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The spin-charge-family theory [1–13], in which spinors, besides the Dirac spin, also carry the second
kind of Clifford object—no charges—is a type of Kaluza-Klein theory [14]. The Dirac spinors of one Weyl
representation in d ¼ ð13þ 1Þ manifest [1,3,4,10,13,15] in d ¼ ð3þ 1Þ at low energies all of the
properties of quarks and leptons assumed by the standard model. The second kind of spin explains the
origin of families. Spinors interact with the vielbeins and the two kinds of spin connection fields, the gauge
fields of the two kinds of Clifford objects, which, besides the gravity and known gauge vector fields,
manifest in d ¼ ð3þ 1Þ also several scalar gauge fields. Scalars with the space index s ∈ ð7; 8Þ carry the
weak charge and the hypercharge (∓ 1

2
;� 1

2
, respectively), thereby explaining the origin of the Higgs and

Yukawa couplings. It is demonstrated in this paper that the scalar fields with the space index
t ∈ ð9; 10;…; 14Þ carry the triplet color charges, causing transitions of antileptons and antiquarks into
quarks and back, thus enabling the appearance and the decay of baryons. These scalar fields show
themselves in the presence of the right-handed neutrino condensate, which breaks the CP symmetry, the
answer to the question about matter-antimatter asymmetry.
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I. INTRODUCTION

The spin-charge-family theory [1–13] is offering, as a
type of Kaluza-Klein-like theory, the explanation for the
charges of quarks and leptons (right-handed neutrinos are,
in this theory, the regular members of a family) and
antiquarks and antileptons [15,16], and for the existence
of the corresponding gauge vector fields. The theory
explains, by also using, besides the Dirac kind of
Clifford algebra object, the second kind of Clifford algebra
object (there are only two kinds [3,5–7,17–20] associated
with the left and the right multiplication of any Clifford
object), the origin of families of quarks and leptons and,
correspondingly, the origin of the scalar gauge fields
causing the electroweak break. These scalar fields are
responsible, after gaining nonzero vacuum expectation
values, for the masses and mixing matrices of quarks
and leptons [9–11] and for the masses of the weak vector
gauge fields. They manifest, carrying the weak charge and
the hypercharge equal to � 1

2
, ∓ 1

2
, respectively [13], as the

Higgs field and the Yukawa couplings of the standard
model.
The spin-charge-family theory predicts two decoupled

groups of four families [3,4,9–11]: The fourth family of the
lower group is expected to be observed at the LHC [10,11],
while the lowest of the upper four families constitutes dark
matter [12].
This theory also predicts the existence of scalar fields

which carry triplet color charges. All of the scalar fields
carry the fractional quantum numbers with respect to the
scalar index s ≥ 5, either the ones of the groups SUð2Þ or
the ones of the group SUð3Þ, while they are, with respect to
the groups not connected with the space index, in the

adjoint representations. Neither these scalar fields nor the
scalars causing the electroweak break are the supersym-
metric scalar partners of the quarks and leptons since they
do not carry all of the charges of a family member.
These scalar fields with the triplet color charges cause

transitions of antileptons into quarks and antiquarks into
quarks and back, offering, in the presence of the condensate
of the two right-handed neutrinos with the family quantum
numbers belonging to the upper four families which break
the CP symmetry, the explanation for the matter-antimatter
asymmetry. This is the topic of the present paper.
Let me point out that the spin-charge-family theory

overlaps in many points with other unifying theories
[21–26] since all of the unifying groups can be seen as
the subgroups of a large enough orthogonal group, with the
family groups included. However, there are also many
differences. While the theories built on chosen groups
must, for their choice, propose the Lagrangian densities
designed for these groups and representations (which also
means that there must be a theory behind these effective
Lagrangian densities), the spin-charge-family theory starts
with a very simple action, from which all of the properties
of spinors and the gauge vector and scalar fields follow,
provided that symmetry breaking occurs. And all of the
scalar and vector gauge fields, either directly or indirectly,
manifest in the low energy regime.
Consequently this theory differs from other unifying

