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The dynamical effects of topological charge in two-dimensional QED can be expressed in terms of a
topological order parameter via a Berry phase construction. The Berry phase describes the electric charge
polarization of the vacuum in a manner similar to the theory of polarization in topological insulators. The
topological order parameter labels discrete vacua which differ by units of electric flux. Here the associated
Berry connection is explicitly constructed from the Dirac Hamiltonian eigenstates by introducing a small
attractive Thirring coupling, so that there is still a stable boson in the limit of zero EM coupling. The Berry
connection arises from the analytic structure of the Bethe ansatz states in complex rapidity near the free
fermion point.
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I. INTRODUCTION

The most well-verified phenomenological effect of
topological gauge fluctuations in the QCD vacuum is the
resolution of the Uð1Þ problem (i.e. the absence of a low-
mass flavor singlet Goldstone boson) via a topologically
induced η0 mass term. Phenomenology and lattice studies of
the η0 strongly support the Witten-Veneziano large-Nc
arguments [1–3] which predict the η0 mass in terms of
the topological susceptibility of the pure-glue vacuum. In
this view, the η0 is an approximate Goldstone boson in the
large-Nc limit (with m2

η0 ∝ 1=Nc). In this limit, the topo-
logically induced qq̄ annihilation that provides the flavor
singlet mass term is suppressed, and the η0 propagates like a
pion. Both large-Nc chiral Lagrangian arguments [1–3] and
Monte Carlo results [4,5] indicate that the topological
structure of the QCD vacuum is dominated by (2þ 1)-
dimensional membranes of topological charge, which can
be understood as domain walls separating discrete vacua in
which the effective local value of the topological θ
parameter differs by integer multiples of 2π. As a gauge
excitation, a θ-domain wall can be inserted in the action as
an integral of the 3-index Chern-Simons tensor over the
(2þ 1)-dimensional world volume of the membrane.
Lattice results indicate that the vacuum is permeated by
a layered, alternating-sign arrangement of these topological
charge membranes. The polarizability of this stack of
membranes leads to the finite topological susceptibility
of the QCD vacuum.
Recently, it has been suggested [6] that a natural

mathematical framework for discussing the topological
structure of the QCD vacuum and its relation to the chiral
condensate is provided by the theory of electric charge
polarization and quantized charge transport in topological
insulators [7]. The central idea in the theory of topological

insulators is the construction of a Berry connection which is
associated with the phase of Bloch wave fermion eigen-
states under adiabatic transport around a compact momen-
tum-space Brillouin zone (BZ). The Berry connection is
thus a gauge field defined over momentum space rather
than coordinate space. The Berry phase given by the closed
Wilson loop integral around the BZ is gauge invariant
under small, topologically trivial gauge variations of the
Berry connection, but it changes by integer multiples of 2π
under topologically nontrivial transformations, correspond-
ing to the transfer of integer units of charge between the two
spatial boundaries of the system. The Berry phase provides
a definition of electric charge polarization which properly
incorporates quantized charge transport in a topological
insulator or quantum Hall system.
A very instructive analogy to large-Nc vacuum structure

in QCD is provided by Uð1Þ electrodynamics in two
spacetime dimensions. Here the Chern-Simons membrane
is constructed from an ordinary Wilson line integral of the
gauge field (interpreted as the surface integral of the dual
Chern-Simons current εμνAν). Thus, the domain walls are
world lines of charged particles and the discrete θ-vacua are
flux vacua with different numbers of units of electric flux.
This provides some insight into the physical significance of
the Berry connection. In one spatial dimension, there is a
direct connection between the ordering of particles along
the spatial axis and the analytic structure of amplitudes and
wave functions in complex momentum space. For example,
a 2-body wave function Ψðx1; x2Þ that vanishes for one
ordering of the particles (e.g. x1 < x2) gives a momentum-
space wave function that is analytic in the upper or lower
half-plane of the relative momentum variable k ¼ k1 − k2.
In the discussion of the Berry phase in Ref. [6], gauge
topology was related to spectral flow for the free massless
Dirac Hamiltonian in a background gauge field. However,
for QED2 the analytic structure of the Berry connection
becomes more clear if we introduce a small Dirac mass*hbt8r@virginia.edu
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term as well as a small Thirring 4-fermion coupling. Thus,
we are led to consider the spectral flow of the massive
Thirring Hamiltonian in a constant background electro-
magnetic (EM) field strength. Without the EM field, this is
still a solvable model by a Bethe ansatz [8,9]. The
construction of its particle spectrum is given in terms of
Hamiltonian eigenstates described by a single quasiparticle
energy function in complex momentum space (or more
conveniently, complex rapidity space). In particular, the
elementary boson of the equivalent sine Gordon model [10]
is a fermion-antifermion bound state associated with a pole
in the analytically continued fermion-antifermion phase
shift. For any small but finite Thirring coupling g > 0
(giving an attractive fermion-antifermion interaction), the
SG boson is a well-defined particle, but this state disso-
ciates at the free fermion point due to the coalescence of a
pole and a zero in the 2-body amplitude. For this reason, the
analytic structure is made clearer by approaching the free
fermion point from a small positive coupling. Below we
briefly review the relevant spectral results for the massive
Thirring model near the free fermion point. Our construc-
tion of the Berry connection is built on the analytic
structure of the Bethe ansatz eigenfunctions in complex
rapidity for small 4-fermion coupling g > 0.
As discussed in Ref. [6], the physical significance of the

