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Bosonization in the path integral formulation
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We establish the direct d = 2 on-shell bosonization y; (x.) = e“(+) and y}(x_) = €“(-) in path
integral formulation by deriving the off-shell relations vy (x)yk(x) = exp[ié(x)] and wg(x)y] (x) =

exp[—i&(x)]. .
l'e_lf(/ﬂ)aJre_i)((«H), ¢;(x_) = e_lf(x—)

and g (x)) (x) = ie€W e,
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I. INTRODUCTION

It is known that the dynamical degrees of freedom of
spinors are consistently described by the bosonic degrees of
freedom in d = 2 dimensional space-time [1,2]. This fact,
which is called the bosonization of spinors, has been
analyzed in detail and it has been applied to various fields
of theoretical physics such as conformal field theory and
string theory and also to condensed matter physics [3—11].
The path integral formulation of bosonization, namely, a
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Similarly, the on-shell bosonization of the bosonic commuting spinor, ¢ (x,) =
7<) and g(x_) = ie -
established in path integral formulation by deriving the off-shell relations ¢; (x)¢ R( )=

19 etirle)| g (x,) = eiflxi)irle) s

je~i€(x) gt p—ix(x)

PACS numbers: 11.10.-z, 11.10.Kk

systematic derivation of bosonization rules in the frame-
work of path integrals, was initiated at an early stage of this
subject [12—16]. The path integral bosonization has been
applied to various problems [17-45], but, to our knowl-
edge, the simplest bosonization rule in the form y(x) ~

£() appears to be missing. In this paper, we show how to
realize this direct bosonization in path integral formulation.

We first recapitulate the known path integral bosoniza-
tion rule,

W) — / waaxp{i($> / dx[piy* O,y + vﬂz/?y”w]}
- / Dfexp{i(;—ﬂ_) / d2xBaﬂ§(x)a,,5(x)—2vﬂe””8y5(x)]}, (1)

where the normalization of field variables is chosen to
make the bosonization rule simpler. The basic ingredient to
derive this path integral bosonization rule is the chiral
Jacobian [46],

InJ(p) :71'[ / 2xp(x) [G”A,, +%eﬂV(aﬂvb - ayvﬂ)} .2

for an infinitesimal chiral transformation (x) —
eP@rsy(x) and W (x) — @(x)e™7s in the generic path
integral,
_ (1 i . :
Dy Dyexpy i 7 & x[piy* (0, =iV, —iAys)y] ;.

(3)

To use this Jacobian factor, one may replace v, = 0,a(x)+
€,,0"f(x), which is valid in d = 2, in the fermionic path
integral in Eq. (1) and rewrite the fermionic Lagrangian
as L = yiy*(0, — id,a(x) — iys0,p(x))w. The vector part
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d,a(x) is transformed away by a suitable gauge trans-
formation without generating any Jacobian factor. The
axial-vector part 0,4(x) is also transformed away by a
suitable chiral gauge transformation but with a nontrivial
Jacobian factor. The integrated form of the Jacobian is
evaluated by the repeated applications of infinitesimal

chiral transformations in the form e~(/?? S/ P, P).
and the final result is expressed in terms of v,(x) as an
explicit generating functional. The final result is

/ Lxed

which is nonlocal with respect to v,(x), and it is also
derived from the bosonic path integral in Eq. (1). See
Refs. [12-15] and the monograph [16] for further details.
The relation (1) shows that the theory of a free Dirac
fermion y and the theory of a free real Bose field £ define
the identical generating functional W(v,) of connected
Green’s functions. The basic bosonization rule is thus

8 8M€ BOgvp(x),  (4)
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w(X)rHy(x) =—e0,E(x), or w(x)rysy(x) =0"E(x).

(5)
We used the relation y#ys = —e*y, with €' =1, and
Y =06', y'=ic®, ys=y"Y"=06>. The notational

convention is summarized in Appendix A. This current
bosonization shows that the scalar field &(x) is a pseudo-
scalar. The above path integral bosonization (and
its non-Abelian generalization) works for the known
interesting examples in d = 2 [16], for instance, the mass-
less and massive Thirring models (the latter corresponds to
the sine-Gordon model [1]) and the Wess-Zumino-Witten
model [5].

