð2:55Þ

and Neumann boundary conditions at z ¼ z0:

∂zπ
a;njz¼z0 ¼ ∂zva;njz¼z0 ¼ ∂zaa;njz¼z0 ¼ 0: ð2:56Þ

Since there is no flavor mixing, the equations of motion and
boundary conditions have the same form for every flavor
index a and from now on we will omit that index. The latter
is relevant for the calculation of pion decay constants.

III. LEPTONIC DECAY CONSTANTS OF THE
EXCITED STATES OF THE PION

In this section we present the main result of our paper:
the behavior of the leptonic decay constants of the exited
states of the pion near the chiral limit. First we show how to
calculate the decay constants fπn from holography and
arrive at the equivalent to Eq. (1.1) in QCD. After
describing some technical details on the calculation of
the decay constants, we present our numerical results for
the fπn .

A. Holographic calculation of the decay constants

The simplest way to extract the leptonic decay constant
is to use the Kaluza-Klein expansions (2.38)–(2.41) for the
holographic currents (2.29)–(2.31):

hJμ̂VðxÞi ¼
X∞
n¼0

�
1

g5z
∂zvnðzÞ

�
z¼ϵ

V̂ μ̂
nðxÞ; ð3:1Þ

hJμ̂AðxÞi ¼
X∞
n¼0

�
1

g5z
∂zanðzÞ

�
z¼ϵ

Âμ̂
nðxÞ

þ
X∞
n¼0

�
1

g5z
∂zϕ

nðzÞ
�
z¼ϵ

∂ μ̂π̂nðxÞ; ð3:2Þ

∂ μ̂hJμ̂AðxÞi ¼hJΠðxÞi

¼ −
X∞
n¼0

�
βðzÞ
g5z

∂zπ
nðzÞ

�
z¼ϵ

π̂nðxÞ: ð3:3Þ

As explained in the previous section, we are omitting the
flavor index a. Here the 4-d fields V̂ μ̂

nðxÞ, Âμ̂
nðxÞ, and π̂nðxÞ

are on shell. From the current expansions (3.1) and (3.2) we
are able to extract the decay constants for the vector mesons
(gVn ), the axial-vector mesons (gAn), and the pions (fπn):

gVn ¼
�
1

g5z
∂zvnðzÞ

�
z¼ϵ

; ð3:4Þ
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gAn ¼
�
1

g5z
∂zanðzÞ

�
z¼ϵ

; ð3:5Þ

fπn ¼
�
−

1

g5z
∂zϕ

nðzÞ
�
z¼ϵ

: ð3:6Þ

These results are consistent with the standard definition of
meson decay constants:

h0jJμ̂Vð0ÞjVnðp; λÞi ¼ ϵμ̂ðp; λÞgVn ; ð3:7Þ

h0jJμ̂Að0ÞjAnðp; λÞi ¼ ϵμ̂ðp; λÞgAn; ð3:8Þ

h0jJμ̂Að0ÞjπnðpÞi ¼ ipμ̂fπn : ð3:9Þ

Taking the divergence of (3.2) and using (3.6), one
obtains the interesting relation

fπnm2
πn ¼ −

1

g5

�
βðzÞ
z

∂zπ
nðzÞ

�
z¼ϵ

; ð3:10Þ

where we made use of the on-shell equation for the pion
field, ∂2π̂nðxÞ ¼ −m2

πn π̂
nðxÞ. Moreover, using this result

into Eq. (3.3), the divergence of the axial current takes the
form of an extended partial conservation of the axial current
(PCAC) relation

∂μhJμ̂AðxÞi ¼
X∞
n¼0

fπnm2
πn π̂nðxÞ: ð3:11Þ

Interestingly, such a relation was proposed long ago [28] in
the context of current algebra studies. In particular, such an
extended PCAC relation leads naturally to the vanishing
of the leptonic decay constants of the pion’s excited states
when the ground-state pion is the Goldstone boson of
DCSB and mπn ≠ 0, n ≥ 1, in the chiral limit. Moreover,
from Eq. (3.10) one obtains a generalized GOR relationship
in the form of Eq. (1.1) if one makes the identification

2mqρπn ≔ −
1

g5

�
βðzÞ
z

∂zπ
nðzÞ

�
z¼ϵ

: ð3:12Þ

As we will show, independently of the mode number n, the
function ρπn is finite for mq → 0. This, like in QCD, allows
us to predict the behavior of fπn close to the chiral limit.
The vanishing of the leptonic decay constants of the

pion’s excited states in the chiral limit could also be
inferred from the analysis of the spectral representation
of the two-point function of axial-vector currents. The
residues of the pole terms in the two-point function are
proportional to matrix elements related to the leptonic
decay constants and, in the chiral limit, the pole terms
associated with the pion’s excited states would be absent—
see e.g. Eq. (51) of Ref. [29].

