
Self-force of a rigid ideal fluid, and a charged sphere in hyperbolic motion

Andrew M. Steane
Department of Atomic and Laser Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, England

(Received 24 July 2014; published 9 March 2015)

We present two results in the treatment of self-force of accelerating bodies. If the total force on an
extended rigid object is calculated from the change of momentum summed over planes of simultaneity of
successive rest frames, then we show that an ideal fluid, moving rigidly, exerts a net force on its boundary
that is independent of both pressure and orientation. Under this same definition of total force, we find the
electromagnetic self-force for a spherical charged shell of proper radius R accelerating with constant proper
acceleration g is ð2e2g=RÞ½1=12 −P∞

n¼0ðgRÞ2nðð2n − 3Þð2n − 1Þð2nþ 1Þ2Þ−1�.
DOI: 10.1103/PhysRevD.91.065008 PACS numbers: 03.30.+p, 03.50.De, 04.20.-q, 04.40.Nr

I. INTRODUCTION

Recent work on self-force and radiation reaction in
classical electromagnetism has clarified various issues which
had been unclear for a considerable period (roughly one
hundred years). Several of the difficulties that persisted for a
long time were concerned with taking the point limit for
an entity possessing finite charge and observed mass. These
problems go away when one insists that there is no such
limit, because it is not legitimate to assume the nonelec-
tromagnetic contribution to the mass is negative [1–5].
One then has to grapple with the fact that an exact treatment
of motion of charged entities cannot deal with point particles,
if the charge is not itself infinitesimal, but must treat
extended objects or distributions of charge [1,4–7].
As soon as one has to deal with an extended distribution

of charge, the question of its field and motion is no longer
a question of finding a single worldline and applying
standard formulas to find the field; instead one has to find
the shape of a world tube, and the self-interaction cannot in
general be calculated exactly in closed form. Exact,
explicit, simple results are very rare in this area. Harte
[6] presents the considerations in great generality, showing
how to define useful quantities related to momentum and
force, and presenting integral expressions which in prin-
ciple allow them to be calculated. However, to complete a
calculation of any given case would require the world tube
to be derived, which itself is a nontrivial calculation, and
then the integrals expressing the force would need to be
carried out. The calculation might, for example, involve an
iterative method in which one arrived at a self-consistent
solution. It is not clear whether there can exist a case (other
than inertial motion) in which the self-force could be
written down exactly in a short explicit formula.
Owing to the complexity of the problem, there are few

simple general statements than can be made, either about
the forces on, or the electromagnetic fields produced by,
accelerating charged bodies, even in the case of a fixed
Minkowski background (which we assume throughout).
In this situation it is useful to identify some statements that

have as wide an application as possible, and to obtain exact
results for some specific cases that prove to be tractable.
A modest but useful step of the first kind was taken by

Ori and Rosenthal [8], who pointed out that the summed
electromagnetic interaction of a pair of point charges of
fixed proper separation was independent of the orientation
of the line between the charges, as long as it is summed a
certain way that we describe in Sec. II. A step of the second
kind was taken in [9], where electromagnetic self-force was
calculated exactly for a given case. In the present paper we
describe two further contributions, one of each kind. We
show that the total force exerted by an ideal fluid on its
boundary, when the fluid moves rigidly, is simply m0a
(mass times proper acceleration), for a certain natural
definition of this force, namely that adopted in [8,10,11].
It is remarkable that this result is independent of both the
pressure and the orientation of the (arbitrarily shaped) body.
We then extend the result of [9] by obtaining the electro-
magnetic self-force of a charged spherical shell in rigid
hyperbolic motion, taking the sum over the body in the
same sense as recommended in [8,10,11].
In these calculations, the shape of the world tube is

assumed not derived, so one does not encounter an equation
of motion in terms of bulk properties—it suffices to state
that the applied forces are so arranged as to result in the
assumed motion. This makes it hard to connect the results
to more general expressions such as those in [6]. The
interest of the present work lies in the physical insight
provided by the expressions obtained, and in the fact that
they can be obtained at all. In the words of Heaviside, “That
such is the fact is rather surprising, for it is very exceptional
to arrive at simple results, …” [12].
The paper is laid out as follows. Section II describes the

way self-force is defined; the definition involves a choice of
a sequence of hypersurfaces χ over which momentum is
integrated. Section III describes rigid accelerated rectilinear
motion, with proper acceleration not necessarily constant,
and discusses the behavior of an ideal fluid so moving. The
self-force owing to the pressure in the fluid is obtained, for
a physically motivated choice of χ. Section IV considers the
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electromagnetic self-force for a spherical shell in rigid
hyperbolic motion, for this same sequence χ, which is
different from the one adopted in [9]. We also briefly
comment on the case of a shell at rest in a uniformly
accelerating reference frame (the Rindler frame) and
observed by an observer at rest in that frame.

