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We present the electromagnetic gauge field interpolation between the instant form and the front form of
the relativistic Hamiltonian dynamics and extend our interpolation of the scattering amplitude presented in
the simple scalar field theory to the case of the electromagnetic gauge field theory with the scalar fermion
fields known as the scalar quantum electrodynamics (sQED) theory. We find that the Coulomb gauge in the
instant form dynamics and the light-front gauge in the front form dynamics, or the light-front dynamics
(LFD), are naturally linked by the unified general physical gauge that interpolates between these two forms
of dynamics and derive the spin-1 polarization vector for the photon that can be generally applicable for any
interpolation angle. The corresponding photon propagator for an arbitrary interpolation angle is found and
examined in terms of the gauge field polarization and the interpolating time ordering. Using these results,
we calculate the lowest-order scattering processes for an arbitrary interpolation angle in sQED. We provide
an example of breaking the reflection symmetry under the longitudinal boost, Pz ↔ −Pz, for the time-
ordered scattering amplitude in any interpolating dynamics except the LFD and clarify the confusion in the
prevailing notion of the equivalence between the infinite momentum frame and the LFD. The particular
correlation found in our previous analysis of the scattering amplitude in the simple scalar field theory,
coined as the J-shaped correlation, between the total momentum of the system and the interpolation angle
persists in the present analysis of the sQED scattering amplitude. We discuss the singular behavior of this
correlation in conjunction with the zero-mode issue in the LFD.
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I. INTRODUCTION

In 1949, Dirac [1] proposed three forms of relativistic
dynamics: the instant form (x0 ¼ 0), the front form
(xþ ¼ ðx0 þ x3Þ= ffiffiffi

2
p

=0), and the point form (xμxμ ¼
a2 > 0; x0 > 0). While the quantization at the equal time
t ¼ x0 produces the instant form dynamics (IFD) of
quantum field theory, the quantization at equal light-front
time τ≡ ðtþ z=cÞ= ffiffiffi

2
p ¼ xþ (c is taken to be one unit in

this work) yields the front form dynamics, known as the
light-front dynamics (LFD). The quantization in the point
form (xμxμ ¼ a2 > 0; x0 > 0) is called radial quantization,
and this quantization procedure has been much used in
string theory and conformal field theories [2]. Although the
point form dynamics has also been explored [3] in hadron
physics, the IFD and the LFD are still the most popular
choices in the area of physics that we discuss here.
One of the reasons why the LFD is useful may be

attributed to the energy-momentum dispersion relation.
For a particle of mass m that has 4-momentum k ¼
ðk0; k1; k2; k3Þ, its energy-momentum dispersion relation
at equal t (instant form) is given by

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
; ð1Þ

where the energy k0 is conjugate to t and the 3-momentum
vector k is given by k ¼ ðk1; k2; k3Þ. On the other hand,
the corresponding energy-momentum relation at equal τ
(light-front form) is given by

k− ¼ k2⊥ þm2

kþ
; ð2Þ

where the light-front energy k− ¼ ðk0 − k3Þ= ffiffiffi
2

p
is con-

jugate to τ and the light-front momenta kþ ¼ ðk0 þ k3Þ=ffiffiffi
2

p
and k⊥ ¼ ðk1; k2Þ are orthogonal to k−. In contrast to

the irrational dispersion relation Eq. (1) in the IFD, this
rational energy-momentum relation Eq. (2) in the LFD not
only makes the relation simpler but also correlates the sign
of k− and kþ. When the system is evolving to the future
direction (i.e., positive τ), in order for k− to be positive, kþ
also has to be positive. This feature prevents certain
processes from happening in the LFD; for example, the
spontaneous pair production from the vacuum is forbidden
unless kþ ¼ 0 for both particles due to the momentum
conservation. Some dynamic processes are therefore elim-
inated in the LFD, and correspondingly the required
computation may be simplified, although we shall discuss
the zero-mode issue involving the case of kþ ¼ 0 later.
In the IFD, however, this type of sign correlation does
not exist, and the vacuum structure appears much more
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complicated than in the case of LFD due to the quantum
fluctuations. This difference in the energy-momentum
dispersion relation makes the LFD quite distinct from
other forms of the relativistic Hamiltonian dynamics.
Furthermore, the Poincaré algebra is drastically changed

in the LFD compared to the IFD. In the LFD, we have the
maximum number (seven) of kinematic (i.e., interaction
independent) operators out of the ten Poincaré generators,
and they leave the state at τ ¼ 0 unchanged. In particular,
the longitudinal boost operator joins the stability group
of kinematic operators in the LFD. This built-in boost
invariance together with the simpler vacuum property
makes the LFD quite appealing and may save substantial
computational efforts to get the QCD solutions that reflect
the full Poincaré symmetries.
The light-front quantization [1,4] has been applied

successfully in the context of current algebra [5] and the
parton model [6] in the past. With further advances in the
Hamiltonian renormalization program [7,8], the LFD
appears to be even more promising for the relativistic
treatment of hadrons. In the work of Brodsky et al. [9], it is
demonstrated how to solve the problem of renormalizing
light-front Hamiltonian theories while maintaining Lorentz
symmetry and other symmetries. The genesis of the work
presented in Ref. [9] may be found in Ref. [10], and
additional examples including the use of LFD methods to
solve the bound-state problems in field theory can be found
in the review of QCD and other field theories on the light
front [11]. A possible realization of chiral symmetry
breaking in the light-front vacuum has also been discussed
in the literature [12].
However, the transverse rotation of which the direction is

perpendicular to the direction of the quantization axis z at
equal τ becomes a dynamical problem in the LFD because
the quantization surface τ is not invariant under the trans-
verse rotation and the transverse angular momentum
operator involves the interaction that changes the particle
number [13].
As an effort to understand the conversion of the

dynamical problem from boost to rotation as well as the
link between the IFD and the LFD, we interpolate the two
forms of dynamics by introducing an interpolation angle
that changes the ordinary time t to the light-front time τ or
vice versa. The same method of interpolating hypersurfaces
has been used by Hornbostel [14] to analyze various
aspects of field theories including the issue of nontrivial
vacuum. The same vein of application to study the axial
anomaly in the Schwinger model has also been presented
[15], and other related works [16–19] can also be found in
the literature.
Our interpolation between the IFD and the LFD provides

the whole picture of landscape between the two and
clarifies the issue, if any, in linking them to each other.
We started out by studying the Poincaré algebra for any
arbitrary interpolation angle [20] and provided the physical

meaning of the kinematic vs dynamic operators by intro-
ducing the interpolating time-ordered scattering amplitudes
[21]. Although we want ultimately to obtain a general
formulation for the QED and the QCD using the inter-
polation between the IFD and the LFD, we start from the
simpler theory to discuss first the bare-bone structure that
will persist even in the more complicated theories. Since we
have studied the simple scalar field theory [21] involving
just the fundamental degrees of freedom such as the
momenta of particles in scattering processes, we now
consider involving the electromagnetic gauge degree of
freedom interpolated between the IFD and the LFD in the
present work. We develop the electromagnetic gauge field
propagator interpolated between the IFD and the LFD and
extend our interpolation of the scattering amplitude pre-
sented in the simple scalar field theory to the case of the
electromagnetic gauge field theory but still with the scalar
fermion fields known as the sQED theory.
In LFD, the light-front gauge [Aþ ¼ ðA0þA3Þ= ffiffiffi

2
p ¼ 0]

is commonly used, since the transverse polarizations of the
gauge field can be immediately identified as the dynamical
degrees of freedom, and ghost fields can be ignored in the
quantum action of non-Abelian gauge theory [22–24]. This
makes it especially attractive in various QCD applications.
We find that the light-front gauge in the LFD is naturally
linked to the Coulomb gauge in the IFD through the
interpolation angle. The corresponding gauge propagator
that interpolates between the IFD and the LFD also sheds
light on the debate about whether the gauge propagator
should be the two-term form [8] or the three-term form
[25–27]. For example, by analyzing the lowest-order sQED
Feynman amplitude, one may typically get the correspond-
ing three time-ordered amplitudes, one of which corresponds
to the contribution from the instantaneous interaction of the
gauge field. This contribution from the instantaneous inter-
action is, however, precisely canceled by one of the terms
in the three-term gauge propagator, and thus the two-term
gauge propagator may also be used effectively for the
calculation of the same Feynman amplitude without involv-
ing the instantaneous interaction of the gauge field.
Otherwise, to maintain the equivalence to the covariant
formulation, the three-term propagator should be used
including the instantaneous interaction of the gauge field.
Our work also clarifies the singular nature of the

correlation between the total momentum of the system
and the interpolation angle and provides a deeper under-
standing of the treacherous zero-mode issue in the LFD.
We find that the particular correlation between the total
momentum of the system and the interpolation angle,
coined as the J-shaped correlation in our previous analysis,
persists even in the sQED scattering amplitude involving
the gauge field. We discuss the universal nature of the
J-shaped correlation that appears completely independent
from the nature of particles (i.e., mass, spin, etc.) involved
in the scattering process.
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Although the interpolation method has been introduced
before [14,15,20,21], it has not yet been widely explored,
and a brief description of the method is still necessary for
the presentation of our work. In Sec. II, we thus provide a
brief review of the interpolation angle method essential for
the rest of this article. In Sec. III, we derive the photon
polarization vector for any interpolation angle. Using this
derivation, we present the general gauge that links the light-
front gauge to the Coulomb gauge and construct the
corresponding photon propagator for an arbitrary interpo-
lation angle. In Sec. IV, we decompose this interpolating
gauge propagator according to the time ordering and apply
it to the lowest scattering process such as an analog of
the well-known QED process eμ → eμ in sQED without
involving the fermion spins. We also take a close look at the
limiting cases of C → 0 and compare the results with the
exact C ¼ 0 (LFD) results in this section. In Sec. V, we plot
the time-ordered amplitudes in terms of the total momen-
tum of the system and the interpolation angle to reveal both
the frame dependence and interpolation angle dependence
of these amplitudes. We then give a detailed discussion of
the universal J-shaped correlation curve that emerges from
these time-ordered diagrams and how it gives rise to the
zero-mode contributions at Pz ¼ −∞. A summary and
conclusion follow in Sec. VI.
In Appendix A, we list the explicit matrix representation

of the boost K and rotation J generators and provide the
explicit description of the steps involved in deriving the
photon polarization vectors for an arbitrary interpolation
angle. In Appendix B, we derive the numerator of the
photon propagator from the photon polarization vectors
for an arbitrary interpolation angle. In Appendix C, we
decompose the photon propagator on the light front in
terms of the transverse and longitudinal components. For
the completeness and the comparison with our analysis of
sQED scattering process (analogous to eμ → eμ in QED)
presented in Secs. IV and V, we present in Appendixes D
and E our calculations for the same process “eμ → eμ” in
the scalar field theory and the process related by the
crossing symmetry “eþe− → μþμ−” in sQED. Together
with our previous work for the scalar field theory discussed
in Ref. [21], this work completes our study of the lowest-
order scattering processes related by the crossing symmetry
in the scalar field theory as well as in sQED.

II. METHOD OF INTERPOLATION ANGLE

In this section, we briefly review the interpolation angle
method, presenting just the necessary formulas for the
present work. For more detailed introduction and review of
this method, the readers may consult our previous works
presented in Refs. [20] and [21].
The interpolating space-time coordinates may be defined

as a transformation from the ordinary space-time coordi-
nates, xμ̂ ¼ Rμ̂

νxν, i.e.,

0
BBB@

xþ̂

x1̂

x2̂

x−̂

1
CCCA ¼

0
BBB@

cos δ 0 0 sin δ

0 1 0 0

0 0 1 0

sin δ 0 0 − cos δ

1
CCCA

0
BBB@

x0

x1

x2

x3

1
CCCA; ð3Þ

where 0 ≤ δ ≤ π=4 is the interpolation angle. Following
Ref. [21], we use “^” on the indices to denote the
interpolating variables with the parameter δ. In the limits
δ → 0 and δ → π=4, we recover the corresponding varia-
bles in the instant form and the front form, respectively.

