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We use the worldline numerics technique to study a cylindrically symmetric model of magnetic flux
tubes in a dense lattice and the nonlocal Casimir forces acting between regions of magnetic flux. Within a
superconductor the magnetic field is constrained within magnetic flux tubes and if the background
magnetic field is on the order the quantum critical field strength, Bk ¼ m2

e ¼ 4.4 × 1013 Gauss, the
magnetic field is likely to vary rapidly on the scales where QED effects are important. In this paper, we
construct a cylindrically symmetric toy model of a flux tube lattice in which the nonlocal influence of
QED on neighboring flux tubes is taken into account. We compute the effective action densities using the
worldline numerics technique. The numerics predict a greater effective energy density in the region of the
flux tube, but a smaller energy density in the regions between the flux tubes compared to a locally
constant-field approximation. We also compute the interaction energy between a flux tube and its
neighbors as the lattice spacing is reduced from infinity. Because our flux tubes exhibit compact support,
this energy is entirely nonlocal and predicted to be zero in local approximations such as the derivative
expansion. This Casimir-Polder energy can take positive or negative values depending on the distance
between the flux tubes, and it may cause the flux tubes in neutron stars to form bunches. In addition to the
above results we also discuss two important subtleties of determining the statistical uncertainties within
the worldline numerics technique. Firstly, the distributions generated by the worldline ensembles are
highly non-Gaussian, and so the standard error in the mean is not a good measure of the statistical
uncertainty. Secondly, because the same ensemble of worldlines is used to compute the Wilson loops at
different values of T and xcm, the uncertainties associated with each computed value of the integrand are
strongly correlated. We recommend a form of jackknife analysis which deals with both of these
problems.
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I. INTRODUCTION

In this contribution, we make use of a numerical
technique which can be used to compute the effective
actions of external field configurations. The technique,
called either worldline numerics or the Loop-Cloud
Method, was first used by Gies and Langfeld [1] and
has since been applied to computation of effective actions
[2–6] and Casimir energies [7–9]. More recently, the
technique has also been applied to pair production [10]
and the vacuum polarization tensor [11]. Worldline
numerics is able to compute quantum effective actions in
the one-loop approximation to all orders in both the
coupling and in the external field, so it is well suited to
studying nonperturbative aspects of quantum field theory in
strong background fields. Moreover, the technique main-
tains gauge invariance and Lorentz invariance. The key idea

of the technique is that a path integral is approximated as
the average of a finite set of Nl representative closed paths
(loops) through spacetime. These loops are not mapped to
any spacetime lattice, so the theory maintains Lorentz
invariance and is distinct from lattice-based techniques.
We use a standard Monte Carlo procedure to generate
loops which have large contributions to the loop
average.
Wewill focus on calculations of the QED effective action

in cylindrically symmetric, extended tubes of magnetic flux
using the worldline numerics method. These configurations
may be called flux tubes, strings, or vortices, depending on
the context. Flux tubes are of interest in astrophysics
because they describe magnetic structures near stars and
planets, cosmic strings [12], and vortices in the super-
conducting core of neutron stars [13,14]. Outside of
astrophysics, magnetic vortex systems are at the forefront
of research in condensed matter physics for the role they
play in superconducting systems and in QCD research for
their relation to center vortices, a gluonic configuration
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analogous to magnetic vortices which is believed to be
important to quark confinement [15,16]. Currently, we are
most interested in the roles played by magnetic flux tubes
in neutron star cores.
Our motivation for discussing flux tubes comes from the

fact that superconductivity is predicted in the nuclear matter
of neutron stars and that some superconducting materials
produce a lattice of flux tubes when placed in an external
magnetic field. Superconductivity is a macroscopic quan-
tum state of a fluid of fermions that, most notably, allows
for the resistanceless conduction of charge. In 1933,
Meissner and Ochsenfeld observed that magnetic fields
are repelled from superconducting materials [17]. In 1935,
F. London and H. London described the Meissner effect in
terms of a minimization of the free energy of the super-
conducting current [18]. Then, in 1957, by studying the
superconducting electromagnetic equations of motion in
cylindrical coordinates, Abrikosov predicted the possible
existence of line defects in superconductors which can
carry quantized magnetic flux through the superconducting
material [19]. A more complete microscopic description of
superconducting materials is given by Bardeen, Cooper,
and Schrieffer (BCS) theory [20]. Interested readers may
pursue more thorough reviews of superconductivity and
superfluidity in neutron stars [13,14].
Our calculations use the worldline numerics method

which is reviewed in detail in Sec. II. In Sec. III of this
article, we will briefly review the physics of magnetic flux
tubes and of nuclear superconductivity in neutron stars to
provide context and motivation. We present our models for
solitary flux tubes and dense flux tube lattices in Sec. IVas
well as the details of the calculations. The results of our
calculations for scalar and spinor QED are presented in
Sec. V. Our results suggest a small but possibly influential
Casimir interaction between flux tubes in a dense lattice
that may cause the flux tubes to form bunches. This result
and other implications of our calculations are discussed
in Sec. VI.

II. QED EFFECTIVE ACTION
ON THE WORLDLINE

Worldline numerics is built on the worldline formalism
which was initially invented by Feynman [21,22]. Much of
the recent interest in this formalism is based on the work of
Bern and Kosower, who derived it from the infinite string-
tension limit of string theory and demonstrated that it
provided an efficient means for computing amplitudes in
QCD [23]. For this reason, the worldline formalism is often
referred to as “string inspired.” However, the formalism
can also be obtained straightforwardly from first-quantized
field theory [24], which is the approach we will adopt here.
In this formalism the degrees of freedom of the field are
represented in terms of one-dimensional path integrals over
an ensemble of closed trajectories.

We begin with the QED effective action expressed in the
proper-time formalism [25],

Tr ln
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To evaluate hxjeiTðpμþeAμÞ2 jxi, we recognize that it is simply
the propagation amplitude hx; Tjx; 0i from ordinary quan-
tum mechanics with ðpμ þ eAμÞ2 playing the role of the
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N is a normalization constant that we can fix by using
our renormalization condition that the fermion determinant
should vanish at zero external field:
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is the weighted average of the operator Ô over an
ensemble of closed particle loops with a Gaussian velocity
distribution.
Finally, combining all of the equations from this section

results in the renormalized one-loop effective action for
QED on the worldline:
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A. Worldline numerics

The averages, hÔi, defined by Eq. (5) involve functional
integration over every possible closed path through space-
time. The velocities along the paths are drawn from a
Gaussian velocity distribution. The prescription of the
worldline numerics technique is to compute these averages
approximately using a finite set of Nl representative loops
on a computer. The worldline average is then approximated
as the mean of an operator evaluated along each of the
worldlines in the ensemble:

hÔ½xðτÞ�i ≈ 1

Nl

XNl

i¼1

Ô½xiðτÞ�: ð7Þ

1. Loop generation

The velocity distribution for the loops depends on the
proper time, T. However, generating a separate ensemble of
loops for each value of T would be very computationally
expensive. This problem is alleviated by generating a single
ensemble of loops, yðτÞ, representing unit proper time, and
scaling those loops accordingly for different values of T:

xðτÞ ¼
ffiffiffiffi
T

p
yðτ=TÞ; ð8Þ

Z
T
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dτ _x2ðτÞ →
Z

1

0

dt_y2ðtÞ: ð9Þ

There is no way to treat the integrals as continuous as we
generate our loop ensembles. Instead, we treat the integrals
as sums over discrete points along the proper-time interval
½0; T�. This is fundamentally different from spacetime
discretization, however. Any point on the worldline loop
may exist at any position in space, and T may take on any
value. It is important to note this distinction because the
worldline method retains Lorentz invariance while lattice
techniques, in general, do not.
The challenge of loop cloud generation is in generating a

discrete set of points on a unit loop which obeys the
prescribed velocity distribution. There are a number of
different algorithms for achieving this goal that have been
discussed in the literature. Four possible algorithms are
compared and contrasted in [8]. In this work, we chose an
algorithm dubbed “d-loops,” which was first described in
[4]. To generate a “d-loop,” the number of points is
iteratively doubled, placing the new points in a Gaussian
distribution between the existing neighbor points. We quote
the algorithm directly:
(1) Begin with one arbitrary point N0 ¼ 1, yN .

(2) Create an N1 ¼ 2 loop, i.e., add a point yN=2 that is
distributed in the heat bath of yN with

e−
N1
4
2ðyN=2−yNÞ2 : ð10Þ

(3) Iterate this procedure, creating anNk ¼ 2k points per
line (ppl) loop by adding 2k−1 points yqN=Nk

, q ¼
1; 3;…; Nk − 1 with distribution

e−
Nk
4
2½yqN=Nk

−1
2
ðyðqþ1ÞN=Nk

þyðq−1ÞN=Nk
Þ�2 : ð11Þ

(4) Terminate the procedure if Nk has reached Nk ¼ N
for unit loops with N ppl.

(5) For an ensemble with common center of mass, shift
each whole loop accordingly.

The above d-loop algorithm was selected since it is simple
and about 10% faster than previous algorithms, according
to its developers, because it requires fewer algebraic
operations. The generation of the loops is largely indepen-
dent from the main program. Because of this, it was simpler
to generate the loops using a MATLAB script. This function
was used to produce text files containing the worldline data
for ensembles of loops. These text files were read into
memory at the launch of each calculation. The results of
this generation routine can be seen in Fig. 1.

FIG. 1 (color online). A single discrete worldline loop shown at
several levels of discretization. The loops form fractal patterns
and have a strong parallel with Brownian motion. The color
represents the phase of a particle traveling along the loop, and
begins at dark blue, progresses in a random walk through yellow,
and ends at dark red. The total flux through this particular
worldline at T ¼ 1 and B ¼ Bk is about 0.08π=e.
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When the CUDA kernel is called, every thread in every
block executes the kernel function with its own unique
identifier. Therefore, it is best to generate worldlines in
integer multiples of the number of threads per block.