Berry phase in QED2 is that it represents the electric
polarization, with mod 2π jumps of θ describing the
topological transport of charge between boundaries. The
equivalence to sine Gordon theory provides some insight
here. The fermion is a kink in the SG field, which changes
by 2π across the kink. (For this discussion, we absorb a
factor of the SG coupling constant β in the definition of ϕ
so that the action is periodic in ϕ → ϕþ 2π.) From a
semiclassical perspective, a kink-antikink pair that ionizes
and propagates to opposite ends of the box leaves an SG
field which is not zero but �2π. If there is no EM field,
ϕ → ϕþ 2π is an exact symmetry, so all the mod 2π vacua
are degenerate. However, with an EM field the symmetry is
broken by the Schwinger anomaly. This is most easily seen
by bosonizing the theory in Coulomb gauge, where the EM
field reduces to an instantaneous linear Coulomb potential
Vðx − yÞ ¼ jx − yj. Under bosonization, this becomes a
mass term for the boson field,

HEM ¼ e2
Z

dxdyj0ðxÞVðx − yÞj0ðyÞ ∝ e2
Z

dxϕ2ðxÞ;
ð1Þ

where the current is bosonized according to jμ ∝ εμν∂νϕ.
The vacua in which ϕ differs by mod 2π are thus distinct
“flux vacua” containing different numbers of units of
electric flux. This is quite analogous to the situation
expected in large-Nc QCD, where there are discrete vacua
for θ ¼ 2π × integer, whose degeneracy is broken by a
contribution to the vacuum energy ∝ θ2 coming from the

finite topological susceptibility of the vacuum. Thus, we
expect the present discussion of the Berry connection in
QED2 to have direct relevance to 4D QCD, where it
describes the polarization of Chern-Simons membranes.
Our strategy for constructing the Berry connection in

two-dimensional QED follows the discussion in Ref. [6].
We consider the spectral flow of the Dirac Hamiltonian in a
background Uð1Þ gauge field defined on a Euclidean
spacetime 2-torus, with spatial period 2π and Euclidean
time period T. In the 2D case, the topological charge is
proportional to the field strength F ¼ 1

2
εμνFμν. For a

constant background field strength F, flux quantization
requires FT ¼ integer. With the gauge choice
A0 ¼ 0; A1 ¼ Ft, the one-body Dirac Hamiltonian operator
may be regarded as a function of the parameter k≡ Ft,

H0ðkÞ ¼ γ5
�
−i

∂
∂xþ k

�
þ γ0m; ð2Þ

with eigenfunctions uðx; kÞ. If there are other Dirac
particles in the state, we consider the many-body wave
function Ψðx1;…; xNÞ as a function of x≡ x1, for fixed
x2;…; xN . The Thirring interaction will introduce delta-
function interaction terms in (2),

HðkÞ ¼ H0ðkÞ þ 2g
XN
j¼2

δðx − xjÞ: ð3Þ

These are treated by writing eigenstates of the free
Hamiltonian (2) in each sector and matching them across
the delta functions with two-body phase shifts. As dis-
cussed in Ref. [6], for T ≫ 1 the time-dependent
Schrodinger equation for H may be interpreted as an
equation for the adiabatic evolution of the Hamiltonian
eigenstates as a function of k. The Euclidean time period
0 < t < T corresponds to 0 < k < 1. If we takeHðkÞ to act
on a periodic spatial interval 0 < x < 2π, then for any
integer value of k, the Hamiltonian is gauge equivalent
to H0ð0Þ,