For example, the interpolating coordinates x�̂ in the
limit δ → π=4 become the light-front coordinates x� ¼
ðx0 � x3Þ= ffiffiffi

2
p

without ^.
In this interpolating basis, the metric becomes

gμ̂ ν̂ ¼ gμ̂ ν̂ ¼

0
BBB@

C 0 0 S

0 −1 0 0

0 0 −1 0

S 0 0 −C

1
CCCA; ð4Þ

where S ¼ sin 2δ and C ¼ cos 2δ. The covariant interpo-
lating space-time coordinates are then easily obtained as

xμ̂ ¼ gμ̂ ν̂xν̂ ¼

0
BBB@

xþ̂
x1̂
x2̂
x−̂

1
CCCA ¼

0
BBB@

cos δ 0 0 − sin δ

0 −1 0 0

0 0 −1 0

sin δ 0 0 cos δ

1
CCCA

×

0
BBB@

x0

x1

x2

x3

1
CCCA: ð5Þ

The same transformations also apply to the momentum:

Pþ̂ ¼ P0 cos δþ P3 sin δ; ð6aÞ

P−̂ ¼ P0 sin δ − P3 cos δ; ð6bÞ

Pþ̂ ¼ P0 cos δ − P3 sin δ; ð6cÞ

P−̂ ¼ P0 sin δþ P3 cos δ: ð6dÞ

Since the perpendicular components remain the same
(aĵ ¼ aj; aĵ ¼ aj; j ¼ 1; 2), we will omit the ^ notation
unless necessary from now on for the perpendicular indices
j ¼ 1; 2 in a 4-vector.
Using gμ̂ ν̂ and gμ̂ ν̂, we see that the covariant and

contravariant components are related by
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aþ̂ ¼ Caþ̂ þ Sa−̂; aþ̂ ¼ Caþ̂ þ Sa−̂

a−̂ ¼ Saþ̂ − Ca−̂; a−̂ ¼ Saþ̂ − Ca−̂

aj ¼ −aj; ðj ¼ 1; 2Þ: ð7Þ

The inner product of two 4-vectors must be interpolation
angle independent as one can verify

aμ̂bμ̂ ¼ ðaþ̂bþ̂ − a−̂b−̂ÞCþ ðaþ̂b−̂ þ a−̂bþ̂ÞS
− a1b1 − a2b2 ¼ aμbμ: ð8Þ

In particular, we have the energy-momentum dispersion
relation given by

Pμ̂Pμ̂ ¼ P2
þ̂C − P2

−̂Cþ 2Pþ̂P−̂S − P2⊥: ð9Þ

Another useful relation,

Pμ̂Pμ̂C ¼ Pþ̂2 − P2
−̂ − P2⊥C; ð10Þ

can also be easily verified. For the particles of mass M,
PμPμ on the mass shell equals M2, of course.
Accordingly, the Poincaré matrix

Mμν ¼

0
BBB@

0 K1 K2 K3

−K1 0 J3 −J2

−K2 −J3 0 J1

−K3 J2 −J1 0

1
CCCA ð11Þ

transforms as well, so

Mμ̂ ν̂ ¼ Rμ̂
αMαβRν̂

β ¼

0
BBB@

0 E1̂ E2̂ −K3

−E1̂ 0 J3 −F1̂

−E2̂ −J3 0 −F2̂

K3 F1̂ F2̂ 0

1
CCCA ð12Þ

and

Mμ̂ ν̂ ¼ gμ̂ α̂Mα̂ β̂gβ̂ ν̂ ¼

0
BBB@

0 D1̂ D2̂ K3

−D1̂ 0 J3 −K1̂

−D2̂ −J3 0 −K2̂

−K3 K1̂ K2̂ 0

1
CCCA; ð13Þ

where

E1̂ ¼ J2 sin δþ K1 cos δ; K1̂ ¼ −K1 sin δ − J2 cos δ;

E2̂ ¼ K2 cos δ − J1 sin δ; K2̂ ¼ J1 cos δ − K2 sin δ;

F1̂ ¼ K1 sin δ − J2 cos δ; D1̂ ¼ −K1 cos δþ J2 sin δ;

F2̂ ¼ K2 sin δþ J1 cos δ; D2̂ ¼ −J1 sin δ − K2 cos δ:

ð14Þ

The interpolating Eĵ and Fĵ will coincide with the usual Ej

and Fj of the LFD in the limit δ ¼ π=4. Note here that the ^

notation is reinstated for 1,2 to emphasize the angle δ
dependence and that the position of the indices on
K; J; E; F;D, and K will not matter as they are not the
4-vectors: i.e., E1̂ ¼ E1̂, etc. Of course, Mμ̂ ν̂ and Mμ̂ ν̂

should be distinguished in any case.
The generalized Poincaré algebra for any interpolation

angle can be found in Ref. [20]. Among the ten Poincaré
generators, the six generators (K1̂;K2̂; J3; P1; P2, and P−̂)
are always kinematic in the sense that the xþ̂ ¼ 0 plane is
intact under the transformations generated by them. As
discussed in Refs. [20,21], the operator K3 ¼ Mþ̂ −̂ is
dynamical in the region where 0 ≤ δ < π=4 but becomes
kinematic in the light-front limit (δ ¼ π=4). The set of
kinematic and dynamic generators depending on the
interpolation angle are summarized in Table I. Since the
kinematic transformations do not alter xþ̂, the individual
time-ordered amplitude must be invariant under the kin-
ematic transformations. This can be seen explicitly in the
example of scattering process discussed in Secs. IV and V.
Using the kinematic transformations defined above and

following the procedure presented by Jacob and Wick [28]
to define the helicity in the IFD, we may define the helicity
applicable to any arbitrary interpolation angle δ. For
this purpose, we introduced the transformation T [20,21]
given by

T ¼ T12T3 ¼ eiβ1K
1̂þiβ2K2̂

e−iβ3K
3

; ð15Þ

where we consider the operation on the state such as
T12T3jψi in this work rather than the operation on the
operator as discussed in our previous work [20,21]. As
shown in the textbook example of the body-fixed frame vs
the space-fixed frame in the Euler angle rotation in the

TABLE I. Kinematic and dynamic generators for different interpolation angles.

Kinematic Dynamic

δ ¼ 0 K1̂ ¼ −J2;K2̂ ¼ J1; J3; P1; P2; P3 D1̂ ¼ −K1;D2̂ ¼ −K2; K3; P0

0 ≤ δ < π=4 K1̂;K2̂; J3; P1; P2; P−̂ D1̂;D2̂; K3; Pþ̂
δ ¼ π=4 K1̂ ¼ −E1;K2̂ ¼ −E2; J3; K3; P1; P2; Pþ D1̂ ¼ −F1;D2̂ ¼ −F2; P−
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rigid-body problem, the order of operation on the operator
can be reversed in constructing the Euler angle rotation
depending on the choice of frame in the operation [29].
The similar type of reverse in the order of operation can
occur in the case that the operation of T is applied to the
operator rather than to the state. Thus, one should be careful
when applying the operation of T to the operator rather than
to the state, as we have discussed in our previous work [21].
In this work, we simplify the discussion by considering the
operation of T to the state instead of the operator. We also
adopt the sign convention of the exponents iβ1K1̂ and
iβ2K2̂ of T12 to make the resulted momentum positive for
the infinitesimal positive values of β1 and β2. Our sign
convention in this work turns out to be consistent with
Soper’s notation [30] in the LFD.
Using the transformation given by Eq. (15), we obtain

the 4-momentum components (P0þ̂; P01; P02, and P0
−̂) from

the initial 4-momentum components (Pþ̂; P1; P2, and P−̂)
[20,21],

P0þ̂ ¼ Pþ̂ cosh β3 þ P−̂ sinh β3; ð16aÞ

P01 ¼ P1 þ β1
sin α
α

ðP−̂ cosh β3 þ Pþ̂ sinh β3Þ

þ cos α − 1

α2
Cβ1ðβ1P1 þ β2P2Þ; ð16bÞ

P02 ¼ P2 þ β2
sin α
α

ðP−̂ cosh β3 þ Pþ̂ sinh β3Þ

þ cos α − 1

α2
Cβ2ðβ1P1 þ β2P2Þ; ð16cÞ

P0
−̂ ¼ ðP−̂ cosh β3 þ Pþ̂ sinh β3Þ cos α

þ sin α
α

Cðβ1P1 þ β2P2Þ; ð16dÞ

where α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðβ21 þ β22

p
Þ. Although these 4-momentum

components (P0þ̂; P01; P02, and P0
−̂) given by Eqs. (16a)–

(16d) turn out to be most convenient in carrying out our
calculation, the other choice of components such as P0

þ̂ and
P0−̂ can be easily obtained using Eq. (7).
As an example of using Eqs. (16a)–(16d), we may find

that the particle of mass M at rest gains the 4-momentum
components under the transformation T,

Pþ̂ ¼ ðcos δ cosh β3 þ sin δ sinh β3ÞM; ð17aÞ

P1 ¼ β1
sin α
α

ðsin δ cosh β3 þ cos δ sinh β3ÞM; ð17bÞ

P2 ¼ β2
sin α
α

ðsin δ cosh β3 þ cos δ sinh β3ÞM; ð17cÞ

P−̂ ¼ cos αðsin δ cosh β3 þ cos δ sinh β3ÞM; ð17dÞ

where the factor ðsin δ cosh β3 þ cos δ sinh β3Þ in the
3-momentum (P1; P2, P−̂) is due to the first boost
T3 ¼ e−iβ3K

3

. Our convention of taking this factor to be
positive, i.e., ðsin δ cosh β3 þ cos δ sinh β3Þ > 0, is consis-
tent with the convention taken by Jacob and Wick [28]
in their procedure to define the helicity in the IFD. We also
note that P−̂ ¼ M sin δ, Pþ̂ ¼ M cos δ, and P1 ¼ P2 ¼ 0
in the particle rest frame.
Solving Eqs. (17a)–(17d) for β1; β2, and β3, we further

note that

sin δ cosh β3 þ cos δ sinh β3 ¼
P
M

; ð18aÞ

cos δ cosh β3 þ sin δ sinh β3 ¼
Pþ̂

M
; ð18bÞ

and

cos α ¼ P−̂

P
; ð19aÞ

sin α ¼
ffiffiffiffiffiffiffiffiffiffi
P2⊥C

p
P

; ð19bÞ

eβ3 ¼ Pþ̂ þ P
Mðsin δþ cos δÞ ; ð19cÞ

e−β3 ¼ Pþ̂ − P
Mðcos δ − sin δÞ ; ð19dÞ

βj
α
¼ Pjffiffiffiffiffiffiffiffiffiffi

P2⊥C
p ; ðj ¼ 1; 2Þ; ð19eÞ

where P≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
−̂ þ P2⊥C

p
corresponds to the magnitude of

the particle’s 3-momentum in the IFD, while it becomes
identical to Pþ in the limit δ → π=4 so that α ¼ 0, i.e.,
cos α ¼ 1 and sin α ¼ 0, in the LFD, as one can see from
Eqs. (19a) and (19b), respectively. Multiplying Eqs. (19c)
and (19d), we get the on-mass-shell condition consistent
with Eq. (10) for the particle of rest mass M:

P2
−̂ þ P2⊥C ¼ ðPþ̂Þ2 −M2C: ð20Þ

Consequently, the quantity denoted by P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
−̂ þ P2⊥C

p
can also be written as P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPþ̂Þ2 −M2C

q
. We note again

the correspondence of P to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP3Þ2 þ P2⊥

p
¼ jPj in the limit

δ → 0 (or C → 1) and P to Pþ in the limit δ → π=4
(or C → 0).
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III. LINK BETWEENTHECOULOMBGAUGEAND
THE LIGHT-FRONT GAUGE

We now discuss the gauge field in an arbitrary inter-
polation angle. Rather than fixing the gauge first, we start
from the explicit physical polarization 4-vectors of the spin-
1 particle and then identify the corresponding gauge that
these explicit representations of the gauge field polarization
satisfy. This procedure is possible because we can follow
the Jacob–Wick procedure discussed in Sec. II and apply
the corresponding T transformation [Eq. (15)] to the rest
frame spin-1 particle polarization vectors that may be
naturally given by the spherical harmonics. Although this
procedure applies to the physical spin-1 particle with a
nonzero mass M such as the ρ meson, we may take
advantage of the Lorentz invariance of the 4-momentum
squared Pμ̂Pμ̂ ¼ M2 and replaceM2 by Pμ̂Pμ̂ to extend the
obtained polarization 4-vectors to the virtual gauge particle.
For the real photon, of course,M ¼ 0, and the longitudinal
polarization vector should be discarded. From this pro-
cedure, we find that the identified gauge interpolates
between the Coulomb gauge in the instant form and the
light-front gauge in the front form.

A. Spin-1 polarization vector for any
interpolation angle

We use the 4-vector representation of Lorentz group for
the spin-1 particle. The polarization vector in a specific
frame is obtained by boosting the 4-vectors to that frame.
In the rest frame, where the 4-momentum is ðM; 0; 0; 0Þ, the
polarization vectors are taken to be

ϵð�Þ ¼ ∓ 1ffiffiffi
2

p ð0; 1;�i; 0Þ; ϵð0Þ ¼ ð0; 0; 0; 1Þ; ð21Þ

since the spherical harmonics Y�1
1 and Y0

1 naturally
correspond to the transverse and longitudinal polarization
vectors, respectively.
To find the polarization vectors of the spin-1 particle

with an arbitrary momentum Pμ̂, we use the Jacob–Wick
procedure discussed in Sec. II and apply the T trans-
formation [Eq. (15)] with the explicit 4-vector representa-
tion of the operatorsK and J. The details of the calculation
are summarized in Appendix A. The result of the polari-
zation vectors written in the form of ðϵþ̂; ϵ1; ϵ2; ϵ−̂Þ is
given by

ϵμ̂ðP;þÞ ¼ −
1ffiffiffi
2

p
P

�
SjP⊥j;

P1P−̂ − iP2P
jP⊥j

;
P2P−̂ þ iP1P

jP⊥j
;−CjP⊥j

�
; ð22aÞ

ϵμ̂ðP;−Þ ¼
1ffiffiffi
2

p
P

�
SjP⊥j;

P1P−̂ þ iP2P
jP⊥j

;
P2P−̂ − iP1P

jP⊥j
;−CjP⊥j

�
; ð22bÞ

ϵμ̂ðP; 0Þ ¼
Pþ̂

MP

�
Pþ̂ −

M2

Pþ̂ ; P1; P2; P−̂

�
: ð22cÞ

They satisfy the transversality and orthorgonality
constraints

ϵμ̂ðP; λÞPμ̂ ¼ 0; ϵ�ðP; λÞ · ϵðP; λ0Þ ¼ −δλλ0 : ð23Þ

It is also obvious that ϵðP; 0Þ is “parallel” to the 3-
momentum P, since ðϵ1; ϵ2; ϵ−̂Þ ∼ ðP1; P2; P−̂Þ. Noticing
that S → 0, C → 1, P → jPj when δ → 0 and S → 1,
C → 0, P → Pþ when δ → π=4, one can easily check that
these polarization vectors have correct limits of the instant
form and the light-front form at δ ¼ 0 and δ ¼ π=4,
respectively.