II. BOSONIZATION OF
ANTICOMMUTING SPINORS

It is interesting to examine if the direct bosonization of
w(x) in the form w(x) ~ exp[i&(x)] [10,11] instead of the
current in Eq. (5) is possible in path integral formulation by
generalizing the formula (1). For this purpose, we start with
the Green’s function defined by

OG(x—y) =8 (x—y), (6)

which is best defined in Euclidean d =2 space and
given by

Gelx=y) = - l(& =y + (2 =27). (7)

The corresponding Green’s function in Minkowski metric
is given by

Gulx=y) = In[(x' =y)2 = (" =32 (8)
where the imaginary factor i arises from the rotation
from Euclidean to Minkowski spaces by x*> — ix’, and
thus [OpGp(x!—y!x?=y?)dx'dx*=[(-1)0y Gp(x' =",
ix0 —iy®)idx' dx’= [ Oy Gy (x' =y 20— y0) dx'dx® =1.
This expression (8), when combined with

(i) ir" 0, (T*y (x)i(y))
= / DWDW{_(&;(X) ei5>1/7(y)}
=i (x—y), ©)

gives a correlation function of a free fermion

(V) — 2278, Gop(— y) — i
(T*w(x)@(y)) = 2270, Gy (x~y) =y
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In the present paper we often use the two components
of a spinor y(x), which are defined in our convention

summarized in Appendix A by
i
_ wy (x)
o= (M) an

wix) = (gjg; ) wh(x)

and the correlation function (10) is written as
(T*w () (v) =

(T*y Ry () = - (12)

i(x=y)_

We note that x, = xo +x; and x> = x,x_ in this con-
vention, and the free Dirac action is written as

S= / dxypiy' 0,y
= / Px[whi0_wr+y}i0,y;). (13)
As for the bosonic variable £(x), we have
(i) 0,0 (T*E)E(y))
- / Dg(%) 9, 0"&(x)&(v)
X exp {i / P Kﬁ) %aﬂfaﬂf} }

- [ Pelig) e
= —isf e (19

which implies

(T*E(x)E(y)) = —idnGpy(x = y)
=—In[(x' —=y")2 = (x*=y°)2],  (15)

and thus

(T* exp [i&(x)] exp [=i&(y)]) = A2 exp {—In[-(x — y)*]}
1
[~(x=y) (x=y)_]
(16)

A—2

where we denote the divergence at coincident points
by A. This last correlation function or more generally
the correlation function in the presence of the composite
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operator exp[ié(x)]exp[—ié(y)] is evaluated in the path
integral by adding a source term,

[z {i [ @:](o) sorenns + o]
=[P [ ()27

X exp L / Pud?vJ (w)ArGy (1 — 0)1(0)} (17)

and replacing J(u) —
have

J(u) + 6(u — x) — 5(u —y). We thus

PHYSICAL REVIEW D 91, 065010 (2015)
T* A% exp [i&(x)] exp [—i&(y)]

= A*(T* exp [i§(x)] exp [-i&(y)]) : exp [i§(x) — i&(y)]

(18)

where normal ordering means no more contraction between
&(x) and £(y), and those variables are contracted with
variables contained in &(x)J(x) outside the composite
operator in the path integral.

We now recall an important formula that is shown using
Cauchy’s lemma, of which proof is given in Appendix B for
completeness,

/ Dy Dy exp {i(;”) / x[piy 0,y } ﬁﬂw () wk ()R (vows (k)

j=1 k=1

1 1
= det det -
1 X; —}’k)+ i(2x; = yi) -
N N N N
gl
j=1 k=1 [_(x/ _yk> ]j1>/2 ky>ky

frson{(2) ffrsons

H H [—(x, —sz)z][—()’k] _Ykz)z]

Aexp [i&(x;)|Aexp [=i&(vi)].