theories in the degrees of freedom of spinors and scalar and
vector gauge fields which show up in different levels of
symmetry breaking, in the unification scheme, in the family
degrees of freedom and, correspondingly, also in the
evolution of our Universe.
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It will be demonstrated in this paper that one condensate
of two right-handed neutrinos makes all of the scalar gauge
fields and all of the vector gauge fields massive on the scale
of the appearance of the condensate, except those vector
gauge fields which appear in the standard model action as
massless fields before the electroweak break. The scalar
gauge fields, which cause the electroweak break while
gaining nonzero vacuum expectation values and changing
their masses, then explain the masses of quarks and leptons
and of the weak bosons.
It is an extremely encouraging fact for this theory that

one scalar condensate and nonzero vacuum expectation
values of some scalar fields [those with the space index
s ¼ ð7; 8Þ carrying the weak and the hypercharge equal to,
by the standard model, required charges for the Higgs
scalar] can make a simple starting action in d ¼ ð13þ 1Þ to
manifest in d ¼ ð3þ 1Þ in the low energy regime the
observed phenomena of fermions and bosons, explaining
the assumptions of the standard model. The theory can also
possibly answer open questions like ones regarding the
appearance of family members, families, dark matter, and
matter-antimatter asymmetry.
The paper leaves, however, many questions connected

with symmetry breaking open. Although the scale of
symmetry breaking can be roughly estimated, a careful
study of the properties of fermions and bosons in the
expanding Universe is needed to provide a trustworthy
prediction. It remains to be determined under which
conditions in the expanding Universe the starting fields
(fermions with the two kinds of spins and the correspond-
ing vielbeins and the two kinds of spin connection fields)
manifest after spontaneous symmetry breaking in the
observed phenomena. This is a very demanding study, a
simple first step which was taken in Refs. [12,27]. The
present paper is a step towards understanding the matter-
antimatter asymmetry within the spin-charge-family theory.
Section I A presents the action and the assumptions of

the spin-charge-family theory, with comments added.
In Secs. II, III, IV, and V, the properties of the scalar and

vector gauge fields and of the condensate are discussed. In
the appendixes, the discrete symmetries of the spin-charge-
family theory and the technique used for representing
spinors, with the one Weyl representation of SOð13; 1Þ
and the families in SOð7; 1Þ included, are briefly presented.
The final discussions are presented in Sec. VII.

A. Action of spin-charge-family theory and assumptions

In this subsection all of the assumptions of the spin-
charge-family theory are presented and commented upon.
This subsection follows, to some extent, a similar sub-
section of Ref. [13].

(i) The space-time is d ¼ ð13þ 1Þ dimensional. Be-
sides the internal degrees of freedom determined by
the Dirac γa operators, spinors also carry the second
kind of Clifford algebra operator [4–7], called ~γa’s.

(ii) In the simple action [1,3], fermions ψ carry in
d ¼ ð13þ 1Þ only two kinds of spins and no charges
and interact correspondingly with only two kinds of
spin connection gauge fields, ωabα and ~ωabα, and the
vielbeins, fαa:

S ¼
Z

ddxELf þ
Z

ddxEðαRþ ~α ~RÞ;

Lf ¼ 1

2
ðψ̄γap0aψÞ þ H:c:;

p0a ¼ fαap0α þ
1

2E
fpα; Efαag−;

p0α ¼ pα −
1

2
Sabωabα −

1

2
~Sab ~ωabα;

R ¼ 1

2
ffα½afβb�ðωabα;β − ωcaαω

c
bβÞg þ H:c:;

~R ¼ 1

2
fα½afβb�ð ~ωabα;β − ~ωcaα ~ω

c
bβÞ þ H:c: ð1Þ

Here [28] fα½afβb� ¼ fαafβb − fαbfβa. Sab and ~Sab

are generators [Eqs. (5), and (B3)] of the groups
SOð13; 1Þ and fSOð13; 1Þ, respectively, expressible
by γa and ~γa.