HðkÞ ¼ e−ikxHð0Þeikx: ð4Þ

In the A0 ¼ 0 gauge, the eigenfunctions of H0ðkÞ on the
torus are periodic in the spatial direction,

uðxþ 2π; kÞ ¼ uðx; kÞ; ð5Þ

but they are only quasiperiodic in the time direction,

uðx; kþ 1Þ ¼ eixuðx; kÞ: ð6Þ

The gauge transformation required to match wave functions
at t ¼ 0 and t ¼ T represents quantized spectral flow of the
Hamiltonian induced by the background F field. For
example, in a constant F field F ¼ 1=T, the eigenvalues
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of the massless left-handed Dirac Hamiltonian,
En ¼ nþ k, evolve continuously from En ¼ n to En ¼
nþ 1 as we go from 0 to T. The axial vector current
anomaly displays the connection between the spectral flow
description of gauge field topology and the polarization of
electric charge. In the chiral limit m → 0, in the A0 ¼ 0
gauge, the nonconservation of axial current is attributed to
the time dependence of the A1 ¼ Ft background field. The
anomalous contribution to the axial current reduces to

j50 → Ft; j51 → 0: ð7Þ

Thus, the quantization of the gauge flux FT on the
Euclidean torus translates into the quantization of the
change of total axial charge on the periodic spatial cell
under evolution over a Euclidean time period T. This
describes the possibility of producing one or more fermion-
antifermion pairs which propagate to opposite spatial
boundaries and change the chiral phase of the vacuum
by �2π. Later we will consider Bloch wave states on a
spatial lattice of length L → ∞ made up of adjacent
quasiperiodic cells. In this case, a topological transition
describes the propagation of the fermion and antifermion to
the boundaries of neighboring cells of the lattice. The need
for a topologically nontrivial gauge transformation to
match up the states at t ¼ 0 and t ¼ T reflects the fact
that the change of phase of a Hamiltonian eigenstate around
the Euclidean time period records the transfer of charge to
the boundaries. The Berry connection in QED2 encodes
phase information from the bulk eigenstates that registers
the net transfer of chiral charge to the boundaries. Here we
study this issue in the framework of the eigenstates
constructed from the massive Thirring model Bethe ansatz
near the free fermion limit. We will show that a particular
excitation that appears in the Bethe ansatz spectrum known
as a “2-string” represents a transition between vacua which
differ by a unit of chiral charge. When the integral around
the Brillouin zone that determines the Berry phase is
evaluated by contour integration in the complex rapidity
plane, each 2-string contributes a pole residue of �2π (the
sign depending on the chirality of the 2-string). In the
fermionic formulation of the Thirring model, a 2-string is a
fermion-antifermion bound state which, in the absence of
an EM interaction, has zero energy. It is a scalar excitation
with the symmetries of a ψ̄ψ operator. Thus the 2-string can
be seen as the building block of the chiral condensate.
(Note that, although the Coleman-Mermin-Wagner theo-
rem prevents sponaneous chiral symmetry breaking in 2D,
the covariant gauge description of QED2 includes a
massless Goldstone field which cancels against the mass-
less photon pole and thereby decouples from gauge
invariant amplitudes.)
Applying the gauge transformation gðxÞ ¼ eiFxt ¼ eikx,

we go to Coulomb gauge, A0 ¼ −Fx; A1 ¼ 0. In this gauge
the background field is represented in the Dirac

Hamiltonian by a periodic Coulomb potential. The wave
functions are now periodic in time and quasiperiodic in
space. In this gauge, the wave function on the torus 0 <
x < 2π has the form of a Bloch wave on a spatial lattice of
unit cells 2πn < x < 2πðnþ 1Þ, with k being the Bloch
wave momentum,

Ψðx; kÞ ¼ eikxuðx; kÞ: ð8Þ
In this way, a period in Euclidean time translates into a loop
around the compact Brillouin zone. Just as in the case of
quantized charge transport in topological insulators, a
nonzero Berry phase acquired by an eigenstate under
adiabatic transport around the BZ describes the transfer
of charge across a unit spatial cell. Following standard
arguments [11], we may describe this by a Berry con-
nection constructed from the periodic part of the Bloch
wave state,