s 1L

]:1 k=1

The importance of Cauchy’s lemma in bosonization has been noted in Ref. [11]. We then establish

eW(twiri) = / Dy Dy exp { <2—> / Ax[Fir" O + vy — jL(wLwh — (X)WRWZ]}

1 L .
= / DlZwaeXp{ (2;:) d2 Wiy, — jr(x)e Py i — jr(x)e*Py gy} —C%ﬁ@”ﬁ]}

Sy,

where in the second line, we replaced v, = 0,a(x) +
€,0°f(x) and the fermion Lagrangian is changed to
L = yiy*(0, — i0,a(x) — iys0,p(x))y. The vector free-
dom 0J,a(x) is gauge transformed away without modifying
the rest of the terms and without any Jacobian. The
axial vector freedom 0,f(x) is transformed away by
the change of the fermion variables y — ¢”’sy and
W — ye’s, which give rise to an integrated Jacobian
factor —i/(2x) [ d*xd,p0"p [12-15], together with the
modifications of the rest of the terms; this integrated
Jacobian is confirmed to be correct by considering
an infinitesimal variation of f and obtaining

(i/x) [ d®x8p3,0"p.

[ E(x)0,8(x) = 2j (x)Ae™2 P+ —

= /D/j exp {i <E> /d2x {5 E(x)D,E(x) — 20,6, E(x) — 2j Ne™ — 2jRAe""§] },

2jg(x)Ae?P-iE — 2(9”,38”,5} }

(20)

We then expand the fermionic path integral in powers of
jr and jg in the second line in Eq. (20), which is then
converted to a bosonic path integral using the formula (19).
The final result is then resummed to an exponential form in
the bosonic path integral. In the last step in Eq. (20), we
changed the path integral variable & — 2§ — £ by noting
D(& - 2p) = D¢ and used the relation 0,0°f = —0,v,€e".

We have thus established path integral bosonization rules
in Eq. (20),

Friysw = 0'E yp(x)wi(x) = Aexp [iE(x)],
wr(xX)y} (x) = Aexp [<i&(x)],

where the first relation is also written as

(21)
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yr (e (x) = =07E(x).  wi(x)yr(x) = 97E(x). (22)

The consistency of the last two relations in Eq. (21) with the first relation is confirmed by comparing (the short distance
expansions)

1 1 n 1 t 1
i(x=y)pi(x—y)_ i(x—y);
which is established in the path integral,

/DWDWL( Wk (wr (3w (v eXP{ ( >/sz wirtd, }

X exp { [ w0 + v 0n) + nkwa(o) + v <x>nR<x>1}, (24)

Ty (g (wr(y)wl () = ] wi (). (y) +regularterms, (23)

i(x—y)_

by expanding in powers of source functions #7(x), with the bosonic relation derived from Eq. (18),

1

T A explig(]exp (€] = 57y

{14+i(x—y),07¢(y) +i(x—y)_07&(y)} + regular terms,  (25)

where regular terms mean no singularities for O((x —y),) = O((x —y)_). These two expansions (23) and (25) are
consistent with the relations in Eq. (22).
These bosonization rules (21) are consistent with the parity transformation y’(x') = Y%y (x) and &(x') = —&(x) with
x' = (x% —x!), and Lorentz properties
i (X)y sy (x) = iy} (x)wr(x) = iwg (O)yy, (x) = —2Asin&(x),
() (x) = (0w () +y (X (x) = =2Acos E(x). (26)

They are also consistent with chiral Ward-Takahashi identities in the path integral,

iaﬂ<T*<2]—ﬂ> xX)pysw(x H v () yi(x )WR(yk)Wz(yk)>

j=1 k=1
= 2i(x - xj)<T* 11 HWL X)W (x;) wR(yk)wL(yk)>
J j=1 k=1
- 2=y 1 T T v owhownCoow ) ) (27)
3 J=1 k=1

and

i8ﬂ<T ( >8"§ /ﬂlk:AeXp i€(x;)]Aexp [— ié(yk)}>
—22162)6 X; < ﬁﬁAexp [i&(x;)] A exp - lff(yk)]>

—Zzzazx—yk< [T TTAewp o) enp -ic(oe)] ) (28)

j=1 k=1

where the bosonic forms of identities are obtained by considering the change of integration variable &(x) — &(x) =
&(x) + a(x) in the bosonic path integral. Equivalently, the current algebra in operator formalism,

i K%) P ()7 rsw(x), W ()wk (y)] 8(x" = y°) = 2iy, (»)wk ()8 (x = y), (29)
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for example, is consistently realized by

" Kzl> O&(x), Ae’f”ﬂ 5(x0 —1°) = 2iAe5 (x — y),
v

(30)

since the canonical conjugate of &(x) is II(x) =
1/ (4m)PE(x).