(iii) The manifold Mð13þ1Þ breaks first into Mð7þ1Þ times
Mð6Þ [which manifests as SUð3Þ × Uð1Þ], affecting
both internal degrees of freedom, SOð13þ 1Þ andfSOð13þ 1Þ. After this break there are 2ðð7þ1Þ=2−1Þ
massless families, with all of the rest of the families
getting heavy masses [29].

Both internal degrees of freedom, the ordinary
SOð13þ 1Þ one (where γa determine the spins and
charges of the spinors) and the fSOð13þ 1Þ (where
~γa determine the family quantum numbers), break
simultaneously with the manifolds.

(iv) There are additional symmetry breaks: The manifold
Mð7þ1Þ breaks further into Mð3þ1Þ ×Mð4Þ.

(v) There is a scalar condensate of two right-handed
neutrinos with the family quantum numbers of the
upper four families, bringing masses of the scale
above the unification scale to all of the vector
and scalar gauge fields which interact with the
condensate.

(vi) There are nonzero vacuum expectation values of the
scalar fields with the scalar indices (7,8) which cause
the electroweak break and bring masses to the
fermions and weak gauge bosons, conserving the
electromagnetic and color charge.

Comments on the assumptions:
(i) There are, as written above, two—and only two—

kinds of Clifford algebra objects. The Dirac one [Eq. (B1)],
γa, will be used to describe spins of the spinors (fermions)
in d ¼ ð13þ 1Þ, manifesting in d ¼ ð3þ 1Þ the spin and
all of the fermion charges; the second one [Eq. (B1)], ~γa,
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will describe families of the spinors. The representations of
γa’s and ~γa’s are orthogonal to one another [30]. There are,
correspondingly, two groups determining the internal
degrees of freedom of spinors in d ¼ ð13þ 1Þ: the
Lorentz group SOð13; 1Þ and the group fSOð13; 1Þ.
One Weyl representation of SOð13; 1Þ contains, if

analyzed [1,3,4,13] with respect to the standard model
groups, all of the family members assumed by the standard
model, with the right-handed neutrinos included (the family
members are presented in Table III). It contains the left-
handed weak [SUð2ÞI] charged and SUð2ÞII chargeless
color triplet quarks and colorless leptons (neutrinos and
electrons) and the right-handed weak chargeless and
SUð2ÞII charged quarks and leptons, as well as the
right-handed weak charged and SUð2ÞII chargeless color
antitriplet antiquarks and (anti)colorless antileptons and the
left-handed weak chargeless and SUð2ÞII charged anti-
quarks and antileptons. The reader can easily check the
properties of the representations of the spinors (Table III),
presented in the technique way (Appendix B), if using
Eqs. (5), (8), (9), (10), and (13).
Each family member carries the family quantum num-

bers, originating in ~γa degrees of freedom. Correspondingly,
~Sab change the family quantum numbers, leaving the family
member quantum number unchanged.
(ii) This starting action enables us to represent the

standard model as an effective low energy manifestation
of the spin-charge-family theory, which explains all of the
standard model assumptions, with the families included.
There are gauge vector fields, massless before the electro-
weak break: gravity, color SUð3Þ octet vector gauge fields,
weak SUð2Þ [to be called SUð2ÞI] triplet vector gauge field
and hyper-Uð1Þ [to be called Uð1ÞI] singlet vector gauge
fields. All are superpositions of fαc ωabα. There are eight
(rather than the observed three) families of quarks and
leptons that are massless before the electroweak break.
These eight families are indeed two decoupled groups of
four families, each of them in the fundamental representa-
tions with respect to fSUð2Þ×fSUð2Þ groups—the subgroups
of fSOð3; 1Þ × fSOð4Þ ∈ fSOð7; 1Þ.
The scalar gauge fields determining the mass matrices of