II. DEFINING THE SELF-FORCE

In relativistic calculations concerning extended bodies,
the first issue that arises is how to define properties such as
energy and momentum. This is nontrivial because when the
entity is not isolated, the total 4-momentum of its parts can
depend on the choice of spacelike hypersurface over which
they are summed. This dependence does not arise for an
isolated body [13], but a charged body is never isolated
because it is in permanent interaction with its own
electromagnetic field.
This issue was discussed in [8,10,11] and more generally

in [6,7,14]. Consider a composite object that can be
decomposed into a set of discrete entities i. The total
4-momentum of the composite object may be defined as the
sum of the 4-momenta of its parts, where the sum is taken
over some spacelike hypersurface which we denote by χ:

pμ
totðτc; χÞ ¼

X
i

pμ
i ðτi;χÞ: ð1Þ

τi;χ is the proper time on the i’th worldline when that
worldline intersects χ, and τc is the proper time on some
reference worldline (e.g. the worldline of the centroid).
Typically, one picks a spacelike hyperplane (so that the
events figχ are simultaneous in some frame). In general,
pμ
tot depends on χ so this “total 4-momentum” is not a

property of the object alone, and it will not behave like a
4-vector unless we specify χ in a suitably covariant way.
A suitable way, is, for example, to pick χ such that it is
the same surface, irrespective of what frame may be used to
calculate the four components of each pi.
For an object whose motion is rigid—that is, its motion is

such that at any given event on the world tube there is a
reference frame in which all parts of the object are at rest,
and at the same proper distances—a natural choice of χ is
the hyperplane of simultaneity for the instantaneous rest
frame (IRF) at the given τc. By making this choice we
obtain a well-defined 4-vector pμ

tot, but it is not the only
possible choice. Any recipe that picks out a unique hyper-
plane χ for each τc will result in a p

μ
tot that transforms in the

right way, because the terms in the sum on the right-hand
side of (1) all do, and the recipe fixes the set of events in a
frame-independent way. As a result, when calculating the
components of pμ

tot relative to any given inertial frame at
some given τc, one may be summing over events that are
not simultaneous in that frame, but one must accept this in
order to have a well-defined 4-vector.

If there are several bodies in different states of motion in
a given problem, there will not be a unique IRF for all of
them, so the policy of adopting the IRF in order to define χ
is not necessarily the only policy that makes sense.
Once we have decided how to choose χ for each τc,

it becomes possible to define the total rate of change of
4-momentum:

dpμ
tot

dτc
¼ lim

δτc→0

pμ
totðτc þ δτc; χ þ δχÞ − pμ

totðτc; χÞ
δτc

ð2Þ

where we have assumed a one-to-one correspondence
between χ and τc, such that δχ → 0 as δτc → 0. Hence
[8,14]

dpμ
tot

dτc
¼

X
i

dpμ
i

dτi

dτi
dτc

ð3Þ

where each dτi is the proper time elapsed on the ith
wordline between the intersections of that worldline with χ
and χ þ dχ, and the quantities dpμ

i =dτc and dτi=dτc are
evaluated on the hyperplane χ.
In [9] the case of a rigid spherical shell was considered,

with χ taken as the hyperplane of simultaneity of the IRF at
some instant, and χ þ dχ taken as a parallel hyperplane
such that dτi ¼ dτc. This is a legitimate choice, as we made
clear above, but it is not the only one that makes sense, and
another case is interesting, namely, to take for χ þ dχ the
new hyperplane of simultaneity, i.e. the one associated with
the next state of motion, which is not the same as the initial
one when the body is accelerating. This is the choice made
by Nodvik [10] and also recommended in [8,11]. Therefore
we will explore its impact on the case of the sphere in rigid
hyperbolic motion in Sec. IV. First we apply it to obtain a
useful observation concerning internal stress.