B. Cylindrical worldline numerics

We now consider cylindrically symmetric external
magnetic fields. In this case, we may simplify (6),

Γð1Þ
ferm

TLz
¼ 1

4π
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∞

0
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0
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T3

e−m
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×
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1

3
ðeBcmTÞ2

��
dρ: ð12Þ

1. Cylindrical magnetic fields

We have B ¼ BðρÞẑ with

BðρÞ ¼ AϕðρÞ
ρ

þ dAϕðρÞ
dρ

ð13Þ

if we make the gauge choice that A0 ¼ Aρ ¼ Az ¼ 0.
We begin by considering AϕðρÞ in the form

AϕðρÞ ¼
F
2πρ

fλðρÞ ð14Þ

so that

BzðρÞ ¼
F
2πρ

dfλðρÞ
dρ

; ð15Þ

and the total flux is

Φ ¼ FðfλðLρÞ − fλð0ÞÞ: ð16Þ

It is convenient to express the flux in units of 2πe and define a
dimensionless quantity:

F ¼ e
2π

F: ð17Þ

2. Wilson loop

The quantity inside the angled brackets in Eq. (6) is a
gauge invariant observable called a Wilson loop. We note
that the proper time integral provides a natural path
ordering for this operator. The Wilson loop expectation
value is

hWircm ¼
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which we look at as a product between a scalar

part (eie
R
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0
dτAðrcmþrðτÞÞ·_r) and a fermionic part

(1
4
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e
2

R
T

0
dτσμνFμνðrcmþrðτÞÞ).

3. Scalar part

In a magnetic field, the scalar part is related to the flux
through the loop, ΦB, by Stokes’s theorem:

eie
R
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dτA·_r ¼ eie

H
A·dr ¼ eie

R
Σ
∇×A·dΣ ð19Þ

¼ eie
R
Σ
BdΣ ¼ eieΦB : ð20Þ

Consequently, this factor accounts for the Aharonov-Bohm
phase acquired by particles in the loop.
The loop discretization results in the following

approximation of the scalar integral:

I
AðrÞ · dr ¼

XNppl

i¼1

Z
riþ1

ri
AðrÞ · dr: ð21Þ

Using a linear parameterization of the positions, the line
integrals are

Z
riþ1

ri
AðrÞ · dr ¼

Z
1

0

dtAðrðtÞÞ · ðriþ1 − riÞ: ð22Þ

Using the same gauge choice outlined above (A ¼ Aϕϕ̂),
we may write

AðrðtÞÞ ¼ F
eρ2

fλðρ2Þð−y; x; 0Þ; ð23Þ

where we have chosen fλðρ2Þ to depend on ρ2 instead of
ρ to simplify some expressions and to avoid taking
many costly square roots in the worldline numerics. We
then have

Z
riþ1

ri
AðrÞ · dr ¼ F ðxiyiþ1 − yixiþ1Þ

Z
1

0

dt
fλðρ2i ðtÞÞ
ρ2i ðtÞ

:

ð24Þ

The linear interpolation in Cartesian coordinates gives

ρ2i ðtÞ ¼ Ai þ 2Bitþ Cit2; ð25Þ

where

Ai ¼ ðxiÞ2 þ ðyiÞ2 ð26Þ

Bi ¼ xiðxiþ1 − xiÞ þ yiðyiþ1 − yiÞ ð27Þ

Ci ¼ ðxiþ1 − xiÞ2 þ ðyiþ1 − yiÞ2: ð28Þ
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In performing the integrals along the straight lines
connecting each discretized loop point, we are in danger
of violating gauge invariance. If these integrals can be
performed analytically, than gauge invariance is preserved
exactly. However, in general, we wish to compute these
integrals numerically. In this case, gauge invariance is no
longer guaranteed, but can be preserved to any numerical
precision that is desired.

4. Fermion part

For fermions, the Wilson loop is modified by a factor,

Wferm ¼ 1

4
tr
	
e
1
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e
R

T

0
dτσμνFμν
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�
; ð32Þ

where we have used the relation

eB ¼ 2F
dfλðρ2Þ
dρ2

¼ 2Ff0λðρ2Þ: ð33Þ

This factor represents an additional contribution to the
action because of the spin interaction with the magnetic
field. Classically, for a particle with a magnetic moment μ
travelling through a magnetic field in a time T, the action is
modified by a term given by

Γ0
spin ¼

Z
T

0

μ ·BðxðτÞÞdτ: ð34Þ

The magnetic moment is related to the electron spin
μ ¼ gð e

2mÞσ, so we see that the integral in the above
quantum fermion factor is very closely related to the
classical action associated with transporting a magnetic
moment through a magnetic field:

Γ0
spin ¼ g

�
e
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σxy

Z
T

0

BzðxðτÞÞdτ: ð35Þ

Qualitatively, we could write

Wferm ∼ coshðΓ0
spinÞ: ð36Þ

As a possibly useful aside, we may want to express the
integral in terms of fλðρ2Þ instead of its derivative. We can
do this by integrating by parts:
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with ρ2i ðtÞ given by Eqs. (25)–(28). The second equality is
obtained from integration-by-parts. In the third equality, we
use the loop sum to cancel the boundary terms in pairs:

Wferm ¼ cosh

�
FT
Nppl

XNppl

i¼1

Ci

Z
1

0

dt
fλðρ2i ðtÞÞ
ðBi þ CitÞ2

�
: ð40Þ

In most cases, one would use Eq. (32) to compute the
fermion factor of the Wilson loop. However, Eq. (40) may
be useful in cases where f0λðρ2ðτÞÞ is not known or is
difficult to compute.

5. Renormalization

The field strength renormalization counterterms result
from the small T behavior of the worldline integrand. In the
limit where T is very small, the worldline loops are very
localized around their center of mass. So, we may approxi-
mate their contribution as being that of a constant field with
value AðrcmÞ. Specifically, we require that the field change
slowly on the length scale defined by

ffiffiffiffi
T

p
. This condition

on T can be written

T ≪
 m2

eB0ðρ2Þ
 ¼

 m2

2Ff00λðρ2cmÞ
: ð41Þ

When this limit is satisfied, we may use the exact
expressions for the constant fieldWilson loops to determine
the small T behavior of the integrands and the correspond-
ing counterterms.
The Wilson loop averages for constant magnetic fields in

scalar and fermionic QED are

hWiferm ¼ eBT coth ðeBTÞ ð42Þ
and

hWiscal ¼
eBT

sinh ðeBTÞ : ð43Þ

Therefore, the integrand for fermionic QED in the limit
of small T is
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For scalar QED we have

IscalðTÞ ¼
e−m
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Beyond providing the renormalization conditions, these
expansions can be used in the small T regime to avoid a
problem with the Wilson loop uncertainties in this region.
Consider the uncertainty in the integrand arising from the
uncertainty in the Wilson loop:

δIðTÞ ¼ ∂I
∂W δW ¼ e−m

2T

T3
δW: ð46Þ

In this case, even though we can compute the Wilson loops
for small T precisely, even a small uncertainty is magnified
by a divergent factor when computing the integrand for
small values of T. So, in order to perform the integral, we
must replace the small T behavior of the integrand with
the above expansions (44) and (45). Our worldline integral
then proceeds by analytically computing the integral for the
small T expansion up to some small value, a, and adding
this to the remaining part of the integral [26]:

Z
∞

0

IðTÞdT ¼
Z

a

0

IðTÞdT|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
small 1

þ
Z

∞

a
IðTÞdT|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

worldline numerics

: ð47Þ

Because this normalization procedure uses the constant
field expressions for small values of T, this scheme
introduces a small systematic uncertainty. To improve on
the method outlined here, the derivatives of the background
field can be accounted for by using the analytic forms of the
heat kernel expansion to perform the renormalization [2].

C. Uncertainty analysis in worldline numerics

So far in the worldline numerics literature, the discus-
sions of uncertainty analysis have been unfortunately brief.
It has been suggested that the standard deviation of the
worldlines provides a good measure of the statistical error
in the worldline method [1,2]. However, the distributions
produced by the worldline ensemble are highly non-
Gaussian (see Fig. 5), and, therefore, the standard error

in the mean is not a good measure of the uncertainties
involved. Furthermore, the use of the same worldline
ensemble to compute the Wilson loop multiple times in
an integral results in strongly correlated uncertainties.
Thus, propagating uncertainties through integrals can be
computationally expensive due to the complexity of com-
puting correlation coefficients.
The error bars on worldline calculations impact the

conclusions that can be drawn from calculations, and also
have important implications for the fermion problem,
which limits the domain of applicability of the technique
(see Sec. II C 6). It is, therefore, important that the error
analysis is done thoughtfully and transparently. The pur-
pose of this section is to contribute a more thorough
discussion of uncertainty analysis in the worldline numerics
technique to the literature in hopes of avoiding any
confusion associated with the above-mentioned subtleties.
There are two sources of uncertainty in the worldline

technique: the discretization error in treating each continu-
ous worldline as a set of discrete points, and the statistical
error of sampling a finite number of possible worldlines
from a distribution. In this section, we discuss each of these
sources of uncertainty.

1. Estimating the discretization uncertainties

The discretization error arising from the integral over τ in
the exponent of each Wilson loop [see Eq. (18)] is difficult
to estimate since any number of loops could be represented
by each choice of discrete points. The general strategy is to
make this estimation by computing the Wilson loop using
several different numbers of points per worldline and
observing the convergence properties.
The specific procedure adopted for this work involves

dividing each discrete worldline into several worldlines
with varying levels of discretization. Since we are using the
d-loop method for generating the worldlines (Sec. II A 1), a
Nppl

2
subloop consisting of every other point will be
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guaranteed to contain the prescribed distribution of
velocities.
To look at the convergence for the loop discretization,

each worldline is divided into three groups. One group of
Nppl

2
points, and two groups of Nppl

4
. This permits us to

compute the average holonomy factors at three levels of
discretization:

hWiNppl=4 ¼ hei
2
▵e

i
2
□i; ð48Þ

hWiNppl=2 ¼ hei∘i; ð49Þ
and

hWiNppl
¼ hei

2
∘ei

4
□e

i
4
▵i; ð50Þ

where the symbols ∘, □, and ▵ denote the worldline
integral,

R
T
0 dτAðxCM þ xðτÞÞ · _x, computed using the sub-

worldlines depicted in Fig. 2.
We may put these factors into the equation of a parabola

to extrapolate the result to an infinite number of points per
line (see Fig. 3):

hWi∞ ≈
8

3
hWiNppl

− 2hWiNppl=2 þ
1

3
hWiNppl=4: ð51Þ

So, we estimate the discretization uncertainty to be

δhWi∞ ≈ jhWiNppl
− hWi∞j: ð52Þ

Generally, the statistical uncertainties are the limitation
in the precision of the worldline numerics technique.
Therefore, Nppl should be chosen to be large enough that
the discretization uncertainties are small relative to the
statistical uncertainties.

2. Estimating the statistical uncertainties

We can gain a great deal of insight into the nature of the
statistical uncertainties by examining the specific case of
the uniform magnetic field since we know the exact
solution in this case. Sections II C 3, II C 4, and II C 5
discuss the peculiarities of the statisical uncertainties in the
worldline numerics method for the uniform magnetic field.