quarks and leptons carry the scalar index s ∈ ð7; 8Þ and,
correspondingly, the weak and the hyper charge of the
Higgs scalar (Sec. IV). Those among them which are
superpositions of fσs ~ωabσ carry, besides the weak and
hypercharges, two kinds of family quantum numbers in
the adjoint representations, representing two orthogonal
groups. Each of the two groups contains two triplets with
respect to fSUð2Þ eSOð3;1Þ ×

fSUð2Þ eSOð4Þ [generators of these

subgroups are presented in Eqs. (11) and (12)]. The three
singlet scalar fields with the space index s ¼ ð7; 8Þ and
carrying the quantum numbers (Q;Q0; Y 0) are the super-
positions of fσs ωabσ . They again carry the weak and the
hyper charge of the Higgs scalar.

One group of two triplets together with the three
singlets determines, after gaining nonzero vacuum expect-
ation values at the electroweak break, the Higgs
scalar and the Yukawa couplings of the standard model.
The second group of two triplets, the three singlets,
and the condensate determine, at the electroweak
break, the masses of the upper four families, the
stable family of which is the candidate for forming dark
matter.
The starting action also contains an additional SUð2ÞII

[from SOð4Þ] vector gauge field and the scalar fields with
the space index s ∈ ð5; 6Þ and t ∈ ð9; 10; 11; 12Þ, as well as
the auxiliary vector gauge fields expressible with vielbeins
[Eqs. (C2) and (C1)] in Appendix C]. They all remain either
auxiliary (if there are no spinor sources manifesting their
quantum numbers) or become massive after the appearance
of the condensate.
(iii), (iv) The assumed first break from Mð13þ1Þ into

Mð7þ1Þ times Mð6Þ [manifesting itself in the symmetry
SUð3Þ × Uð1ÞII] explains why the left-handed members of
a family carry the weak charge while the right-handed
members do not: In the spinor representation of SOð7; 1Þ
there are left-handed weak charged quarks and leptons with
the hypercharges 1

6
, − 1

2
, respectively, and the right-handed

weak chargeless quarks with a hypercharge of either
2
3
or − 1

3
, while the right-handed weak chargeless leptons

carry a hypercharge equal to either 0 or −1. A further break
from Mð7þ1Þ into Mð3þ1Þ ×Mð4Þ manifests the symmetry
SOð3; 1Þ × SUð2ÞI × SUð2ÞII × Uð1ÞII × SUð3Þ, explain-
ing the observed properties of the family members: There
are the colored quarks, left-handed weak charged and
SUð2ÞII chargeless and right-handed weak chargeless
and SUð2ÞII charged, and there are the colorless leptons,
again left-handed weak charged and SUð2ÞII chargeless
and right-handed weak chargeless and SUð2ÞII charged.
Quarks carry the spinor charge 1

6
, leptons carry the spinor

charge − 1
2
. There are the observed vector gauge fields with

the corresponding charges in adjoint representation and
there are vector gauge fields which gain mass through the
interaction with the condensate and are unobservable at low
energies. There are the scalar fields manifesting so far as the
Higgs scalar and Yukawa couplings and additional scalar
fields, which through interaction with the condensate
become massive.
Since the left-handed members distinguish from the

right-handed partners in the weak and hypercharges, the
family members of all of the families stay massless and
mass protected up to the electroweak break [31].
Antiparticles are accessible from particles by CN ·PN ,
as explained in Refs. [15,16] and also briefly in
Appendix A. This discrete symmetry operator does not
contain ~γa degrees of freedom. To each family member
there corresponds the antimember with the same family
quantum number.
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(v) There is a condensate of two right-handed neutrinos
with the quantum numbers of the upper four families
(Table II), appearing in the energy region above the
unification scale (≥ 1016 GeV), which makes all of the
scalar gauge fields [those with the space index (5, 6, 7, 8),
as well as those with the space index ð9;…; 14Þ] and the
vector gauge fields manifesting nonzero quantum numbers
τ4, τ23, Q, Y, ~τ4, ~τ23, ~Q, ~Y, ~N3