AðkÞ ¼ Im
Z

2π

0

dxu�ðx; kÞ ∂
∂k uðx; kÞ: ð9Þ

The topological order parameter is the closed Wilson loop
around the BZ,

θ ¼
I

dkAðkÞ: ð10Þ

Note that, as discussed in Ref. [6], the Berry connection is
obtained from the phase of the periodic part uðx; kÞ of the
wave function integrated over a single spatial cell of the
lattice used to define the Bloch wave states. The Berry
phase can thus be defined locally as an order parameter by
studying the spectral flow on a periodic unit cell of the
lattice. As we will show, the Berry phase is essentially
determined by the flow of chiral charge in and out of the
unit cell.
Topological transitions between discrete vacua with

Δθ ¼ �2π are represented by threading a unit of Berry
flux through the loop in (10). To make this idea precise, we
must analytically continue the Berry connection in complex
momentum space and regard (10) as a contour integral. For
QED2, there is a natural analytic structure for AðkÞ in
complex momentum space, or more conveniently, in
complex rapidity space, where k ¼ m sinh ξ. The relevant
analyticity properties of the wave functions are clarified by
adding both a small mass term and a small Thirring 4-
fermion coupling to the Dirac action. Ultimately, we
recover the spectral flow of the free massless Dirac
Hamiltonian by taking the zero mass, zero coupling
constant limit of the massive Thirring model. The mass
term provides a gap between the positive and negative
energy bands, while the 4-fermion coupling provides a gap
between the mass of the elementary boson and the fermion-
antifermion threshold. Thus, the eigenstates we use to
analytically continue the Berry connection are obtained
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from the Bethe ansatz solution of the massive Thirring
model, which we briefly review in the next section. The
spectrum of this model can be described in terms of a
single-quasiparticle energy function εðξÞ, which is a
solution to the integral equation that follows from imposing
periodic boundary conditions on the Bethe ansatz wave
functions. The kernel of this integral equation is the
derivative of the 2-body phase shift with respect to rapidity,

Kðξ − ξ0Þ ¼ ∂Δðξ − ξ0Þ
∂ξ ; ð11Þ

which is a simple meromorphic function of complex
rapidity. Physically, the spectral equations that follow from
periodic boundary conditions describe the “backflow” of
the negative-energy Dirac sea in response to adiabatically
changing the rapidity of a quasiparticle excitation. As we
will show, the backflow integral defines a Berry phase for a
given eigenstate in terms of a contour integral in the
complex rapidity plane. A discontinuity in the backflow
integral arising from poles of K represents the transfer of a
charged fermion or antifermion to the boundary. The
analytic structure of the Berry connection constructed here
also clarifies the role of bosonization and topological
ordering from the Hamiltonian spectrum viewpoint.

II. ANALYTIC STRUCTURE OF THE MASSIVE
THIRRING SPECTRUM NEAR THE FREE

FERMION POINT

We consider the massive Thirring model (MTM) in two
spacetime dimensions, defined as a massive Dirac fermion
with a 4-fermion self-interaction, described by the
Lagrangian

L ¼ ψ̄ðiγμ∂μ −m0Þψ −
1

2
g0jμjμ; ð12Þ

where jμ ¼ ψ̄γμψ . Under bosonization, this model is
equivalent to the sine Gordon (SG) model [10], the theory
of a real scalar field ϕ with Lagrangian

L ¼ 1

2β2
∂μϕ∂μϕ −

α0
β2

ðcosϕ − 1Þ: ð13Þ

Our discussion of the Berry connection will focus on the
eigenstates of the MTM Hamiltonian

H ¼
Z

dx½−iðψ†
1∂xψ1 − ψ†

2∂xψ2Þ þm0ðψ†
1ψ2 þ ψ†

2ψ1Þ

þ 2g0ψ
†
1ψ

†
2ψ2ψ1�: ð14Þ

The Bethe ansatz vacuum state is constructed on an empty
Dirac sea by filling all of the negative energy states. If a
particle state is excited above the vacuum, its energy
receives a contribution from the “backflow” of the Dirac

sea. This results in an integral equation for the quasiparticle
energy function εðξÞ where k ¼ m sinh ξ is the pseudomo-
mentum variable of the excitation. The kernel of the
integral equation that determines the spectrum is obtained
from the 2-body phase shift which appears in the Bethe
ansatz,