One may thus identify the last two relations in Eq. (21) as
the path integral version of the off-shell direct bosonization
rules. In the limit of on-shell fields with 9T0~¢(x) = 0 and
E(x) = &(xy) +&(x_), these direct bosonization rules
imply

l//L(x+) fr—y Al/zeig()@r) — :ei§<x+):7
whix_) = AV/2i0) = :git(x):

(31)
which is the familiar direct bosonization formula in
operator formalism [10,11]. Starting with the second
relation of Eq. (21), which is valid for general off-shell
fields, we obtain this particular form of decomposition by
|
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considering a subset of y; (x) and y}(x) which satisfy the
equations of motion 9y (x) = 0 and 9y} (x) = 0 and
thus depend only on x, and x_, respectively. The factor
A'/? is absorbed by normal ordering. The formula (19) is
also consistent with the factorization into x_ and x_ sectors
in the last two relations in Eq. (21). Note the notational
conventions x; = xy &+ x|, x> = x,x_, and 9Fx, = 1.

We emphasize that we cannot define the path integral in
terms of the on-shell variables &(x ) and &(x_) directly,
unlike the operator formalism such as conformal field
theory where &(x, ) and &(x_) are treated as independent
variables.

III. BOSONIZATION OF COMMUTING SPINORS

The bosonic spinors, namely, commuting spinors, appear
in the quantization of the spinning string [8,9]. The Pauli-
Villars regularization is also implemented in path integrals
using those bosonic fermions [16].

We here discuss the bosonization of commuting spinors
in d = 2. We can readily establish the relation

W) — /D(?)Dq’)exp {,<21”> /de[quyﬂaﬂqﬁJr 11,,557/"(15]}

= [prew{i(15) [ x| -3orewinew - 2neraem)| .

where ¢(x) stands for the commuting spinor in d = 2. The
basic difference of this expression from the previous one
(1) is that the signature in front of the action for the bosonic
field &(x) differs; namely, we have — instead of +. This
minus sign must be adopted since the Jacobian changes
signature for the commuting variables ¢ from the anti-
commuting Grassmann variables . The boson field &(x) in
the present case corresponds to a negative normed field.
The bosonization rule of the current,

Pr'd = - 9,8(x). (33)

is the same as before:

PL(X)pr(x) = =0T E(x).  Pr(x)pr(x) = 07E(x). (34)

But we have

(T*¢(x)é(y)) = 4Gy (x - y)
=In[(x' —y")? = (x* = y°)],

and thus

(32)
|
(T exp [i&(x)] exp [=i&(y)]) = A* exp [47Gy (x — )]
= N[-(x=y)*, (36)
which cannot reproduce the fermion poles.
However, the relation
(=1{T* P (x)k (X)r (V)b (¥))
1 1
di=nlc=n o
is established by noting
(T be(0) = =
T o (38)
(T*pr(x), (v)) = =),

This may be compared with

(T* exp [-i&(x)]0" exp [=ix (x)] exp [i€(y)]0™ exp [ix (v)])

- [i(x—le L(x—le

(39)
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using the positive normed auxiliary (pseudoscalar) field
x(x),
A2 . : B 1

(T* A% exp [iy (x)] exp [-ix (y)]) e (40)
with  (T*x(x)x(y)) = —=In[(x" =y")* = (x* =)°)’];  the
role of y(x) is to provide a factor 1/[—(x — y)?]?> without
spoiling the bosonization rule of the current in Eq. (33).
Note that 0*x, = 1 and §*x; = 0.