B. Normalization and asymptotic expansion

It is possible to decouple the system of equations (2.51)
and (2.52) and find an independent equation for the
function ΠnðzÞ ≔ ∂zπ

nðzÞ

ðz∂zÞ2ΠnðzÞ þ AðzÞz∂zΠnðzÞ þ BnðzÞΠnðzÞ ¼ 0; ð3:13Þ

with AðzÞ and BnðzÞ given by

AðzÞ ¼ z∂z ln βðzÞ − 2; ð3:14Þ

BnðzÞ ¼ 1þ z2½∂2
z ln βðzÞ þm2

πn − βðzÞ�: ð3:15Þ

From (3.10) and (3.12) we find that the function ρπn is
determined by Πn through the relation

ρπn ¼ −
1

2mqg5

�
βðzÞ
z

ΠnðzÞ
�
z¼ϵ

: ð3:16Þ

Expanding ΠnðzÞ in powers of z near the boundary we find
the asymptotic solution

ΠnðzÞ ¼ Cn

�
−zþ 1

4

�
m2

πn þ
32π2σ

3mq
− 3m2

q

�
z3 þ � � �

�

≕ CnΠn
UðzÞ; ð3:17Þ

where the dots represent higher powers in z and we have
defined Πn

UðzÞ as the un-normalized function associated
withΠnðzÞ. In the numerical procedure we will focus on the
function Πn

UðzÞ. Note that the solution (3.17) naturally
satisfies the Dirichlet boundary condition (2.55).
The constant Cn in Eq. (3.17) is determined from the

normalization condition Δnm
π ¼ δnm. From Eqs. (2.51) and

(2.52) we find thatΠnðzÞ obeys the normalization condition

Z
dz
z
βðzÞΠnðzÞΠmðzÞ ¼ m2

πnδ
mn; ð3:18Þ

which, in turn, leads to

Cn ¼
mπn

Nπn
; ð3:19Þ

with

N2
πn ¼

Z
dz
z
βðzÞ½Πn

UðzÞ�2: ð3:20Þ

We end this subsection noticing that, by using the
asymptotic expansion (3.17) and the definition (2.46),
the holographic prescription (3.16) takes the simple form
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ρπn ¼
g5ζ2

2

mqmπn

Nπn
: ð3:21Þ

This formula will be very useful in the following section.

IV. NUMERICAL RESULTS

In this section we present our numerical results. We start
with the mass spectrum of the pions. The spectrum is
obtained by solving Eq. (3.13) for the auxiliary wave
function ΠnðzÞ ¼ ∂zπ

nðzÞ and imposing the boundary
conditions πnðϵÞ ¼ 0 and ∂zπ

nðz0Þ ¼ 0. We integrate
numerically Eq. (3.13) from z ¼ ϵ to z ¼ z0, using the
asymptotic solution (3.17) to extract the value for the
derivative of ΠnðzÞ at z ¼ ϵ. We use the shooting method,
which consists in shooting values in the parameter plane
mπn vs mq until we find a solution that satisfies the IR
condition Πnðz0Þ ¼ ∂zπ

nðz0Þ ¼ 0. Due to the linearity
property of Eq. (3.13), to get the pion spectrum it is
sufficient to work with the un-normalized wave function
Πn

UðzÞ, defined in Eq. (3.17). This is equivalent to setting
Cn to 1.
The model we use has there free parameters, z0, mq, and

σq. We use the same values used in Refs. [17,27]. The hard-
wall cutoff z0 is the dual of the QCD infrared mass gap and
is completely fixed (in the limit of exact isospin symmetry)
by the mass of the ρ meson, namely z0 ¼ ð322.5 MeVÞ−1.
Therefore, z0 essentially sets the scale of all hadronic
masses. The remaining parameters are fixed fitting the
experimental values of the mass mπ0 ¼ 139.6 MeV and
leptonic decay constant fπ0 ¼ 92.4 MeV of the ground-
state pion1; their values are mq ¼ 8.31 MeV and
σq ¼ ð213.7 MeVÞ3. Figure 1 displays the results for the
mq dependence of the pion masses, for the ground state and
first three excited states. We have also obtained solutions
for n > 3 up to n ¼ 6; the mq dependence of those
solutions is similar to that shown in Fig. 1 for the three
lowest excited states. The mass of the ground-state pion
can be fitted as mπ0 ∼m1=2

q near the chiral limit, which is
consistent with the GOR (1.4). On the other hand, the
masses of the excited states can be fitted with the linear
form mπn ¼ m0