B. Interpolating transverse gauge

Having obtained the explicit polarization 4-vectors of the
spin-1 particle with mass M, we notice that the transverse
polarizations given by Eqs. (22a) and (22b) are independent
of the particle mass M. Thus, they can be used also as the
transverse polarization 4-vectors of the gauge field such as
the photon.

We observe that the transverse polarization vectors
(λ ¼ �) in Eqs. (22a) and (22b) satisfy the conditions

ϵþ̂ðλÞ ¼ Cϵþ̂ðλÞ þ Sϵ−̂ðλÞ ¼ 0; ð24Þ

ϵ−̂ðλÞP−̂ þ ϵ⊥ðλÞP⊥C ¼ 0; ð25Þ

where we used ϵμ̂ðλÞ ¼ ϵμ̂ðP; λÞ for convenience. So, we
can write the gauge condition for transverse photons as

Aþ̂ ¼ 0; ð26Þ

A−̂P−̂ þA⊥P⊥C ¼ 0; ð27Þ

where the second condition can also be written as

∂−̂A−̂ þ ∂⊥A⊥C ¼ 0: ð28Þ

We now demonstrate that these two conditions are
closely related to each other. First of all, the Lorentz
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condition ∂ μ̂Aμ̂ ¼ 0 is always satisfied, as already verified
in Eq. (23). But the Lorentz condition can be rewritten as

0 ¼ ∂ μ̂Aμ̂

¼ ∂þ̂Aþ̂C − ∂−̂A−̂Cþ ∂þ̂A−̂Sþ ∂−̂Aþ̂S − ∂⊥A⊥
¼ ∂þ̂Aþ̂ − ∂−̂A−̂Cþ ∂−̂Aþ̂S − ∂⊥A⊥

¼ ∂þ̂Aþ̂ −
�
1 − S2

C

�
∂−̂A−̂ þ ∂−̂Aþ̂S − ∂⊥A⊥

¼ ∂þ̂Aþ̂ þ S
C
ðS∂−̂A−̂ þ C∂−̂Aþ̂Þ −

�∂−̂A−̂

C
þ ∂⊥A⊥

�

¼ C
C
∂þ̂Aþ̂ þ S

C
ð∂−̂Aþ̂Þ −

�∂−̂A−̂

C
þ ∂⊥A⊥

�

¼ 1

C
∂þ̂Aþ̂ −

�∂−̂A−̂

C
þ ∂⊥A⊥

�

¼ 1

C
½∂þ̂Aþ̂ − ð∂−̂A−̂ þ ∂⊥A⊥CÞ�; ð29Þ

where Eq. (8) is used in the second line and the relations in
Eq. (7) are used to go between the superscript components
and the subscript components. Equation (29) indicates that
if Eq. (26) holds then we have Eq. (28). On the other hand,
if Eq. (28) holds, then we have

∂þ̂Aþ̂ ¼ 0: ð30Þ

However, this is a differential equation, and we have the
freedom to specify the boundary condition. And we can
choose our boundary condition to make Aþ̂ ¼ 0. This same
trick was used in the instant form [31] where the Coulomb
gauge ∇ ·A ¼ 0 gives ∂0A0 ¼ 0, but we can choose our
initial condition, or gauge, so that A0 ¼ 0. Therefore, these
two gauge conditions are effectively equivalent.
Similarly, Eq. (27) by itself does not eliminate 1 degree

of freedom. We also need to specify a boundary condition
for this differential equation. Since we are not focusing on
writing out Aμ̂ explicitly, however, we will not dwell on this
subject here.
The above discussion should make it clear that Eqs. (26)

and (28) are really two sides of the same coin. However, to
be consistent with conventions used in the instant form,
where the radiation gauge condition is specified as “A0 ¼ 0
and ∇ ·A ¼ 0,” here we say that the radiation gauge
condition for any interpolating angle is Eqs. (26) and
(28). In the instant form limit (δ ¼ 0), A−̂ → A3;C → 1,
and Eq. (28) becomes ∇ ·A ¼ 0 while Eq. (26) becomes
A0 ¼ 0, which is the familiar Coulomb gauge. In the light-
front limit (δ ¼ π=4), A−̂ → Aþ;C → 0, and the gauge
conditions reduce to “Aþ ¼ 0 and ∂þAþ ¼ 0,” which is
just Aþ ¼ 0, i.e., the light-front gauge.

C. Propagator for transverse photons

Choosing the transverse gauge fields as the dynamical
degrees of freedom, we get the photon propagator in the
interpolating transverse gauge given by

h0jTðAμ̂ðyÞAν̂ðxÞÞj0i ¼ i
Z

d4q
ð2πÞ4 e

−iqðy−xÞ T μ̂ ν̂

q2 þ iϵ
;

ð31Þ

where T μ̂ ν̂ ≡P
λ¼�ϵ�μ̂ðλÞϵν̂ðλÞ and ϵμ̂ðλÞ ¼ ϵμ̂ðq; λÞ taking

the photon momentum P ¼ q. Here, we use the obvious
familiar notation q2 ¼ qμ̂qμ̂. Although we can compute
T μ̂ ν̂ directly using Eqs. (22a) and (22b) as shown in
Appendix B, we demonstrate here the method of vierbein
as a cross-check to our result.
To construct a vierbein, we just need a temporal basis

4-vector and a longitudinal basis 4-vector that we denote as

n
∘
μ̂ and q

∘
μ̂, respectively, since the transverse basis 4-vectors

are already given by ϵμ̂ð�Þ. The temporal basis 4-vector can
be taken as a unit timelike 4-vector given by

n
∘
μ̂ ¼ 1ffiffiffi

C
p nμ̂ ¼ 1ffiffiffi

C
p ð1; 0; 0; 0Þ, the dual vector of which is

n
∘ μ̂ ¼ ð ffiffiffiffi

C
p

; 0; 0;S=
ffiffiffiffi
C

p Þ. The 1ffiffiffi
C

p in nμ̂ is a normalization

factor to get n
∘
μ̂n
∘ μ̂ ¼ 1. The longitudinal basis 4-vector q

∘
μ̂

can also be rather easily found from the gauge condition

given by Eq. (25), which can be written as ϵμ̂ðλÞq∘ μ̂ ¼ 0with

q
∘ μ̂ ¼ Nð0;−q1C;−q2C;−q−̂Þ. The normalization factor N

is determined by q
∘
μ̂q
∘ μ̂ ¼ q

∘ μ̂gμ̂ ν̂q
∘ ν̂ ¼ −1 with gμ̂ ν̂ given by

Eq. (4), so we have

q
∘ μ̂ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cðq2⊥Cþ q2−̂
p

Þ ð0;−q1C;−q2C;−q−̂Þ ð32Þ

and

q
∘
μ̂ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðq2⊥Cþ q2−̂

p
Þ ð−Sq−̂; q1C; q2C; q−̂CÞ: ð33Þ

These four basis 4-vectors are of course mutually orthogo-

nal; i.e., q
∘
μ̂n
∘ μ̂ ¼ 0, ϵμ̂ðλÞn∘ μ̂ ¼ 0 and ϵμ̂ðλÞq∘ μ̂ ¼ 0, where

λ ¼ �.
Since ϵμ̂ð�Þ; n∘ μ̂, and q

∘
μ̂ form a vierbein, we may start

from

gμ̂ ν̂ ¼ n
∘
μ̂n
∘
ν̂ −

X
λ¼�

ϵ�μ̂ðλÞϵν̂ðλÞ − q
∘
μ̂q
∘
ν̂ ð34Þ

and obtain
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T μ̂ ν̂ ≡
X
λ¼�

ϵ�μ̂ðλÞϵν̂ðλÞ

¼ −gμ̂ ν̂ þ n
∘
μ̂n
∘
ν̂ − q

∘
μ̂q
∘
ν̂

¼ −gμ̂ ν̂ þ
ðq · nÞðqμ̂nν̂ þ qν̂nμ̂Þ

q2⊥Cþ q2−̂

−
Cqμ̂qν̂

q2⊥Cþ q2−̂
−

q2nμ̂nν̂
q2⊥Cþ q2−̂

; ð35Þ

where we used n
∘
μ̂ ¼ 1ffiffiffi

C
p nμ̂ and rewrote q

∘
μ̂ in terms of qμ̂

and nμ̂ as

q
∘
μ̂ ¼

Cqμ̂ − ðq · nÞnμ̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðq2⊥Cþ q2−̂

p
Þ ð36Þ

in the last step to remove any artifact of divergence in q
∘
μ̂

and n
∘
μ̂ in the light-front limit. The photon propagator

constructed out of nμ̂ and qμ̂ interpolates smoothly and
correctly to the one corresponding to the light-front gauge.
In the instant form limit, C → 1, q2⊥Cþ q2−̂ → q2 ¼

ðq · nÞ2 − q2, and this reduces to the well-known photon
propagator in the Coulomb gauge (∇ ·A ¼ 0) [31],

T μν ¼ −ημν þ
ðq · nÞðqμnν þ qνnμÞ

ðq · nÞ2 − q2

−
qμqν

ðq · nÞ2 − q2
−

q2nμnν
ðq · nÞ2 − q2

; ð37Þ

where ημν ¼ diagð1;−1;−1;−1Þ and μ and ν run for
0, 1, 2, 3.
In the light-front limit, C → 0, q2−̂ → qþ2 ¼ ðq · nÞ2, and

this becomes precisely the photon propagator under the
light-front gauge (Aþ ¼ 0), and we have

T μν ¼ −gμν þ
ðq · nÞðqμnν þ qνnμÞ

ðq · nÞ2 −
q2nμnν
ðq · nÞ2 ; ð38Þ

where gμν is given by Eq. (4) with δ ¼ π=4 and μ and ν run
for þ; 1; 2;−. From this derivation, we see that the
appropriate photon propagator for the interpolating gauge
given by Eqs. (26) and (27) [or Eq. (28)] has three terms,
consistent with Refs. [25–27]. As we will see in the next
section, the last term in Eq. (38) is canceled by the
instantaneous interaction. Therefore, the two-term gauge
propagator [8] can be used effectively without involving the
instantaneous interaction.

D. Longitudinal photons

Having used the transverse gauge fields as the dynamical
degrees of the freedom, we are left with the longitudinal
degree of freedom that also deserves a physical interpre-
tation. This leftover longitudinal degree of freedom is

necessary to describe the virtual photon. First, to find
the longitudinal polarization (λ ¼ 0) of the virtual photon,
we need to generalize Eq. (22c), replacing M2 by
Pμ̂Pμ̂ ¼ q2, which can be either positive (timelike) or
negative (spacelike). From the direct computation shown
in Appendix B with this replacement, we find

Lμ̂ ν̂ ≡ ϵ�μ̂ð0Þϵν̂ð0Þ

¼ −
ðq · nÞðqμ̂nν̂ þ qν̂nμ̂Þ

q2⊥Cþ q2−̂

þ ðqþ̂Þ2qμ̂qν̂
ðqÞ2ðq2⊥Cþ q2−̂Þ

þ q2nμ̂nν̂
q2⊥Cþ q2−̂

: ð39Þ

Together with T μ̂ ν̂ given by Eq. (35), it verifies the well-
known completeness relation [31]

T μ̂ ν̂ þ Lμ̂ ν̂ ¼ −gμ̂ ν̂ þ
qμ̂qν̂
q2

: ð40Þ

We note that the last term in Eq. (39) without the
dependence on qμ̂ or qν̂ provides the instantaneous con-
tribution. As we show in the next section, the instantaneous
interaction appearing in the transverse gauge corresponds
to the contribution from the longitudinal polarization.

IV. TIME-ORDERED PHOTON EXCHANGE

As Kogut and Soper [32] regarded the theory of quantum
electrodynamics as being defined by the usual perturbation
expansion of the S matrix in Feynman diagrams, we rewrite
the sQED theory here by systematically decomposing each
covariant Feynman diagram into a sum of interpolating xþ̂-
ordered diagrams. Since we consider the Feynman expan-
sion as a formal expansion as Kogut and Soper did, we also
shall not be concerned in this paper with the convergence of
the perturbation series, or convergence and regularization
of the integrals.
For clarity, we split this section into three subsections. In

the first subsection, we decompose the covariant photon
propagator in an arbitrary interpolation angle as a sum of
xþ̂-ordered terms. In the second part, we use the obtained
propagator to derive the xþ̂-ordered diagrams and their
amplitudes for the lowest-order photon exchange process.
In the final subsection, we verify the invariance of the
corresponding total amplitude and discuss about the instant
form and light-front limits of the xþ̂-ordered photon
propagators.

