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The common tunneling picture of electron-positron pair creation in a strong electric field is generalized
to pair creation in combined crossed electric and magnetic fields. This enhanced picture, being symmetric
for electrons and positrons, is formulated in a gauge-invariant and Lorentz-invariant manner for quasistatic
fields. It may be used to infer qualitative features of the pair creation process. In particular, it allows for an
intuitive interpretation of how the presence of a magnetic field modifies and, in particular cases, even
enhances pair creation. The creation of electrons and positrons from the vacuum may be assisted by an
energetic photon, which can also be incorporated into this picture of pair creation.
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I. INTRODUCTION AND MOTIVATION

One of the most intriguing predictions of quantum
electrodynamics (QED) is certainly the possible breakdown
of the vacuum in the presence of ultrastrong electro-
magnetic fields into pairs of electrons and positrons.
Since its first prediction by Sauter and others [1–4], pair
creation has been studied in many papers, see Refs. [5–7]
for recent reviews. The Schwinger critical field strength of
ES ¼ 1.3 × 1018 V=m, where spontaneous pair creation is
expected to set in, cannot be reached even by the strongest
lasers available today. However, pair creation may be
assisted by additional fields or particles. Current research
covers, among others, pair creation in spatially and tem-
porally oscillating electric fields [8–11], pair creation
induced by the interaction of strong pulsed laser fields
with relativistic electron beams or a nuclear Coulomb field
(Bethe-Heitler process) [12–15], and pair creation induced
by additional photons in the presence of an external field
[16–20]. Furthermore, different aspects of pair creation like
the effect of magnetic fields [21–23], the dynamics, real-
time evolution and pair distributions with nontrivial field
configurations in one effective dimension [24–28], and
effective mass signatures in multiphoton pair creation [29]
are investigated at present. Current interest in the old topic
of pair creation is prompted by recent advances in laser
technology [30,31] aiming for laser intensities exceeding
1022 W=cm2 (corresponding to electric field strengths of
about 1014 V=m) and by experimental proposals for
quantum simulators [32] that may allow to study pair
creation via quantum simulation. The ultimate quest for
higher and higher laser intensities for studying quantum
electrodynamic effects such as pair creation may be limited,
however, just by the onset of pair creation [33].
At field strengths below the Schwinger limit ES, pair

creationvia ultrastrong electric fieldsmay be interpreted as a

tunneling effect [34] similar to tunnel ionization from bound
states via strong electric fields [35,36] using the method of
imaginary times [37] (see also recent applications in
Refs. [38–40]). This method uses classical trajectories with
imaginary times to approximate the exponential suppression
for the transition amplitude of interest. In spite of conceptual
difficulties [41,42], the tunneling picture of ionization was
recently extended into the relativistic domain, where the
laser’s magnetic field component can no longer be neglected
[43,44]. The purpose of this contribution is to establish a
similar picture for pair creation in an electromagnetic field,
including the magnetic field to full extent. The influence of
an additional quantized photon is incorporated and special
care is taken with respect to gauge and Lorentz invariance.
The tunneling picture presented here is established in the
quasistatic limit, where the electromagnetic field is assumed
to be constant and uniform during the pair creation process.
Furthermore, possible spin effects are not taken into account.
The manuscript is organized as follows: In Sec. II we

describe the electromagnetic field configuration for pair
creation, lay down the theoretical framework, and introduce
all necessary notations. Our main results are presented in
Sec. III, where the tunneling picture for electron-positron
pair creation in quasistatic crossed electric and magnetic
fields is developed. Three different cases need to be
distinguished, depending on the electric field amplitude
being larger than, equal to, or smaller than the magnetic
field amplitude. The effect of a quantized photon is also
discussed for all these cases. Properties of the maximum
probability trajectories, stemming from the imaginary time
method, are investigated in Sec. IV. Finally, we conclude in
Sec. V. Further details of the calculations have been
deferred into two appendixes.

II. THEORETICAL FRAMEWORK

A. Geometric setup and notation

Natural units will be used in this work, i.e., c ¼ ℏ ¼ 1.
The setup of the considered pair production process in an
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electromagnetic field of an ultrastrong laser is depicted in
Fig. 1. The electric field with amplitude E points in the x
direction, and the magnetic field with amplitude B in the y
direction. This configuration corresponds to the quasistatic
limit of either a plane-wave field or two counterpropagating
laser fields. In the case of a plane-wave field, its wave
vector will be directed along the positive z direction, and
the amplitudes of the electric and magnetic fields will be
equal. The superposition of two counterpropagating laser
fields can lead to orthogonal electric and magnetic fields of
different magnitudes. Note that the orthogonality of the
considered setup is maintained under Lorentz boosts
because E · B ¼ 0 is Lorentz invariant. Furthermore,
because B2 − E2 is invariant under Lorentz boosts, the
relative strength of the electric and magnetic fields is also
maintained. This will lead us later to the distinction
between the cases jEj > jBj, jEj ¼ jBj, and jEj < jBj.
Note that for jEj > jBj, one can always boost along the
z direction into a new reference frame where B0 ¼ 0.
Similarly for jEj < jBj, there exists a reference frame
where E0 ¼ 0. For jEj ¼ jBj, all boosts along the z
direction maintain the condition jE0j ¼ jB0j.
The wave vector of a possibly assisting high-energy

photon is parallel to the z direction; i.e., it may be positive
or negative. Other relative orientations of the photon and
the electromagnetic field are not considered here because
such a setup would lead to a reduced or even vanishing pair
production rate.
In the following sections, we will utilize a semiclassical

description of pair creation based on classical trajectories.
For an economical description of these trajectories, the
following notation will be used: The electron’s kinetic four-
momentum is written as

pμ ¼ ðp0; px; py; pzÞ; ð1Þ

and likewise its canonical momentum Pμ. The kinetic and
canonical momentum of the positron are denoted by qμ and
Qμ, respectively. The wave vector for the photon kμ is
written, according to the geometry used in this work, as

kμ ¼ ðk0; 0; 0; kzÞ; ð2Þ

with k0 ¼ jkzj. As the motion of the particles can be
reduced to a one-dimensional description along the x
direction, we denote the electron’s and positron’s x coor-
dinates by x− and xþ (not to be confused with light-cone
coordinates). Variables and their values at the point of pair
production xs will be subindexed by “s,” thus pμ

s ¼ pμðxsÞ
or x−s being the x component of the electron’s position at xs.
Variables and their values at the point where the electron or
the positron leave the imaginary trajectory will be sub-
indexed by “e” (for exit), thus px;e ¼ pxðx−e Þ being the
kinetic momentum of the electron in the x direction at its
point of exit.
The equations of motion for the canonical momenta of

the electron and the positron with charge ∓e are given by

d
dt
Pμ ¼ −e

∂xν
∂t

∂Aν

∂xμ ; ð3aÞ

d
dt
Qμ ¼ e

∂xν
∂t

∂Aν

∂xμ ; ð3bÞ

where Aν denotes the electromagnetic field’s four-potential.
The electron’s and the positron’s kinetic and canonical
momenta are connected via

pμðxÞ ¼ PμðxÞ þ eAμðxÞ; ð4aÞ

qμðxÞ ¼ QμðxÞ − eAμðxÞ: ð4bÞ

B. Matrix elements for pair creation

The mathematical handle for pair production is given by
its so-called matrix element or transition amplitude from an
initial vacuum state (possibly including a photon) to a final
state with an electron and positron (see Ref. [45] for a
thorough treatment). For an external electromagnetic field
only, this is given by

Mfi ¼ h1p; 1q; outj0; ini: ð5aÞ

Both the initial in-state and the final out-state are defined in
the Furry picture [46] and refer to a common time (see also
Appendix A or Ref. [45]). The asymptotic four-momenta of
the electron and positron are indicated by p and q.
In the case of an additional quantized photon field, which

may assist the process, the matrix element will read in first-
order perturbation theory

FIG. 1 (color online). Schematic illustration, representing the
geometry of the physical setup. An electron and a positron with
the kinetic four-momenta pμ and qμ are created in the presence of
a strong external electromagnetic field (red shading), e.g., a
plane wave or two colliding laser pulses. Pair production may
be assisted by an additional high-energy photon with four-
momentum kμ (yellow). The directions of the electric field, the
magnetic field, and the photon momentum are perpendicular to
each other and parallel to the coordinate axes.
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Mfi ¼ i
Z

dx h1p; 1q; outjĤintðxÞj1k; ini: ð5bÞ

The four-momentum of the quantized photon is labeled by
k, and Ĥint designates the QED interaction vertex. Using
semiclassical methods, the exponential parts of both matrix
elements can be evaluated approximately. Here, semiclass-
ical refers to the fact that only classical trajectories
(although possibly imaginary) connecting the in- and the
out-states are taken into account in the path-integral picture.
As shown in Appendix A [see Eqs. (A32) and (A41)], this
approximation yields