ΔðξÞ ¼ −i log
�
sinhð2iμ − ξÞ
sinhð2iμþ ξÞ

�
: ð15Þ

Here, in standard notation, the Thirring coupling is para-
metrized by μ,

cot μ ¼ −
1

2
g0: ð16Þ

The free fermion point is at μ ¼ π=2, and the attractive
coupling region (where there are one or more fermion-
antifermion bound states) is π=2 < μ < π. The kernel
which describes the backflow effect is given by the
derivative of the 2-body phase shift,

KðξÞ ¼ dΔ
dξ

¼ sin 2μ
cosh ξ − cos 2μ

: ð17Þ

This is a meromorphic function which is periodic in the
imaginary rapidity direction and has simple poles with unit
residue at

ξ ¼ �2iμþ 2inπ; n ¼ integer: ð18Þ

Note that the poles in this function correspond to loga-
rithmic branch points of the phase ΔðξÞ.
To summarize a somewhat lengthy derivation [9], the

particle spectrum of the model can be expressed in terms of
an analytic energy function for a quasiparticle excitation at
complex rapidity,

εðξÞ ¼ 1

2
ðεþðξÞ þ ε−ðξÞÞ; ð19Þ

with

ε�ðξÞ ¼ mF

Z
∞

−∞
Kðξ − ðα0 þ iπÞÞe�γα0 dα

0

2π
; ð20Þ

where γ ¼ π
2μ, and the integral is along the real α0 axis.

(Here and elsewhere, we will use α to denote a real rapidity
and ξ to denote a complex one.) The argument of the
backflow kernel K in (20) is the relative rapidity between
the mode ξ and a vacuum mode on the iπ line at α0 þ iπ.
For general attractive coupling, the particle spectrum is

given by the construction of “n-string” excitations in the
complex rapidity plane, which consist of n excitations
arranged vertically in a bound-state configuration,
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ξi ¼ αþ ilðπ − μÞ; l ¼ ðn − 1Þ; ðn − 3Þ;… − ðn − 1Þ:
ð21Þ

The energy of an n-string is just the sum of the ε’s for each
of the n modes. This reproduces the exact semiclassically
quantized breather modes of the sine Gordon theory [9].
The values of n are limited by the requirement that
the n-string configuration remain within the region
−π < Imξ < π, so near the free fermion point μ ≈ π

2
, we

have n ≤ 3. The 1-string excitation turns out to be the
elementary sine Gordon boson. The 3-string disappears
from the spectrum for g0 → 0 and will not affect our
considerations. On the other hand, the 2-string excitation
remains in the spectrum even in the free fermion limit. The
2-string is central to our discussion of the Berry connection.
It is a zero energy excitation which will prove to be the
fermionic description of mod 2π jumps in the sine
Gordon field.
Although naively, an excitation at rapidity ξ corresponds

to a fermionic Bethe ansatz mode, the phenomenon of
“hole-trapping” [9] has the effect that if ξ is close enough to
the real axis, the excitation is required to have a hole on the
iπ line attached to it, at the same value of Reξ. Thus, for
jImξj < 2μ − π the excitation is bosonic, and the energy
given by (20) is the energy of an elementary boson, as
we show in the next section. However, if we analytically
continue εðξÞ into the upper half ξ plane, we hit an
ionization threshold at Imξ ¼ 2μ − π, at which the function
defined by (20) changes suddenly when the pole at Imξ ¼
2μ − π crosses the integration contour along α0.
It is convenient to define the fermion-antifermion phase

shift,

~ΔðξÞ≡ Δðξ − iπÞ: ð22Þ

In the free fermion limit, the poles in

~Kðξ − α0Þ≡ Kðξ − ðα0 þ iπÞÞ ¼ − sin 2μ
coshðξ − α0Þ þ cos 2μ

ð23Þ

at ξ − α0 ¼ �ið2μ − πÞ pinch the real axis. There are two
distinct branch choices for the phase shift ~ΔðξÞ, which we
will refer to as “fermionic” and “bosonic” branch struc-
tures, shown in Fig. 1. The fermionic branch choice
connects the coalescing poles with a cut across the real
axis. Note that for any finite Thirring coupling μ > π=2, the
two-body phase shift is discontinuous along the real axis,
but vanishes at large rapidity in both directions α0 → �∞.
Note also that, for the fermionic branch choice, the branch
cuts disappear in the free fermion limit and the phase shift
becomes identically zero. In order to construct the Berry
connection in complex rapidity, we must instead choose the
bosonic branch structure shown in Fig. 1(b) where the

branch cut does not cross the real axis, giving a phase shift
that is continuous for real rapidity, with no discontinuity at
α ¼ 0. In this case, the phase shift along the real axis does
not reduce to zero in the free fermion limit, but to zero or
�2π, depending on the sign of the real part of the relative
rapidity of the two modes.