III. SELF-FORCE OF A RIGID IDEAL FLUID

We consider the net force on a rigid body owing to its
internal stress. This is crucial, for example, to a correct
understanding of an accelerating dipole or dumbbell; fail-
ure to recognize this led to the misunderstanding of the
orientation dependence of the self-force that is discussed
and resolved in [14].
For rigid motion as defined above (at each moment there

is an IRF for the whole body, and the proper shape and size
does not change) the acceleration need not be constant.
Such motion is treated in [15], Sec. II of [10], and Sec. 9.2.1
of [13]. For straight-line motion, the condition for rigidity is
that worldlines at points A and B on the body should satisfy
Eqs. (9.23) and (9.24) of [13], which we reproduce here for
convenience:

xB − xA ¼ γL0; tB − tA ¼ γvL0 ð4Þ
where xA; tA; xB; tB are coordinates in an inertial frame, L0

is the proper separation of xB and xA, v ¼ dxA=dtA and
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γ ¼ ð1 − v2Þ−1=2 (taking c ¼ 1). From these equations we
find

d2xB
dt2B

¼ _v
1þ _vγ3L0

ð5Þ

where _v is the proper acceleration on worldline A. Now, by
definition, for rigid motion, there is always an IRF. If we
evaluate (5) in this frame, then the quantity on the left-hand
side is the proper acceleration on worldline B, L0 ¼ xB −
xA and γ ¼ 1. Then we have

d2xB
dt2B

¼ xA − x0
xB − x0

_v ð6Þ

where x0 ¼ xA − 1= _v. Hence we have that for rigid motion
in the x direction, there exists a plane x ¼ x0 in the IRF,
such that the acceleration of each part of the body is
inversely proportional to its distance from the plane. (The
assumption of rigid motion implies that the body cannot
extend to x0; this plane is a horizon in the accelerated
reference frame relative to which the body does not move).
Now suppose the interior of the body in question behaves

as an ideal fluid, i.e. it can support pressure or tension but
not sheer stress. For such a fluid, in the IRF the Navier-
Stokes equation takes the form [13]

ðρ0 þ pÞDu
Dt

¼ −∇p ð7Þ

where p is the pressure, ρ0 the mass density, u the flow
velocity and Du=Dt the convective derivative. Choose the
origin such that x0 ¼ 0, then, using (6), the acceleration
Du=Dt ¼ x̂=x and therefore the pressure satisfies the
differential equation

dp
dx

¼ −
ρ0 þ p

x
ð8Þ

whose solution is

p ¼ const
x

− ρ0: ð9Þ

The total force exerted by the ideal fluid on its boundary
is, using (3),

fp ¼
I

dτx
dτc

pdS: ð10Þ

We now make our choice of the hyperplanes χ and χ þ dχ
in order to evaluate dτx=dτc. We adopt the hyperplanes of
simultaneity of the two successive IRFs, which leads to

dτx
dτc

¼ _vx ð11Þ

where _v is the proper acceleration at x ¼ xc. The proof of
this equation is given in the next section. Assuming it for
the present argument, we have

fp ¼
I

_vxpdS: ð12Þ

Let ei be a unit vector in the ith direction. Then the
component of the force in the ith direction is

fp · ei ¼
I

_vxpei · dS ¼
Z

∇ · ð _vxpeiÞdV: ð13Þ

Now,

∇ · ð_vxpeiÞ ¼ _v

�
pþ x

dp
dx

�
δ1i ¼ − _vρ0δ1i ð14Þ

using (8). Hence

fp ¼ −m0a ð15Þ

where a is the proper acceleration on the reference world-
line, and m0 ¼

R
ρ0dV is the “completely bare” mass, i.e.

the mass of the fluid without taking either the stress or any
electromagnetic contribution into account. The result
applies to bodies of arbitrary shape. Hence, in the case
of rigid motion of an ideal fluid, we have two interesting
observations about the net force fp of the fluid on its
boundary, when that force is defined as the rate of change
of total momentum evaluated in the sequence of IRFs.
These are (i) for a fluid of any given density distribution,
the pressure or tension in the fluid does not appear in the
expression for fp, and (ii) fp does not depend on the shape
of the boundary, nor on the orientation of the body relative
to its acceleration.
These same results may equally be stated as observations

about hidden momentum, or as that the contribution to the
inertial mass that we might have expected the stress to give,
namely

R
pdV, is exactly balanced by the difference in

pressure across the body.
None of the simple properties just listed would apply if

the net force were calculated using other choices of
hyperplanes. This gives a further reason, in addition to
the one obtained in [8], to recommend this choice when
discussing self-force for bodies moving rigidly.