A. Photon propagator decomposition

The completeness relation given by Eq. (40) corresponds
to the numerator of the covariant photon propagator in the
Landau gauge. We start from the covariant photon propa-
gator in position space:
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DFðxÞμ̂ ν̂ ¼
Z

d4q
ð2πÞ4

−igμ̂ ν̂ þ i qμ̂qν̂q2

qμ̂qμ̂ þ iϵ
e−iqμ̂x

μ̂
: ð41Þ

Because of the current conservation, however, the term
involving qμ̂ does not contribute to any physical process,

and our starting point is equivalent to the Feynman photon
propagator that Kogut and Soper used for their starting
point [32]. For the same reason, the first and second terms
that involve qμ̂ can be dropped in Eq. (39), and the
covariant photon propagator can be written as

DFðxÞμ̂ ν̂ ¼ i
Z

d4q
ð2πÞ4

T μ̂ ν̂

qμ̂qμ̂ þ iϵ
e−iqμ̂x

μ̂ þ
Z

d4q
ð2πÞ4

nμ̂nν̂
q2⊥Cþ q2−̂

e−iqμ̂x
μ̂

¼
Z

d2q⊥dq−̂dqþ̂
ð2πÞ4 exp½−iðqþ̂xþ̂ þ q−̂x−̂ þ q⊥x⊥Þ�

�
iT μ̂ ν̂

Cq2þ̂ þ 2Sq−̂qþ̂ − Cq2−̂ − q2⊥ þ iϵ
þ inμ̂nν̂
q2⊥Cþ q2−̂

�
; ð42Þ

where we used Eq. (8) for qμ̂qμ̂ in the denominator.
To get the xþ̂-ordered contributions, we now evaluate the

qþ̂ integral in Eq. (42). We note here that the case of C ¼ 0

should be distinguished from the case of C ≠ 0 because the
pole structures in the T μ̂ ν̂ term of Eq. (42) are different
between the two cases, i.e., a single pole for C ¼ 0 vs two
poles for C ≠ 0.
For C ≠ 0, the T μ̂ ν̂ term of Eq. (42) has two poles at

A − iϵ0 ¼
�
−Sq−̂ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂ þ Cq2⊥

q �
=C − iϵ0; ð43aÞ

Bþ iϵ0 ¼
�
−Sq−̂ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂ þ Cq2⊥

q �
=Cþ iϵ0; ð43bÞ

where ϵ0 > 0. In calculating the contour integration, we
close the contour in the lower (upper) half-plane for xþ̂ > 0

(xþ̂ < 0). This produces a term proportional to the step
function Θðxþ̂Þ and the other term proportional to Θð−xþ̂Þ.
We then make changes of the variables q⊥ → −q⊥ and
q−̂ → −q−̂ which lead to B → −A for the Θð−xþ̂Þ term and
simplify the result expressing qþ̂ in terms of A. The last
term in Eq. (42) immediately gives a delta function of xþ̂
after the qþ̂ integration and provides the instantaneous
contribution. We note that the instantaneous contribution
stems from the longitudinal polarization of the virtual
photon. Putting all terms together, we obtain the result
for the case of C ≠ 0,

DFðxÞμ̂ ν̂ ¼
Z

d2q⊥
ð2πÞ3

Z
∞

−∞
dq−̂

T μ̂ ν̂

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂ þ Cq2⊥

p ½Θðxþ̂Þe−iqμ̂xμ̂ þ Θð−xþ̂Þeiqμ̂xμ̂ �

þ iδðxþ̂Þ
Z

d2q⊥
ð2πÞ3

Z
∞

−∞
dq−̂

nμ̂nν̂
q2⊥Cþ q2−̂

e−iðq−̂x−̂þq⊥x⊥Þ; ð44Þ

where qþ̂ in the exponent of the first two terms should be taken as A given by Eq. (43a).
Now let us look at the light-front case. Because C ¼ 0, there is only one pole at q2⊥=2q−̂ − iϵ=2q−̂ ¼ q2⊥=2qþ − iϵ=2qþ.

It depends on the sign of qþ whether this pole is in the upper half-plane or the lower half-plane. As the integration over q−

needs to be done in qþ > 0 and qþ < 0 regions separately, each region will get a step function after closing the contour in
the plane where the arc contribution is absent. We again make changes of the variables qþ → −qþ and q⊥ → −q⊥ in the
term proportional to Θð−xþÞ. We then obtain the result at the light-front [32],

DFðxÞμν ¼
Z

d2q⊥
ð2πÞ3

Z
∞

0

dqþ

2qþ
T μν½ΘðxþÞe−iqμxμ þ Θð−xþÞeiqμxμ � þ iδðxþÞ

Z
d2q⊥
ð2πÞ3

Z
∞

−∞
dqþ

nμnν
ðqþÞ2 e

−iðqþx−−q⊥x⊥Þ; ð45Þ

where the indices μ and ν run for þ; 1; 2;− and q− in the
exponent of the first two terms should be taken as q2⊥=2qþ.
More details of the derivation for this equation can be found
in Appendix C.
We note that the result for C ≠ 0 given by Eq. (44) does

not coincide with the result for C ¼ 0 given by Eq. (45) as

we take the limit C → 0, because the integration range
(−∞∞) in q−̂ is different from the integration range ð0;∞Þ
in qþ due to the difference in the pole structure between the
two cases, C ≠ 0 and C ¼ 0, as we mentioned earlier.
Nevertheless, it can be written in a unified form by
introducing an interpolating step function Θ̂ðq−̂Þ given by
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Θ̂ðq−̂Þ ¼ Θðq−̂Þ þ ð1 − δC0ÞΘð−q−̂Þ

¼
�
1 ðC ≠ 0Þ
ΘðqþÞ ðC ¼ 0Þ ð46Þ

and realizing that A given by Eq. (43a) coincides with q− ¼ q2⊥=2qþ in the limit C → 0, i.e.,

DFðxÞμ̂ ν̂ ¼
Z

d2q⊥
ð2πÞ3

Z
∞

−∞
dq−̂Θ̂ðq−̂Þ

T μ̂ ν̂

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂ þ Cq2⊥

p ½Θðxþ̂Þe−iqμ̂xμ̂ þ Θð−xþ̂Þeiqμ̂xμ̂ �

þ iδðxþ̂Þ
Z

d2q⊥
ð2πÞ3

Z
∞

−∞
dq−̂

nμ̂nν̂
q2⊥Cþ q2−̂

e−iðq−̂x−̂þq⊥x⊥Þ; ð47Þ

where again qþ̂ in the exponent of the first two terms
should be taken as A given by Eq. (43a). From now on, we
will use Eq. (47) for all interpolation angles including
C ¼ 0.

B. Time-ordered diagrams

The Lagrangian for sQED can be written as

L ¼ DμϕDμϕ� −m2ϕ�ϕ −
1

4
FμνFμν

¼ ∂μϕ∂μϕ� −m2ϕ�ϕ −
1

4
FμνFμν

− eJμAμ þ e2AμAμϕ�ϕ; ð48Þ

where

Dμ ¼ ∂μ þ ieAμ; ð49Þ

Jμ ¼ − iðϕ∂μϕ� − ϕ�∂μϕÞ: ð50Þ

To examine the contribution of each term in Eq. (47), we
compute the lowest-order tree-level scattering amplitude
starting from the usual Feynman amplitude in coordinate
space. For the lowest tree-level scattering diagram,
e2AμAμϕ�ϕ does not contribute, and the amplitude can
be written as

iM ¼ ð−ieÞ2
Z

d4xd4y½Jμ̂ðyÞDFðy − xÞμ̂ ν̂Jν̂ðxÞ�: ð51Þ

The scalar wave functions used here are the plane waves

ϕðxÞ ¼ e−ipμ̂xμ̂ : ð52Þ

For a specific scattering process shown in Fig. 1, the
currents from p1 to p3 and from p2 to p4 are, respectively,
given by

Jν̂ ¼ − iðϕ1∂ ν̂ϕ�
3 − ϕ�

3∂ ν̂ϕ1Þ ¼ ðpν̂
1 þ pν̂

3Þeiðp3−p1Þx; ð53Þ

Jμ̂ ¼ − iðϕ2∂ μ̂ϕ�
4 − ϕ�

4∂ μ̂ϕ2Þ ¼ ðpμ̂
2 þ pμ̂

4Þeiðp4−p2Þy: ð54Þ

With the change of variables

x → x; y → T ¼ y − x; ð55Þ

Eq. (51) becomes

iM ¼ ð−ieÞ2
Z

d4xd4Teiðp4−p2ÞTeiðp4þp3−p2−p1Þx

× ðpμ̂
2 þ pμ̂

4ÞDμ̂ ν̂ðTÞðpν̂
1 þ pν̂

3Þ: ð56Þ

The x integration resulting in ð2πÞ4δ4ðp4 þ p3 − p2 − p1Þ
provides the total energy and momentum conservation. For

(a) (b) (c)

FIG. 1. The scattering of two particles in their center-of-mass frame (leftmost figure) and the three corresponding xþ̂-ordered
diagrams.
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the T integration, we use Dμ̂ ν̂ given by Eq. (47) as well as
the following relations:

Z
∞

−∞
dTþ̂ΘðTþ̂ÞeiPþ̂Tþ̂ ¼ i

Pþ̂
; ð57Þ

Z
∞

−∞
dTþ̂Θð−Tþ̂ÞeiPþ̂Tþ̂ ¼ −

i
Pþ̂

; ð58Þ

Z
∞

−∞
dTþ̂eiPþ̂Tþ̂ ¼ 2πδðPþ̂Þ: ð59Þ

After the x and T integration, we get

iM ¼ ð−ieÞ2ðpμ̂
4 þ pμ̂

2ÞΠμ̂ ν̂ðpν̂
3 þ pν̂

1Þ
× ð2πÞ4δ4ðp4 þ p3 − p2 − p1Þ; ð60Þ

where

Πμ̂ ν̂ ¼
Z

d2q⊥dq−̂Θ̂ðq−̂Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂ þ Cq2⊥

p
�

iT μ̂ ν̂

p4þ̂ − p2þ̂ − A
δðp4−̂ − p2−̂ − q−̂Þδ2ðp4⊥ − p2⊥ − q⊥Þ

−
iT μ̂ ν̂

p4þ̂ − p2þ̂ þ A
δðp4−̂ − p2−̂ þ q−̂Þδ2ðp4⊥ − p2⊥ þ q⊥Þ

�

þ
Z

d2q⊥dq−̂
inμ̂nν̂

q2⊥Cþ q2−̂
δðp4−̂ − p2−̂ − q−̂Þδ2ðp4⊥ − p2⊥ − q⊥Þ: ð61Þ

The three terms in Πμ̂ ν̂ corresponds to three different
“time” orderings yþ̂ > xþ̂, yþ̂ < xþ̂ and yþ̂ ¼ xþ̂, respec-
tively.1 The associated delta functions provide the momen-
tum conservation at each vertex as well as the conservation
of total energy and momentum between the initial and final
particles. In Fig. 1, the three “time” -ordered diagrams are
depicted with the momentum conservation at each vertex.
The corresponding photon propagators for Tþ̂ > 0 (or

yþ̂ > xþ̂) and Tþ̂ < 0 (or yþ̂ < xþ̂) are, respectively,
given by

ΠðaÞ
μ̂ ν̂ ¼ 1

2Qþ̂ðaÞ
iT μ̂ ν̂Θ̂ðp4−̂ − p2−̂Þ
p4þ̂ − p2þ̂ −QðaÞ

þ̂

¼ 1

2Qþ̂ðaÞ
iT μ̂ ν̂Θ̂ðp1−̂ − p3−̂Þ
p1þ̂ − p3þ̂ −QðaÞ

þ̂
; ð62Þ

and

ΠðbÞ
μ̂ ν̂ ¼ −

1

2Qþ̂ðbÞ
iT μ̂ ν̂Θ̂ðp2−̂ − p4−̂Þ
p4þ̂ − p2þ̂ þQðbÞ

þ̂

¼ 1

2Qþ̂ðbÞ
iT μ̂ ν̂Θ̂ðp2−̂ − p4−̂Þ
p2þ̂ − p4þ̂ −QðbÞ

þ̂

¼ 1

2Qþ̂ðbÞ
iT μ̂ ν̂Θ̂ðp3−̂ − p1−̂Þ
p3þ̂ − p1þ̂ −QðbÞ

þ̂
; ð63Þ

where

Qþ̂ðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½qðiÞ−̂ �2 þ C½qðiÞ

⊥ �2
q

; ði ¼ a; bÞ ð64Þ

QðiÞ
þ̂ ¼ −SqðiÞ−̂ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½qðiÞ−̂ �2 þC½qðiÞ

⊥ �2
q

C
; ði¼ a;bÞ ð65Þ

and

qðaÞ−̂ ¼ −qðbÞ−̂ ¼ p1−̂ − p3−̂; ð66Þ

qðaÞ
⊥ ¼ −qðbÞ

⊥ ¼ p1⊥ − p3⊥. ð67Þ

The total energy-momentum conservation in Eq. (60) as
well as the momentum conservation at each vertex were

used here. QðiÞ
þ̂ and Qþ̂ðiÞ satisfy the on-mass-shell con-

dition of the propagating photon with momentum

(qðiÞ−̂ ;qðiÞ
⊥ ). To see this, one can use Eq. (10) for a massless

photon to derive the Qþ̂ in terms of q−̂ and q⊥, noting that
Qþ̂ is positive definite for an on-mass-shell particle due to
Eq. (6a). The formula for Qþ̂ can also be obtained in terms
ofQ−̂ andQþ̂ by using Eq. (7). Equations (62) and (63) can
then be written in a unified form,2

ΠðiÞ
μ̂ ν̂ ¼

1

2Qþ̂ðiÞ
iT μ̂ ν̂Θ̂ðqðiÞ−̂ Þ
Piniþ̂ − Pinterþ̂

; ði ¼ a; bÞ; ð68Þ

1In this paper, the time means the generalized interpolation
time xþ̂ unless specified otherwise.