Mfi ∼ exp ½−ImðWk þWp þWqÞ�: ð6Þ

Wp andWq are the gauge-dependent classical actions of the
electron and positron with asymptotic momentum p and q
in the external field. Likewise,Wk gives the classical action
of the quantized photon with momentum k. Note that both
transitions (with or without an additional high-energy
photon) may coexist. The limit k → 0 leads to a vanishing
amplitude in Eq. (5b) due to prefactors, but the exponential
approaches the same value as the exponential in Eq. (5a).
Therefore, in the case of no additional photon, Wk in
Eq. (6) is set to zero. The various actions in (6) are not the
same as the commonly used actions Sðx0; xÞ, which connect
a position eigenstate with another position eigenstate.
Rather, they are Legendre transforms thereof, connecting
a position eigenstate with a momentum eigenstate (x0 being
implicitly defined by the canonical momenta, see
Appendix A):

WpðxÞ ¼ Spðx0; xÞ − P · x0; ð7aÞ

WqðxÞ ¼ Sqðx0; xÞ − Q · x0; ð7bÞ

WkðxÞ ¼ Skðx; x0Þ þ K · x0: ð7cÞ

The classical trajectories will consist of a path of the
incoming photon toward the point of pair creation xs, where
the photon converts into an electron and positron, and two
outgoing paths of the created particles from xs onward. If
there is no photon, the pair is created out of the vacuum
at xs. The exponent of Eq. (6) is therefore the imaginary
part of the action, acquired by a photon coming from the
past and propagating with momentum k to xs, and the two
actions, acquired by the electron and positron propagating
from xs to the future with momenta p and q. Although the
classical actions are gauge dependent, the square modulus
of Eq. (6) is not, as the boundary terms at xs cancel each
other and the boundary terms at �∞ result in unimportant
phases. Due to the Lorentz invariance of the actions, Eq. (6)
is also invariant under Lorentz transformations.

C. Kinetic considerations at the point
of pair production

At the point of pair production xμs , the classical
energy-momentum conservation

pμ
s þ qμs ¼ kμ ð8Þ

must be satisfied for the trajectory being classical. This
cannot happen on real classical trajectories, but on imagi-
nary ones. Squaring both sides of kμ − pμ

s ¼ qμs leads to

kps ¼ 0 ¼ k0p0;s − kzpz;s; ð9Þ

yielding with k0 ¼ jkzj

p2
0;s ¼ p2

z;s; ð10Þ

and likewise for qμs. Hence, using the relativistic dispersion
relation and squaring ps and qs gives

m2 ¼ −p2
x;s − p2

y;s ¼ −q2x;s − q2y;s: ð11Þ

Due to the fact that py and qy are constants of motion in the
aforementioned setup, they have to be real to be consistent
with a real asymptotic momentum. Therefore, px;s and qx;s
must be purely imaginary:

px;s ¼ −qx;s ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

y

q
¼ �im�; ð12Þ

m� ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

y

q
: ð13Þ

Starting from xs, both the trajectory of the electron and the
trajectory of the positron need to be followed until the exit
points in order to calculate the imaginary part of the action
along these trajectories. The trajectories will be called
“imaginary,” as long as the momenta px and qx are still
imaginary. Hence, the exit points are given by the condition
that px and qx become zero, and consequently, real:

px;e ¼ 0 ¼ qx;e: ð14Þ

III. TUNNELING PICTURE FOR THE CONSTANT
FIELD APPROXIMATION

The tunneling picture, presented in this work, is based on
the assumption that the external electromagnetic field can
be treated as constant and uniform during the imaginary
part of the trajectory. In Sec. III A this assumption will be
discussed in more detail, and the kinetic equations neces-
sary for determining the pair creation probability will be
derived. Based on these findings, an intuitive picture of pair
creation will be derived in Sec. III B and discussed in detail
in the remaining subsections. In order to establish this
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enhanced picture it is necessary to study the semiclassical
trajectories during pair creation in detail.

A. Kinetics within the constant field approximation

Expanding the electromagnetic field in the region of
interest just up to linear terms in xμ leads to a constant and
uniform electric and magnetic field. For the case of an
external field due to two counterpropagating lasers, the
approximation is justified if the spacetime region of the
imaginary dynamics, which is jxμs − xμej, is small compared
to the spacetime region on which the electromagnetic field
varies. In the case of an external plane-wave field, this
approximation is also valid if the imaginary trajectory is
such that both the electron and the positron move closely to
the plane wave’s phase and therefore see the same field
everywhere. Hence, applying the constant field approxi-
mation requires us to check, after calculating the trajecto-
ries, that along these, the electromagnetic field under
consideration can really be treated as constant. In general,
the electromagnetic field is evaluated at complex space-
times. Using the constant field approximation, the vector
potential for the electromagnetic field may be written as

Aμðt; zÞ ¼ ð0; Et − Bz; 0; 0Þ: ð15Þ

Here, E and B correspond to the values of the electric and
magnetic fields at the point where the electromagnetic field
is expanded. For crossed or counterpropagating laser
beams, it might be possible that jEj ≠ jBj. Thus, allowing
for arbitrary values of E and B, there are three different
cases: jEj > jBj, jEj ¼ jBj, and jEj < jBj. The correspond-
ing Lorentz-invariant quantity

E ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jE2 − B2j

q
ð16Þ

will also be used in this work.
Integrating the equations of motion (3) with constant

crossed fields of the geometry in Fig. 1 yields

p0ðx−Þ ¼ p0;e − eEðx− − x−e Þ; ð17aÞ

pzðx−Þ ¼ pz;e − eBðx− − x−e Þ; ð17bÞ

q0ðxþÞ ¼ q0;e þ eEðxþ − xþe Þ; ð17cÞ

qzðxþÞ ¼ qz;e þ eBðxþ − xþe Þ: ð17dÞ

Thus, both the kinetic energy and the z momentum depend
only linearly on the position in the x direction, simplifying
the calculation considerably. In contrast to Schwinger pair
creation with an electric field only, the electron and the
positron will be accelerated along the z direction in the
presence of a magnetic field, see Eqs. (17b) and (17d).
Furthermore, the magnetic field guides both particles in the

same direction, while the electric field accelerates the
particles into opposite directions. The x dependence for
px and qx is given implicitly by the dispersion relation
p2 ¼ m2:

p2
xðx−Þ ¼ p2

0ðx−Þ − ðm2� þ p2
zðx−ÞÞ; ð18aÞ

q2xðxþÞ ¼ q20ðxþÞ − ðm2� þ q2zðxþÞÞ: ð18bÞ

Using Eq. (17) and the relation from Eq. (9), the length of
the imaginary trajectory from xs to xe along the x direction
for both the electron and the positron is determined by

x−s − x−e ¼ k0p0;e − kzpz;e

eðEk0 − BkzÞ
; ð19aÞ

xþe − xþs ¼ k0q0;e − kzqz;e
eðEk0 − BkzÞ

: ð19bÞ

Plugging Eq. (17) into Eq. (8) gives the relations

eEðxþe − x−e Þ ¼ p0;e þ q0;e − k0; ð20aÞ

eBðxþe − x−e Þ ¼ pz;e þ qz;e − kz: ð20bÞ

Multiplying (20a) with B, (20b) with E, and subtracting
both yields

Bðp0;e þ q0;e − k0Þ ¼ Eðpz;e þ qz;e − kzÞ: ð21Þ

This equation gives the relation between pμ
e, q

μ
e, and kμ, as

they are not independent of each other.
As a consequence of Eqs. (17) and (18), the kinetic

momenta of the particles depend only on the x direction of
space. Furthermore, it turns out that the imaginary part of
the exponent is solely determined by the momenta in the x
direction [47] via

W ¼
Z

xs

x−e

px dxþ
Z

xs

xþe
qx dx ¼ W− þWþ; ð22Þ

although the particles’ (imaginary) dynamics can be three-
dimensional. The imaginary part is made up from a part due
to the electron moving between xs and x−e , where px is
imaginary, and a part due to the positron moving between
xs and xþe , where qx is imaginary. The photon’s action
cancels with the electron’s and the positron’s actions along
the z and t directions due to energy and momentum
conservation. The photon will, however, influence the
whole dynamics, and in this way the momenta px and
qx. The integrals for the exponent Eq. (22) can be
calculated analytically using Eq. (18) for the momenta
px and qx and (19) for the integration limits. Note that Wþ
and W− are not independent of each other due to momen-
tum conservation at the point of pair creation, see Eq. (8).
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B. Graphical interpretation of the relativistic
tunneling picture