IV. ELECTROMAGNETIC SELF-FORCE
OF A RIGID SPHERICAL SHELL

IN HYPERBOLIC MOTION

The electromagnetic self-force of a uniformly accelerat-
ing rigid charged spherical shell was calculated in [9]. That
calculation gave the result of summing the electromagnetic
force over such a sphere in its instantaneous rest frame. The
force was taken to be given by the sum of the local forces
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on each element of charge, evaluated at events simulta-
neous in the rest frame. In our present notation, this
amounts to taking χ þ dχ parallel to χ and hence dτi ¼
dτc in Eq. (3). This is a legitimate choice, but not
necessarily the most useful one. As we have seen in the
previous section, and also for the reasons given in [8,10],
it is useful to consider also the case where χ þ dχ is the
hyperplane of simultaneity of the next IRF. This is the
subject of this section.
An object undergoing rigid hyperbolic motion in the x

direction will be at rest relative to the constantly accel-
erating reference frame described by the Rindler metric:

gab ¼ diagð−x2; 1; 1; 1Þ: ð16Þ

The line element is

ds2 ¼ −x2dt2 þ dx2 þ dy2 þ dz2: ð17Þ

For this metric, the local “acceleration due to gravity” (that
is, the acceleration, relative to the coordinate frame, of an
object in free fall) is −1=x.
Lines at constant ðx; y; zÞ are worldlines of points on a

body at rest in the frame. Hyperplanes at constant t are
planes of simultaneity for the successive IRFs. The proper
time between events on two such planes at any given
ðx; y; zÞ is given by

dτx ¼ xdt: ð18Þ

Therefore

dτx
dτc

¼ x
xc

¼ gx; ð19Þ

where τc is proper time along a reference worldline which
we take as the one at ðx; y; zÞ ¼ ðxc; 0; 0Þ, and g ¼ 1=xc is
the proper acceleration on this reference worldline. Hence
for this case, Eq. (3) reads

dpμ
tot

dτc
¼ g

X
i

dpμ
i

dτi
xi: ð20Þ

The same argument can be used to obtain the slightly more
general Eq. (11), in which _v is not necessarily constant.
This is done by adopting the Rindler frame matched to the
instantaneous value of _v, for a body whose acceleration
can change.
We now apply this to find the electromagnetic contri-

bution to the self-force of a spherical shell of charge
undergoing rigid hyperbolic motion. This self-force is
given by summing the force df on each element of charge
dq making up the shell, where df is owing to the
electromagnetic field sourced by the rest of the shell.
The calculation follows the argument of [9] closely.

In the case under consideration, the charge is concen-
trated in a thin spherical shell. Therefore, by the argument
leading to Eq. (2.4) (from Ref. [9]) we have

fself ¼
I

gxσ
E− þEþ

2
dS ð21Þ

where E− ¼ limϵ→0EðR − jϵjÞ is the field on the interior
surface of the shell, andEþ ¼ limϵ→0EðRþ jϵjÞ is the field
on the exterior surface of the shell. R is the radius of the
shell. By standard reasoning from Maxwell’s equations in
an inertial frame we have Eþ ¼ E− þ ðσ=ϵ0Þr̂, therefore

fself ¼ σ

I
gxE−dSþ fσ ð22Þ

where

fσ ¼
I

σ2

2ϵ0

r
R
gxdS ¼ e2g

6R
x̂ ð23Þ

where e2 ¼ q2=4πϵ0 (in SI units) if q is the total charge of
the shell, and r is the vector ðx − xc; y; zÞ.
To calculate the integral in (22), note that only the

x-component is nonzero, and use

E−;xðx; ρÞ ¼
X∞
n¼0

anEx;nðx; ρÞ ð24Þ

where Ex;nðx; ρÞ is given by Eq. (4.17) (from Ref. [9])
after suitably scaling the units, and the calculation of the
coefficients an is described in [9]. We find

fself;n ¼ 2πRσ
Z ð1=gÞþR

ð1=gÞ−R
gxEx;nðx; ρðxÞÞdx

¼ ð−1Þn 2ge
2

R

8<
:−1þ

Xn
m¼1

ð−1Þm
� n

m

�
ðgRÞ2m

ð2m − 1Þð2mþ 1Þ

9=
;:

ð25Þ

The self-force is then given by

fself ¼ fσ þ
X∞
n¼0

anfself;n: ð26Þ

The coefficients an do not have a simple expression, and
there is no obvious reason why the double sum obtained by
substituting Eq. (25) into Eq. (26) should be should be
capable of algebraic simplification. However, it turns out
that it is. Each an is calculated by truncating the sum in (24)
at some finite nmax and using a matrix inversion. The

coefficients then have the form an ¼ bðnmaxÞ
n Rþ cðnmaxÞ

n =R,

in which the constants bðnmaxÞ
n and cðnmaxÞ

n depend on nmax as

ANDREW M. STEANE PHYSICAL REVIEW D 91, 065008 (2015)