We confirm that the extra field y, which has been used in
the conformal field theory approach [8,9] but was intro-
duced in a somewhat ad hoc manner in the present study,
|
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does not spoil the basic bosonization of the current in
Eq. (33). We check this by examining the short distance
expansion, which tests algebraic properties,

(=D T* ¢ (x) i (x)pr(y) ] (¥)

- [i(x - y)+:| [i(x - y)j + L’(x . y)_] $L()bL()

_ {ﬁ] (ﬁR(y)(;S; (y) + regular terms, (41)

which may be compared [by using a relation analogous to
Eq. (18)] with

T* exp [—i&(x)]0™ exp [—iy(x)] exp [i£(y)]0~ exp [ix ()]

1

= {1—i(x=y);07¢(y) —i(x —y)_07¢(y) + -}

(= =y) (= y)]

B [i(x—lm] [i(x—le B L(x—lw_

}a*é(y)— {

ﬁ} 07&(y) + regular terms, (42)

where regular terms mean no singularities for O((x —y),) = O((x —y)_). These expansions (41) and (42) are consistent

with Eq. (34).
We thus expect the off-shell bosonization rules

b1 (x)ph(x) = ie" WGt emit®),

Pr(x)¢] (x) = i men ), (43)

which are consistent with parity transformation. We can in fact establish these rules, together with Eq. (33), by repeating the

same steps as in Eq. (20),

i [ Dippexs {i(5) [ Eaipivo e o0bro - i Woudl - n)bes] |

— [vivwess{i(5.) [ @xipiro s - i ot - i b, + 0,609}

-/ p.»:mexp{i(;ﬂ) [ {_;aﬂax)a”f(x) + 5 07()0,(x)

—2j, (x)ie 2P  e=% — 2jp(x)ie? PG et + 28”[7'8",3] }

- / pgpxexp{i@) / d*x {—%8"5()6)@,5()6)+%6")((x)5,,)((x)—2”u(x)€”y8u§(x)

—2j(x)ie"® 0t e — ZjR(x)iei‘f@_ei?f] }, (44)

where in the second line, we replaced v, = 0,a(x) +€,,0"#(x) and eliminated J,a and 0"/ by suitable gauge
transformations. Note the sign change of the Jacobian factor 9,40"p. In the second line, we used a bosonic-spinor

analogue of Cauchy’s lemma in Eq. (19),

/ D&Dqﬁexp{i(%) / dzx[q_ﬁiy"a”gb]} |

N
J=1

k=1

1 1 1 ][
Lkl kN}i(xl_Yk])+i(x2_yk2)+ i(xN_ykN)+ {k

.....

_ /Dwxexp{i(@ / dzx{—%aﬂé(x)ﬁﬂé’(x)w% (xwmx)}}f[lk

N
[k (x))br(y) e (ve)

1 1 1

kN}i()H =g, ) i(y2 = xp,) - 'i()’N—ka)_

N
[ie—ié(xj)aJre—ix(Xj)][iei5<Yk)6_e’7‘(yk)], (45)
1
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where the summation runs over all the permutations of
(1,2,...,N). The proof of this formula is given in
Appendix C. In the last step in Eq. (44), we changed
the integration variable & 4 2 — £.

For on-shell fields with &(x) =

&(xy) +&(x_) and

x(x) = y(x;) + y(x_), the relations in Eq. (43) imply

b (x,) = iemE) g et gt (x_) = emiEtr)=ine)

Pr(x_) = i) ) @l (x, ) = )il
(46)

Here, we have noted that ¢, (x) and ¢4 (x) depend only on
x and x_, respectively, if one considers a subset of ¢; (x)
and ¢1Te (x) which satisfy the equations of motion
9 ¢y (x) =0 and "l (x) = 0. The parity symmetry is
preserved in these formulas, but the Hermiticity such as
(¢ (x,))t = @] (x_.) is lost. In Euclidean formulation such
as in conformal field theory, one may treat ¢b; (x,) and
¢} (x.) as independent quantities and thus this formulation
may be used; in fact, this trick has been used for the
commuting ghosts in spinning string theory where
¢1(x,) = —if and ¢} (x,) — 7, and thus these two fields
are literally independent [8,9]. To be precise, after the Wick
rotation x, — —z and x_ — Z, we find the correspondence
(after a suitable redefinition of field variables),

ﬁ(z) — g—¢(1)+)((2)62)((z)’ y(z) — e¢(1)—)((1),
B(z) = e @29 5(3),

See, for example, Section 10.4 in Ref. [8].

IV. DISCUSSION

We have shown that the direct on-shell bosonization such
as yy(x,) =€) and yh(x_) = €40 in d=2 is
understood in a systematic way by path integral formu-
lation which is based on off-shell fields. This fact must be
conceptually satisfactory when one considers the path
integral bosonization. The bosonization itself has many
applications in mathematical physics such as conformal
field theory and also in condensed matter physics.