2Note that the subscripts þ̂ and −̂ denote the energy and the
longitudinal momentum for a given interpolating momentum,
respectively.
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where Piniþ̂ [Pinterþ̂] is the sum of the energy of the initial
(intermediate) particles. All the initial and intermediate
particles are now on their mass shells. This agrees with
the familiar time-ordered perturbation theory in the IFD,
although we now see it as a generalization to any
interpolation angle. We note here that the propagating
photon as the dynamical degree of freedom has only the
transverse polarization. This is consistent with the inter-
pretation that the intermediate particles are now “on-mass-
shell” or “physical.”
Besides the two propagating terms, there is a third term

in Eq. (61) that represents the instantaneous contribution.
For the sake of consistency in our notation, we denote this
part of Πμ̂ ν̂ as

ΠðcÞ
μ̂ ν̂ ¼ inμ̂nν̂

q2⊥Cþ q2−̂
; ð69Þ

where q−̂ and q⊥ are given by Eqs. (66) and (67),
respectively. As noted earlier, the instantaneous contribu-
tion stems from the longitudinal polarization of the virtual
photon.
We thus have three time-ordered diagrams as shown in

Fig. 1, the first two of which represent time-ordered
exchanges of the propagating photon and the third of
which represents the instantaneous interaction. The invari-
ant amplitude is then the sum of all three time-ordered
amplitudes,

iM ¼
X

j¼a;b;c

iMðjÞ

¼ ð−ieÞ2
X

j¼a;b;c

ðpμ̂
4 þ pμ̂

2ÞΠðjÞ
μ̂ ν̂ðpν̂

3 þ pν̂
1Þ; ð70Þ

where the total energy-momentum conservation factor
ð2πÞ4δ4ðp4 þ p3 − p2 − p1Þ is implied.

C. LFD vs the Limit to LFD

Since the time-ordered gauge propagators have the
interpolating step function given by Eq. (46), we take a
closer look at the limiting cases of C → 0 and compare the
results with the exact C ¼ 0 (LFD) results in this sub-
section. For convenience and simplicity of our discussion,
we drop the ðiÞ superscript in Eq. (64) and have

Qþ̂ðaÞ ¼ Qþ̂ðbÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1−̂ − p3−̂Þ2 þ ðp1⊥ − p3⊥Þ2C

q
≡Qþ̂: ð71Þ

Because the terms proportional to qμ̂ or qν̂ in T μ̂ ν̂ can be
discarded due to the current conservation in the physical
process, we may also replace T μ̂ ν̂ by

~T μ̂ ν̂ ≡ −gμ̂ ν̂ −
q2nμ̂nν̂

q2⊥Cþ q2−̂
: ð72Þ

Then, Eqs. (62), (63), and (69) can be rewritten as

ΠðaÞ
μ̂ ν̂ ¼ 1

2Qþ̂
i ~T μ̂ ν̂Θ̂ðp1−̂ − p3−̂Þ
p1þ̂ − p3þ̂ −QðaÞ

þ̂
; ð73aÞ

ΠðbÞ
μ̂ ν̂ ¼ −

1

2Qþ̂
i ~T μ̂ ν̂Θ̂ðp3−̂ − p1−̂Þ
p1þ̂ − p3þ̂ þQðbÞ

þ̂
; ð73bÞ

ΠðcÞ
μ̂ ν̂ ¼ inμ̂nν̂

ðQþ̂Þ2 ; ð73cÞ

where QðaÞ
þ̂ and QðbÞ

þ̂ are given by Eq. (65).
For C ≠ 0, assigning the 4-momentum transfer q as

q−̂ ≡ p1−̂ − p3−̂ ¼ qðaÞ−̂ ¼ −qðbÞ−̂ ; ð74aÞ

q⊥ ≡ p1⊥ − p3⊥ ¼ qðaÞ
⊥ ¼ −qðbÞ

⊥ ; ð74bÞ

qþ̂ ≡ p1þ̂ − p3þ̂ ¼ −ðp2þ̂ − p4þ̂Þ; ð74cÞ

we have

QðaÞ
þ̂ ¼ −Sq−̂ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂ þ Cq2⊥

p
C

¼ −Sq−̂ þQþ̂

C
; ð75Þ

QðbÞ
þ̂ ¼ Sq−̂ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂ þ Cq2⊥

p
C

¼ Sq−̂ þQþ̂

C
: ð76Þ

Since both Θ̂ðq−̂Þ and Θ̂ð−q−̂Þ are unity forC ≠ 0,ΠðaÞ
μ̂ ν̂ and

ΠðbÞ
μ̂ ν̂ can be rewritten as

ΠðaÞ
μ̂ ν̂ ¼ 1

2Qþ̂
i ~T μ̂ ν̂C

Cqþ̂ þ Sq−̂ −Qþ̂ ¼ 1

2Qþ̂
i ~T μ̂ ν̂C

qþ̂ −Qþ̂ ; ð77aÞ

ΠðbÞ
μ̂ ν̂ ¼ −

1

2Qþ̂
i ~T μ̂ ν̂C

Cqþ̂ þ Sq−̂ þQþ̂ ¼ −
1

2Qþ̂
i ~T μ̂ ν̂C

qþ̂ þQþ̂ :

ð77bÞ

Summing all contributions, we use Eqs. (10), (71), and (72)
to verify
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ΠðaÞ
μ̂ ν̂ þ ΠðbÞ

μ̂ ν̂ þ ΠðcÞ
μ̂ ν̂ ¼ i ~T μ̂ ν̂C

ðqþ̂Þ2 − ðQþ̂Þ2 þ
inμ̂nν̂

q2⊥Cþ q2−̂

¼ i ~T μ̂ ν̂

q2
þ inμ̂nν̂
q2⊥Cþ q2−̂

¼ −igμ̂ ν̂
q2

: ð78Þ

It is clear from this derivation that the contribution from the
instantaneous interaction is cancelled by the corresponding
nμ̂nν̂ term in the transverse photon propagator and the sum
of all the contributions is totally Lorentz invariant.
For C ¼ 0, Θ̂ðq−̂Þ and Θ̂ð−q−̂Þ are neither unity nor the

same as each other. Thus, we need to look into the details of
each contribution in Eqs. (73a), (73b), and (73c) very
carefully to understand the Lorentz invariance of the total
amplitude. Taking C ¼ 0 in Eqs. (73a), (73b), and (73c),
we get

ΠðaÞ
μν ¼ 1

2qþ
ið−gμν − q2nμnν

ðqþÞ2 ÞΘðqþÞ
p−
1 − p−

3 − q2⊥
2qþ

; ð79aÞ

ΠðbÞ
μν ¼ −

1

2jqþj
ið−gμν − q2nμnν

ðqþÞ2 ÞΘð−qþÞ
p−
1 − p−

3 þ q2⊥
2jqþj

; ð79bÞ

ΠðcÞ
μν ¼ inμnν

qþ2
; ð79cÞ

where qþ ¼ pþ
1 − pþ

3 and of course the conservation of
total light-front (LF) energy in the initial and final states is
imposed such as p−

1 − p−
3 ¼ p−

4 − p−
2 . In this case, the

contribution from the LF time-ordered process (a) or (b) in
Fig. 1 depends on the values of external momenta pþ

1 and
pþ
3 , i.e., whether p

þ
1 > pþ

3 or pþ
1 < pþ

3 . As indicated by
ΘðqþÞ and Θð−qþÞ in Eqs. (79a) and (79b), once the
external kinematic situation is given, only one of these two
LF time-ordered processes contributes. For example, if
pþ
1 > pþ

3 , then only (a) contributes. Similarly, if pþ
1 < pþ

3 ,
then only (b) contributes. This is dramatically different
from the C ≠ 0 case in which both (a) and (b) contribute
regardless of p1−̂ > p3−̂ or p1−̂ < p3−̂. The limiting case
C → 0 will be separately discussed later after this dis-
cussion of LFD, i.e., C ¼ 0. Although either (a) or (b) (not
both) contributes to the total amplitude, the Lorentz
invariance of the total amplitude is assured in LFD. For
example, if pþ

1 > pþ
3 , then the sum of all contributions is

given by

ΠðaÞ
μν þ ΠðcÞ

μν ¼ 1

2qþ
ið−gμν − q2nμnν

ðqþÞ2 Þ
p−
1 − p−

3 − q2⊥
2qþ

þ inμnν
qþ2

¼
ið−gμν − q2nμnν

ðqþÞ2 Þ
2qþq− − q2⊥

þ inμnν
qþ2

¼ −igμν
q2

; ð80Þ

where p−
1 − p−

3 ¼ q− since the 4-momentum transfer q is
assigned as p1 − p3. As in the C ≠ 0 case, the contribution
from the instantaneous interaction is cancelled by the
corresponding nμnν term in the transverse photon propa-
gator, and the sum of all the contributions is totally Lorentz

invariant. Similarly, if pþ
1 < pþ

3 , then ΠðaÞ
μν is replaced by

ΠðbÞ
μν with jqþj ¼ −qþ, and the sum ΠðbÞ

μν þ ΠðcÞ
μν ¼ −igμν

q2 is

totally Lorentz invariant.
Now, let us consider the limit C → 0 (i.e., δ → π=4 or

S → 1) from the C ≠ 0 case given by Eqs. (77a) and
(77b), where we take qþ̂ → qþ ¼ q−; q−̂ → q− ¼ qþ,
and Qþ̂ → Qþ ¼ qþ. To obtain the correct limits, we
need to make a careful expansion. For qþ ¼pþ

1 −pþ
3 > 0,

we get

Cqþ̂ þ Sq−̂ −Qþ̂ ¼ Cqþ̂ þ Sq−̂ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂ þ Cq2⊥

q

→ Cq− þ qþ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ2 þ Cq2⊥

q

→ Cq− − C
q2⊥
2qþ

þOðC2Þ; ð81Þ

Cqþ̂ þ Sq−̂ þQþ̂ → 2qþ þ Cqþ þ C
q2⊥
2qþ

þOðC2Þ;

ð82Þ

~T μ̂ ν̂ → −gμν − 2
q− − q2⊥

2qþ

qþ
nμnν: ð83Þ

Thus, in the limit C → 0 for pþ
1 > pþ

3 , Eqs. (77a), (77b),
and (73c) become

ΠðaÞ
μν ¼ i ~T μ̂ ν̂

2qþ
1

q− − q2⊥
2qþ

¼ −i
gμν
2qþ

1

q− − q2⊥
2qþ

− i
nμnν
ðqþÞ2 ; ð84aÞ

ΠðbÞ
μν ¼ lim

C→0

−i ~T μ̂ ν̂

2qþ
C

2qþ þ Cqþ þ C q2⊥
qþ

→ 0; ð84bÞ

ΠðcÞ
μν ¼ inμnν

ðqþÞ2 : ð84cÞ
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This shows the agreement between the C ¼ 0 result and
the C → 0 result for the kinematic situation pþ

1 > pþ
3 . Note

here that ΠðbÞ
μν ¼ 0 was given in LFD (C ¼ 0) via the factor

Θð−qþÞ in Eq. (79b), while ΠðbÞ
μν → 0 as C → 0 in

Eq. (84b) is obtained without the factor Θð−qþÞ.
Similarly, the agreement between the C ¼ 0 result and
the C → 0 result is also found for the kinematic situation
pþ
1 < pþ

3 following the procedure described above.
Having shown the agreement between the C ¼ 0 result

and the C → 0 result for the kinematic situation pþ
1 ≠ pþ

3 ,
let us now consider the special kinematic situation
pþ
1 ¼ pþ

3 . If this kinematic situation is provided with the
nonzero values of pþ

1 and pþ
3 , i.e., p

þ
1 ¼ pþ

3 ≠ 0, then the
LF time-ordered processes (a) and (b) are indistinguishable,

and the results of ΠðaÞ
μν and ΠðbÞ

μν given by Eqs. (79a) and
(79b), respectively, are identical with the factor
Θðqþ ¼ −qþ ¼ 0Þ ¼ 1=2. We also find that the limit
C → 0 of Eqs. (77a) and (77b) agree with these results,
precisely yielding the 1=2 factor both for (a) and (b)
contributions as in the C ¼ 0 result. Thus, both in C ¼ 0
and the limit C → 0, the total amplitude is given by

ΠðaÞ
μν þ ΠðbÞ

μν þ ΠðcÞ
μν ¼ −igμν

q2
; ð85Þ

where q2 ¼ −q2⊥ and the divergent instantaneous interac-
tion is cancelled by the corresponding divergent nμnν term
in the transverse photon propagator.
The LFD results at exact C ¼ 0 are attainable for all the

kinematic regions that we discussed in this subsection so
far, i.e., pþ

1 > pþ
3 , p

þ
1 < pþ

3 , and pþ
1 ¼ pþ

3 ≠ 0. However,
the agreement between the two, i.e., the LFD vs the limit
to the LFD, should be looked into more carefully for
the case pþ

1 ¼ pþ
3 ¼ 0. This special kinematic situation

pþ
1 ¼ pþ

3 ¼ 0 involves the discussion of the infinite
momentum frame (IMF) with Pz → −∞, since all the plus
momenta go to zero in this frame. Presenting the numerical
results with the frame dependence of the time-ordered
amplitudes in the next section, we will discuss a particular
case of correlating the two limits, C → 0 and qþ → 0, in
conjunction with the J-shaped correlation coined in our
previous work [21]. As we show in the next section, the
results in the limit C → 0 following the J curve are different
from those in the LFD or at the exact C ¼ 0.