Pair creation in strong electric fields is commonly
interpreted as tunneling from a negative-energy state in
the Dirac sea to a positive-energy state [34]. In other words,
the creation of an electron-positron pair is described by a
transition from a one-particle state to another particle state.
This picture can, however, be translated into a picture
where tunneling starts under the tunneling barrier and the
final state after tunneling is a classical two-particle state,
see Fig. 2. Although both interpretations are equivalent, a
pair creation picture that involves two particles may be
more intuitive. In the following, a pair creation picture will
be introduced that goes beyond the standard tunneling
picture of Ref. [34] by incorporating also an external
magnetic field and possibly a high-energy photon. This
picture is inspired by the tunneling picture for atomic
ionization.
The standard tunneling picture for atomic ionization

gives an intuitive measure for the suppression of ionization
by means of an area that is determined by the potential
function and the particle’s energy. If the potential is
increased, for example, this area gets larger, thus indicating
a reduced tunneling probability. In the same way, the
enhanced tunneling picture of pair creation presented in
this work will give a measure for the suppression of pair
production by means of an area. The exact exponents are
given by the integrals in Eq. (22), which can be pictured by
areas given by the integrals of

ImpxðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2� þ p2

zðxÞ − p2
0ðxÞ

q
; ð23aÞ

ImqxðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2� þ q2zðxÞ − q20ðxÞ

q
ð23bÞ

along the x direction. Plotting these quantities directly
would yield the exact phase-space areas of the tunneling
trajectories, but unfortunately, it does not give any intuitive
account on how the pair production changes if, for

example, the electric or magnetic field amplitude or the
energy of the additional photon changes. However, it will
be sufficient to use quantities that are monotonically
correlated to the momenta in Eq. (23). These quantities
will be called ~px and ~qx and will increase or decrease if px
and qx increase or decrease. This monotonic correlation
assures that the areas spanned by ~px and ~qx along the x
direction also increase or decrease if the exponents in
Eq. (22) increase or decrease. Although the choice for ~px
and ~qx is not unique, we defined them as

Im ~px ¼
���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

x þ p2
y þ p2

z

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

y þ p2
z

q ���
¼ jp0 − ~p0j ¼ ~p0 − p0; ð24aÞ

Im ~qx ¼
���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2x þ q2y þ q2z

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2y þ q2z

q ���
¼ jq0 − ~q0j ¼ ~q0 − q0; ð24bÞ

with the pseudoenergies ~p0 and ~q0 defined as

~p0ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

y þ p2
zðxÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2� þ p2

zðxÞ
q

; ð25aÞ

~q0ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2y þ q2zðxÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2� þ q2zðxÞ

q
: ð25bÞ

The areas spanned by ~px and ~qx along the x direction are
the areas enclosed by the curves of the kinetic energy
and the pseudoenergy, both amenable for an intuitive
interpretation. The monotonic correlation between the
imaginary part of ~px and px can be shown by taking the
derivative of ~px with respect to px, which is always
positive. This holds similarly for the monotonic correlation
between the imaginary part of ~qx and qx. Furthermore, ~px
and ~qx are zero if px and qx are zero, which corresponds to
the exit points, and hence the exit points are automatically
given by the points of intersection between the kinetic and
pseudoenergy curves. Despite the fact that this approxi-
mation to the area of the exponents is not exact, it is
sufficient to derive qualitative results and gives more
intuition, as we will show in the following.
The now-introduced quantities can be presented graphi-

cally as a function of the x coordinate giving a visual
representation of the tunneling picture of pair creation, as
shown exemplarily in Fig. 3. The upper black solid line
represents the zero-energy reference. Lines for the electron
are drawn in blue, whereas lines for the positron are drawn
in red. The bold solid colored lines represent the particles’
pseudoenergies in Eq. (25) as a function of the particles’
real x coordinate and the imaginary z coordinate. The
motion into the imaginary z direction results from a real z
momentum due to the presence of a magnetic field or the
initial momentum transfer due to the additional photon
during an imaginary time interval. Note, however, that there
is no motion in the z direction in real space because

electron positron

(a) (b) (c)

(d) (e)

FIG. 2 (color online). The conventional tunneling picture of
pair creation as tunneling from the Dirac sea (a) without electric
field and (b) with electric field. The tunneling path may be split
into two parts (c), which may be interpreted as an electron and a
positron emerging in the barrier and tunneling to real positive-
energy states (d and e).
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tunneling is instantaneous in real time [43]. Because the
semiclassical tunneling trajectories do not represent real-
istic particle paths, the exit coordinate, which is where
the particles’ momenta become real, is not necessarily real,
i.e., Im z�e ≠ 0. This may be related to the fact that each
semiclassical trajectory corresponds to a delocalized
quantum state with a well-defined momentum, which is
given by the exit momentum of the semiclassical trajectory.
A real motion into the z direction would require an
inhomogeneous electromagnetic field similarly to the
near-threshold-tunneling regime of relativistic tunnel
ionization [44].
The particles’ pseudoenergies in Eq. (25) as well as their

kinetic energies in Eqs. (17a) and (17c) can be expressed as
functions of the x coordinate only and are represented in
Fig. 3 by the solid and dashed lines, respectively. The solid
colored lines originate for both the electron and the positron
from the initial point for pair creation xs and end at their
respective exit points x−e and xþe , where they intersect the
dashed lines. Hence, by following, for example, the blue
dashed and solid lines, the change in kinetic energy and
pseudoenergy can be traced along the x direction of the
imaginary trajectory from the point of pair creation until the
exit for the electron, and similarly for the positron by
following the red lines. Finally, a blue shaded area for the

electron and a red shaded area for the positron are shown,
which are enclosed by the dashed and solid colored lines.
These areas can be related to exponents for pair production.
After introducing the different constituents of the

enhanced tunneling picture, their physical interpretation
can be explained now. At the point of pair creation xs, the
sum of the kinetic energies of the electron and the positron
must be equal to the initial energy already existing in the
system. This is either zero or k0 in the case of an additional
photon. From xs, both the electron and the positron follow
their imaginary trajectories until their respective exits. The
trajectories will be imaginary as long as px and qx are
imaginary or equivalently as long as the pseudoenergies ~p0

and ~q0 are larger than their respective kinetic energies p0

and q0. In the graphs this can be seen by the solid colored
lines lying below the dashed colored lines. At the exits,
px ¼ 0 and qx ¼ 0, both lines intersect as both types of
energy (pseudo and kinetic) become equal. Note that the
kinetic energies go below their minimum allowed energy
behind the exit points towards xs, where px and qx get
imaginary. It is just this behavior that allows the fulfillment
of Eq. (8), i.e., energy-momentum conversation at xs.
Furthermore, the difference between the pseudoenergy
and kinetic energy is taken as an approximate measure
for the imaginary part of the particles’ x momenta, see
Eq. (24). The exponent for pair production, Eq. (22), is
given by the integral over px and qx along the x direction
from the point of pair creation xs to both the exit points of
the electron and positron. Hence, the absolute value of these
exponents can be inferred approximately by the shaded
areas in the graphs. Thus, the shaded blue area corresponds
to W− and the shaded red area corresponds to Wþ. In the
following three subsections, the qualitative behavior of
these shaded areas—that is, the pair production exponent—
will be discussed depending on different factors like the
ratio of electric and magnetic field strength or the impact of
an additional photon.

C. Case jEj > jBj
Figure 4 shows some common cases where the electric

field is stronger in magnitude than the magnetic field. It can
be readily seen that for these cases, pair production is
always possible due to the existence of the exit points,
given by the intersection of the dashed and solid lines. For
jEj > jBj, this intersection is always possible, because the
pseudoenergy line (solid) never falls more steeply than the
kinetic energy line (dashed), and hence, they need to
intersect somewhere.
In Fig. 4(a), Schwinger pair creation is considered with

an electric field only and without an additional photon.
Furthermore, the most probable case with zero momentum
at the exit is taken. The pseudoenergies ~p0 and ~q0 (the solid
colored lines) are constant, because pz and qz do not
changewhen there is no magnetic field, and py as well as qy
are constants of motion. At xs, both kinetic energies of the