Finally, we mention the first quantization of string
theory briefly, where the bosonization of Faddeev-
Popov ghosts historically played important roles [47].
For bosonic critical string theory, the anticommuting
reparametrization ghosts are described by a formal Dirac
Lagrangian in d = 2 Euclidean space [48]:

/DfDnexp{ (%) /dzx/;(x)(a]al +a382)r/(x)}, (48)

where

PHYSICAL REVIEW D 91, 065010 (2015)

=(0) w=(0)

and 7 stands for the reparametrization ghosts and &(x) for
the multiplier fields. Our bosonization of anticommuting
spinors is directly applied to this case, and the result gives
rise to the formula in the modern notation of bc ghosts
[8,9]. See also Refs. [49,50]. For spinning critical string
theory, the path integral for the commuting ghosts asso-
ciated with the fixing of supersymmetry transformation of
gravitinos is described by a formal Dirac Lagrangian in
d = 2 Euclidean space [51,52]:

(49)

/ DEDCexp {% / 2xC(x) (0,0, —0'282)C(x)}, (50)

where C(x) stands for commuting spinor ghosts and C(x)
for the multiplier fields. This is bosonized using the above
result of commuting spinors, and the result agrees with the
bosonization in the modern notation of fy ghosts [8,9]. In
these primitive notations (48) and (50), the bosonization of
two component spinors appears in a more explicit manner.
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APPENDIX A: NOTATIONAL CONVENTION

We here summarize the notations in two-dimensional
Minkowski space-time which is defined by

{r. 7'} = 2¢",
with g, = (1,—1) = ¢ and €' = 1. We define y° = o',

y' =ic%, ys = y'y? = 6 with y#ys = —e**y,. The follow-
ing relations are convenient:

(A1)

od=rs) 7+r'_ .
2 2 7
((L—ys) 7' +7 _
S vt
1—ys)
v,,y( 5 2= (Vo4 V, ( >Ev+y+. (A2)
Similarly
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yo(l‘f’}’s):}’o—}’lzy_ y1(1+75):71—70:_y_ IN(X1X05 s XNSY Y205 VN)
2 2 ’ 2 2 ’ N ( x; )TV, ( )
(1+475) - = (-1 -y itizh R et T T ()
Vir'— == (Vo—V1)< > ) =V, HF‘ [T (=)
1 b thematical induction.
_ £~ (A0 1 y ma
Ar=Ap A, A _2(A +47), It is easy to see that the assertion is true for N =1
Xp=xokx;, 0.=0,%0,, [for this case, the numerator of the right-hand side of
1 1 | Eq. (B2) is interpreted to be unity] and for N = 2.
0F=—(0"+0")==(9yF0) =-0-, Assuming that Eq. (B2) is true when N is replaced by
2 2 2 N — 1, we then show that it holds also for N = N.

AB'=n*"A,B_+ntA_B,, It is obvious that, as a complex function of xy, fy in
1 Eq. (B1) possesses simple poles at y, (k =1, ..., N). This
=t =5 property is shared also by the right-hand side of Eq. (B2).
3 3 Therefore, if the residues of both sides of Eq. (B2) at the

v — ot +
¢¥AB,=€e"AB_+eTAB,, pole xy = y, are the same, the difference of both sides is a
e — et :l (A3) bounded entire function of x, which (obviously) vanishes
2 as |xy| — oo. This implies the equality (B2) by Liouville’s

theorem.

Now, from the definition (B1), the residue of the

left-hand side of Eq. (B2) at the pole xy =y, is

APPENDIX B: PROOF OF CAUCHY’S LEMMA given by the minor determinant, the determinant of the

We set submatrix obtained by deleting the Nth row and kth
column, that is,

(_1)N+ka—1(x1,x27 s AN=1 V1 s V=10 Yieo ~--,yN)-
fN(xl’XZ’~--’xN;yl’)’2’---sYN)Edetj,k (B1)

Xj—= Yk (B3)

On the other hand, the residue of the right-hand side of
and show that Eq. (B2) at the pole xy = y; is