πn þ anmq, where m0
πn are the corresponding

masses in the chiral limit.
For establishing the finiteness of ρπn in the chiral limit,

we consider the mq dependence of the normalization
constant Nπn , defined in Eq. (3.20). Nπn is completely
determined from the knowledge of the un-normalized wave
function Πn

UðzÞ, which enters in the determination of the
mass spectrum. The results are displayed in Fig. 2. The
curve for the ground-state pion can be fitted as Nπ0 ∼m3=2

q ,
while those for the excited states can be fitted with a linear

function Nπn ∼mq, n ≥ 1. As we show next, these different
mq dependences of Nπn for the ground state and the excited
states, when combined with the differentmq dependence of
mπn , are responsible for the finiteness of fπ0 and the
vanishing of fπn for n ≥ 1 in the chiral limit.
As the spectrum and the normalization constant Nπn are

known, the function ρπn can be readily determined using the
formula in Eq. (3.21). Figure 3 displays the results. The
curves in this figure show that ρπn is finite as mq → 0 and
remarkably independent of mq for 0 ≤ mq ≤ 30 MeV for

FIG. 1 (color online). Quark mass dependence of the pion
masses.

FIG. 2 (color online). Quark mass dependence of the normali-
zation constants.

1Although the experimental value of the leptonic decay
constant of the pion has been updated recently by the Particle
Data Group [30], to the central value fπ ¼ 92.2 MeV, we prefer
to use the old value to compare results with Refs. [17,27].
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all the values of n investigated. This clearly establishes the
finiteness of ρπn at small mq and, as we discuss next, leads
to the conclusion that in the chiral limit, fπn ¼ 0 for n ≥ 1.
At this stage we are able to present the main result of

the present paper, namely the behavior of the pion decay
constants fπn near the chiral limit. The numerical results are
displayed in Fig. 4. As one can see from the figure, while
the ground-state pion possesses a finite leptonic decay
constant fπ0 the excited states have leptonic decay con-
stants fπn that vanish in the chiral limit. As mentioned at
the beginning of the present section, for mq ¼ 8.31 MeV,
the ground-state pion decay constant is fπ0 ≈ 92.4 MeV.
Table I presents results for fπn.

Experimental extraction of the leptonic decay constants
of the excited states is very difficult because the decays of
such states are dominated by strong decays. There is a
bound on fπ1 extracted from B decays [3], which is
fπ1 < 0.064fπ0 . Our result in Table I is perfectly compat-
ible with this bound, but is about five times smaller than the
lattice result of Ref. [2].
We also note that the curves for the excited states can be

fitted with a linear quark mass dependence. Such a linear
mq scaling of fπn for n ≥ 1 is precisely the one predicted in
QCD [1] through the generalized GOR relationship (1.1):

fπn ¼
2mqρπn

m2
πn

∼mq; n ≥ 1; ð4:1Þ

as m2
πn ∼ ðmqÞ0 and ρπn ∼ ðmqÞ0.

Finally, for completeness we examine ρ0πn , the chiral limit
of ρπn defined in Eq. (1.5), as a function of the pion masses
of excited states in the chiral limit, m0

πn . Note that although
the ρπn are, to a good precision,mq independent, the masses
mπn are slightly dependent on mq and this makes the mπn

dependence of ρπn nontrivial. The results are shown in
Fig. 5. We found that the six lowest discrete eigenvalues
can be fitted as

ρ0πn ¼ γðm0
πnÞ3=2; n ≥ 1; ð4:2Þ

FIG. 3 (color online). Quark mass dependence of ρπn .

FIG. 4 (color online). Quark mass dependence of fπn .

FIG. 5 (color online). The function ρ0πn , defined in Eq. (1.5), for
the first six excited states. The dashed line is a fit to the discrete
eigenvalues.