V. FRAME DEPENDENCE AND INTERPOLATION ANGLE DEPENDENCE
OF TIME-ORDERED AMPLITUDES

In this section, we numerically compute the scattering amplitudes shown in Fig. 1 and discuss both the frame dependence
and the interpolation angle dependence of each and every xþ̂-ordered amplitude. Putting Eqs. (73a), (73b), and (73c) back
into Eq. (70), we have the time-ordered amplitudes in the form

MðaÞ ¼ − ð−ieÞ2 ½p24 · p13 þ pþ̂
24p

þ̂
13q

2=ðQþ̂Þ2�CΘ̂ðp1−̂ − p3−̂Þ
2Qþ̂ðqþ̂ −Qþ̂Þ ; ð86aÞ

MðbÞ ¼ ð−ieÞ2 ½p24 · p13 þ pþ̂
24p

þ̂
13q

2=Qþ̂Þ2�CΘ̂ðp3−̂ − p1−̂Þ
2Qþ̂ðqþ̂ þQþ̂Þ ; ð86bÞ

MðcÞ ¼ ð−ieÞ2 p
þ̂
24p

þ̂
13

ðQþ̂Þ2 ; ð86cÞ

where

p24 ¼ p2 þ p4; ð87aÞ

p13 ¼ p1 þ p3: ð87bÞ

As we have shown in the last section, the sum of these three
xþ̂-ordered amplitudes agrees with the manifestly invariant
total amplitude regardless of whether C ≠ 0 or C ¼ 0:

M ¼ Σj¼a;b;cMðjÞ ¼ −ð−ieÞ2 p24p13

q2
: ð88Þ

To investigate the frame dependence of these amplitudes,
we first look at how they change under different trans-
formations. From Eq. (16a), one can see that, when β3 ¼ 0,
T†
12P

þ̂T12 ¼ Pþ̂. So under the kinematic transformation
T12, all the þ̂ components, namely, qþ̂, Qþ̂, pþ̂

13, and

pþ̂
24, remain the same. We also note that the factors of

CHUENG-RYONG JI, ZIYUE LI, AND ALFREDO TAKASHI SUZUKI PHYSICAL REVIEW D 91, 065020 (2015)

065020-14



Θ̂ðp1−̂ − p3−̂Þ and Θ̂ðp3−̂ − p1−̂Þ are invariant under T12

because these factors are unity for C ≠ 0 and become
Θðpþ

1 − pþ
3 Þ and Θðpþ

3 − pþ
1 Þ, respectively, for C ¼ 0.

Thus, all three xþ̂-ordered amplitudes are invariant under
T12 regardless of the C values as they should be.
Now, applying the longitudinal boost T3 to the three

time-ordered amplitudes, we note that the operator K3 ¼
Mþ̂ −̂ changes its characteristic from dynamic for C ≠ 0 to
kinematic in the light front (C ¼ 0) as shown in Table I,
which summarizes the set of kinematic and dynamic
generators depending on the interpolation angle. We
mentioned this point in Sec. II and provided its elaborate
discussion in Refs. [20,21]. In applying T3 ¼ e−iK3β

3

, we
thus distinguish the values of C between C ≠ 0 and C ¼ 0.
We first consider the C ≠ 0 case and later compare the
results in this case with the LFD (C ¼ 0) results.
For the kinematics of our two-body scattering process

analogous to eμ → eμ, we choose the scattering plane as
the x − z plane and the directions of the initial two particles
as the parallel/antiparallel to the z axis such that p1⊥ ¼
p2⊥ ¼ 0 as shown in Fig. 1. In the center-of-momentum
frame (CMF), we have pz

1 ¼ −pz
2 ≡ p, ϵ1 ≡ p0

1 ¼ p0
3 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
1

p
, ϵ2≡p0

2¼p0
4¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

2

p
, and M ≡ ϵ1 þ ϵ2,

where we denote the total energy in the CMF as M for the
convenience in the later discussion. We should note that the
invariant Mandelstam variable s ¼ ðp1 þ p2Þ2 is given by
M2. The final 4-momenta p3 and p4 of the particles that are
going back to back at angle θ in the CMF are depicted in
Fig. 1. Correspondingly, the 4-momenta of the initial and
final particles in the CMF are given by

p1 ¼ ðϵ1; 0; 0; pÞ; ð89aÞ

p2 ¼ ðϵ2; 0; 0;−pÞ; ð89bÞ

p3 ¼ ðϵ1; p sin θ; 0; p cos θÞ; ð89cÞ

p4 ¼ ðϵ2;−p sin θ; 0;−p cos θÞ: ð89dÞ

To discuss the longitudinal boost (T3) effect on time-
ordered scattering amplitudes, let us now boost the whole
system to the total momentum Pz. From the Lorentz
transformation for a composite free particle system, we
know that the total energy in the new frame is
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPzÞ2 þM2

p
. The Lorentz transformation for each

pi ði ¼ 1; 2; 3; 4Þ can then be described in terms of γ ¼
E=M and γβ ¼ Pz=M:

p00
i ¼ γp0

i þ γβpz
i ð90aÞ

p0z
i ¼ γpz

i þ γβp0
i ð90bÞ

p0⊥
i ¼ p⊥

i : ð90cÞ

The boosted 4-momentum transfer can therefore bewritten as

q0x ¼ p0x
1 − p0x

3 ¼ −p sin θ; ð91aÞ

q0y ¼ p0y
1 − p0y

3 ¼ 0; ð91bÞ

q0z ¼ p0z
1 − p0z

3 ¼
E
M

pð1 − cos θÞ; ð91cÞ

q00 ¼ p00
1 − p00

3 ¼
Pz

M
pð1 − cos θÞ; ð91dÞ

whereM andE are functions ofm1,m2,p, andPz.We canuse
these 4-momentum components given by Eq. (91) and apply
Eq. (6) to form q0μ̂ and q0μ̂ for any interpolation angle.
Equation (90) can also be used together with Eqs. (6) and (87)
to express all the components of the boosted 4-momenta.
Computing p0

24 · p0
13 and plugging it with other factors such

as p0þ̂
24 p

0þ̂
13 and q

0
μ̂ into Eq. (71) and subsequently Eq. (86),

we get the interpolating time-ordered amplitudes M0ðjÞ in a
boosted frame. In the CMF, all of these amplitudes are then
given by functions of each particle’s initial momentum
pð−pÞ, individual particle’s rest mass m1 and m2, scattering
angle θ, the totalmomentumPz, and the interpolation angle δ.
For given values of m1; m2; p, and θ, the xþ̂-ordered
amplitudes are dependent on the frame (Pz) and the inter-
polation angle (δ or C).
To exhibit this feature quantitatively, we choose m1 ¼ 1,

m2 ¼ 2, and p ¼ 3, in the same energy unit (i.e., m2 and p
scaled bym1), and θ ¼ π=3. For simplicity, we also take the
charge e to be 1 unit in our calculation. In Fig. 2, we plot
MðaÞ, MðbÞ, MðcÞ as well as the sum of all three
amplitudes MðtotÞ as functions of both the interpolation
angle δ and the total momentum Pz to reflect not only the
interpolation angle dependence but also the frame depend-
ence. The total amplitude MðtotÞ shown in Fig. 2 is both
frame independent and interpolation angle independent as
it should be.
The detailed structures of these three time-ordered

diagrams are very interesting. Just like in the ϕ3 toy model
theory studied in Ref. [21], the Pz > 0 region is smooth for
all three amplitudes, while a J-shaped correlation curve
exists in the Pz < 0 region, which we plotted as the red
solid line in Fig. 2. This is the curve that starts out in the
center-of-mass frame (Pz ¼ 0) in the δ ¼ 0 limit but
maintains the same value of the amplitude throughout
the whole range of the interpolation angle. The values
maintained by these curves can be found for arbitrary m1,
m2, p, and θ and are given by

MðaÞ ¼ MðbÞ ¼ −
cot2 θ

2

2
; ð92aÞ

MðcÞ ¼ −
ϵ1ϵ2

p2 sin2 θ
2

: ð92bÞ
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Again, ϵi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

i

p
ði ¼ 1; 2Þ, and the charge e in

Eq. (86) is taken as 1 unit.
In Fig. 3, we plot the profiles of MðaÞ, MðbÞ, and MðcÞ

in the IFD (C ¼ 1 or δ ¼ 0) for the given values of
m1; m2; p, and θ and depict the starting point of the J
curve corresponding to the values ofMðaÞ,MðbÞ, andMðcÞ

at Pz ¼ 0 given by Eqs. (92). The maxima for MðaÞ and
MðbÞ stay in the Pz > 0 and Pz < 0 regions, respectively,
but as the scattering angle θ approaches 0, the maximum for
MðaÞ and MðbÞ will move toward Pz ¼ 0. As the J curve
does not track the maximum or the minimum in MðaÞ and
MðbÞ, we note that the J curve does not track the maximum
of the surface MðcÞ either.
It is interesting to note that the J curve itself does not

change with the scattering angle θ. In fact, we find that it
follows exactly the same formula as the one we found in the
ϕ3 theory [21],

Pz

M
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − CÞ
2C

r
; ð93Þ

where M2 is identical to the invariant Mandelstam variable
s ¼ ðp1 þ p2Þ2, i.e., M ¼ ffiffiffi

s
p

. We note that the J curve is
“universal” in the sense that it does not depend on the
specific kinematics like the scattering angle or particle
masses but scales with

ffiffiffi
s

p
.

If we follow this J curve plotted as the red solid line in
Fig. 2, we see that, as C → 0 or δ → π=4, it is pushed to
Pz → −∞, and the constant values given by Eq. (92) are
maintained throughout the curve. On the other hand, the
xþ-ordered light-front amplitudes are invariant under the
longitudinal boost T3 ¼ e−iK3β

3

, and thus each of MðaÞ,
MðbÞ, and MðcÞ shows up individually as a constant
independent of Pz along the δ ¼ π=4 or C ¼ 0 line in
Fig. 2. Thus, the values of MðaÞ, MðbÞ, and MðcÞ in the
limit C → 0 following the J curve are different from those
in the LFD, i.e., at the exact C ¼ 0. This brings up our
discussion in the last subsection, Sec. IV C, about the issue
of whether the LFD results with the exact C ¼ 0 can be
reproduced by taking the limit C → 0. Because all the plus
components of the particle momenta vanish in the limit
Pz → −∞, we should look closely at the kinematic
situation pþ

1 ¼ pþ
3 ¼ qþ ¼ 0, the discussion of which

we have postponed until now in Sec. IV C.
Since the details of each contribution depend on the

values of C and Pz, the results are in general dependent on
the order of taking the limits to C → 0 and Pz → −∞. In
particular, if C ¼ 0 is taken first, then the results must be
independent of the Pz values due to the longitudinal boost
invariance in the LFD as discussed before, and the result at
Pz ¼ −∞ is identical to that for any other Pz value.
However, if we take Pz → −∞ first and consider C → 0,
then we should first examine the C ≠ 0 results in the
Pz → −∞ limit with great care. We begin with the

FIG. 2 (color online). Time-ordered amplitudes MðaÞ, MðbÞ,
and MðcÞ for m1 ¼ 1; m2 ¼ 2; p ¼ 3, and θ ¼ π=3 and their
sum MðtotÞ.
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discussion on the C ¼ 1 (i.e., the IFD) results and vary the
interpolation angle from δ ¼ 0 to δ → π=4.
As shown in Figs. 2 and 3, each of the time-ordered

amplitudes MðaÞ, MðbÞ, and MðcÞ at C ¼ 1ðδ ¼ 0Þ is not
symmetric under the reflection of Pz → −Pz. Although the
IFD results coincide with the LFD results as Pz → ∞, they
do not agree in the limit Pz → −∞ as shown in Fig. 2.
Thus, the prevailing notion of the equivalence between the
IFD and LFD in the IMF should be taken with a great
caution since it works for the limit of Pz → ∞ but not in the
limit Pz → −∞. We have already discussed the treachery in
taking the limit Pz → −∞ even for the amplitudes with the
reflection symmetry under Pz ↔ −Pz in the IFD such as
the scalar annihilation process analogous to QED eþe− →
μþμ− in our previous work [21]. The present analysis of the
sQED scattering process analogous to QED eμ → eμ
provides a clear example of breaking the reflection sym-
metry under Pz ↔ −Pz in the IFD and fortifies the
clarification of the confusion in the folklore of the equiv-
alence between the IMF and the LFD. As we vary the
interpolation angle from δ ¼ 0 and approach to δ ¼ π=4,
this broken reflection symmetry under Pz ↔ −Pz persists
while the LFD results are symmetric under Pz ↔ −Pz due
to the longitudinal boost invariance discussed previously.
The J-curve correlation between Pz andC given by Eq. (93)
provides a simultaneous limit of Pz ∼ −1=C1=2 → −∞ as
C → 0, and the corresponding results of MðaÞ, MðbÞ, and
MðcÞ are uniquely given by Eqs. (92a) and (92b). As
mentioned earlier, the numerical values along the J curve
plotted as the red solid line in Fig. 2 are identical all the way
to the Pz → −∞ limit, and thus the clear distinction is
manifest between the results in the C → 0 limit with the
J-curve correlation and the LFD results with the exact
C ¼ 0. Since the J curve exists only for Pz < 0, it is also
self-evident that the broken reflection symmetry under
Pz ↔ −Pz still persists for the correlated limit of Pz ∼
−1=C1=2 → −∞ and the results obtained in this limit must

be different from the LFD results. Therefore, the limit
Pz → −∞ is treacherous and requires great caution in
taking the light-front limit from C ≠ 0. As it must be,
however, the sum of all time-ordered amplitudes MðtotÞ ¼
MðaÞ þMðbÞ þMðcÞ is completely independent of C and
Pz. The total amplitude MðtotÞ is of course identical
regardless of whether C is exactly zero or not, however
the limit Pz → −∞ is taken.
Finally, we also calculated the time-ordered scattering

amplitudes discussed in this section for the scalar ϕ3 theory
that was used in our previous work [21] and summarized
the results in Appendix D for a comparison with the sQED
results. For completeness in comparing the results between
the ϕ3 theory and sQED, the time-ordered annihilation
amplitudes for sQED are summarized also in Appendix E.