III. BOSONIZATION AND THE BERRY
CONNECTION

The bosonic choice of branch cuts for the phase shift ~ΔðξÞ
allows us to regard this function as analytic in a strip around
the real ξ axis. It also provides a description of the Thirring/
sine Gordon spectrum that is manifestly symmetric under
charge conjugation. In the original Bethe ansatz solution of
the model, the states were built on an empty Dirac sea by
first filling the negative energy modes, leading to a Dirac
hole picture in which charge conjugation symmetry is not
manifest. Here instead, we start with the integral (20), which
defines the energy of bosonic excitations along the real axis,
and analytically continue to complex rapidity. Within the
strip jImξj < 2μ − π, the excitation is bosonic. The energy
of an excitation on or near the real rapidity axis can be
calculated from the residues of the poles of ~K in the periodic
strip 0 < Imα0 < 2π. Integrating around the perimeter of the
strip and exploiting the quasiperiodicity of the integrand in
(20), we get

ð1 − e2iγπÞε�ðξÞ ¼ −
1

2
mFe�γðξ−iπÞð1 − e4iγπÞ; ð24Þ

FIG. 1 (color online). (a) The fermionic branch choice for the 2-
body phase shift. In the free fermion limit μ → π=2, the branch
points at �ð2μ − πÞ coalesce, the branch cuts vanish, and the
phase shift goes to zero on both sides of the imaginary ξ axis.
(b) The bosonic branch choice. Here the branch cuts vanish in the
free boson limit μ → π. In the free fermion limit, the phase shift
reduces to a 2π step function across the imaginary ξ axis.
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giving

εðξÞ ¼ mB cosh γξ; jImξj < 2μ − π; ð25Þ

where mB ¼ 2mF cos πð1 − γÞ is the mass of the sine
Gordon boson. The two terms on the right-hand side of
(24) are the residues of the poles in (20) at α0 ¼ ξþ ið2μ−πÞ
and ξþ ið3π − 2μÞ, respectively. But when the energy
function (20) is continued into the upper half plane above
the threshold line Imξ ¼ 2μ − π, the pole at ξþ ið3π − 2μÞ
moves out of the integration strip 0 < Imα0 < 2π, and the
pole at ξþ iðπ − 2μÞ enters it. Now if we integrate around
the periodic strip, we get

ð1 − e2iγπÞε�ðξÞ ¼ −
1

2
mFeγðξ−iπÞð1 − e2iγπÞ; ð26Þ

and the integral gives the energy of a fermionic excitation,

εðξÞ ¼ −mF cosh γðξ − iπÞ: ð27Þ

In the free fermion limit mB → 2mF and γ → 1, so for this
case the energy is εðξÞ → mF cosh ξ. Thus, the mass of the
particle represented by the energy function (20) changes
suddenly from mB ≈ 2mF to mF as the integration contour
crosses the pole. This jump describes the ionization of the
boson into its constituent fermion and antifermion. The
mode at complex rapidity ξ above this threshold represents a
fermion. The antifermion that was bound to it below the
ionization threshold is represented by the residue of the pole
at ξþ ið3π − 2μÞ. This residue is no longer included in the
energy of the bulk state defined by (20), so we take this to
mean that the antifermion has gone to infinity or to a spatial
boundary. In sine Gordon language, we have constructed a
kink by starting with the boson, which is a kink-antikink
pair, and letting the antikink go to infinity to the right, as
shown in Fig. 2(a). This physical argument exhibits the role
of the analytic structure of the fermion-antifermion kernel
(23) in defining a Berry connection.
The cut structure that allows us to analytically continue

the bosonic states in a strip around the real rapidity axis also
restores manifest charge conjugation invariance in the
representation of the spectrum in the complex rapidity
plane. Analytic continuation into the lower half plane
exhibits the same ionization phenomenon for
−2π < Imξ < −ð2μ − πÞ. But we may consistently inter-
pret the fermionic mode in this region of the lower half
plane as an antifermion, with the residue of the pole at
ξ − ð3π − 2μÞ being the fermion, which has propagated to
the boundary, as shown in Fig. 2(b). From the viewpoint of
the fermionic Bethe ansatz, we are constructing states in the
lower half plane by a charge-conjugate ansatz in which
the modes are antifermions and the holes are fermions.
In the bosonic strip along the real axis −ð2μ − πÞ <
Imξ < 2μ − π, both the fermionic and the antifermionic
Bethe ansatz are valid representations of the boson, which