3. The worldline ensemble distribution is not normal

A reasonable first instinct for estimating the error bars is
to use the standard error in the mean of the collection of
individual worldlines:

SEMðWÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNl

i¼1

ðWi − hWiÞ2
NlðNl − 1Þ

vuut : ð53Þ

This approach has been promoted in early papers on
worldline numerics [1,2]. In Fig. 4, we have plotted the

FIG. 2. Diagram illustrating the division of a worldline into
three smaller interleaved worldlines.

FIG. 3. This plot illustrates the method used to extrapolate the
Wilson loop to infinite points per loop and the uncertainty
estimate in the approximation.

FIG. 4 (color online). The residuals of the Wilson loops for a
constant magnetic field showing the standard error in the mean
(thin error bars) and the uncertainty in determining the mean
(thick blue error bars). For reasons discussed in this section, the
standard error in the mean overestimates the uncertainties
involved by more than a factor of 3 at each value of T.
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residuals and the corresponding error bars for several
values of the proper time parameter, T in black. From this
plot, it appears that the error bars are quite large in the sense
that we appear to produce residuals which are considerably
smaller than would be implied by the sizes of the error bars.
This suggests that we have overestimated the size of the
uncertainty.
We can see why this is the case by looking more closely

at the distributions produced by the worldline technique.
An exact expression for these distributions can be derived
in the case of the constant magnetic field [26]:

wðyÞ ¼ Wexactffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p X∞
n¼−∞

½fðarccosðyÞ þ 2nπÞ

þ fð− arccosðyÞ þ 2nπÞ� ð54Þ

with

fðϕÞ ¼ π

4BTcosh2ð πϕ
2BTÞ

: ð55Þ

Figure 5 shows histograms of the worldline results along
with the expected distributions. These distributions high-
light a significant hurdle in assigning error bars to the
results of worldline numerics.
Due to their highly non-Gaussian nature, the standard

error in the mean is not a good characterization of the
distributions that are produced. We should not interpret
each individual worldline as an independent measurement
of the mean value of these distributions; for large values of
BT, almost all of our worldlines will produce answers
which are far away from the mean of the distribution. This
means that the variance of the distribution will be very
large, even though our ability to determine the mean of the
distribution is relatively precise because of the increasing
symmetry about the mean as T becomes large.

4. Correlations between Wilson loops

Typically, numerical integration is performed by replac-
ing the integral with a sum over a finite set of points from
the integrand. We will begin the present discussion by
considering the uncertainty in adding together two points
(labeled i and j) in our integral over T. Two terms of the
sum representing the numerical integral will involve a
function of T times the two Wilson loop factors,

I ¼ gðTiÞhWðTiÞi þ gðTjÞhWðTjÞi ð56Þ

with an uncertainty given by

δI ¼
 ∂I
∂hWðTiÞi

2ðδhWðTiÞiÞ2

þ
 ∂I
∂hWðTjÞi

2ðδhWðTjÞiÞ2

þ 2

 ∂I
∂hWðTiÞi

∂I
∂hWðTjÞi


× ρijðδhWðTiÞiÞðδhWðTjÞiÞ ð57Þ

¼ gðTiÞ2ðδhWðTiÞiÞ2 þ gðTjÞ2ðδhWðTjÞiÞ2
þ 2jgðTiÞgðTjÞjρijðδhWðTiÞiÞðδhWðTjÞiÞ ð58Þ

and the correlation coefficient ρij given by

ρij ¼
hðWðTiÞ − hWðTiÞiÞðWðTjÞ − hWðTjÞiÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWðTiÞ − hWðTiÞiÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWðTjÞ − hWðTjÞiÞ2

q :

ð59Þ

The final term in the error propagation equation takes into
account correlations between the random variables WðTiÞ
and WðTjÞ. Often in a Monte Carlo computation, one can

FIG. 5. Histograms showing the worldline distributions of the
residuals for three values of T in the constant magnetic field
case. Here, we are neglecting the fermion factor. The dark line
represents the exact distribution computed using Eq. (54).
The worldline means are indicated with an arrow, while the
exact mean in each case is 0. There are 5120 worldlines in each
histogram. The vertical axes are normalized to a total area
of unity.
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treat each evaluation of the integrand as independent, and
neglect the uncertainty term involving the correlation
coefficient. However, in worldline numerics, the evalua-
tions are related because the same worldline ensemble is
reused for each evaluation of the integrand. The correla-
tions are significant (see Fig. 6), and this term cannot be
neglected. Computing each correlation coefficient takes a
time proportional to the square of the number of worldlines.
Therefore, it may be computationally expensive to formally
propagate uncertainties through an integral.
The point-to-point correlations were originally pointed

out by Gies and Langfeld who addressed the problem by
updating (but not replacing or regenerating) the loop
ensemble in between each evaluation of the Wilson loop
average [1]. This may be a good way of addressing the
problem. However, in the following section, we promote a
method which can bypass the difficulties presented by the
correlations by treating the worldlines as a collection of
worldline groups.

5. Grouping worldlines

Both of the problems explained in the previous two
subsections can be overcome by creating groups of world-
line loops within the ensemble. Each group of worldlines
then makes a statistically independent measurement of the
Wilson loop average for that group. The statistics between
the groups of measurements are normally distributed, and
so the uncertainty is the standard error in the mean of the
ensemble of groups (in contrast to the ensemble of
worldlines).
For example, if we divide the Nl worldlines into NG

groups of Nl=NG worldlines each, we can compute a mean
for each group:

hWiGj
¼ NG

Nl

XNl=NG

i¼1

Wi: ð60Þ

Provided each group contains the same number of world-
lines, the average of the Wilson loop is unaffected by this
grouping:

hWi ¼ 1

NG

XNG

j¼1

hWiGj
ð61Þ

¼ 1

Nl

XNl

i¼1

Wi: ð62Þ

However, the uncertainty is the standard error in the mean
of the groups,

δhWi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNG

i¼1

ðhWiGi
− hWiÞ2

NGðNG − 1Þ

vuut : ð63Þ

Because the worldlines are unrelated to one another, the
choice of how to group them to compute a particular
Wilson loop average is arbitrary. For example, the simplest
choice is to group the loops by the order they were
generated, so that a particular group number, i, contains
worldlines iNl=NG through ðiþ 1ÞNl=NG − 1. Of course,
if the same worldline groupings are used to compute
different Wilson loop averages, they will still be correlated.
We will discuss this problem in a moment.
The basic claim of the worldline technique is that the

mean of the worldline distribution approximates the hol-
onomy factor. However, from the distributions in Fig. 5, we
can see that the individual worldlines themselves do not
approximate the holonomy factor. So, we should not think
of an individual worldline as an estimator of the mean of
the distribution. Thus, a resampling technique is required to
determine the precision of our statistics. We can think of
each group of worldlines as making an independent
measurement of the mean of a distribution. As expected,
the groups of worldlines produce a more Gaussian-like
distribution (see Fig. 7), and so the standard error of the
groups is a sensible measure of the uncertainty in the
Wilson loop value.
We find that the error bars are about one-third as large as

those determined from the standard error in the mean of the
individual worldlines, and the smaller error bars better
characterize the size of the residuals in the constant field
case (see Fig. 4). The strategy of using subsets of the
available data to determine error bars is called jackknifing.
Several previous papers on worldline numerics have
mentioned using jackknife analysis to determine the
uncertainties, but without an explanation of the motivations
or the procedure employed [6,9–11].

FIG. 6. Correlation coefficients, Eq. (59), between hWðTÞi and
hWðT ¼ 3Þi computed using individual worldlines, groups of
worldlines, and shuffled groups of worldlines.
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The grouping of worldlines alone does not address the
problem of correlations between different evaluations of the
integrands. Figure 6 shows that the uncertainties for groups
of worldlines are also correlated between different points
of the integrand. However, the worldline grouping does
provide a tool for bypassing the problem. One possible
strategy is to randomize how worldlines are assigned to
groups between each evaluation of the integrand. This
produces a considerable reduction in the correlations, as is
shown in Fig. 6. Then, errors can be propagated through the
integrals by neglecting the correlation terms. Another
strategy is to separately compute the integrals for each
group of worldlines, and then consider the statistics of the
final product to determine the error bars. This second
strategy is the one adopted for the work presented in this
paper. Grouping in this way reduces the amount of data
which must be propagated through the integrals by a factor
of the group size compared to a delete-1 jackknife scheme,
for example. In general, the error bars quoted in the
remainder of this paper are obtained by computing the
standard error in the mean of groups of worldlines.

6. Uncertainties and the Fermion problem

The fermion problem of worldline numerics is a name
given to an enhancement of the uncertainties at large T
[1,26]. It should not be confused with the fermion-doubling
problem associated with lattice methods. In a constant
magnetic field, the scalar portion of the calculation pro-
duces a factor of BT

sinh ðBTÞ, while the fermion portion of the

calculation produces an additional factor cosh ðBTÞ.
Physically, this contribution arises as a result of the energy
required to transport the electron’s magnetic moment

around the worldline loop. At large values of T, we require
subtle cancellation between huge values produced by the
fermion portion with tiny values produced by the scalar
portion. However, for large T, the scalar portion acquires
large relative uncertainties which make the computation of
large T contributions to the integral very imprecise.
This can be easily understood by examining the world-

line distributions shown in Fig. 5. Recall that the scalar
Wilson loop average for these histograms is given by the
flux in the loop, ΦB:

hWi ¼
�
exp

�
ie
Z

T

0

dτAðxcm þ xðτÞÞ · dxðτÞ
��

¼ heieΦBi: ð64Þ

For constant fields, the flux through the worldline loops
obeys the distribution function [26]

fðΦBÞ ¼
π

4BTcosh2ðπΦB
2BTÞ

: ð65Þ

For small values of T, as shown in Fig. 8, the worldline
loops are small and the amount of flux through the loop is
correspondingly small. Therefore, the flux for small loops
is narrowly distributed about ΦB ¼ 0. Since zero max-
imizes theWilson loop (ei0 ¼ 1), this explains the enhance-
ment to the right of the distribution for small values of T.
As T is increased, the flux through any given worldline
becomes very large and the distribution of the flux becomes
very broad. For very large T, the width of the distribution is
many factors of 2π=e. Then, the phase (eΦB mod 2π) is
nearly uniformly distributed, and the Wilson loop distri-
bution reproduces the Chebyshev distribution (i.e., the
distribution obtained from projecting uniformly distributed
points on the unit circle onto the horizontal axis),

lim
T→∞

wðyÞ ¼ 1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p : ð66Þ

The mean of the Chebyshev distribution is zero due to its
symmetry. However, this symmetry is not realized precisely
unless we use a very large number of loops. Since the width
of the distribution is already 100 times the value of the
mean at T ¼ 6, any numerical asymmetries in the distri-
bution result in very large relative uncertainties of the scalar
portion. Because of these uncertainties, the large contribu-
tion from the fermion factor is not canceled precisely.
This problem makes it very difficult to compute the

fermionic effective action unless the fields are well local-
ized [26]. For example, the fermionic factor for nonho-
mogeneous magnetic fields oriented along the z direction is

cosh

�
e
Z

T

0

dτBðxðτÞÞ
�
: ð67Þ

FIG. 7. The histogram demonstrating the precision with which
we can reproduce measurements of the mean using different
groups of 100 worldlines at BT ¼ 6.0. In this case, the distri-
bution is Gaussian-like and meaningful error bars can be placed
on our measurement of the mean.
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For a homogeneous field, this function grows exponentially
with T and is canceled by the exponentially vanishing
scalar Wilson loop. For a localized field, the worldline
loops are very large for large values of T, and they primarily
explore regions far from the field. Thus, the fermionic
factor grows more slowly in localized fields, and is more
easily canceled by the rapidly vanishing scalar part.