VI. SUMMARY AND CONCLUSION

In this work, we extended the interpolating scattering
amplitudes introduced for the scalar field theory [21] to the
sQED theory to discuss the electromagnetic gauge degree
of freedom interpolated between the IFD and the LFD.
We developed the electromagnetic gauge field propagator
interpolated between the IFD and the LFD and found that
the light-front gauge Aþ ¼ 0 in the LFD is naturally linked
to the Coulomb gauge ∇ ·A ¼ 0 in the IFD. We identified
the dynamical degrees of freedom for the electromagnetic
gauge fields as the transverse photon fields and clarified the
equivalence between the contribution of the instantaneous
interaction and the contribution from the longitudinal
polarization of the virtual photon.
Our results for the gauge propagator and time-ordered

diagrams clarified whether one should choose the two-term
form [8] or the three-term form [25–27] for the gauge
propagator in the LFD. Our transverse photon propagator in
the LFD assumes the three-term form, but the third term
cancels the instantaneous interaction contribution. Thus,
one can use the two-term form of the gauge propagator for
effective calculation of amplitudes if one also omits the
instantaneous interaction from the Hamiltonian. But if one
wants to show equivalence to the covariant theory, all three
terms should be kept because the instantaneous interaction
is a natural result of the decomposition of Feynman
diagrams, and the third term in the propagator is necessary
for the total amplitudes to be covariant. We also see that the
photon propagator was derived according to the generalized
gauge that links the Coulomb gauge to light-front gauge,
and thus the three-term form appears appropriate in order to
be consistent with the appropriate gauge.
Using the interpolating photon propagator, we computed

the lowest-order scattering process such as an analog of the
well-known QED process eμ → eμ in sQED and analyzed
the three corresponding xþ̂-ordered diagrams, two of which
are associated with the transverse propagating photon
and one of which is associated with the instantaneous

M (a)

M (b)

M (c)

40 20 20 40
P z

10

5

5

FIG. 3 (color online). Time-ordered amplitudes MðaÞ, MðbÞ,
and MðcÞ as a function of the total momentum Pz at the instant
form limit (δ ¼ 0). The red dots on the Pz ¼ 0 axis denote the
starting position of the J curves on each surface.
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interaction. We analyzed both the frame and interpolation
angle dependence of each xþ̂-ordered diagram including
the instantaneous interaction, varying the total momentum
Pz of the system and the interpolation angle parameter
C ¼ cos 2δ. Our analysis provided a clear example of
breaking the reflection symmetry under Pz ↔ −Pz in
the IFD and clarified the confusion in the folklore of the
equivalence between the IMF and the LFD. As we vary the
interpolation angle from δ ¼ 0 (C ¼ 1) and approach to
δ ¼ π=4 (C ¼ 0), this broken reflection symmetry under
Pz ↔ −Pz persists while the LFD results are symmetric
under Pz ↔ −Pz due to the longitudinal boost invariance.
Moreover, the universal correlation between Pz and C
given by Eq. (93) that was coined as the J curve in our
previous work [21] is intact in each of these xþ̂-ordered
diagrams as plotted by the red solid line in Fig. 2. The
J curve starts out from the center-of-mass frame in
the instant form and goes to Pz ¼ −∞ as it approaches
to the light-front limit. This correlation is independent of
the specific kinematics of the scattering process and
manifests the difference in the results between the light-
front limit and the exact light-front (LFD). Since the J curve
exists only for Pz < 0, it is also self-evident that the broken
reflection symmetry under Pz ↔ −Pz still persists for the

correlated limit of Pz ∼ −1=C1=2 → −∞ and the results
obtained in this limit must be different from the LFD
results. The J curve not only provides a representative
characterization of how the xþ̂-ordered amplitudes change
from the IFD to the LFD but also gives rise to the issue of
zero modes at Pz ¼ −∞ since all the plus momenta of
particles vanish in this limit. The limit Pz → −∞ is thus
treacherous and requires a great caution in taking the light-
front limit from C ≠ 0. The sum of all xþ̂-ordered ampli-
tudes is, however, completely independent ofC and Pz, and
its full manifest Poincaré invariance provides a useful
guidance in handling the treacherous zero-mode issue.
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APPENDIX A: DERIVATION OF PHOTON
POLARIZATION VECTORS

We use the explicit 4-vector representation of K and J
operators given by

K1 ¼

0
BBBB@

0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

1
CCCCA; K2 ¼

0
BBBB@

0 0 i 0

0 0 0 0

i 0 0 0

0 0 0 0

1
CCCCA; K3 ¼

0
BBBB@

0 0 0 i

0 0 0 0

0 0 0 0

i 0 0 0

1
CCCCA;

J1 ¼

0
BBBB@

0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0

1
CCCCA; J2 ¼

0
BBBB@

0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0

1
CCCCA; J3 ¼

0
BBBB@

0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

1
CCCCA: ðA1Þ

Upon the application of T transformation given by Eq. (15) with the above 4-vector representation for operatorsK and J,
we find the polarization vectors:

ϵμ̂ðP;þÞ¼−

2
6666666666664

sinδffiffiffi
2

p
�
β1 sinα

α
−
iβ2 sinα

α

�

Cffiffiffi
2

p
�
β22þβ21 cosα

α2
þ iβ1β2ð−1þ cosαÞ

α2

�

Cffiffiffi
2

p
�
β1β2ð−1þ cosαÞ

α2
þ iðβ21þβ22 cosαÞ

α2

�

−
cosδffiffiffi

2
p

�
β1 sinα

α
þ iβ2 sinα

α

�

3
7777777777775

; ϵμ̂ðP;−Þ¼

2
6666666666664

sinδffiffiffi
2

p
�
β1 sinα

α
þ iβ2 sinα

α

�

Cffiffiffi
2

p
�
β22þβ21 cosα

α2
−
iβ1β2ð−1þ cosαÞ

α2

�

Cffiffiffi
2

p
�
β1β2ð−1þ cosαÞ

α2
−
iðβ21þβ22 cosαÞ

α2

�

−
cosδffiffiffi

2
p

�
β1 sinα

α
−
iβ2 sinα

α

�

3
7777777777775

;

ðA2Þ
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ϵμ̂ðP; 0Þ ¼

2
66666666664

cos δðsin δ cosh β3 þ cos δ sinh β3Þ − sin δ cos αðcos δ cosh β3 þ sin δ sinh β3Þ
C

β1 sin αðsin δ cosh β3 þ cos δ sinh β3Þ
α

β2 sin αðsin δ cosh β3 þ cos δ sinh β3Þ
α

cos δ cos αðcos δ cosh β3 þ sin δ sinh β3Þ − sin δðsin δ cosh β3 þ cos δ sinh β3Þ
C

3
77777777775
: ðA3Þ

Using the relations listed in Eqs. (18) and (19) and multiplying the transverse polarization vectors ϵμ̂ðP;�Þ with the phase

factor P1∓P2

jP⊥j to simplify, we arrive at the following polarization vectors for the 4-momentum Pμ:

ϵμ̂ðP;þÞ ¼ −
1ffiffiffi
2

p
P

�
sin δjP⊥j;

P1P−̂ − iP2P
jP⊥j

;
P2P−̂ þ iP1P

jP⊥j
;− cos δjP⊥j

�
; ðA4Þ

ϵμ̂ðP;−Þ ¼
1ffiffiffi
2

p
P

�
sin δjP⊥j;

P1P−̂ þ iP2P
jP⊥j

;
P2P−̂ − iP1P

jP⊥j
;− cos δjP⊥j

�
; ðA5Þ

ϵμ̂ðP; 0Þ ¼
1

MP

�
P2 cos δ − P−̂Pþ̂ sin δ

C
; P1Pþ̂; P2Pþ̂;

Pþ̂P−̂ cos δ − P2 sin δ
C

�
: ðA6Þ

The polarization vectors listed above are written in the form ϵμ̂ðP; λÞ ¼ ðϵ0; ϵ1; ϵ2; ϵ3Þ. We then change the basis to
ðϵþ̂; ϵ1; ϵ2; ϵ−̂Þ using the relations listed in Eq. (7). Finally, we obtain the polarization vectors given by Eq. (22),

ϵμ̂ðP;þÞ ¼ −
1ffiffiffi
2

p
P

�
SjP⊥j;

P1P−̂ − iP2P
jP⊥j

;
P2P−̂ þ iP1P

jP⊥j
;−CjP⊥j

�
; ðA7aÞ

ϵμ̂ðP;−Þ ¼
1ffiffiffi
2

p
P

�
SjP⊥j;

P1P−̂ þ iP2P
jP⊥j

;
P2P−̂ − iP1P

jP⊥j
;−CjP⊥j

�
; ðA7bÞ

ϵμ̂ðP; 0Þ ¼
Pþ̂

MP

�
Pþ̂ −

M2

Pþ̂ ; P1; P2; P−̂

�
; ðA7cÞ

where the relation P2 ¼ ðPþ̂Þ2 −M2C is used to derive
the first component of ϵμ̂ðP; 0Þ.

APPENDIX B: T μ̂ ν̂ AND Lμ̂ ν̂ DERIVED
DIRECTLY FROM THE INTERPOLATING

POLARIZATION VECTORS

In this Appendix, we derive the numerator of the photon
propagator directly from the polarization vectors listed in
Eqs. (22) and (A7).
We evaluate the relevant matrix elements. With the

4-momentum P ¼ q for the virtual photon, these are, for
λ ¼ þ1,

ϵ�þ̂ðq; λ ¼ þÞϵþ̂ðq; λ ¼ þÞ ¼ S2jq⊥j2
2Q2

; ðB1Þ

ϵ�þ̂ðq; λ ¼ þÞϵ1ðq; λ ¼ þÞ ¼ Sðq−̂q1 − iq2QÞ
2Q2

; ðB2Þ

ϵ�þ̂ðq; λ ¼ þÞϵ2ðq; λ ¼ þÞ ¼ Sðq−̂q2 þ iq1QÞ
2Q2

; ðB3Þ

ϵ�þ̂ðq; λ ¼ þÞϵ−̂ðq; λ ¼ þÞ ¼ −
CSjq⊥j2
2Q2

; ðB4Þ

ϵ�−̂ðq; λ ¼ þÞϵþ̂ðq; λ ¼ þÞ ¼ −
CSjq⊥j2
2Q2

; ðB5Þ

ϵ�−̂ðq; λ ¼ þÞϵ1ðq; λ ¼ þÞ ¼ −
Cðq−̂q1 − iq2QÞ

2Q2
; ðB6Þ

ϵ�−̂ðq; λ ¼ þÞϵ2ðq; λ ¼ þÞ ¼ −
Cðq−̂q2 þ iq1QÞ

2Q2
; ðB7Þ

ϵ�−̂ðq; λ ¼ þÞϵ−̂ðq; λ ¼ þÞ ¼ C2jq⊥j2
2Q2

; ðB8Þ
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ϵ�1ðq; λ ¼ þÞϵþ̂ðq; λ ¼ þÞ ¼ Sðq−̂q1 þ iq2QÞ
2Q2