map into each other by CP conjugation. This transforma-
tion does not change the form of the 2-body phase shifts, so
the identification of an n-string state as a vertical row of
modes of the form (21) remains unchanged. In particular,
there will still be zero energy states described by 2-strings.
But the bosonic construction of the 2-string state clarifies
its nature as a fermion-antifermion bound state and how it is
related to mod 2π changes of the sine Gordon field. To see
the essential point, consider constructing a 2-string by
starting with two bosonic modes on the real axis and
analytically continuing one into the upper half-plane (UHP)
and the other into the lower half-plane (LHP). The mode in
the UHP represents a kink with an ionized antikink
propagated off to the right, as shown in Fig. 2(a). The
mode in the LHP represents an antikink, with an ionized
kink propagated off to the left, as shown in Fig. 2(b). The
existence of the 2-string state tells us the quite plausible
result that the kink and antikink in Figs. 2(a) and (b) can
bind together to produce a state with no spatial variation at
all: the ϕ ¼ 2π vacuum, shown in Fig. 2(c). Note that,
starting from the center-of-mass frame of the two bosons on
the real axis, there are two different ways to analytically
continue them to form a 2-string, depicted in Figs. 3(a)
and (b). The 2-string states obtained are related by CP
conjugation and carry opposite chiral charge. In terms of
chiral fermion fields, the two types of 2-strings can be
identified as ψ†

1ψ2 and ψ†
2ψ1 excitations, respectively.

In the absence of electromagnetic interactions, the vacua
in which ϕ differs by mod 2π are degenerate. But if the EM
coupling is turned on, the 2-strings become a bookkeeping
device that keeps track of the charge polarization at a given
location, and hence of the number of units of electric flux at
that point. If a left-moving fermion or a right-moving

(a)

(b)

(c)

FIG. 2 (color online). (a) Constructing a fermion by ionizing a
boson. (b) Constructing an antifermion by ionizing a boson. (c) A
2-string bound state of the kink and antikink in (a) and (b).
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antifermion passes a point, ϕ increases by þ2π, while a
right-moving fermion or left-moving antifermion decreases
ϕ by 2π. This can be understood in terms of our Berry phase
construction by considering the spectral flow argument
given in Sec. I and in Ref. [6]. The Bethe ansatz integral
equation that defines the spectrum in terms of the backflow
integral (20) arises from imposing periodic boundary con-
ditions on a box of length L. If periodicity is imposed on the
many-body coordinate space wave function, the momentum
variables ki ¼ m0 sinh ξi in the Bethe ansatz must satisfy

eim0L sinh ξiei
P

j≠i
~Δðξi−ξjÞ ¼ 1: ð28Þ

When applied to a mode ki in the negative energy sea (on
the iπ line), the boundary condition (28) becomes the
integral equation for the vacuum backflow in the L → ∞
limit. We see that the periodic boundary conditions include,
in addition to the quasiparticle momentum phase eikiL, also
a phase factor from 2-body phase shifts with all the other
particles in the state. For the vacuum state, the kj’s consist of
occupied negative energy modes along the iπ line. The
backflow associated with an excitation above the vacuum is
determined by the relative phase between the excited state
and ground state in (28).
This shows directly how the Bethe ansatz spectral

equations serve to define a Berry connection for
Hamiltonian eigenstates. When a background EM field is
introduced, the Hamiltonian spectral flow as a function of the
parameter k in (2) is defined by the spectral equations (28)
for k ¼ ki. After taking the ratio of the excited state to the
ground state PBCs, the only phase shifts which remain in