FIG. 3 (color online). The tunneling picture of pair creation,
indicating also the quantities used in the text. The electron and the
positron start their imaginary trajectory at xs and travel to their
respective exits x−e and xþe , where the trajectories become real.
The tunneling dynamics is along the real x axis, and the presence
of a magnetic field may cause a nontrivial motion along the
imaginary z axis. The bold solid lines represent the pseudoener-
gies in Eq. (25) as a function of the x and z coordinates, whereas
the thin solid lines indicate the projection of Eq. (25) along the x
axis. The dashed lines represent the kinetic energy. The values of
the acquired imaginary actions W− for the electron and Wþ for
the positron along these paths determine the exponential term
suppressing pair production and can be inferred qualitatively by
the shaded areas, enclosed by the thin solid and dashed red and
blue lines.
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electron and the positron are zero in sum, as there is no
additional energy without a photon. The Lorentz-boosted
version of Fig. 4(a), seen in a reference frame boosted along
the z direction, is shown in Fig. 4(b). Due to the boost, the
electric field gets larger, and hence the dashed colored lines
get steeper. The stronger electric field alone would increase
the tunneling probability. But due to the boost, a magnetic
field is also experienced now by the particles, which
transfers momentum from the x direction to the z direction.
This momentum transfer reduces the acceleration into the
electric field direction and makes pair creation less prob-
able. In the tunneling picture, the momentum transfer is
represented by the bent pseudoenergies ~p0 and ~q0; see
Fig. 4(b). Furthermore, the energy of the created particles is
increased, which is consistent with the boost in the z
direction. The growth of the relativistic mass is seen by
the bending of the pseudoenergy lines. Both effects, the
increase of the electric field and the increase of the
relativistic energy, cancel each other exactly, as the tran-
sition amplitude is Lorentz invariant. This invariance is also
represented in Figs. 4(a) and 4(b), since the size of the
shaded areas remains almost constant under the Lorentz
boost, although the areas are a qualitative measure for the
tunneling probability. Note also that the x coordinate of the
exit points x−e and xþe does not change, as it is not affected
by a boost along the z direction. Furthermore, Fig. 4(b)
allows us to infer the effect of a magnetic field that is
superimposed to a given electric field. The area in Fig. 4(b)
is increased due to the bending of the solid lines opposed to
the case without magnetic field, where these lines are
horizontal. Consequently, the pair production rate is
decreased.
In Fig. 4(c), an additional photon is incorporated into the

setting of E and B in Fig. 4(b). Here, two very important

things can be seen immediately. First, the additional energy
of k0 at xs. Both the electron and the positron can now share
this energy, which is k0=2 per particle for maximum pair
production probability. For this reason, the dashed colored
lines are shifted down by k0=2. This decreases the shaded
areas and therefore increases the pair production proba-
bility. Secondly, the additional photon does not only
transfer its kinetic energy; it also transfers its momentum
along the z direction. This leads to an additional z
momentum of k0=2 for both the electron and the positron,
increasing their pseudoenergy, or equivalently, their rela-
tivistic mass at xs. Without a magnetic field, this extra
energy due to the z momentum remains until the exit and
must be supported by the electric field, ultimately decreas-
ing the pair production probability due to a longer “time”
until the exit. To summarize, the additional photon transfers
energy, which enhances the probability, but it also transfers
momentum, which degrades the probability. In total, this
results always in an enhanced probability. The degradation
due to the momentum transfer along the z direction can be
reduced by tuning the magnetic field in such a way that it
decelerates the particles along the z direction, thus making
them “lighter” at the exits. The appropriate tuning of the
magnetic field will be discussed in more detail in Sec. IV.
From Eq. (20) it can be shown that the direction in which
the electron and the positron are accelerated along the x
direction is determined only by the orientation of the
electric field,

sgnðxþe − x−e Þ ¼ sgnE: ð26Þ

This is represented in the tunneling picture by the slope of
the kinetic energy lines being positive or negative, forcing
the particles in the one or the other direction.

(a) (b) (c)

FIG. 4 (color online). The tunneling picture of pair creation for jEj > jBj. (a) The standard Schwinger case with an electric field only is
considered. (b) An inertial system, which is Lorentz-boosted relatively to that of (a) along the z direction with v=c ¼ −3=5 leading to a
nonzero magnetic field. The larger (boosted) electric field leads to a steeper increase of the kinetic energy (dashed line). Furthermore, the
magnetic field increases the pseudoenergy (solid lines) due to the buildup of momentum along the z direction. (c) The same
configuration as in part (b), but with an additional photon of momentum k0 ¼ m=2. Its kinetic energy is shared by the created electron
and positron, shifting their kinetic energies (dashed lines) down by k0=2 and in this way decreasing the shaded area. Also, the kinetic
momentum of the photon is shared by the produced electron and the positron shifting the initial pseudoenergy (solid lines) at xS
downwards.
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Calculating the tunneling probability via the integral in
Eq. (22) gives for the electron

W− ¼ i
ðEp0;e − Bpz;eÞ2

2E3
ðarccosΓ − Γ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Γ2

p
Þ ð27Þ

with

Γ ¼ 1 − e
E2 − B2

Ep0;e − Bpz;e
ðx−s − x−e Þ: ð28Þ

The quantity Wþ has the same analytical structure, but the
momenta and the position of the electron need to be
replaced by that of the positron. For the standard
Schwinger case, which is just an electric field without
an additional photon and with zero momentum at the exit,
W− in Eq. (27) reduces to iπm2=ð4EÞ. Adding Wþ and
multiplying by 2, which corresponds to the square modulus
of the matrix element, gives exactly the Schwinger expo-
nent πm2=E. Furthermore, if the electrical field strength E
is replaced by its corresponding Lorentz invariant E, then
this result also agrees with the first-order exponent in the
work [48] for nonzero magnetic fields in the case of no
additional photon.

D. Case jEj ¼ jBj
This case is somewhat special, because it connects the

previous and the next case in a singular manner. It corre-
sponds to an external plane-wave field under the constant
crossed field approximation. Figures 5(a) and 5(b) show the
tunnelingpicture for a quantizedphoton of energy k0 ¼ m=2

and k0 ¼ m=100. In general, the picture is quite similar to
that of Fig. 4(c), but here a quantizedphoton ismandatory for
pair production. Due to the magnetic field being as strong
as the electric field, the energy transferred to the particles in
zmomentum by the magnetic field is as strong as the kinetic
energy transferred to the particles by the electric field. In this
sense, the electric field without an additional photon is not
strong enough to let the particles leave the imaginary
trajectories, as the magnetic field makes them more
and more heavy. This can be seen by comparing in
Figs. 5(a) and 5(b) how the colored dashed and solid lines
approacheachother. In the limit ofkgoing to zero, thekinetic
and pseudoenergy lines become tangent and will not inter-
sect, leading to an infinite exponent and thus no pair
production.
Depending on the orientation of E and B, which is

connected with the orientation of kL for a plane wave
(E × B points into the same direction as kL), the quantized
photon has to be directed antiparallel to the external field
wave vector. In the given geometry, this means that

sgn kz ¼ −sgnðEBÞ ð29Þ
has to be satisfied. Otherwise, there will be no pair
production, as the quantized photon and external field will
be parallel, which can be thought of as one plane-wave
field, which is known to produce no pairs. If the additional
photon propagates into the opposite direction, then the
pseudoenergy lines falls down such that it do not cross the
kinetic energy lines, in contrast to the case in Fig. 5(a). This
is because the photon momentum points into the direction
in which the magnetic field accelerates the particles,

(a) (b) (c)

FIG. 5 (color online). Parts (a) and (b) show the tunneling picture for the plane-wave case jEj ¼ jBj, with an additional photon with
k0 ¼ m=2 and k0 ¼ m=100, respectively, similarly to Fig. 4(c). In this case, an additional photon propagating opposite to the external
electric field is needed for pair creation. Without this photon, the solid and dashed lines become tangent asymptotically, yielding an
infinite area and hence no pair production. From a kinetic point of view, the magnetic field (being as strong as the electric field) builds up
as much zmomentum (increasing the pseudoenergy) as the electric field kinetic energy, and hence the particles cannot become real. The
energy shift by the photon is enough to let both lines intersect each other, provided that its zmomentum is opposite to the buildup due to
the magnetic field. The case with a magnetic field only is shown in part (c). To render pair production possible, the incoming photon
must have at least 2 times the rest mass energy, i.e., k0 ≥ 2m, because the magnetic field only cannot transfer energy. It can be seen from
the diagram that the initial z momentum, transferred from the photon to the electron and positron, is rotated along the imaginary
trajectory onto the x momentum and hence reduces the initial imaginary x momentum to zero at the exits, making the electron and
positron real, and therefore pair production possible.
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leading to no intersection and hence infinite suppression of
pair creation. As in the previous case, jEj > jBj, the
direction of movement for the electron and positron along
x is given by Eq. (26).
The imaginary part of the exponent for the electron now

reads

W− ¼ i
2

3

½2eðEp0;e − Bpz;eÞðx−s − x−e Þ�3=2
j2eðEp0;e − Bpz;eÞj

: ð30Þ

For comparison, the same result will be derived in
Appendix B by a different approach. Instead of the constant
field approximation, the action integralW will be evaluated
perturbatively in terms of the classical nonlinearity param-
eter ξ ¼ eE=ðmωLÞ ≫ 1 for the special case of an external
plane-wave field with the characteristic frequency ωL. For
maximum probability, the total exponent for pair produc-
tion reduces to the value 4m3=ð3ek0EÞ. This is in accor-
dance with the value already calculated in Ref. [49].