D. Computing an effective action

The ensemble average in the effective action is simply
the sum over the contributions from each worldline loop,
divided by the number of loops in the ensemble. Since the
computation of each loop is independent of the other loops,
the ensemble average may be straightforwardly parallelized
by generating separate processes to compute the contribu-
tion from each loop. For this parallelization, four Nvidia
Tesla C1060 GPU were used through the CUDA parallel
programming framework. Because GPU can spawn thou-
sands of parallel processing threads with much less
computational overhead than an MPI cluster, they excel
at handling a very large number of parallel threads,
although the clock speed is slower and fewer memory
resources are typically available. The GPU architecture has
recently been used by another group for computing Casimir
forces using worldline numerics [27]. More detailed
information about the technical implementation of these
calculations on the GPU architecture, including a listing of
the source code, can be found in [28].
Once the ensemble average of the Wilson loop has been

computed, computing the effective action is a straight-
forward matter of performing numerical integrals. The
effective action density is computed by performing the

integration over proper time, T. Then, the effective action is
computed by performing a spacetime integral over the loop
ensemble center of mass. In all cases where a numerical
integral was performed, Simpson’s method was used [29].
Integrals from 0 to ∞ were mapped to the interval [0, 1]
using substitutions of the form x ¼ 1

1þT=Tmax
, where Tmax

sets the scale for the peak of the integrand. In the constant
field case, for the integral over proper time, we expect
Tmax ∼ 3=ðeBÞ for large fields and Tmax ∼ 1 for fields of a
few times critical or smaller. In Sec. II C, we presented a
detailed discussion of how the statistical and discretization
uncertainties can be computed in this technique.

E. Verification and validation

The worldline numerics software can be validated and
verified by making sure that it produces the correct results
where the derivative expansion is a good approximation,
and that the results are consistent with previous numerical
calculations of flux tube effective actions. For this reason,
the validation was done primarily with flux tubes with a
profile defined by the function

fλðρ2Þ ¼
ρ2

ðλ2 þ ρ2Þ : ð68Þ

For large values of λ, this function varies slowly on the
Compton wavelength scale, and so the derivative expansion
is a good approximation. Also, flux tubes with this profile
were studied previously using worldline numerics [7,26].
Among the results presented in [26] is a comparison of

the derivative expansion and worldline numerics for this
magnetic field configuration. The result is that the next-to-
leading-order term in the derivative expansion is only a
small correction to the leading-order term for λ ≫ λe,
where the derivative expansion is a good approximation.
The derivative expansion breaks down before it reaches its
formal validity limits at λ ∼ λe. For this reason, we will
simply focus on the leading order derivative expansion,
which we call the locally constant-field (LCF) approxima-
tion. The effective action of QED in the LCF approximation
is given in cylindrical symmetry by

Γð1Þ
ferm ¼ 1

4π

Z
∞

0

dT
Z

∞

0

ρcmdρcm
e−m

2T

T3

×

�
eBðρcmÞT coth ðeBðρcmÞTÞ − 1

−
1

3
ðeBðρcmÞTÞ2

�
: ð69Þ

Figure 9 shows a comparison between the proper time
integrand,

FIG. 8. The small T behavior of worldline numerics. The data
points represent the numerical results, where the error bars are
determined from the jackknife analysis described in Sec. II C.
The solid line represents the exact solution while the dotted line
represents the small T expansion of the exact solution. Note the
amplification of the uncertainties.
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e−m
2T

T3

�
hWircm − 1 −

1

3
ðeBcmTÞ2

�
; ð70Þ

and the LCF approximation result for a flux tube with
λ ¼ λe and F ¼ 10. In this case, the LCF approximation is
only appropriate far from the center of the flux tube, where
the field is not changing very rapidly. In the figure, we can
begin to see the deviation from this approximation, which
gets more pronounced closer to the center of the flux tube
(smaller values of ρ).
The effective action density for a slowly varying

flux tube is plotted in Fig. 10 along with the LCF

approximation. In this case, the LCF approximation agrees
within the statistics of the worldline numerics.

III. ASTROPHYSICAL BACKGROUND

A. Nuclear superconductivity in neutron stars

In the dense nuclear matter of a neutron star, it may be
possible to have neutron superfluidity, proton supercon-
ductivity, and even quark color superconductivity [13,14].
The first prediction of neutron-star superfluidity dates
back to Migdal in 1959 [30]. The arguments which make
superfluidity seem likely are based on the temperatures of
neutron stars. A short time after their creation, neutron stars
are very cold compared to nuclear energy scales. The
temperature in the interior may be a few hundred keV.
Studies of nuclear matter show that the transition temper-
ature is Tc ≳ 500 keV [31]. So, it is expected that the
nuclear matter in a neutron star forms condensates of
Cooper pairs.
Because of this, some fraction of neutrons in the inner

crust of a neutron star are expected to be superfluid. These
neutrons make up about a percent of the moment of inertia
of the star and are weakly coupled to the nuclear crystal
lattice which makes up the remainder of the inner crust. If
the neutron vortices in the superfluid component move at
nearly the same speed as the nuclear lattice, the vortices can
become pinned to the lattice so that the superfluid shares an
angular velocity with the crust. This pinning between the
fluid and solid crust has observable impacts on the rota-
tional dynamics of the neutron star, for the same reasons
that hard-boiling an egg (pinning the yolk to the shell)
produces an observable difference in the way it spins.
This picture of a neutron superfluid corotating with a

solid crust has been used to interpret several types of pulsar
timing anomalies. Pulsars are nearly perfect clocks,
although they gradually spin-down as they radiate energy.
Occasionally, though, pulsars demonstrate deviations from
their expected regularity. A glitch is an abrupt increase in
the rotation and spin-down rate of a pulsar, followed by a
slow relaxation to preglitch values over weeks or years.
This behavior is consistent with the neutron superfluid
suddenly becoming unpinned from the crust and then
dynamically relaxing due to its weak coupling to the crust
until it is pinned once again [32].
The neutron star in Cassiopeia A has been observed

to be rapidly cooling [33]. The surface temperature has
decreased by about 4% over ten years. This observation is
also strong evidence of superfluidity and superconductivity
in neutron stars [34,35]. The observed cooling is too fast to
be explained by the observed x-ray emissions and standard
neutrino cooling. However, the cooling is readily explained
by the emission of neutrinos during the formation of
neutron Cooper pairs. Based on such a model, the super-
fluid transition temperature of neutron star matter is
∼109 K or ∼90 keV.

FIG. 9. The integrand of the proper time, T, integral for three
different values of the radial coordinate, ρ for a λ ¼ 1 flux tube.
The solid lines represent the zeroth-order derivative expansion,
which, as expected, is a good approximation until ρ becomes
too small.

FIG. 10. The fermion term of the effective action density as a
function of the radial coordinate for a flux tube with width
λ ¼ 10λe.
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Further hints regarding superfluidity in neutron stars
come from long-term periodic variability in pulsar timing
data. For example, variabilities in PSR B1828-11 were
initially interpreted as free precession (or wobble) of the
star [36]. If neutron stars can precess, observations could
strongly constrain the ratio of the moments of inertia of the
crust and the superfluid neutrons. Moreover, the existence
of flux tubes (i.e., type-II superconductivity) in the crust is
generally incompatible with the slow, large amplitude
precession suggested by PSR B1828-11 [36]. The neutron
vortices would have to pass through the flux tubes, which
should cause a huge dissipation of energy and a dampening
of the precession which is not observed [37]. However,
recent arguments suggest that the timing variability data is
not well explained by free precession and that it more likely
suggests that the star is switching between two magneto-
spheric states [38]. Nevertheless, other authors suggest not
being premature in throwing out the precession hypothesis
without further observations [39].

B. Magnetic flux tubes in neutron stars

If a magnetic field is able to penetrate the proton
superfluid on a microscopic level, it must do so by forming
a triangular Abrikosov lattice with a single quanta of flux in
each flux tube. So, the density of flux tubes is given simply
by the average field strength. If the distance between flux
tubes is lf, the flux in a circular region within lf=2 of a flux
tube is given by

F ¼ 2πF
e

¼ 2π

Z
lf=2

0

Bρdρ; ð71Þ

where we have introduced a dimensionless measure of flux
F ¼ e

2πF. So, the distance between flux tubes is

lf ¼
ffiffiffiffiffiffiffi
8F
eB

r
: ð72Þ

If the magnetic field is the quantum critical field strength,
Bk ¼ m2

e ¼ 4.4 × 1013 Gauss, then the flux tubes are
separated by a few Compton electron wavelengths. This
is particularly interesting since this is the distance scale
associated with nonlocality in QED.
The size of a flux tube profile in laboratory super-

conductors is on the nanometer or micron scale [40].
Because the flux is fixed, the size of the tube profile
determines the strength of the magnetic field within the
tube. For laboratory superconductors the field strengths are
small compared to the quantum critical field, and the field is
slowly varying on the scale of the Compton wavelength. In
this case, the quantum corrections to the free energy are
known to be much smaller than the classical contribution
(see Sec. III C). The size scale for the flux tubes in a
superconductor is determined by the London penetration
depth. In a neutron star, this quantity is estimated to be a

small fraction of a Compton wavelength, much smaller
than in laboratory superconductors [37,41]. In this case, the
magnetic field strength at the centre of the tube exceeds the
quantum critical field strength and the field varies rapidly,
rendering the derivative expansion description of the
effective action unreliable.
The Ginzburg-Landau parameter equation is the ratio of

the proton coherence length, ξp ∼ 30 fm, and the London
penetration depth of a proton superconductor, λp ∼ 80 fm
[37],

κ ¼ λp
ξp

∼ 2; ð73Þ

where κ > 1=
ffiffiffi
2

p
signals type-II behavior. We, therefore,

expect that the proton Cooper pairs most likely form a
type-II superconductor [13]. However, it is possible that
physics beyond what is taken into account in the standard
picture affects the free energy of a magnetic flux tube. In
that case, the interaction between two flux tubes may
indeed be attractive in which case the neutron star would be
a type-I superconductor.