R [Eqs. (8), (9), (10), (11),
(12), and (13)] massive.
(vi) At the electroweak break the scalar fields with the

space index s ¼ ð7; 8Þ—twice the three triplets, the super-
position of ~ωabs, Eq. (15), and the three singlets, the
superposition of ωts0s, Eq. (14), carrying the charges
(Q;Q0; Y 0); all of these scalars have weak and hypercharges
equal to ∓ 1

2
, � 1

2
, respectively—get nonzero vacuum

expectation values, also changing their own masses and
breaking the weak and hypercharge symmetries. These
scalars determine the mass matrices of the twice four
families, as well as the masses of the weak bosons.
The fourth family belonging to the observed three will

(sooner or later) be observed at the LHC. Its properties are
under consideration [10,11], while the stable one of the
upper four families is the candidate for dark matter
constituent.
The above assumptions enable the starting action

[Eq. (1)] to manifest effectively in d ¼ ð3þ 1Þ in the
low energy regime fermion and the boson fields assumed
by the standard model. The starting action also offers the
explanation for the dark matter content and for the matter-
antimatter asymmetry in the Universe.
To see that the action in Eq. (1) really manifests in

d ¼ ð3þ 1Þ by the standard model required degrees of
freedom of fermions and bosons [1–13], let us formally
rewrite the Lagrangian density for a Weyl spinor of Eq. (1),
which also includes families, as follows:

Lf ¼ ψ̄γm
�
pm −

X
Ai

gAτAiAAi
m

�
ψ

þ
�X

s¼7;8

ψ̄ γsp0sψ

�
þ
� X

t¼5;6;9;…;14

ψ̄ γtp0tψ

�
;

p0s ¼ ps −
1

2
Ss

0s00ωs0s00s −
1

2
~Sab ~ωabs;

p0t ¼ pt −
1

2
St

0t00ωt0t00t −
1

2
~Sab ~ωabt; ð2Þ

where m ∈ ð0; 1; 2; 3Þ, s ∈ 7; 8; ðs0; s00Þ ∈ ð5; 6; 7; 8Þ,
ða; bÞ (appearing in ~Sab) run within ∈ ð0; 1; 2; 3Þ and
∈ ð5; 6; 7; 8Þ, t ∈ ð5; 6; 9;…; 13; 14Þ, ðt0; t00Þ ∈ ð5; 6; 7; 8Þ,
and ∈ ð9; 10;…; 14Þ. ψ represents all family members
of all of the families. The generators of the charge groups
τAi [expressed in Eqs. (3), (9), and (10) in terms of Sab]
fulfill the commutation relations

τAi ¼
X
a;b

cAiabSab;

fτAi; τBjg− ¼ iδABfAijkτAk: ð3Þ

The spin generators are defined in Eq. (8). These group
generators determine all of the internal degrees of freedom
of one family members as seen from the point of view of
d ¼ ð3þ 1Þ: The spin is determined by the group SOð3; 1Þ,
the color charge is determined by the group SUð3Þ
[originating in SOð6Þ] and with the generators ~τ3, the
spinor charge is determined by Uð1ÞII [originating in
SOð6Þ] and with the generator τ4, the weak charge is
determined by the group SUð2ÞI [originating in SOð4Þ] and
with the generators ~τ1, and the second SUð2ÞII charge
[SUð2ÞII originating in SOð4Þ] has the generators ~τ2. The
group SUð2ÞII breaks [3] in the presence of the condensate
into Uð1ÞI . The generators τ23 define, together with τ4, the
hyper charge Y (¼ τ23 þ τ4).
The condensate of the two right-handed neutrinos with