; ðB9Þ

ϵ�1ðq; λ ¼ þÞϵ1ðq; λ ¼ þÞ ¼ q2−̂q
2
1 þ q22Q

2

2jq⊥j2Q2
; ðB10Þ

ϵ�1ðq; λ ¼ þÞϵ2ðq; λ ¼ þÞ ¼ −Cq1q2 þ iq−̂Q
2Q2

; ðB11Þ

ϵ�1ðq; λ ¼ þÞϵ−̂ðq; λ ¼ þÞ ¼ −Cðq−̂q1 þ iq2QÞ
2Q2

; ðB12Þ

ϵ�2ðq; λ ¼ þÞϵþ̂ðq; λ ¼ þÞ ¼ Sðq−̂q2 − iq1QÞ
2Q2

; ðB13Þ

ϵ�2ðq; λ ¼ þÞϵ1ðq; λ ¼ þÞ ¼ −Cq1q2 − iq−̂Q
2Q2

; ðB14Þ

ϵ�2ðq; λ ¼ þÞϵ2ðq; λ ¼ þÞ ¼ q2−̂q
2
2 þ q21Q

2

2jq⊥j2Q2
; ðB15Þ

ϵ�2ðq; λ ¼ þÞϵ−̂ðq; λ ¼ þÞ ¼ −Cðq−̂q2 − iq1QÞ
2Q2

; ðB16Þ

and for λ ¼ −1,

ϵ�þ̂ðq; λ ¼ −Þϵþ̂ðq; λ ¼ −Þ ¼ S2jq⊥j2
2Q2

; ðB17Þ

ϵ�þ̂ðq; λ ¼ −Þϵ1ðq; λ ¼ −Þ ¼ Sðq−̂q1 þ iq2QÞ
2Q2

; ðB18Þ

ϵ�þ̂ðq; λ ¼ −Þϵ2ðq; λ ¼ −Þ ¼ Sðq−̂q2 − iq1QÞ
2Q2

; ðB19Þ

ϵ�þ̂ðq; λ ¼ −Þϵ−̂ðq; λ ¼ −Þ ¼ −
CSjq⊥j2
2Q2

; ðB20Þ

ϵ�−̂ðq; λ ¼ −Þϵþ̂ðq; λ ¼ −Þ ¼ −
CSjq⊥j2
2Q2

; ðB21Þ

ϵ�−̂ðq; λ ¼ −Þϵ1ðq; λ ¼ −Þ ¼ −
Cðq−̂q1 þ iq2QÞ

2Q2
; ðB22Þ

ϵ�−̂ðq; λ ¼ −Þϵ2ðq; λ ¼ −Þ ¼ −
Cðq−̂q2 − iq1QÞ

2Q2
; ðB23Þ

ϵ�−̂ðq; λ ¼ −Þϵ−̂ðq; λ ¼ −Þ ¼ C2jq⊥j2
2Q2

; ðB24Þ

ϵ�1ðq; λ ¼ −Þϵþ̂ðq; λ ¼ −Þ ¼ Sðq−̂q1 − iq2QÞ
2Q2

; ðB25Þ

ϵ�1ðq; λ ¼ −Þϵ1ðq; λ ¼ −Þ ¼ q2−̂q
2
1 þ q22Q

2

2jq⊥j2Q2
; ðB26Þ

ϵ�1ðq; λ ¼ −Þϵ2ðq; λ ¼ −Þ ¼ −Cq1q2 − iq−̂Q
2Q2

; ðB27Þ

ϵ�1ðq; λ ¼ −Þϵ−̂ðq; λ ¼ −Þ ¼ −Cðq−̂q1 − iq2QÞ
2Q2

; ðB28Þ

ϵ�2ðq; λ ¼ −Þϵþ̂ðq; λ ¼ −Þ ¼ Sðq−̂q2 þ iq1QÞ
2Q2

; ðB29Þ

ϵ�2ðq; λ ¼ −Þϵ1ðq; λ ¼ −Þ ¼ −Cq1q2 þ iq−̂Q
2Q2

; ðB30Þ

ϵ�2ðq; λ ¼ −Þϵ2ðq; λ ¼ −Þ ¼ q2−̂q
2
2 þ q21Q

2

2jq⊥j2Q2
; ðB31Þ

ϵ�2ðq; λ ¼ −Þϵ−̂ðq; λ ¼ −Þ ¼ −Cðq−̂q2 þ iq1QÞ
2Q2

; ðB32Þ

where Q≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂ þ q2⊥C

p
.

By defining T μ̂ ν̂ ¼
P

λ¼þ;−ϵ
�
μ̂ðq; λÞϵν̂ðq; λÞ, we obtain

the following matrix form:

T μ̂ ν̂ ¼
1

Q2

0
BBB@

S2jq⊥j2 Sq−̂q1 Sq−̂q2 −CSjq⊥j2
Sq−̂q1 q2−̂ þ Cq22 −Cq1q2 −Cq−̂q1
Sq−̂q2 −Cq1q2 q2−̂ þ Cq21 −Cq−̂q2

−CSjq⊥j2 −Cq−̂q1 −Cq−̂q2 C2jq⊥j2

1
CCCA: ðB33Þ

This can be written in general as

T μ̂ ν̂ ¼ −gμ̂ ν̂ þ Xðqμ̂nν̂ þ nμ̂qν̂Þ þ Ynμ̂nν̂ þ Zqμ̂qν̂; ðB34Þ

where the coefficients X, Y, and Z can be fixed by comparing this equation with the explicit matrix form given by Eq. (B33).
We find
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X ¼ qþ̂

Q2
¼ ðq · nÞ

Q2
; ðB35aÞ

Y ¼ −
q2

Q2
; ðB35bÞ

Z ¼ −
C
Q2

: ðB35cÞ

Thus, our result agrees with Eq. (35) derived in the
main text.
Similar manipulation can be done for the longitudinal

part, Lμ̂ ν̂ ¼ ϵ�μ̂ðq; 0Þϵν̂ðq; 0Þ, yielding

Lμ̂ ν̂ ¼
ðqþ̂Þ2
ðqÞ2Q2

0
BBB@

L2 Lq1 Lq2 Lq−̂
Lq1 q21 q1q2 q−̂q1
Lq2 q1q2 q22 q−̂q2
Lq−̂ q−̂q1 q−̂q2 q2−̂

1
CCCA; ðB36Þ

where we introduced for convenience

L ¼ qþ̂ −
ðqÞ2
qþ̂

:

Notice that, because we are dealing with virtual photons,
we have replaced M2 by Pμ̂Pμ̂ ¼ q2 in the longitudinal
polarization vector given by Eq. (22c). Written in a general
form, this gives Eq. (39).

APPENDIX C: PHOTON PROPAGATOR
DECOMPOSITION ON THE LIGHT FRONT

Because C ¼ 0, there is only one pole at q2⊥=2qþ −
iϵ=2qþ for the first term in Eq. (42). When qþ > 0, the pole
is in the lower half-plane, and when qþ < 0, the pole is in
the upper half-plane. So, for the first term in Eq. (42), we
separate the qþ integral into two regions,

Z
d2q⊥
ð2πÞ4

�Z
∞

0

dqþe−iðqþx−−q⊥x⊥ÞI

þ
Z

0

−∞
dqþe−iðqþx−−q⊥x⊥ÞI

�
; ðC1Þ

where

I ¼
Z

∞

−∞
dq−e−iq

−xþ T μν

2q−qþ − q2⊥ þ iϵ
: ðC2Þ

To evaluate I, we close the contour in the plane where the
arc contribution is zero. This means we close the contour in
the upper (lower) half-plane when xþ < 0 (xþ > 0). For the
factor I in the first term of Eq. (C1), the only nonzero
contribution comes from the pole that is in the lower

half-plane, which is picked up when we close the contour
from below (xþ > 0). Similarly, for the factor I in the
second term of Eq. (C1), the only nonzero contribution
comes from the pole that is in the upper half-plane, which is
picked up when we close the contour from above (xþ < 0).
Thus, Eq. (C1) becomes

Z
d2q⊥
ð2πÞ4 T μν

�Z
∞

0

dqþe−iðqþx−−q⊥x⊥Þð−2πiÞΘðxþÞ e
−iHxþ

2qþ

þ
Z

0

−∞
dqþe−iðqþx−−q⊥x⊥Þð2πiÞΘð−xþÞ e

iHxþ

2qþ

�
; ðC3Þ

where H ¼ jq2⊥=2qþj.
We now make changes of the variables qþ → −qþ and

q⊥ → −q⊥ in the second term that is proportional to
Θð−xþÞ in order to have the limits on the qþ integral
become the same as the first term. We can then combine
these two terms. This gives us

i
Z

d2q⊥
ð2πÞ3

Z
∞

0

dqþ

2qþ
T μν½ΘðxþÞe−iHxþe−iðqþx−−q⊥x⊥Þ

þΘð−xþÞeiHxþeiðqþx−−q⊥x⊥Þ�

¼ i
Z

d2q⊥
ð2πÞ3

Z
∞

0

dqþ

2qþ
T μν½ΘðxþÞe−iqμxμ þΘð−xþÞeiqμxμ �:

ðC4Þ

Since we have made the change of variables and the qþ

cannot be negative anymore, we now have q− ¼ H ¼
q2⊥=2qþ in qμ.
The second term in Eq. (42) gives straightforwardly the

same result as the last term in Eq. (44), whereC ¼ 0 (LFD).
Putting everything together, we can write Eq. (42) in the
LFD as

i
Z

d2q⊥
ð2πÞ3

Z
∞

0

dqþ

2qþ
T μν½ΘðxþÞe−iqμxμ þ Θð−xþÞeiqμxμ �

þ iδðxþÞ
Z

d2q⊥
ð2πÞ3

Z
∞

−∞
dqþ

nμnν
qþ2

e−iðqþx−þq⊥x⊥Þ: ðC5Þ

APPENDIX D: TIME-ORDERED SCATTERING
AMPLITUDES FOR ϕ3 THEORY

In ϕ3 theory, the scattering shown in Fig. 1 involves the
exchange of the scalar particle. Ignoring the inessential
factors including the square of the coupling constant, we
can write the time-ordered scattering amplitudes as those
used in Ref. [21],

MðaÞ ¼ 1

2Qþ̂
1

qþ̂ −Qþ̂ ; ðD1aÞ
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MðbÞ ¼ −
1

2Qþ̂
1

qþ̂ þQþ̂ ; ðD1bÞ

where Qþ̂ is defined in Eq. (71).
We use the same kinematics used for the sQED case, i.e.,

q⊥ ¼ 0. Because the kinematics is the same, the boosted q0
satisfies the same equations as listed in Eq. (91). Using
Eq. (6), we can also get the boosted q0μ̂ and q0μ̂, which can
then be used to calculate the scattering amplitudes in the
boosted frame.
The amplitudes are given by the functions of m1, m2, p,

and θ. For comparison, we use the same parameter values
that we used for plotting Fig. 2 in sQED, i.e., m1 ¼ 1,
m2 ¼ 2, p ¼ 3, and θ ¼ π=3. MðaÞ and MðbÞ with the J
curve depicted by the solid red line are plotted in Fig. 4.
Comparing it to Fig. 2, we see that the photon propagator
modifies the profiles of the time-ordered amplitudes.

Nevertheless, the J curve remains the same and is still
given by Eq. (93).

APPENDIX E: TIME-ORDERED ANNIHILATION
AMPLITUDES IN sQED

For the sQED annihilation process analogous to eþe− →
μþμ− in QED, we can still use Fig. 1 for the kinematics.
Three time-ordered diagrams corresponding to the lowest-
order amplitudes are shown in Fig. 5. Here, the amplitude
of Eq. (70) changes to

iM ¼
X

j¼a;b;c

iMðjÞ

¼ ð−ieÞ2
X

j¼a;b;c

ðpμ̂
3 − pμ̂

4ÞΣðjÞ
μ̂ ν̂ðpν̂

1 − pν̂
2Þ: ðE1Þ

The time-ordered amplitudes are given by

MðaÞ ¼ − ð−ieÞ2 ½p34 · p12 þ pþ̂
34p

þ̂
12q

2=ðQþ̂Þ2�C
2Qþ̂ðqþ̂ −Qþ̂Þ ;

ðE2aÞ

(a) (b)

FIG. 4 (color online). Time-ordered scattering diagrams and
corresponding amplitudes for the ϕ3 theory.

(a) (b) (c)

FIG. 5 (color online). Time-ordered annihilation diagrams and
their amplitudes for sQED.
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MðbÞ ¼ð−ieÞ2 ½p34 · p12 þ pþ̂
34p

þ̂
12q

2=Qþ̂Þ2�C
2Qþ̂ðqþ̂ þQþ̂Þ ; ðE2bÞ

MðcÞ ¼ ð−ieÞ2 p
þ̂
34p

þ̂
12

ðQþ̂Þ2 ; ðE2cÞ

where

p34 ¼ p3 − p4; ðE3aÞ

p12 ¼ p1 − p2; ðE3bÞ

and q ¼ p1 þ p2. We use the same kinematics (CMF) as
before so that pi’s are given by

p1 ¼ ðϵ; 0; 0; pÞ; ðE4aÞ

p2 ¼ ðϵ; 0; 0;−pÞ; ðE4bÞ

p3 ¼ ðϵ; pf sin θ; 0; pf cos θÞ; ðE4cÞ

p4 ¼ ðϵ;−pf sin θ; 0;−pf cos θÞ: ðE4dÞ

Since we are considering the annihilation process, the
initial particles 1 and 2 should have the same mass, and
the final particles 3 and 4 should have the same mass. So,
we set m1 ¼ m2 ¼ m and m3 ¼ m4 ¼ mf. Because of the
energy conservation, all four particles should have the
same energy in the CMF, and p and pf are therefore related

by pf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2 −m2

f

q
. The boosted p0

i’s still follow

Eq. (90). Thus, q0 in the annihilation process is rather
simple:

q0x ¼ p0x
1 þ p0x

2 ¼ 0; ðE5aÞ

q0y ¼ p0y
1 þ p0y

2 ¼ 0; ðE5bÞ

q0z ¼ p0z
1 þ p0z

2 ¼ Pz; ðE5cÞ

q00 ¼ p00
1 þ p00

2 ¼ E: ðE5dÞ

Applying Eq. (90) to Eqs. (E3a) and (E3b) with pi given
by Eq. (E4), we find that

p0
34 · p0

12 ¼ −4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −m2

f þ p2
q

cos θ; ðE6aÞ

q02
p0þ̂

34p
0þ̂
12

ðQ0þ̂Þ2 ¼ 4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −m2

f þ p2
q

cos θ: ðE6bÞ

So the numerators in Eqs. (E2a) and (E2b) are zero,
regardless of the frame or the interpolation angle δ.
Therefore, MðaÞ ¼ MðbÞ ¼ 0, and the only nonzero con-
tribution comes from the instantaneous interaction. One can
verify that indeed the covariant total amplitude is the same
as MðcÞ,

MðcÞ ¼ M ¼ −
p34 · p12

q2
¼ −

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −m2

f þ p2
q

cos θ

m2 þ p2
;

ðE7Þ

where the coupling constant e is taken as 1. We can see that
this result is also independent of the frame and interpolation
angle, just as expected.
In Fig. 5, we again use the same parameter values as

before: m ¼ 1, mf ¼ 2, p ¼ 3, and θ ¼ π=3. The corre-
sponding time-ordered amplitudes shown here are all flat
planes.
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