C. QED effective actions of flux tubes

Vortices of magnetic flux have very important impacts
on the quantum mechanics of electrons. In particular, the
phase of the electron’s wave function is not unique in such a
magnetic field. This is demonstrated by the Aharonov-
Bohm effect [42,43]. The first calculations of the fermion
effective energies of these configurations were for infinitely
thin Aharonov-Bohm flux strings [44,45]. Calculations for
thin strings were also performed for cosmic string con-
figurations [46]. For these infinitely thin string magnetic
fields, the energy density is singular for small radii. So, it is
not possible to define a total energy per unit length.
Another approach was to compute the effective action
for a finite-radius flux tube where the magnetic flux was
confined entirely to the surface of the tube [47]. This
approach results in infinite classical energy densities
as well.
Physical flux tube configurations would have a finite

radius. The earliest paper to deal with finite radius flux
tubes in QED considered the effective action of a step-
function-profiled flux tube using the Jost function of the
related scattering problem [48]. One of the conclusions
from this research was that the quantum correction to the
classical energy was relatively small for any value of the
flux tube size, for the entire range of applicability of QED.
The techniques from this study were soon generalized to
other field profiles, including a delta-function cylindrical
shell magnetic field [49] and more realistic flux tube
configurations such as the Gaussian [50] and the
Nielsen-Olesen vortex [51]. Flux tube vacuum energies
were also analyzed extensively using a spectral method
[52–54].
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The effective actions of flux tubes have been previously
analyzed using worldline numerics [3]. This research
investigated isolated flux tubes, but also made use of the
loop cloud method’s applicability to situations of low
symmetry to investigate pairs of interacting vortices.
One conclusion from that investigation was that the
fermionic effects resulted in an attractive force between
vortices with parallel orientations, and a repulsive force
between vortices with anti-parallel orientations. Due to the
similarity in scope and technique, the latter mentioned
research is the closest to the research presented in
this paper.

IV. CALCULATIONS

In this section, we will further explore the nature of this
phenomenon in QED using a highly parallel implementa-
tion of the worldline numerics technique implemented on a
heterogeneous CPU and GPU architecture. Specifically, we
explore cylindrically symmetric magnetic field profiles for
isolated flux tubes and periodic profiles designed to model
properties of a triangular lattice. For these calculations, the
classical magnetic field configurations are a chosen input to
the algorithms and the physical processes that may have
created the field configurations do not factor in to the
calculations. The worldline numerics algorithm cannot be
straight-forwardly applied to spinor QED calculations in
our model lattice because of the well-known fermion
problem of worldline numerics (see Sec. II C 6) [1,26].
However, the problem does not affect the scalar QED
(ScQED) calculations. Therefore, we explore the quantum-
corrected energies of isolated flux tubes for both scalar and
spinor electrons and use this comparison to speculate about
the relationship of our cylindrical lattice model and the
spinor QED energies of an Abrikosov lattice of flux tubes
that may be found in neutron stars.

A. Isolated flux tubes

As discussed in Sec. II B 1 we will focus on fields with a
cylindrical symmetry. In particular, to explore isolated
magnetic flux tubes, we consider the following profile
function (as we used earlier in Sec. II E):

fλðρ2Þ ¼
ρ2

ρ2 þ λ2
: ð74Þ

This gives a magnetic field with a profile

Bzðρ2Þ ¼
2F
e

λ2

ðρ2 þ λ2Þ2 : ð75Þ

This profile is a smooth flux tube representation that can be
evaluated quickly. Moreover, flux tubes with this profile
were studied previously using worldline numerics [7,26].

B. Cylindrical model of a flux tube lattice

In a neutron star, we do not have isolated flux tubes. The
tubes are likely arranged in a dense lattice with the spacing
between tubes on the order of the Compton wavelength,
with the size of a flux tube a few percent of the Compton
wavelength. Specifically, the maximum size of a flux tube
is on the order of the coherence length of the super-
conductor, which for neutron stars has been estimated to be
ξ ≈ 30 fm [37]. This situation can be directly computed in
the worldline numerics technique. However, this requires
us to integrate over two spatial dimensions instead of one.
Moreover, it requires the use of more loops to more
precisely probe the spatial configurations of the magnetic
field. Despite these problems, it is very interesting to
consider a dense flux tube lattice. Unlike the isolated flux
tube, the wide-tube limit of the configuration doesn’t have
zero field, but an average, uniform background field. If this
background field is the size of the critical field, there are
interesting quantum effects even in the wide-tube limit.
In this section, we build a cylindrically symmetric toy

model of a hexagonal flux tube lattice. We focus on one
central flux tube and treat the surrounding six flux tubes as
a continuous ring with six units of flux at a distance a from
the central tube. The next ring will contain 12 units of flux
at a distance of 2a, etc. (see Fig. 11). Because of this
condition, the average strength of the field is fixed, and the
field becomes uniform in the wide tube limit instead of
going to zero. For small values of λ, we will have nonlocal
contributions from the surrounding rings in addition to the
local contributions from the central flux tube. This strategy
will result in a simple model relative to the sophisticated
flux tube lattice models used in the context of super-
conducting physics. However, the simplifications are
appropriate for a first study of the nonlocal QED inter-
actions between the regions of flux.
It is difficult to construct a model of this scenario if the

flux tubes bleed into one another as they are placed close
together. For example, with Gaussian flux tubes or flux
tubes with the profile used in the previous section, it is

FIG. 11. In a type-II superconductor, there are neighboring flux
tubes arranged in a hexagonal Abrikosov lattice which have a
nonlocal impact on the effective action of the central flux tube
(left). In our model, we account for the contributions from these
neighboring flux tubes in cylindrical symmetry by including
surrounding rings of flux (right).
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difficult to increase the width of the flux tubes while
accounting for the magnetic flux that bleeds out of their
regions. Moreover, it is difficult to integrate these schemes
to find the profile function fλðρÞ which is needed to
compute the scalar part of the Wilson loop. In order to
keep each tube as a distinct entity which stays within its
assigned region, we assign a smooth function with compact
support to represent each tube. This is most easily done
with the bump function, ΨðxÞ, defined as

ΨðxÞ ¼
�
e−1=ð1−x2Þ for jxj < 1

0 otherwise
: ð76Þ

This function can be viewed as a rescaled Gaussian.
We start by defining the magnetic field outside of the

central flux tube. Here, the magnetic field is a constant
background field, with the flux ring contributing a bump of
width λ. The height of the bump must go to zero as the
width of the flux tube approaches the distance between flux
tubes, and should become infinite as the flux tube width
goes to zero:

Bz

�
ρ >

a
2

�
¼ Bbg þ A

�
a − λ

λ

�
½Ψð2ðρ − naÞ=λÞ − B�;

ð77Þ

with n≡ ⌊ ρþa=2
a ⌋.

If we require 6 units of flux in the first outer ring, 12 in
the second, and so on (see Fig. 11), the size of the
background field is fixed to Bbg ¼ 6F

ea2. The total flux
contribution due to the λ-dependent terms must be zero:

Z ðnþ1=2Þa

ðn−1=2Þa
ρA

�
a− λ

λ

�
½Ψð2ðρ−naÞ=λÞ−B�dρ¼ 0 ð78Þ

λ

2

Z
1

−1

�
λ

2
xþ na

�
ΨðxÞdx − Ba2n ¼ 0: ð79Þ

This fixes the value of the constant B to

B ¼ q1
2

λ

a
: ð80Þ

The numerical constant q1 is defined by

q1 ¼
Z

1

−1
ΨðxÞdx ≈ 0.443991: ð81Þ

For a given bump amplitude, A, the magnetic field will
become negative if λ becomes small enough. Therefore, we
replace A with its maximum value for which the field is
positive if λ > λmin for some choice of minimum flux tube
size:

A ¼ 12F
eaq1ða − λminÞ

: ð82Þ

The choice of λmin sets the tube width at which the field
between the flux tubes vanishes. If λ < λmin, the magnetic
field between the flux tubes will point in the −ẑ direction.
Because we are trying to fit a hexagonal peg into a round

hole, we must treat the central flux tube differently. For
example, the average field inside the central region for a
unit of flux is different than the average field in the exterior
region. Therefore, even when λ → a, the field cannot be
quite uniform. We consider the field in the central region to
be a constant field with a bump centered at ρ ¼ 0:

Bz

�
ρ <

a
2

�
¼ A0Ψð2ρ=λÞ þ B0: ð83Þ

The constant term, B0, is fixed by requiring continuity with
the exterior field at ρ ¼ a=2:

B0 ¼
6F
ea2

�
1 −

a − λ

a − λmin

�
: ð84Þ

The bump amplitude, A0, is determined by fixing the flux in
the central region,

Z
a=2

0

ρ½A0Ψð2ρ=λÞ þ B0�dρ ¼ F
e
∶ ð85Þ

A0

�
λ

2

�
2
Z

1

0

xΨðxÞdxþ B0

2

�
a
2

�
2

¼ F
e

ð86Þ

A0 ¼
4F
λ2eq2

�
1 −

3

4

�
1 −

a − λ

a − λmin

��
; ð87Þ

where the numerical constant, q2, is defined by

q2 ≡
Z

1

0

xΨðxÞdx ≈ 0.0742478: ð88Þ

Finally, collecting together the important expressions, the
cylindrically symmetric flux tube lattice model is

Bz

�
ρ ≤

a
2

�
¼ 4F

λ2eq2

�
1 −

3

4

�
λ − λmin

a − λmin

��
Ψð2ρ=λÞ

þ 6F
ea2

�
λ − λmin

a − λmin

�
ð89Þ

Bz

�
ρ >

a
2

�
¼ 6F

ea2

�
λ − λmin

a − λmin

�

þ 12F
q1eaλ

�
a − λ

a − λmin

�
Ψð2ðρ − naÞ=λÞ:

ð90Þ
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The magnetic field profile defined by these equations is
shown in Figs. 12 and 13. The current density required to
created fields with this profile is shown in Fig. 14.