E. Case jEj < jBj
For this case, there is a minimal energy the quantized

photon must have in order to produce a pair. Boosting into a
reference frame, where the electric field vanishes, it is clear
that no work will be done by the electromagnetic field.
Hence, the whole energy in this frame for the pair must be
carried by the quantized photon. In the case of no electric
field and both the electron and positron carrying only their
rest mass after creation, the quantized photon has to carry
an energy of exactly 2m, as shown in Fig. 5(c). Both kinetic
energy lines are horizontal because of the electric field
being zero, and their sum is equal to the initial photon
energy of 2m. If this initial energy would be smaller than
2m, then the pseudoenergy lines would not hit the kinetic
energy lines; instead, they would stay below them. This
minimum energy condition is also given by Eq. (21), which
yields for E ¼ 0

k0 ¼ p0;e þ q0;e: ð31Þ

The effect of a nonzero electric field may also be deduced
from Fig. 5(c). A nonzero electric field tilts the kinetic
energy lines to the one or the other direction, and
consequently the exit points will be closer to or farther
from xs, and hence pair production will be enhanced or
suppressed.
Interpreting Fig. 5(c) in terms of imaginary trajectories, it

can be understood in the following way. At the point of pair
production xs, the momentum along the x direction for the
electron and the positron has the value �im. The momen-
tum along the z direction, transferred by the photon, is m.
Following the imaginary trajectories from xs on, the
magnetic field rotates the momentum along the z direction
onto the x direction and cancels exactly the initial imagi-
nary momentum. Thus, the particles become real and pair

production is possible. If the initial energy of the photon is
smaller, then the magnetic field cannot turn the particles
into real ones. If there is also an electric field, which
reduces px and qx in the same direction as the magnetic
field, then the particles can leave the imaginary trajectory
sooner, making pair production more probable. Pair pro-
duction will be reduced or even completely cut off if the
electric field works in the opposite direction, and therefore,
the energy carried by the photon does not suffice anymore.
In contrast to the previous two cases, the direction of

tunneling is now determined by the orientation of the B
field and the quantized photon

sgnðxþe − x−e Þ ¼ −sgnðBkzÞ: ð32Þ
If the electric field works in the tunneling direction, then the
probability will be enhanced; otherwise, it will be reduced.
For jEj < jBj, the exponent for the electron computes to

W− ¼ i
ðEp0;e − Bpz;eÞ2

2E3
ðarcoshΓ − Γ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 − 1

p
Þ: ð33Þ

IV. MAXIMUM PROBABILITY TRAJECTORIES

Each tunneling trajectory is characterized by its final
momenta of the created electron and positron and has a
specific pair production probability, which depends on an
exponential term with exponent ImW ¼ ImWþ þ ImW−

given in Eqs. (27), (30) and (33) as well as on a prefactor.
The maximum probability trajectories are defined as the
trajectories, where the exponential term ImW is minimized
for given electromagnetic field strengths E and B and a
given photon energy k0. In general, the most probable
trajectories are always the most symmetric ones. For the
kinetic momenta at the exit, this means

px;e ¼ qx;e ¼ 0; ð34aÞ

py;e ¼ qy;e ¼ 0; ð34bÞ

pz;e ¼ qz;e; ð34cÞ

where (34a) follows from the definition of the exit point
and (34b) is required by minimizing the kinetic energy of
the created particles.
The kinetic momenta pz;e and qz;e depend on the ratio

β ¼ B=E as well on the momentum of the photon k0.
Figure 6(a) illustrates the β-dependence of pz;e and qz;e for
various k0. In the left part of Fig. 6(a) jEj > jBj, while in
the right part jEj < jBj. At the center and at the outer
borders, E and B have the same magnitude. For the
Schwinger case with B ¼ 0 and k0 ¼ 0, the final momen-
tum of the maximum probability trajectories is zero, as
shown in the figure. Varying β while keeping k0 ¼ 0 yields
nonzero momenta pz;e and qz;e, see solid black line in
Fig. 6(a). The momentum pz;e corresponds exactly to the β
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boosted momentum of the zero momentum of B ¼ 0. In the
limit jβj → 1, the momenta pz;e and qz;e and consequently
the relativistic masses of the created particles diverge,
which is related to the fact that pair production is not
allowed in this regime without a photon.
In the presence of a photon with momentum, the created

electron and positron share the photon’s momentum at xs if
β ¼ 0 and keep it until the exit, because there is no
magnetic field, and therefore, pz;e ¼ qz;e ¼ k0=2 as also
shown in Fig. 6(a). Going to the left of β ¼ 0 shows that
pz;e and qz;e diverge also for k0 > 0, because the electric
and the magnetic fields work into different directions.
Going to the right of β ¼ 0, they will work into the same
region, and now pair production is also possible in the
region jβj > 1, i.e., where jBj > jEj. For k0 < 2m, the lines
for the momenta pz;e and qz;e end before 1=β ¼ 0 because
the photon’s energy is not enough to create pairs without an
electric field. The line for k0 ¼ 2m ends exactly at 1=β ¼ 0
with pz;e ¼ 0. This corresponds to the case discussed in
Fig. 5(c). Going further to the right of 1=β ¼ 0, the electric
and magnetic field will work into opposite directions, and
in this way render pair production impossible.
For a given photon momentum k0, pair creation may be

maximized by varying β and minimizing the imaginary part
of the exponent for the maximum probable trajectories. The
corresponding exponent is shown in Fig. 6(b). The blue
dashed line indicates the optimal ratio β. At k0 ¼ 0, it is
optimal to have only an electric field. For k0 > 0 also, the
optimal β is nonzero, meaning that a magnetic field will
enhance pair production. If the photon momentum is larger
than the critical momentum

k�0 ≡
ffiffiffiffiffiffiffiffi
4=5

p
m ≈ 0.89m; ð35Þ

then the optimal β is 1, which corresponds to a plane wave.
This means that, for a fixed maximum field strength, the
plane-wave field is always optimum for photon energies
larger than k�0, in the setup treated in this work. The value
(35) may be calculated by taking the derivative of Eq. (27)
with respect to the magnetic field. This derivative is
evaluated for the limit B → E and then set to zero, which
gives an implicit equation for k�0 that can be solved
analytically. Note that k�0 does not depend on the electro-
magnetic field magnitude E. The imaginary values of the
exponentW are also shown in Fig. 6(b) for the plane-wave
case (black solid line) and for the optimal case (gray solid
line). The exponent for the optimum tuned case starts at
k0 ¼ 0 with iπm2=ðeEÞ (Schwinger case) and then
decreases with increasing k0 until it coincides with the
value of the exponent for the plane-wave case at k0 ¼ k�0.

V. CONCLUSION

We introduced an intuitive tunneling picture for pair
creation, which also incorporates effects due to a magnetic
field and an additional high-energy photon. This picture is
Lorentz invariant and does not depend on a particular gauge
and is valid for homogeneous constant electromagnetic
fields. This constant field approximation is valid, e.g., for
the long wave limit of pair creation in counterpropagating
laser fields.
The relativistic tunneling picture can be drawn due to the

quasi-one-dimensional nature of the used setup in the

(a) (b)

FIG. 6 (color online). Properties of the maximum probability trajectories. (a) The most probable z momentum at the tunneling exit of
the electron and positron depending on the ratio β ¼ E=B and photon energy k0. The y momentum increases the relativistic mass of the
particles and is therefore zero for maximum probability. By definition, the xmomentum must be zero at the exit. For β ¼ 0 (no magnetic
field), the most probable zmomentum is exactly half the photon momentum k0. Changing the magnetic field will introduce a shift of the
momentum depending on the sign of β. In the right pane of part (a), where jBj > jEj, the lines end at some 0 < 1=β < 0. This is due to
the energy cutoff depending on the energy of the photon. (b) The optimum ratio β for a given photon energy k0 to achieve maximal pair
production probability. The dashed blue line gives the optimum ratio depending on k0, while the bold gray line gives its corresponding
value for the exponent. At k0 ¼ 0, for example, it is best to have no magnetic field (Schwinger case). At k0 ¼ k�0 ≡

ffiffiffiffiffiffiffiffi
4=5

p
m, the ratio β

becomes 1, corresponding to the plane-wave case. The exponent for the plane-wave case is also given for reference by the thin black line.
For k0 < k�0, a tuned magnetic field can therefore enhance the pair production probability, while for values greater than k0 ¼ k�0, β ¼ 1 is
always optimal for a given fixed maximum field strength.
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quasistatic limit. Various features of pair creation can be
inferred qualitatively from the introduced tunneling picture.
For example, an additional photon lowers the potential
barrier due to the photon’s energy but also increases the
particle’s relativistic mass due to the photon’s additional
momentum. Due to this increased relativistic mass, the
electron and positron stay longer (in terms of imaginary
time) under the barrier until they gain enough energy to
become real. An additional magnetic field, however, will
also change the momentum under the barrier, and in this
way, the relativistic mass. Depending on the magnetic
field’s direction and magnitude it may counteract the
increase of the relativistic mass due to the photon’s
momentum and, therefore, increase the pair production
probability.
The relativistic tunneling picture has been devised on the

basis of a semiclassical approximation using classical
trajectories. This approach also allowed us to calculate
the exponents of the transition amplitudes. The calculated
exponents for maximum probability agree with the ana-
lytical results by Nikishov [48] in the case of no incoming
photon for the three different possibilities: jEj > jBj,
jEj ¼ jBj, and jEj < jBj. Furthermore, they agree with
the results by Reiss [49], assuming a plane-wave external
laser field with an incoming photon in the limit ξ ≪ 1.
Other geometries, as well as time and space varying

fields, may also be treated in the tunneling regime by
imaginary trajectories, but their respective picture will be
inherently multidimensional and hard to visualize.
Nevertheless, simple trends due to time and space variation
may be interpreted with the current picture, which will be
subject to future work.
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APPENDIX A: FROM QUANTUM FIELD
THEORY TO CLASSICAL ACTIONS