Eq. (28) (in the free fermion limit) are those associated with
excitations. If we had chosen the fermionic branch structure,
the 2-body phase shifts would all vanish in the free fermion
limit, and (28) would give the spectrum for noninteracting
fermions. But with a small (ultimately vanishing) Thirring
coupling and the bosonic choice of branch cuts, the phase
shift in the free fermion limit becomes a step function which
jumps by �2π when the real part of the “probe” rapidity
ξ ¼ ξi crosses the rapidity of the excitation ξj. The Berry
phase (10) for the probe particle going all the way around the
BZ is just the sum of �2π phase shifts over the other
excitations in the box. As discussed in the Introduction and
in Ref. [6], the adiabatic time development given by the
Dirac equation with a background gauge field A1 ¼ Ft≡ k
provides a definition of the transport in k-space which
determines the Berry connection.
Our construction of a Berry connection for QED2 is

quite similar to the theory of polarization in topological
insulators [7]. In fact, it is easy to see that bosonization in
QED2 is just a description of the fermionic currents in
terms of a local charge polarization, the sine Gordon field.
When periodic boundary conditions are imposed on the
Bethe ansatz wave functions, we single out a particular
quasiparticle momentum [ki in (28)] and treat it as a Bloch
wave momentum. The 2-body phase shift factors in (28)
play the role of uðx; kÞ, the periodic part of the Bloch
wave. As in topological insulator theory, the Berry phase is
associated with topologically nontrivial transport of uðx; kÞ
in momentum space. The full Berry connection is given by
the analytic structure in complex rapidity space, with the
poles of the analytically continued 2-body phase shift
representing topological transitions in which a neutral
boson ionizes into an unbound fermion-antifermion pair.

IV. DISCUSSION

In the bosonization of the Dirac current in QED2,
jμ ¼ εμν∂νϕ=2π, the boson field can be interpreted as
the electric charge polarization, which, in a dielectric

medium, is related to the current by ~∇ · ~P ¼ j0, ∂t
~P ¼ ~j.

Thus, in 2D, the local rate of change of the polarization is
just the axial charge density,

j50 ¼
1

2π
∂0ϕ: ð29Þ

In the previous section, we saw that, in the Bethe ansatz
framework, the Berry phase arises from the additional
phase acquired by momentum transport of a quasiparticle
due to the 2-body phase shifts from the other occupied
modes in the state. This is related to the spectral flow of the
Dirac Hamiltonian by the fact that the Berry phase appears
in the periodic boundary conditions (28) which determine
the spectrum. In the free fermion limit, these 2-body phase
shifts reduce to step functions which jump by �2π when
the real part of the relative rapidity Reðξi − ξjÞ≡ αi − αj

(a)

(b)

FIG. 3 (color online). (a) A left-handed 2-string with quantum
numbers of a ψ†

1ψ2 excitation. (b) A right-handed 2-string with
quantum numbers of ψ†

2ψ1.

BOSONIZATION AND THE BERRY CONNECTION IN TWO- … PHYSICAL REVIEW D 91, 065009 (2015)

065009-7



changes sign. The sign of the jump in the 2-body phase
shift is determined by the chirality of the excitation crossed,
i.e. in the massless limit, whether it is a ψ†

1 or a ψ†
2

excitation. The only excitations we need to consider are 1-
strings and 2-strings. The 1-string state is a bound state of a
fermion and an antifermion which have exactly the same
value of Reξ. So the two phase shifts have opposite signs
and cancel in the Berry phase. On the other hand, for a 2-
string, the phase shifts add, and there is a �2π contribution
to θ, representing the ionization and flow of a unit of chiral
charge to the boundaries. Thus, in the free fermion limit
(with the bosonic branch choice) the sum of 2-body phase
shifts in (28) just calculates the net chiral charge in the box.
We conclude that the change in Berry phase on a unit cell
can be identified with the change in the sine Gordon field
averaged over the cell,

Δθ ¼ 1

2π
Δ
Z

2π

0

ϕdx ¼
Z

T

0

dt
Z

2π

0

dx
2π

∂0ϕ

¼
Z

T

0

dt
Z

2π

0

dx
2π

j50 ¼
Z

T

0

Q5
0dt: ð30Þ

The last expression shows that the Berry phase is a chiral
phase rotation generated by the total axial charge on the
unit cell. The interpretation of the Berry phase as a chiral
vacuum θ angle generalizes to 4-dimensional QCD [6].
The utility of the bosonic choice of branch structure in

defining the Berry phase is that an elementary boson (i.e. a
1-stringþ hole excitation) does not contribute to the Berry
phase. In a 1-string, the mode on the real axis and its
attached hole are both at the same value of Reξ, so in the
free fermion limit, the two phases cancel in the overall sum
of phases in (28). On the other hand, a 2-string is formed by
two bosonic excitations analytically continued into the
upper and lower rapidity planes. The contributions to the
Berry phase add instead of canceling, reflecting the fact
that, in the formation of a 2-string, there has been a net flow
of chiral charge to the boundaries.
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