C. The classical action

The classical action, Γ0, is infinite for this configuration.
To obtain a finite result, we must look at the action per unit
length in the z direction, per unit time, and per flux tube

region (i.e., for ρ < a=2). The action for such a region in
cylindrical coordinates is given by

Γ0

TLz
¼ −π

Z
a=2

0

ρBzðρÞ2dρ: ð91Þ

After substituting the value of Eq. (89), the magnetic field
in the interior region is

Γ0

TLz
¼ −π

Z
a=2

0

ρ

�
4F

λ2e2q2

�
1 −

3

4

�
λ − λmin

a − λmin

��
Ψð2ρ=λÞ

þ 6F
ea2

�
λ − λmin

a − λmin

��
2

dρ: ð92Þ

After some algebra, we are left with an expression for the
classical action,

Γ0

TLz
¼ π

Z
a=2

0

ρBzðρÞ2dρ ð93Þ

¼ −
πF 2

e2a2

�
4
a2q3
λ2q22

þ
�
λ − λmin

a − λlmin

�

×

��
9

4

a2q3
λ2q22

−
9

2

��
λ − λmin

a − λlmin

�
− 6

a2q3
λ2q22

þ 12

��
; ð94Þ

where q3 is another numerical constant related to integrat-
ing the bump function:

FIG. 12 (color online). The cylindrical lattice flux tube model
for several values of the width parameter λ. Here we have taken
a ¼ ffiffiffi

8
p

λe and λmin ¼ 0.1a. Note that in the limit λ → a the field
is nearly uniform with a mound in the central region. This is a
consequence of the flux conditions in cylindrical symmetry
requiring different fields in the internal and external regions.
The height of the λ ¼ 0.1a flux tube extends beyond the height of
the graph to about 61.9Bk. A three-dimensional surface plot of
the λ ¼ 0.6a field profile is shown in Fig. 13.

FIG. 13 (color online). A three-dimensional surface plot of the
λ ¼ 0.6a (red in Fig. 12) magnetic field profile from Fig. 12.

FIG. 14. The current densities required to create the λ ¼ 0.6a
(red) magnetic field profile. The current is given by the curl of the

magnetic field, Jψ ðρÞ ¼ − dBzðρÞ
dρ . The conversion to SI units is

1Bk=λe ≈ 6 × 1038 A=m3.
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q3 ≡
Z

1

0

xðΨðxÞÞ2dx ¼
Z

1

0

xe−
2

1−x2dx ≈ 0.0187671:

ð95Þ

D. Integrating to find the potential function

To compute the Wilson loops, it is generally required to
use the vector potential which describes the magnetic field.
For us, this means that we must find fλðρÞ for our magnetic
field model. This could always be done numerically, but
can be computationally costly since it is evaluated by every
discrete point of every worldline in the ensemble. For
computations on the CUDA device, an increase in the
complexity of the kernel often means that fewer memory
resources are available per processing thread, limiting the
number of threads that can be computed concurrently. It is,
therefore, preferable to find an analytic expression for this
function. From Eq. (75), this function is related to the
integral of the magnetic field with respect to ρ2. For the
inner region, we have

fλðρ < a=2Þ ¼ e
2F

�
4F
λ2eq2

�
1 −

3

4

�
λ − λmin

a − λmin

��

×
Z

ρ2

0

Ψ

�
2ρ0

λ

�
dρ02

þ 6F
ea2

�
λ − λmin

a − λmin

�
ρ2
�
: ð96Þ

The integral over the bump function can be computed in
terms of the exponential integral EiðxÞ ¼

R
x
−∞

et
t dt:

Z
ρ2

0

Ψ

�
2ρ0

λ

�
dρ02 ¼

�
λ

2

�
2
�
2q2 þ

�
4ρ2

λ2
− 1

�
e
− 1

1−4ρ
2

λ2

− Ei

�
−

1

1 − 4ρ2

λ2

��
ð97Þ

for ρ < λ=2 and

Z
ρ2

0

Ψ

�
2ρ0

λ

�
dρ02 ¼ q2λ

2
ð98Þ

for ρ ≥ λ=2. Our expression for the profile function in the
inner region is

fλðρ ≤ a=2Þ ¼
�
1 −

3

4

�
λ − λmin

a − λmin

��
Φð2ρ=λÞ

þ 3ρ2

a2

�
λ − λmin

a − λmin

�
; ð99Þ

with

ΦðxÞ≡
8<
:

1þ 1
2q2

ðx2−1Þe− 1

1−x2 − 1
2q2

Ei

	
− 1

1−x2



for x< 1

1 for x≥ 1
:

ð100Þ

The exterior integral is a bit more challenging, but we
can make significant progress and obtain an approximate
expression. The first term is a constant given by the value of
the profile function at ρ ¼ a=2. This value is given by the
flux in the central flux tube, which we have already chosen
to be 1,

fλðρ > a=2Þ ¼ 1þ e
F

Z
ρ

a=2
ρ0Bðρ0 > a=2Þdρ0: ð101Þ

We may put the magnetic field, Eq. (89), into this
expression to get

fλðρ>a=2Þ¼1þ3

4

�
4ρ2

a2
−1

��
λ−λmin

a−λmin

�

þ 12

q1aλ

�
a−λ

a−λmin

�Z
ρ

a=2
ρ0Ψ

�
2ðρ−naÞ

λ

�
dρ0:

ð102Þ

The remaining integral is over every bump between ρ0 ¼
a=2 and ρ0 ¼ ρ. We express the result as a term which
accounts for each completely integrated bump, and an
integral over the partial bump if ρ is within a bump:

fλðρ > a=2Þ ¼ 1þ 3

4

�
4ρ2

a2
− 1

��
λ − λmin

a − λmin

�

þ 3nðn − 1Þ
�

a − λ

a − λmin

�

þ 3λ

q1a

�
a − λ

a − λmin

�
χð2ðρ − naÞ=λÞ;

ð103Þ

where

χðx0Þ ¼

8>><
>>:

0 for x0 ≤ −1R x0
−1 xe

− 1

1−x2dxþ 2na
λ

R x0
−1 e

− 1

1−x2dx for jx0j < 1

2naq1
λ for x0 ≥ 1

:

ð104Þ

One of the integrals in χðx0Þ can be expressed in terms of
the exponential integral:

Z
x0

−1
xe−

1

1−x2dx ¼ 1

2

�
ðx20 − 1Þe−

1

1−x2
0 − Ei

�
−

1

1 − x20

��
:

ð105Þ
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The remaining integral cannot be simplified analytically.
To use this integral in our numerical model, it must be
computed for each discrete point on each loop for each ρcm
and T value. Therefore, it is worthwhile to consider an
approximate expression which models the integral and can
be computed faster than performing a numerical integral
each time. To find this approximation, we computed the
numerical result at 300 values between x0 ¼ −1.2 and
x0 ¼ 1.2. The data were then input into EUREQA
FORMULIZE, a symbolic regression program which uses
genetic algorithms to find analytic representations of
arbitrary data [55]. A similar technique has been used to
produce approximate analytic solutions of ODEs [56]. The
result is a model of the numerical data points with a
maximum error of 0.0001 on the range jx0j < 1.0,

Z
x0

−1
e−

1

1−x2dx ≈
0.444

1þ e−3.31x0−gðx0Þ
; ð106Þ

where

gðx0Þ ¼
5.25x30 − 3.31x20 sinðx0Þ cos ð−0.907x20 − 1.29x80Þ

cosðx0Þ
ð107Þ

This function evaluates 10 times faster than the numerical
integral evaluated at the same level of precision with the
Gaussian quadrature library (GSL) functions and with
fewer memory registers. Using this approximation intro-
duces a systematic uncertainty which is small compared to

that associated with the discretization of the loop integrals
and considerably smaller than the statistical error bars.
Using these expressions for the integrals, we can express
fλðρÞ in any region in terms of exponential integrals,
exponential, and trigonometric functions with suitable
precision. Furthermore, for computation we may express
the exponential integral as a continued fraction. The profile
function, fλðρÞ, is plotted in Fig. 15.

V. RESULTS

A. Comparing scalar and fermionic effective actions

Because of the fermion problem of worldline numerics
[1,26], the one-loop effective action for the cylindrical flux
tube lattice model was not computed for the case of spinor
QED. Performing this calculation in the spinor case would
require subtle numerical cancellations between large
terms and represents a significant numerical challenge.
Fortunately, the fermion problem does not affect the scalar
case. So, we will analyze this model for ScQED. However,
in this section, we will compare the scalar and fermionic
effective actions for isolated flux tubes to demonstrate that
the behavior of both theories is qualitatively and numeri-
cally similar.
For isolated flux tubes, the decay of the magnetic field

for large distances protects the calculations from the
fermion problem. Therefore, the effective action can be
computed for both scalar and spinor QED. In Fig. 16, we
plot the ratio of the spinor to scalar one-loop correction
term for identical magnetic fields, along with the prediction

FIG. 15 (color online). The function fλðρÞ for the above
described magnetic field model. The flux conditions require
the function to pass through the black dots. A quadratic function
corresponds to a uniform field while a staircase function
corresponds to delta-function flux tubes. The parameter λ
smoothly makes the transition between these two extremes.
Each of these functions corresponds to a magnetic field profile
in Fig. 12.

FIG. 16. The ratio of the one-loop term in QED to the one-loop
term in ScQED. The solid line is the LCF approximation, while
the points are the result of worldline numerics calculations. Note
that the LCF approximation breaks down near λ ¼ λe and that the
statistics from point to point are strongly correlated. This plot
shows that the one-loop correction in ScQED differs from the
QED correction by a factor close to unity for a wide range of flux
tube widths.
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of the LCF approximation for large values of λ. The LCF
approximation in ScQED is given by

Γð1Þ
scal ¼ −

1

2π

Z
∞

0

dT
Z

∞

0

ρcmdρcm
e−m

2T

T3

×

�
eBðρcmÞT

sinh ðeBðρcmÞTÞ
− 1þ 1

6
ðeBðρcmÞTÞ2

�
: ð108Þ

This can be compared to the spinor QED approximation,

Γð1Þ
ferm ¼ 1

4π

Z
∞

0

dT
Z

∞

0

ρcmdρcm
e−m

2T

T3

×

�
eBðρcmÞT coth ðeBðρcmÞTÞ − 1

−
1

3
ðeBðρcmÞTÞ2

�
: ð109Þ

There are two important notes to make about Fig. 16.
First, the LCF approximation is only a good approximation
for λ ≫ λe, and isn’t accurate when pushed near its formal
validity limits [26]. The second note is that the statistics of
the points computed with worldline numerics are strongly
correlated. So, we conclude that the ScQED one-loop
correction is larger than the QED correction for large λ,
and this appears to be reversed for small λ. However, the
large worldline numerics error bars and the invalidity of the
LCF approximation near λ ¼ λe prevent us from seeing
how this transition happens. Nevertheless, the main con-
clusion from this figure is that the scalar one-loop correc-
tion reflects the behavior of the full QED one-loop
correction to within a factor of about 2 over a wide range
of flux tube widths for isolated flux tubes.
Besides using a finite field profile, the fermion problem

can also be circumvented by increasing the electron mass.
The square of the electron mass sets the scale for the
exponential suppression of the large proper time Wilson
loops that contribute to the fermion problem. However, if
we increase the fermion mass, we are reducing the
Compton wavelength of our theory so that the flux tube
lattice is no longer dense in terms of the modified Compton
wavelength. It is the Compton wavelength of the theory that
determines what is meant by “dense.”We, therefore, cannot
avoid the fermion problem for dense lattice models by
changing the electron mass.
Based on the results presented in Fig. 16, we conclude

that the coupling between the electron’s spin and the
magnetic field do not have a dramatic effect on the vacuum
energy for isolated flux tubes. Therefore, we expect that
ScQED provides a good model of the underlying vacuum
physics near these flux tubes, at least at the level our toy
model flux tube lattice.