This paragraph recapitulates how to derive the semi-
classical approximation for matrix elements, which is
usually symbolically written as

Mfi ∼ exp ð−ImSÞ: ðA1Þ
This form in general is quite ambiguous, because the
definition of the action S itself due to its gauge dependence
is not unique, and furthermore it also depends on the type of
initial and final states, which can be eigenstates of position,
momentum or of a specific Hamiltonian (to name the most
common).
Following the treatment in Ref. [45], the mode

Hamiltonian He of the matter part (e.g., electrons and
positrons), describing the free modes of these particles is
given by

He ¼ αð−i∇Þ þ βm: ðA2Þ

The quantization leads to the following field Hamiltonian
for the free quantized matter field:

Ĥe ¼
Z

dx ψ̂þðxÞHeψ̂ðxÞ

¼
Z

dx ˆ̄ψðxÞð−iγ∇þmÞψ̂ðxÞ: ðA3Þ

The same procedure applied to the free quantized radiation
field leads to its corresponding field Hamiltonian Ĥγ, which
explicit form is not of interest here. The interaction between
both fields is given by

Ĥint;full ¼ e
Z

dx ˆ̄ψðxÞγμψ̂ðxÞÂμ
fullðxÞ: ðA4Þ

Both ψ̂ðxÞ and Âμ
fullðxÞ are the field operators of the

quantized matter and radiation field in the Schrödinger
picture, whence they only depend on x. This theory
describes the full QED. But, so far, it does not allow
to solve even very simple problems, and hence some
approximations need to be done. The most fundamental
approximation, as is common for problems of QED in
external fields, is the separation of the full electromagnetic
field into a quantized radiation field ÂμðxÞ and a classical
external field Aμ

extðxÞ. Treating the external field as a
classical field is motivated by the fact that it should be
very intense and quantum effects are negligible. Its inter-
action with the matter field is given by the following
Hamiltonian:

Ĥint;ext ¼ e
Z

dx ˆ̄ψðxÞγμψ̂ðxÞAμ
extðxÞ: ðA5Þ

Note the explicit time dependence of this Hamiltonian due
to the possible time dependence of Aμ

extðxÞ. A further
important fact of the external field approximation is
neglecting the influence of the matter field on the dynamics
of the external field, also called backreaction. That way,
Aμ
extðxÞ is assumed to behave like a classical free electro-

magnetic field that does not see the current

ĵμ ¼ e ˆ̄ψγμψ̂ ðA6Þ

created by the matter field. Putting together Ĥe and Ĥint;ext
gives the (possible time-dependent) quantized field
Hamiltonian for the matter field in an external field,

Ĥe;ext ¼ Ĥe þ Ĥint;ext

¼
Z

dx ˆ̄ψðxÞ½γð−i∇ − AextÞ þmþ eγ0A0
ext�ψ̂ðxÞ:

ðA7Þ
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Thus, the modes of the matter field in the external
electromagnetic field are described by the following
Hamiltonian, known as the Dirac Hamiltonian with an
external field:

He;ext ¼ αð−i∇ − AextÞ þ βmþ eA0
ext; ðA8Þ

and therefore they take the influence of the external field
into full account. The interaction with the quantized field is
still treated perturbatively. For doing this, it is convenient to
switch to the interaction picture, with the free part

Ĥ0 ¼ Ĥγ þ Ĥe;ext ðA9Þ

and the interaction part

Ĥint ¼ e
Z

dx ˆ̄ψðxÞγμψ̂ðxÞÂμðxÞ: ðA10Þ

This type of interaction picture, including the interaction
with the external field in Ĥ0, is also called the Furry picture
[46]. The field operator for the matter field becomes time
dependent (Û0 being the unitary operator, transforming
from the Schrödinger to the interaction picture),

ψ̂ IðxÞ ¼ Ûþ
0 ψ̂ðxÞÛ0; ðA11Þ

and it can be shown that this field operator will solve the
Dirac equation in the external field

ði∂t −He;extÞψ̂ IðxÞ ¼ 0: ðA12Þ

Knowing this, the field operator ψ̂ I can be expanded into a
complete set of eigensolutions (modes). There are, of
course, infinitely many different sets. The two sets

�φnðxÞ and �φnðxÞ are chosen, satisfying the relations

He;extðtinÞ�φnðxtinÞ ¼ �εn�φnðxtinÞ; ðA13aÞ

He;extðtoutÞ�φnðxtoutÞ ¼ �εn�φnðxtoutÞ: ðA13bÞ

Thus, the set �φnðxÞ corresponds to positive/negative-
energy eigensolutions (�εn ≷ 0) at tin, and �φn to pos-
itive/negative-energy eigensolutions (�εn ≷ 0) at tout.
Using these sets, the field operator can be expanded as

ψ̂ IðxÞ ¼
X
n

ânðinÞþφnðxÞ þ b̂þn ðinÞ−φnðxÞ ðA14aÞ

¼
X
n

ânðoutÞþφnðxÞ þ b̂þn ðoutÞ−φnðxÞ; ðA14bÞ

defining also two possible different sets of creation/anni-
hilation operators, âþ=â and b̂þ=b̂, for positive and
negative energy particles at tin and tout. These in turn
define the vacuum states at tin and tout:

ânðinÞj0; ini ¼ 0; b̂nðinÞj0; ini ¼ 0; ðA15aÞ

ânðoutÞj0; outi ¼ 0; b̂nðoutÞj0; outi ¼ 0: ðA15bÞ

1. Pair production due to the external
electromagnetic field only

By considering the external electromagnetic field only
(zeroth order in the quantized radiation field), the time
evolution operator in the interaction picture [Ĥint;I being the
interaction picture representation of Eq. (A10)] reduces to
the identity, that is,

Ûðtout; tinÞ ¼ T exp

�
−i

Z
tout

tin

Ĥint;I dt

�

→ 1̂ ðin 0th orderÞ: ðA16Þ
Thus, as shown in Ref. [45], for all the transition elements
of interest, one only needs to know the following propa-
gator elements:

GðζjϰÞmn ¼
Z

dx dy ζφþ
mðxtoutÞGðxtout; ytinÞϰφnðytinÞ;

ðA17Þ

GðϰjζÞ ¼ GðζjϰÞþ; ðA18Þ

withm, n being the quantum numbers of the modes at tout=in
and ζ; ϰ ¼ � denoting positive or negative energy (i.e.,
particle or antiparticle). Gðxtout; ytinÞ is the full propagator
of Eq. (A8). These propagator elements represent the
probability that a positive/negative mode from tin evolves
into a positive/negative mode at tout. According Ref. [45],
the vacuum stability up to zeroth order in the quantized
radiation field is given by the transition amplitude between
j0; ini and j0; outi:

cv ¼ h0; outj0; ini ¼ detGðþjþÞ ¼ detGð−j−Þ: ðA19Þ

Furthermore, the transition amplitude for producing one
pair that is evolving from an initial vacuum state j0; ini to a
pair state jn;m; outi (electron/positron having quantum
number n=m) yields

hn;m; outj0; ini ¼ h0; outjamðoutÞbnðoutÞj0; ini
≡ ωðmþ n

− j0Þcv; ðA20Þ

with

ωðmþ n
− j0Þ ¼ ½G−1ðþjþÞGðþj−Þ�mn

¼ −½Gðþj−ÞG−1ð−j−Þ�mn: ðA21Þ

For the semiclassical case, where pair production is
exponentially suppressed, it is possible to write
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cv ¼ 1þOðe−Þ; ðA22aÞ

GðþjþÞmn ¼ eiθ
þ
n δmn þOðe−Þ; ðA22bÞ

Gð−j−Þmn ¼ eiθ
−
n δmn þOðe−Þ; ðA22cÞ

Gðþj−Þmn ¼ Oðe−Þ; ðA22dÞ

Gð−jþÞmn ¼ Oðe−Þ: ðA22eÞ

The notation Oðe−Þ stands for the exponentially small
corrections. Physically, this means that the positive/
negative modes at tin mainly evolve into their correspond-
ing positive/negative modes at tout up to a phase θþ=θ−.
Only an exponentially small fraction of their norm
goes into different modes, regardless of whether they are
positive or negative. Inverting GðþjþÞ and Gð−j−Þ yields,
therefore,