TABLE I. Leptonic decay constants for the ground state and the
first three excited states of the pion.

n 0 1 2 3

fπn (MeV) 92.4 1.68 1.34 1.16

DECAY CONSTANTS OF THE PION AND ITS … PHYSICAL REVIEW D 91, 065024 (2015)

065024-9



with γ ¼ 4.375 MeV1=2. With this, Eq. (3.10) then implies
that the generalized GOR relationship takes the form

f0πn ≔ lim
mq→0

fπn ¼ γ
2mqffiffiffiffiffiffiffiffi
m0

πn
p ; n ≥ 1: ð4:3Þ

It is important to remark that the hard-wall model fails to
reproduce the Regge behavior of mesons. This is a typical
feature of holographic models based on the supergravity
approximation. A more realistic holographic model, the
soft-wall model of Karch et al. [31], which contains an
additional background dilaton field, is able to obtain the
correct Regge behavior of mesons and it is expected to arise
from string theory beyond the supergravity approximation.
In addition, as discussed in Ref. [31], a chiral condensate
consistent with the dynamical breaking of chiral symmetry
in QCD requires the addition of higher order terms in the
background scalar potentialUðXÞ, beyond the 3jXj2 term in
the action (2.2)—Ref. [32], for example, adds a quartic
term. Although going from a hard-wall background to a
soft-wall background definitely changes the meson wave
functions, the holographic prescriptions for the currents,
obtained in Sec. III A, will not be modified. This is because
the soft-wall dilaton goes to zero in the ultraviolet.
Moreover, the ρ function given in Eqs. (3.12) and (3.21)
should remain valid since the background scalar X and the
(un-normalized) pion wave function should have the same
ultraviolet behavior as in the hard-wall model. This means
the way the derived GOR relation is modified by the soft-
wall dilaton and potential U(X) will be dictated by the
normalization constants of the pion wave functions.
Therefore, it seems that the general qualitative conclusion
of the dramatic suppression of the leptonic decay constants
of the pion’s excited states will therefore not be modified in
the soft-wall model. A detailed study of this will be the
subject of a future work.

V. CONCLUSIONS AND PERSPECTIVES

We have investigated the leptonic decay constants of the
pion and its excitations in a five-dimensional holographic
hard-wall model for QCD. We have used the model
proposed in Refs. [17,18] for implementing dynamical
chiral symmetry breaking and introduced a direct way of
calculating the decay constants via the definition of holo-
graphic currents. We have proved numerically that the
leptonic decay constants of the excited states of the pion
vanish in the chiral limit. In addition, we have shown that
these results follow from the generalized GOR relationship
Eq. (1.1), whose counterpart in QCD was first derived in
QCD in Ref. [1].
Our results for the vanishing of the leptonic decay

constants of the pion’s excited states in the chiral limit,
besides being in agreement with QCD, might shed light
on the failure of LFH in reproducing such results. A key
feature of the approach we followed in the present paper is

the generalized GOR relationship of Eq. (1.1). The gen-
eralized GOR relationship is a direct consequence of the
dynamical breaking of chiral symmetry implemented by
the action of Eq. (2.2) via a scalar field Xðx; zÞ that has a
negative mass squared, which leads to the extended PCAC
relation given in Eq. (3.11). On the other hand, as
mentioned in the Introduction, the way chiral symmetry
is treated in LFH is nonstandard, as the vanishing of the
pion mass in the chiral limit is not a result of the dynamical
breaking of the symmetry [21]. In LFH the vanishing of the
pion mass when mq ¼ 0 follows from the precise cancel-
lation of the light-front kinetic energy and light-front
potential energy terms for the quadratic confinement
potential in a Schrödinger-like equation [21]. Although
similar cancellations occur in chiral models of QCD in
Coulomb gauge [33–41], there is, however, one crucial
aspect in the calculation of the pion leptonic decay
constants in LFH [22] that might not capture the full chiral
dynamics of the pion bound state, namely the truncation of
the Fock-space decomposition of the pion’s light-front
wave function to its lowest quark-antiquark valence com-
ponent. In this sense, it would be interesting to recalculate
the leptonic decay constants including higher Fock-space
components in the pion’s wave function in the LFH
approach.
Notwithstanding our results are derived in a hard-wall

model of holographic QCD, we believe that the vanishing
of the leptonic decay constants of the pion’s excited states
in the chiral limit will happen in any holographic model
that implements dynamical chiral symmetry breaking and
reproduces the generalized GOR relationship. This and
other aspects of the problem investigated here should be
investigated with soft-wall models. Besides improving on
the mass spectrum, such a model makes closer contact
with LFH.
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