B. Flux tube lattice

The worldline numerics technique computes an effective
action density which is then integrated to obtain the
effective action. This quantity differs from the
Lagrangian in that it is not determined by local operators,
but encodes information about the field everywhere
through the worldline loops. Like the classical action,
the one-loop term of the effective action per unit length
is infinite for a flux tube lattice because the field extends
infinitely far. For this reason, we define the effective action
to be the action density integrated over the region of a
central flux tube ð0 < ρ < a=2Þ:

Γ
T Lz

¼ −π
Z

a=2

0

ρBzðρÞ2dρ

−
1

2π

Z
a=2

0

ρcmdρcm

Z
∞

0

dT
T3

e−m
2T

×

�
hWiρcm − 1þ 1

6
ðeBðρcmÞTÞ2

�
: ð110Þ

The one-loop term of the effective action density is
plotted in Fig. 17 for the cylindrical flux tube lattice model.
The most pronounced feature of this density is that there is
a negative contribution from the regions where the field is
strong. This contribution has the same sign as the classical
term. Therefore, the quantum correction tends to reinforce
the classical action. A less pronounced feature is that there
is a positive contribution arising from the ρcm > λ=2 region,
in between the lumps of magnetic field which represent
the flux tubes. In this region, the local magnetic field is
positive, but small.

FIG. 17. The ScQED effective action density for the central
flux tube in our cylindrical lattice model for several tube widths,
λ. The average field strength is the critical field, BK . The effective
action is positive in between flux tubes due to nonlocal effects.
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To interpret this feature, we consider the relative con-
tributions between the Wilson loops and the counterterm.
These terms are shown in Fig. 18 for the constant field case.
For all values of proper time, T, the counterterms dominate,
giving an overall negative sign. In order for the action
density to be positive, there must be a greater contribution
from the Wilson loop average than from the counterterm,
since this term tends to give a positive contribution to the
action. In our flux tube model, this seems to occur in the
regions between the flux tubes. In these regions, the local
contribution from the counterterm is relatively small
because the field is small. However, the contribution from
the Wilson loop average is large because the loop cloud is
exploring the nearby regions where the field is much larger.
The effect is largest where the field is small, but becomes
large in a nearby region. We, therefore, interpret the
positive contributions to the one-loop correction from these
regions as a nonlocal effect. A similar example of such an
effect from fields which vary on scales of the Compton
wavelength has been observed previously using the world-
line numerics technique [11].
In Fig. 19, we plot the magnitude of the one-loop ScQED

term of the effective action as a function of the flux tube
width. As the flux tubes become smaller, there is an
amplification of the one-loop term, just as there is for
the classical action. Similarly, for more closely spaced flux
tubes, a is smaller, and the one-loop term increases in
magnitude. The ratio of the one-loop term to the classical
term is plotted in Fig. 22. The quantum contribution is
greatest for closely spaced, narrow flux tubes, but does not
appear to become a significant fraction of the total action.

We observe that the LCF approximation is surprisingly
good despite the fact that the magnetic field is varying
rapidly on the Compton wavelength scale of the electron.
We plot the residuals showing the deviations between the
worldline numerics results and the LCF approximation in
Fig. 20. To understand this, recall the discussion surround-
ing Fig. 18. TheWilson loop term is sensitive to the average
magnetic field through the loop ensemble, hBie. In contrast,
the counterterm is sensitive to the magnetic field at the
center of mass of the loop, Bcm. Since these terms carry

FIG. 18. The Wilson loop and counterterm contributions to the
integrand of the effective action for a constant field in ScQED.
For constant fields, the effective action is always negative due to
the domination of the counterterm over the Wilson loop. For
nonhomogeneous fields, a positive effective action density
signifies that nonlocal (i.e., T > 0) effects dominate the
counterterm.

FIG. 19. The one-loop ScQED term of the effective action as a
function of flux tube width, λ=a, for several values of the flux
tube spacing, a. The dotted lines are computed from the LCF
approximation.

FIG. 20. The residuals between the worldline numerics results
and the LCF approximation for the cylindrical flux tube lattice.
The level of agreement observed is not expected because the field
varies rapidly on the Compton wavelength scale. This agreement
is believed to be due to an averaging effect of integrating over the
electron degrees roughly reproducing the result of a mean-field
approximation.

DAN MAZUR AND JEREMY S. HEYL PHYSICAL REVIEW D 91, 065019 (2015)

065019-20



opposite signs, we can understand the difference from the
constant field approximation in terms of a competition
between these terms. When Bcm < hBie, such as when the
center of mass is in a local minimum of the field, there is a
reduction of the energy relative to the locally constant field
case, with a possibility of the quantum term of the energy
density becoming negative. However, when Bcm > hBie,
such as in a local maximum of the field, there is an
amplification of the energy relative to the constant field
case. We can put a bound on the difference between the
mean field through a loop and the field at the center of mass
for small loops (i.e., small T),

jhBi − Bcmj≲ jB00ðρ0ÞjT; ð111Þ

where jB00ðρ0Þj ≥ B00ðρÞ for all ρ in the loop. This
expression is proved the same way as determining the
error in numerical integration using the midpoint rectan-
gle rule.
If the field varies rapidly about some mean value on the

Compton wavelength scale, the various contributions from
local minima and local maxima are averaged out and the
mean-field approximation provided by the LCF method
becomes appropriate. A similar argument applies in the
fermion case, where the important quantity is the mean
magnetic field along the circumference of the loop. This
quantity is also well served by a mean-field approximation
when integrating over rapidly varying fields.
Another interesting feature of Fig. 20 is that the LCF

approximation appears to describe narrower flux tubes
better than wider ones, even when the spacing between the
flux tubes is held constant. This effect is likely a result of
the compact support given to the flux tube profiles. For
narrow tubes, we are guaranteed to have many more center
of mass points outside the flux tube than inside, giving a
smaller energy contribution than for isolated flux tubes
without compact support where the distinction between
inside and outside is not as abrupt. This also explains why
narrow, closely spaced tubes produce a lower energy than is
predicted by the LCF approximation.
This argument does not apply to the smooth isolated flux

tubes given by Eq. (75). For these flux tubes, the only
region where there is a large discrepancy between hBie and
Bcm is near the center of the flux tube. This is a global
maximum of the field, and the only maximum of jB00ðρÞj.
There are no regions where the average field in the loop
ensemble is much stronger than the center of mass
magnetic field. So, we expect an amplification of the
energy near the flux tube relative to the constant field
case. In the flux tubes with compact support, however, there
is such a region just outside the flux tube. We can
understand the surprisingly close agreement of these results
to the LCF approximation in our model in terms of
competition between these regions of local minima and
maxima of the field (see Fig. 21).

Finally, we find that the quantum term remains small
compared to the classical action for the range of parameters
investigated. This is shown in Fig. 22 where we plot the
ratio of the ScQED term of the action to the classical action.
The relative smallness of this correction is consistent with
the predictions from homogeneous fields and the derivative
expansion, as well as with previous studies on flux tube
configurations [48].

FIG. 22. The one-loop ScQED term divided by the classical
term of the effective action as a function of flux tube width, λ=a
for several values of the flux tube spacing, a.

FIG. 21 (color online). The action density in worldline nu-
merics and the LCF approximation, scaled by ρ so an area on the
figure is proportional to a volume. The approximation is poor
everywhere; however, when there are regions of local minima and
local maxima of the field about a mean value, the effective action
approximately agrees between these methods. This is due to a
partial cancellation between regions where the estimate provided
by the approximation is too large (green, left-hand side of graph)
and other regions where the estimate is too small (red, right-hand
side of graph).
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C. Interaction energies

Using this model, we can study the energy associated
with interactions between the flux tubes. Since the flux
tubes in our model exhibit compact support, the interaction
energy is entirely due to a nonocal interaction between
nearby flux tubes. Thus, it contrasts with previous research
which has investigated the interaction energies between
flux tubes which have overlapping fields [3]. In this case,
there is a classical interaction energy (∝ B1B2) as well as a
quantum correction (∝ ðB1 þ B2Þ4 − B4

1 − B4
2 in the weak-

field limit). Even when these field overlap interactions are
not present, there are also nonlocal energies in the vicinity
of a flux tube due to the presence of other flux tubes. For
example, the energy from nearby flux tubes can interact
with a flux tube through the quantum diffusion of the
magnetic field. Because of this phenomenon, we expect an
interaction energy in the region of the central flux tubes due
to the proximity of neighboring flux tubes, even though no
changes are made to the field profile or its derivatives in the
region of interest. Since this interaction represents a force
due to quantum fluctuations under the influence of external
conditions, it is an example of a Casimir force. The Casimir
force between two infinitely thin flux tubes in ScQED has
previously been found to be attractive [57]. Our model can
shed light specifically on this interaction, which is not
predicted by local approximations such as the derivative
expansion.
Consider a central flux tube with a width λ ¼ 0.5λe.