GðþjþÞ−1mn ¼ e−iθ
þ
n δmn þOðe−Þ; ðA23Þ

Gð−j−Þ−1mn ¼ e−iθ
−
n δmn þOðe−Þ: ðA24Þ

Plugging this into the first line of Eq. (A21) results in

ωðmþ n
− j0Þ ¼ eiθ

þ
mGðþj−Þmn þO2ðe−Þ: ðA25Þ

Thus, up to first order in the exponential suppression, the
single pair production elements in Eq. (A21) are given by
the matrix Gðþj−Þ or alternatively by Gðþj−Þ. The matrix
element Gðþj−Þmn gives the overlap between the negative
mode −φn, propagated from tout to tin, with the positive
mode þφm at tin. Explicitly, this reads

Gðþj−Þmn ¼
Z

dx0 dx þφþ
mðx0ÞGðx0tin; xtoutÞ−φnðxÞ:

ðA26Þ

This means that somewhere in between tout and tin, a small
part of −φn splits up and evolves into þφm. Still, the main
part goes into −φn (Gð−j−Þ). This is shown schematically in
the upper part of Fig. 7. Also shown there is a length, the
so-called formation length, because typically the timescale
on which the conversion from −φn to þφm happens is finite.
By finite, we mean that only exponentially small correc-
tions occur if the formation length is increased further. In
this sense, the formation length is not strictly defined;
rather, it gives some estimate for the timescale on which
most of the conversion has already happened (see also
Ref. [50] for the case of a constant electromagnetic field).
The real space propagator is approximated in the semi-

classical approximation by

Gðx0t0; xtÞ ∼ exp ½iSðx0t0; xtÞ�: ðA27Þ

Similarly, the propagator from a momentum eigenstate to
another (in our notation taking the quantum numbers n ¼ p
and m ¼ q) is approximated semiclassically as

Gðpt0; qtÞ ∼ exp ½iSðx0t0; xtÞ − iPx0 þ iQx�; ðA28Þ

with x0 and x implicitly given by

P ¼ ∂S
∂x0

����
x0

and Q ¼ ∂S
∂x

����
x
: ðA29Þ

The additional terms are due to the in- and out-modes
being momentum and not position eigenstates, see also
Refs. [51,52]. Thus, the full propagator gets approximated
only by its classical trajectory connecting the appropriate
in- and out-modes instead of all trajectories in the path
integral picture. One peculiarity of Eq. (A28) is the matrix
structure of its left-hand side corresponding to the full
propagator. Its right-hand side does not have this matrix
structure, as the exponential is a scalar. As shown in
Ref. [53], the semiclassical treatment of the Dirac equation
leads to a prefactor with matrix structure, which must not
be necessarily diagonal in the zeroth order of ℏ. Therefore,
a transition from a positive-energy spinor to a negative-
energy spinor is possible. Nevertheless, the main contri-
bution to the matrix elements stems from the exponential
factor. In the classical picture, the transition from a
negative-energy eigenstate to a positive must happen on
an imaginary trajectory, because an electron with positive
energy will always stay an electron with positive energy on
a real trajectory. But if it goes over to an imaginary path and

FIG. 7 (color online). Visualization of the single pair produc-
tion element of Eq. (A21). Both positive and negative modes
(bold) propagate back in time. Only an exponentially suppressed
part (thin) splits up and evolves into different modes. The
different modes under consideration must match at tin. In the
semiclassical approximation, the transition element can be
approximated by the classical trajectory, that connects both the
electron and positron at tout with their initial point of creation xs.
The formation length gives the typical timescale that is needed for
splitting up a different mode from the main mode.
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wraps around the root of its kinetic energy
p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, it is possible that it continues on the

other branch of the square root—that is,
p0 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
—and therefore becomes a negative

energy electron. This point on the imaginary part of the
trajectory, where this transition occurs, might be defined by
p0 ¼ 0 and will be denoted by xs. It should be mentioned
that it has no direct physical meaning; i.e., it cannot be
measured. Nevertheless, it can be related to the region of
the formation length. Using this point as the point of pair
production in the classical picture, the propagator in
Eq. (A28) can be split into

Gðptin; qtoutÞ ∼ eiSðx0tin;xsÞ−iP·x0eiSðxs;xtoutÞþiQ·x; ðA30Þ
where the back part corresponds to a negative energy
electron traveling back in time from tout to x0;s, which can
also be interpreted as a positron going from x0;s to tout
(changing sign in q and charge). For the full matrix element
in Eq. (A21), the front part of Eq. (A30) gets multiplied by
GðþjþÞ−1. In our approximation this corresponds to a
propagation of the positive-energy electron back from tin
to tout, and one can therefore write

GðþjþÞ−1eiSðx0tin;xsÞ−iP·x0 ∼ eiSðx0tout;xsÞ−iQ·x0 : ðA31Þ

Accordingly, the transition element in Eq. (A21) can now
be written as

ωðmþ n
− j0Þ ¼ exp ½−ImðWp þWqÞ�; ðA32Þ

where Wp ¼ Sðx0tout; xsÞ − P · x0 and Wq ¼ Sðxtout; xsÞ −
Q · x correspond to the modified actions of the electron and
positron along their classical imaginary trajectories.
This result is schematically drawn in the lower part of
Fig. 7 withGðþjxsÞ ∼ eiWp andGð−jxsÞ ∼ eiWq . If there are,
for a specific field configuration, different imaginary paths
possible for connecting the electron and positron in their
specific out-states, their contribution must be added and
might lead to interference phenomena.

2. Pair production due to perturbative treatment
of the quantized electromagnetic field

For this case, the first-order correction to the time
evolution operator in Eq. (A16) is given by

Ûðtout; tinÞ → −i
Z

tout

tin

Ĥint;I dt

→ −ie
Z

ˆ̄ψ IðxÞγμψ̂ IðxÞÂμ
I ðxÞ dx: ðA33Þ

The field operators in their interaction representation can be
expanded (as before) into the solutions of their correspond-
ing mode Hamiltonians. For the matter field operator ψ̂ I,
the decomposition Eq. (A14b) for the out-states is used

again, as the main interest lies in pair creation and not pair
annihilation. The field operator for the free quantized
electromagnetic field is decomposed as

ÂμðxÞ ¼
X3
λ¼0

Z
½ĉkλfμkλðxÞ þ ĉþkλf

μ
kλðxÞ� dk; ðA34Þ

and fμkλðxÞ being the photon wave function proportional to
[54]

fμkλðxÞ ∼ exp½−ikx� ¼ exp ½iWkðxÞ�; ðA35Þ

where WkðxÞ ¼ −kx usually is called its classical action.
Care should be taken here, since this action does not
correspond to an action of the type Sðx0; xÞ but rather to the
modified action discussed before, where on one side the
momentum k and on the other side the spacetime x is fixed.
Expressing also the solutions �φn to the Dirac equation

in their semiclassical approximation and setting the final
quantum number n to momentum eigenstates (p for the
electron and q for the positron), they read þφnðxÞ ∼
exp½−iWpðxÞ� and −φnðxÞ ∼ exp½þiWqðxÞ� for the electron
and the positron, respectively. The “þ” in the positron’s
exponent is due to its quantization as an antiparticle. Again,
Wp and Wq are usually called the electron and positron
classical actions, but the same distinction as mentioned
before applies here. Note that in the case of an external
plane-wave field, these actions are given by the so-called
Volkov actions, and the semiclassical exponent is exact.
By taking into account the first order of the interaction

with the quantized field, pair production can now happen
with the additional help of an incoming quantized photon.
The in-state is defined as

j0; 0; 1ki≡ ĉþk j0; ini; ðA36Þ

and the out-state as

j1p; 1q; 0i≡ âþp ðoutÞb̂þq ðoutÞj0; outi: ðA37Þ

The transition amplitude for this process to first order is
given by

Mfi ¼ −ieh1p; 1q; 0j
Z

ˆ̄ψ IðxÞγμψ̂ IðxÞÂμ
I ðxÞ dxj0; 0; 1ki:

ðA38Þ
Expanding the field operators according to Eqs. (A14b) and
(A34) and writing (approximating) the field mode solutions
in terms of their modified classical action W yields

Mfi ∼ −iecv
Z

dx e½iðWkðxÞþWpðxÞþWqðxÞÞ�: ðA39Þ

Applying the method of stationary phase to this integral
yields the following condition for a stationary phase:
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0 ¼ ∂
∂xμ ðWk þWp þWqÞjxs