065008-4



well as n. It is only when the coefficients are combined with
fself;n and summed [Eq. (26)] that information independent
of nmax emerges. All odd powers of R from −1 to 2n − 1
appear in each polynomial fself;n, so each term in the
resulting power series in R involves many terms of the sum
in Eq. (26). For any given nmax the result is only valid up to
a finite power of R, but by choosing nmax large enough one
can identify the pattern in the coefficients of powers of R.
The end result is that the electromagnetic self-force of the
uniformly charged spherical shell undergoing rigid hyper-
bolic motion with proper acceleration g is

fself ¼
ge2

R

�
1

6
−
X∞
n¼0

2ðgRÞ2n
ð2n − 3Þð2n − 1Þð2nþ 1Þ2

�
; ð27Þ

where I have calculated this for terms up to order R101, and
I conjecture its validity at all orders. The result differs from
Eq. (5.11) (from Ref. [9]) because of the different choice of
hyperplane χ þ dχ, as we have explained above. At g ¼ 1

and e2 ¼ 1 the first few terms in this series are

fself ≃ −1
2R

þ 2

9
R −

2

75
R3 −

2

735
R5 −

2

2835
R7 − � � � : ð28Þ

Equation (28) agrees with Nodvik [10], who considered
a shell undergoing arbitrary motion and calculated the
lowest order terms in the series expansion. For the case of
hyperbolic motion Nodvik’s result [Eqs. (7.21)–(7.24) of
[10]] is

fNodvikself ¼ −
1

2R
þ 2

9
RþOðR3Þ: ð29Þ

Nodvik formulated the problem in such a way that he
calculated the self-force using a prescription that corre-
sponds to our Eq. (20), so we expect his result to agree with
ours, as it does. The reason for the disagreement with
Eq. (5.11) (from [9]) was wrongly described in [9], where it
was attributed to the effect of internal stress. We can now
understand this better through the insight described in the
previous section, leading to Eq. (15). When the momenta are
summed in successive IRFs, a calculation which neglects to
include the effects of internal stress will nevertheless arrive at
a 4-vector force with the correct Lorentz transformation
properties, because the pressure does not appear in Eq. (15).
In short, the “4=3 problem” does not arise. But this does not
mean that it is correct to neglect the stress. In fact, only when
it is correctly included does one arrive at Eq. (15).

A. Electromagnetic self-force in the Rindler frame

So far we have only discussed forces observed by inertial
observers. We made use of the Rindler metric in order to

obtain Eq. (19), but (27) is the self-force observed by an
inertial observer, relative to whom the sphere accelerates.
We now briefly comment on the electromagnetic self-force
observed by an observer at rest relative to the sphere, that is,
an accelerated observer. Such an observer’s measurements
of space and time are indicated by the coordinates
ðt; x; y; zÞ appearing in the line element (17), and therefore
his most natural definition of total force on an extended
object at rest relative to him is the one given by (20).
If he so chooses, inertial forces may be considered by the

accelerated observer as an example of a gravitational field.
Such an observer finds that the field-lines of the sphere
“droop” in the gravitational field, and consequently the
sphere exerts once again a self-force, owing to the fact that
the electric forces between all the pairs of charges compos-
ing the sphere do not sum to zero. It was shown in [14] that
the electromagnetic force observed by such an accelerated
observer is the same as the one observed by the inertial
observer who is at rest in the IRF of the sphere.
Consequently it is given by (27).

V. CONCLUSION

To conclude, the main results of this paper are Eqs. (15)
and (27) [and (6) is also interesting]. Equation (15) is a
general statement about rigid rectilinear motion of a body
whose internal forces correspond to those of an ideal fluid.
The shape and the variation of the acceleration with time
are arbitrary. Equation (27) is a correct to high order, and
conjectured exact, statement of the electromagnetic self-
force of a rigid spherical shell undergoing hyperbolic
motion. It is a partner to Eq. (5.11) of [9]. The two
equations differ because there is no unique definition of
“the” self-force, owing to the dependence on the choice of
hypersurfaces in spacetime over which the momenta are
summed. The two choices we have considered are arguably
the two simplest or most natural ones, but the fact that the
outcome could be calculated in one case does not neces-
sarily imply it would also yield a simple expression in the
other. In both cases, a simple formula emerged from a
double sum whose coefficients have no simple general
expression.
Examples in which self-force calculations are tractable

for a case of physical interest are exceptional and instruc-
tive. The price paid to obtain a tractable problem is, here,
the assumption of rigid body motion and, for the electro-
magnetic case, the assumption of constant proper accel-
eration. However, rigid motion is a useful situation to
consider because it is close to what happens in practice
except under extreme conditions, and the results can be
used as test cases to check the correctness of more general
methods and numerical integration.
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