When λmin ¼ λ, the magnetic field outside of the flux tube,
Bbg, is zero. Then, if the distance between flux tubes, a, is
set very large, the energy density will be localized to the
central flux tube and there will be no nonlocal interaction
energy due to neighboring flux tubes. We define the
interaction energy, Eint, as the difference in energy within
a distance a=2 of the central flux tube between a configu-
ration with a given value of a and a configuration with
a ¼ ∞. In practice, we use a ¼ 10; 000λe as a suitable
stand-in for a ¼ ∞:

Eint

Lz
¼ −

ΓscalðaÞ
LzT

þ Γscalða ¼ 1 × 104λeÞ
LzT

: ð112Þ

With this definition, the interaction energy is the energy
associated with lowering the distance between flux rings
from infinity. This the analogue in our model of reducing
the lattice spacing of the flux tubes.
One complication of this definition is that there is no

clear distinction between energy density which ‘belongs’ to
the central flux tube and energy density which ‘belongs’ to
the neighboring flux tubes. We continue to use our
convention that the total energy for the central flux tube
is determined by the integral over the nonlocal action
density in a region within a radius of a=2 of the flux tube.
As a is taken smaller and smaller, some energy from nearby
flux tubes is included within this region, but also, some

energy associated with the central flux tube is diffused out
of the region. This ambiguity is unavoidable within this
model. We can’t numerically compute the energy over all of
space and subtract off different contributions, because these
energies are infinite.
The interaction energy is plotted in Fig. 23. In this plot,

the error bars are 1-sigma error bars that account for the
correlations in the means computed for each group of
worldlines,

σEint
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Ea

þ σ2Ea¼10000
− 2CovðEa; Ea¼10000Þ

q
; ð113Þ

where Covða; bÞ is the covariance between random vari-
ables a and b. Recall from Fig. 17 that there is a positive
contribution to the effective action and, therefore, a
negative contribution to the energy from the region between
flux tubes. As we reduce a, bringing the flux tubes closer
together, two considerations become important. Firstly, we
are increasing the average field strength meaning there
tends to be more flux through the worldline loops which
tends to give a negative contribution to the interaction
energy. Secondly, we are reducing the spatial volume over
which we integrate the energy since we only integrate ρ
from 0 to a=2. This effect makes a positive contribution to
the interaction energy since we include less and less of the
region of negative energy density in our integral.
In Fig. 23, there appears to be a landscape with both

positive and negative interaction energies at different values
of a. These appear to be consistent with the interplay
between positive and negative contributions described in

FIG. 23. The interaction energy per unit length of flux tube as a
function of the flux tube spacing, a. The energy density of a
critical strength magnetic field is 17 GeV=λ3e, so this energy
density is small in comparison to the classical magnetic field
energies, or the one-loop corrections. However, the local inter-
actions are constant in a. At a < λe=2, the bump functions from
neighboring tubes overlap. This approximately corresponds to the
critical magnetic field which destroys superconductivity.
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the previous paragraph. This is consistent with the usual
expectation of attractive Casimir forces [57]. The dominant
contribution for the positive energy values is caused by less
of the negative energy region contributing as the domain
assigned to the flux tube is reduced. However, the point at
a=λe ¼ 2 is negative (−0.3� 0.1 MeV=λe) indicating that
an attractive interaction from nearby flux tubes is dominant.
At a=λe ¼ 0.5, the flux tubes are positioned right next to

one another, and the negative contribution from the increase
in the mean field appears to be slightly larger than the
positive contribution from the loss of the region of negative
energy density from the integral. Beyond this, the flux
tubes would overlap each other, which approximately
corresponds to the critical background field which destroys
superconductivity. Based on the above explanation, it
appears that the nonlocal interaction energy between
magnetic fields has a strong dependence on the specific
profile of the classical magnetic field that was used. This
makes it difficult to predict if it will result in attractive or
repulsive forces in a more realistic model of a flux tube
lattice.
The energy density of a critical strength magnetic field is

about 17 GeV=λ3e, so the energy associated with this
interaction is relatively small. However, there are no other
interactions which affect the energy of moving the flux
tubes closer together when they are separated by many
coherence lengths. Here, the characteristic distance asso-
ciated with the interaction, λe, is considerably larger than
coherence length or London penetration depth, so the
interactions between flux tubes through the order field
are heavily suppressed.

VI. CONCLUSION

In this paper, we have used the worldline numerics
numerical technique to compute the effective action of
QED in nonhomogeneous, cylindrically symmetric mag-
netic fields. The method uses a Monte Carlo generated
ensemble of worldline loops to approximate a path integral
in the worldline formalism. These worldline loops are
generated using a simple algorithm and encode the infor-
mation about the magnetic field by computing the flux
through the loop and the action acquired from transporting
a magnetic moment around the loop. This technique
preserves Lorentz symmetry exactly and can preserve
gauge symmetry up to any required precision.
Computing the quantum effective action for magnetic

flux tube configurations is a problem that has generated
considerable interest and has been explored through a
variety of approaches [3,44–54] (see Sec. III C). Partly,
this is because it is a relatively simple problem for
analyzing nonhomogeneous generalizations of the
Heisenberg-Euler action and for exploring limitations of
techniques such as the derivative expansion. But this is also
a physically important problem because tubes of magnetic
flux are very important for the quantum mechanics of

electrons due to the Aharonov-Bohm effect, and they
appear in a variety of interesting physical scenarios such
as stellar astrophysics, cosmic strings, in superconductor
vortices, and quark confinement [16].
In the present context, we are concerned with the role

that magnetic flux tubes play in the superconducting
nuclear material of compact stars. In this scenario, the
QED effects are particularly interesting because the mag-
netic flux tubes, if they exist, are confined to tubes which
may be only a few percent of the Compton wavelength, λC,
in radius. Specifically, the flux must be confined to within
the London penetration depth of the superconducting
material, which for neutron stars has been estimated to
be 80 fm ¼ 0.032 λe [37]. Moreover, the flux tube density
is expected to be proportional to the average magnetic field.
For a background field near the quantum critical strength,
Bk, such as in a neutron star, the distance between flux
tubes is comparable to a Compton wavelength. This
Compton wavelength scale is also the scale at which the
nonlocality of QED becomes important and at which
powerful local techniques like the derivative expansion
are no longer appropriate for computing the effective
action.
The free energy associated with these flux tubes is a

factor in determining whether the nuclear material of a
neutron star is a type-I or type-II superconductor. The free
energy of a flux tube is determined by looking at the
energies associated with the magnetic field, with the
creation of a nonsuperconducting region in the super-
conductor, and with interactions between the flux tubes.
Flux tubes can only form if it is energetically favorable to
do so compared to expelling the field due to the Meissner
effect. For a lattice of flux tubes, there is also an energy
contribution from the presence of neighboring flux tubes
because of the nonlocal nature of quantum field theory.
The energy of two flux tubes has been previously

computed using worldline numerics methods and for flux
tubes with aligned fields, the energy is larger than twice the
energy of a single flux tube when the flux tubes are closely
spaced [3]. This result implies that there is a repulsive
interaction between the flux tubes due to QED effects,
strengthening the likelihood of the type-II scenario in
neutron stars. This interaction energy increases as the flux
tubes are placed closer together, and can have a similar
magnitude as the QED correction to the energy when the
flux tubes are closely spaced.
We have developed a cylindrically symmetric magnetic

field model which reproduces some of the features of a flux
tube lattice: for a given central flux tube, there are nearby
regions of large magnetic field that interact nonlocally, and
the large flux tube size limit goes to a large uniform
magnetic field instead of to zero field. We have investigated
the one-loop effects from ScQED in this model using the
worldline numerics technique for various combinations of
flux tube size, λ, and flux tube spacing, a.
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In contrast to isolated flux tubes, we find that there are
some regions where the worldline numerics results are
greater than the LCF approximation and other regions
where they are less than the LCF approximation. This can
be understood by thinking of the difference from the LCF
approximation as a competition between the local counter-
term and the Wilson loop averages. For magnetic fields that
vary on the Compton wavelength scale about some mean-
field strength, the LCF approximation provides a poor
approximation of the energy density, but may provide a
good approximation to the total energy density of the field
due to it being a good mean-field theory approximation to
the energy density. The appropriateness of the LCF
approximation in this case can be understood as an
approximate balance between regions where the field is
a local maximum and the magnitude of the quantum
correction to the action density is larger than in the constant
field case, and regions where the field is a local minimum
and the quantum corrections predict a smaller action
density than the constant field case. This washing out of
the field structure due to nonlocal effects has also been
observed in worldline numerics studies of the vacuum
polarization tensor [11].
There is a force between nearby magnetic flux tubes due

to the quantum diffusion of the energy density. This
interaction is nonlocal and is not predicted by the local
derivative expansion. It is an example of a Casimir force
(i.e., a force resulting from quantum vacuum fluctuations)
and it is computed in a very similar way as the Casimir
force between conducting bodies in the worldline numerics
technique [8]. The size of the energy densities involved in
this force are small even compared to the one-loop
corrections to the energy densities, which are in turn small
compared to the classical magnetic energy density.
Although this interaction energy is small, the interactions

between flux tubes in a neutron star due to the order field of
the superconductor are suppressed because the distance
between the tubes is considerably larger than the coherence
length and London penetration depth. Therefore, this force
is possibly important for the behavior of flux tubes in
neutron star crusts and interiors. For example, in our lattice
model, this force could contribute to a bunching of the
worldlines, producing regions where flux tubes are sepa-
rated by ∼2λe and other regions which have no flux tubes.
Consequently, this force may have important implications

for neutron star physics. However, investigating these
implications is outside the scope of this paper.
The nature of this interaction energy is expected to

depend on the model of the magnetic field profile for the
reasons discussed in Sec. V. It is, therefore, reasonable that
forces of either sign, attractive or repulsive, may be possible
depending on the particular landscape formed by the
magnetic field and the particular definition used of the
interaction energy. In a superconductor, the profiles of
the magnetic flux tubes are determined by the minimization
of the free energy for the interacting system formed by the
magnetic and order parameter fields. Therefore, investigat-
ing this phenomenon using more realistic models (i.e., two-
dimensional triangular lattices with field profiles motivated
by the physics of superconductors) is an interesting direc-
tion for future research. In particular, it would be interesting
to determine if certain conditions allowed for a nonlocal
interaction between magnetic flux tubes to be experimen-
tally observable despite the small forces involved.
These conclusions are directly applicable to ScQED.

However, we have also investigated the relationship
between spinor and scalar QED for isolated flux tubes
where the worldline numerics technique can be applied to
both cases. We find that both theories have the same
qualitative behavior and agree within a factor of order unity
quantitatively. The arguments and explanations given for
the ScQED results have strong parallels in the spinor QED
case. The spinor case can also be understood in terms of a
competition between the Wilson loop averages and the
local counterterm. We, therefore, speculate that the results
from this paper will hold in the spinor case, at least
qualitatively. However, addressing the fermion problem
so that the spinor case can be studied explicitly for flux tube
lattices would be valuable progress in this area of research.
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