¼ KμðxsÞ − PμðxsÞ −QμðxsÞ
¼ kμðxsÞ − pμðxsÞ − qμðxsÞ: ðA40Þ

The last line follows from the previous one due to the fact
that the gauges at the same spacetime point (xs) cancel each
other exactly [55]. Note that the modified actionsW, which
depend on momentum and space, are used in the derivation
of Eq. (A40) and not the usual actions S, which depend on
two positions. Although the modified actions W are gauge
dependent, the point of stationary phase xs is given by a
gauge-independent and Lorentz-invariant kinetic equation,
which can be interpreted from a classical point of view.
According to Eq. (A39), the matrix element is an interfer-
ence from all spacetime points x where the photon converts
into electron and positron obeying the asymptotic
momenta. The outcome of this interference, e.g. the matrix
element, can be approximated by the point of stationary
phase. Due to energy-momentum conservation pþ q ¼ k
at this point, the laws of classical mechanics are satisfied.
Therefore, the particle conversion stemming from the
creation and annihilation operators in quantum field theory
can be brought to a classical level in the semiclassical
approximation.
The classical trajectory will now look like an incoming

photon that will convert at xs instantaneously into an
electron and positron while satisfying energy-momentum
conservation. The electron and positron will travel further
in the external field and approach their asymptotic
momenta.
The condition pþ q ¼ k cannot be satisfied in real

spacetime, as can be seen by squaring both sides of this
equation, but in imaginary spacetime. This leads to an
imaginary classical trajectory. Therefore, approximating
Eq. (A39) semiclassically yields

Mfi ∼ −iecve−ImðWkþWpþWqÞ: ðA41Þ

APPENDIX B: PERTURBATIVE EVALUATION
OF THE EXPONENT FOR THE

PLANE-WAVE CASE

For the plane-wave four-potential, we choose the follow-
ing gauge (with η ¼ kLx being the phase of the laser, E the
maximum field amplitude and ωL ¼ kL;0 the characteristic
frequency):

AμðηÞ ¼
�
0;

E
ωL

fðηÞ; 0; 0
�
; ðB1Þ

yielding for the electron the constants of motion [according
to Eq. (3)] Px, Py ¼ py, and P0 − Pz ¼ p0 − pz. The last
expression can be written in a Lorentz-invariant way,

Λp ¼ kLp. Accordingly, the same is true for the positron.
For the quantized photon, this notation can be used too,
Λk ¼ kLk, yielding also a constant of motion.
To make use of these constants of motion, the

transformation

ðt; x; y; zÞ → ðη; x0; y0; z0Þ ¼ ðkLðt − zÞ; x; y; z=kLÞ ðB2Þ

into a different coordinate system is applied (x, y and z are
spacetime coordinates and not four-vectors in this para-
graph). The total differential of the spacetime-dependent
part of the action W in this coordinate system

Wðx; y; z; tÞ ¼ Wðxðx0Þ; yðy0Þ; zðz0Þ; tðz0; ηÞÞ ðB3Þ

is given for the electron and analogously for the positron by

dWðx0; y0; z0; ηÞ ¼ −Pxdx0 − Pydy0

þ ωLðP0 − PzÞdz0 þ P0=ωLdη; ðB4Þ

which can be written in the gauge of Eq. (B1) as

dWðx0; y0; z0; ηÞ ¼ −Pxdx0 − Pydy0 þ Λpdz0 þ
p0

ωL
dη:

ðB5Þ

The first three terms are the constants of motion and can be
integrated:

Wðx0; y0; z0; ηÞ ¼ −Pxx0 − Pyy0 þ Λpz0 þ
Z

η p0

ωL
dφ:

ðB6Þ

Similarly, the photon’s action can be written this way:

Wðx0; y0; z0; ηÞ ¼ kxx0 þ kyy0 − Λkz0 −
Z

η k0
ωL

dφ: ðB7Þ

Allowing only for the classical trajectory—that is, four-
momentum conservation at the point of pair creation—
yields the following set of constraints:

Px þQx ¼ px þ qx ¼ 0; ðB8aÞ

Py þQy ¼ py þ qy ¼ 0; ðB8bÞ

Λp þ Λq ¼ Λk; ðB8cÞ

p0ðηsÞ þ q0ðηsÞ ¼ k0: ðB8dÞ

The last line, Eq. (B8d), implicitly determines the phase ηs
of the electromagnetic field, where the pair will be
produced on the classical trajectory. This trajectory, as
well as ηs, has to be imaginary. Again, this imaginary
trajectory will not be the physical trajectory of the process.
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It is only the trajectory where the exponential part of the
matrix element gets stationary and hence yields a good
approximation for its value. The part of the exponent which
has an imaginary value is given by the sum of the actions of
the electron, positron and photon:

ΣW ¼ 1

ωL

�Z
ηs
p0dφþ

Z
ηs
q0dφ −

Z
ηs
k0dφ

�
: ðB9Þ

In the general case, ηs and subsequently ImΣW need to be
calculated depending on the analytic form of the given
electromagnetic field. Usually, this has to be done numeri-
cally. In the case of the classical nonlinearity parameter
ξ ¼ eE0=mωL being much larger than 1, the integral can be
calculated perturbatively up to order Oð1=ξÞ and gives the
same results as a constant crossed field with jEj ¼ jBj as
shown in the following. Using the identity

Λp ¼ kLp ¼ ωLðp0 − pzÞ; ðB10Þ

it follows

pz ¼ p0 −
Λp

ωL
; ðB11Þ

p2
z ¼ m2 þ p2

x þ p2
y þ p2

z − 2p0

Λp

ωL
þ Λ2

p

ω2
L
; ðB12Þ

p0 ¼
ωL

2Λp
ðm2 þ p2

x þ p2
yÞ þ

Λp

2ωL
; ðB13Þ

and from Eqs. (B8) and (4),

pxðηÞ ¼ −qxðηÞ → p2
xðηÞ ¼ q2xðηÞ: ðB14Þ

Plugging Eqs. (B13) and (B14) into Eq. (B9) and using
Eq. (B8c) gives

ΣW ¼ −
�

1

2Λp
þ 1

2Λq

�Z
ηs
dφ ½m2� þ p2

xðφÞ�: ðB15Þ

ηs is implicitly fixed by Eq. (B8d), leading to

pxðηsÞ ¼ �im�; ðB16Þ
with m� being defined as in Eq. (12). Using the four-
potential Eq. (B1) and rewriting in terms of the canonical
momentum Px (constant of motion) yields

�i
1

ξ
þ ωLPx

eE0

¼ fðηsÞ with ξ ¼ eE0

m�ωL
: ðB17Þ

Assuming ξ being large, ηs can be evaluated perturbatively
in powers of 1=ξ as

ηs ¼ η0s þ
1

ξ
η1s þ

1

ξ2
η2s þ � � � : ðB18Þ

Solving Eq. (B17) up to first order in 1=ξ gives

η0s ¼ f−1
�
ωLPx

eE0

�
; ðB19Þ

η1s ¼ �i=f0ðη0sÞ: ðB20Þ

Only the part η0s → η0s þ η1s=ξ of the integration contour for
ΣW gives an imaginary contribution [in Oð1=ξÞ], and
therefore the integral needs to be calculated just along this
path. The integrand of ΣW is rewritten as

m2� þ p2
x ¼ m2�

�
1þ p2

x

m2�

�
¼ m2�

�
1þ

�
Px

m�
− ξfðφÞ

�
2
�
;

ðB21Þ

and expanding fðφÞ around η0s ,

fðφÞ ∼ fðη0sÞ þ f0ðη0sÞðφ − η0sÞ þ � � � ; ðB22Þ

yields

m2� þ p2
x ∼m2�½1þ ½ξf0ðη0sÞðφ − η2sÞ�2�: ðB23Þ

Consequently, ΣW calculates to

∼m2�

Z
η0sþη1s=ξ

η0s

dφ ½1þ ½ξf0ðη0sÞðφ − η2sÞ�2�

¼ �i
2

3

m2�
ξf0ðη0sÞ

þO
�
1

ξ2

�
: ðB24Þ

Taking the correct sign of �i for exponential suppression
and writing ξ explicitly gives the final result

ΣW¼W−þWþ¼ i
3

m3�
Λp

ωL

eEðη0sÞ
þ i
3

m3�
Λq

ωL

eEðη0sÞ
: ðB25Þ

Taking only the electron part W− and rewriting it as

W− ¼ i
3

m3�
ωLðp0 − pzÞ

ωL

eEðη0sÞ
¼ i

3

m3�
p0 − pz

1

eEðη0sÞ
;

ðB26Þ

it can be seen that this yields the same result as the constant
field approximation in Eq. (30) by using the identities B ¼
−Ekz=k0 and p2

0;e − p2
z;e ¼ m2�. This is because the expan-

sion only up to the order Oð1=ξÞ corresponds to expanding
the external field up to its first derivative, giving a constant
crossed field.
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