(_1)1\/(1\/—1)/2 j‘\{>jz(le _sz) HkN,>k2()’k, _ykz)
ﬁvz_ll T (= ) T e = )
= (=1)NN-1)/2221= ) 11>12( _sz)HQ’pkz(ykl — Vi)
ﬁ‘v:f 1:1( i yz) HZ;&k(yk —Ym)
N-1 N
= (_I)N(N—l)/2(_1)N—1(_I)N—k j1>jz(xj1 _sz) Hk,>k>k2(.Vk1 —)’kz).
;V:_11 [T (x; = )

Assuming that Eq. (B2) is valid when N is replaced by N — 1, it can be confirmed that this last expression in Eq. (B4) is
equal to Eq. (B3) and thus the residues of both sides of Eq. (B2) are the same. By mathematical induction, this proves
Eq. (B2) for any N.

ANV

(B4)

APPENDIX C: PROOF OF AN ANALOGUE OF CAUCHY’S LEMMA
FOR A BOSONIC SPINOR IN EQ. 45)

The rightmost expression of Eq. (45) is written as

NN (o) o (2) g o) 13 O 0 O02) 0o O) NV () 2 (72) 2o ) 25 ()2 () (x)2). (C)

if one introduces the function

1 Moo
fN(xl’x2’"‘7xN;yl’y2"'°vyN)E ( _>CN x17x29""xN;ylvy2""’yN)’ (Cz)
CN(xlaxZ"--va;ylsyQM- ,)’N ]Ja
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where

N N
CN(xlvxb e XN Y1 Y2, - ,)’N) = HH H (le —ij)- (C3)

In what follows, we show that

fN(xlvxz’---,xN;yl,yz,...,yN): (C4)
{li(zzu;,kN}xl VX2 T Yk, AN T Viy

by mathematical induction. If this is true, then the rightmost term of Eq. (45) is

|: 1 1 1 ] [ 1 1 1
by For =y )i =) i =i ) Ly Sy T = X )= i = xg) - iy = X, )-

(C5)

and this coincides with the path integral over bosonic spinors on the left-hand side of Eq. (45).

It is easy to confirm that the assertion (C4) is true for N = 1 [for which the last factor in Eq. (C3), H Aoy (g, = x5,), is
interpreted as unity] and for N = 2. Assuming that Eq. (C4) is true when N is replaced by N — 1, we then show that it holds
also for N = N.

From its definition in Egs. (C2) and (C3), it is obvious that f, as the function of x,, is a sum of simple poles possibly at
x; (j # N) and y;. Thus, to conclude Eq. (C4), it suffices to determine the position of all poles as the function of x) and the
residue at each pole.

Now we compute

9 N N-1
a—CN(-xthv-' SXNS Y1 Y2 -0 YN) = Cn (X1 Xy s XN V1L Vs oo YN ( + ) (Co)
AN =N T Ve SN
and
o 0 -1 Moo =
—CN(X1,X27---’XN§Y1,}’2~--7)’N):CN<x1,X2,.-.,XN;Y1,Y27‘--,)’N)[( +Z + )
Oxy_1 Oxy AN TAN-1 3T AN-1 Ve TS AN-1 T

N N=2 1
X + + . C7
<XN —XN-1 ;xzv —Yn ZXN - xm) (xn — xzv—l)z] ()

m=1

First, examining the behavior of Eq. (C7) near xy ~ xy_;, we immediately find that Eq. (C7) is regular at xy = xy_;.
Since in Eq. (C2), further derivatives [ ]2 9/0x; on Eq. (C7) do not produce any singularity at xy = xy_;, we conclude
that f) has no pole at xy = xy_;. Since the choice xy_; is of course arbitrary, we see that fy has no pole at x; as the
function of xy.

Next, from Egs. (C6) and (C2), we see that the residue of the pole of fy at xy = yy is given by

0T S PO oy KA S

fandec = V0 Smy Li=1 7 Yk s,

ol Ho o] () e

~n m1>m2

= —f o1 (X1, X0 o XN Y1 Y2s e YNt (C8)

This is the function f itself with one N lower. The residue at the pole at x; = y,, for arbitrary £ is similarly obtained. Using
this information and assuming that Eq. (C4) with N replaced by N — 1 is valid, we see that Eq. (C4) is true also for N = N.
Equation (C4) holds for any N by mathematical induction.
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