the family quantum numbers of the upper four families
bring masses (of the unifying scale ≥ 1016 GeV) to all of
the scalar fields and those vector gauge fields which are not
observed at currently measurable energies, since the
observed vectors do not couple to the condensate.
The scalar fields with the scalar index s ¼ ð7; 8Þ bring

masses, when gaining nonzero vacuum expectation values
at the electroweak phase transition, to twice four families
and to the weak bosons. I shall comment on all of these
fields in what follows.
The first line of Eq. (2) describes [1,3] before the

electroweak break the dynamics of eight families of
massless fermions in interaction with the massless color
~A3
m, the weak ~A1

m, and the hyper-AY
m (¼ sin ϑ2A23

mþ
cosϑ2A4

m) gauge fields, all of which are the superpositions
of ωabm [32].
The first term of the second line of the same equation

[Eq. (2)] determines the mass term, which, after the
electroweak break, brings masses to all of the family
members of the eight families and to the weak bosons.
The scalar fields responsible—after gaining nonzero vac-
uum expectation values—for the masses of the family
members and of the weak bosons are, namely, included in
the second line of Eq. (2) as − 1

2
Ss

0s00ωs0s00s− 1
2
~S ~a ~b ~ω ~a ~b s,

s ∈ ð7; 8Þ, ðs0; s00Þ ∈ ð5; 6; 7; 8Þ, ð ~a; ~bÞ ∈ ð~0; ~1;…; ~8Þ [33].
The properties of those scalar fields with the scalar index

s ¼ ð7; 8Þ are discussed in Sec. IV, where a proof is
presented in which they all carry the weak charge and
the hypercharge as the standard model Higgs scalar, while
they are either triplets with respect to the family quantum
numbers or singlets with respect to the charges Q;Q0, and

Y 0. While the two triplets (~~A
1

s ,
~~A
~NL

s ) interact with the lower

four families, (~~A
2

s ,
~~A
~NR

s ) interact with the upper four
families. These twice two triplets are superpositions of
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1
2
~S ~a ~b ~ω ~a ~b s, s ¼∈ ð7; 8Þ, Eq. (15). The three singlets (AQ

s ,

AQ0
s , and AY 0

m ) are superpositions of ωs0s00s, Eq. (14). They
interact with the family members of all the families, seeing
charges of the family members.
The second term in the second line of Eq. (2) represents

fermions in interaction with the rest of the scalar fields.
Scalar fields become massive after interacting with the
condensate. Those which do not gain nonzero vacuum
expectation values keep the heavy masses of the order of
the scale of the condensate up to low energies.
The massive scalars with the space index t ∈ ð5; 6Þ

transform (Table III) uR quarks into dL quarks and νR
leptons into eL leptons and back, as well as ūR antiquarks
into d̄L antiquarks and back and ν̄R antileptons into ēL
antileptons and back.
Those scalar fields with the space index t ¼

ð9; 10;…; 14Þ transform antileptons into quarks and anti-
quarks into quarks and back. They are offering, in the
presence of the scalar condensate breaking the CP sym-
metry, the explanation for the observed matter-antimatter
asymmetry, as we shall show in Sec. II.
Let us write down the second term in the second line of

Eq. (2), the part of the fermion action which, in the presence
of the condensate, offers an explanation for the observed
matter-antimatter asymmetry:

Lf0 ¼ ψ†γ0γt
� X

t¼ð9;10;…14Þ

�
pt −

�
1

2
Ss

0s00ωs0s00t þ
1

2
St

0t00ωt0t00t

þ 1

2
~Sab ~ωabt

���
ψ ; ð4Þ

where ðs0; s00Þ ∈ ð5; 6; 7; 8Þ, ðt; t0; t00Þ ∈ ð9; 10;…; 14Þ and
ða; bÞ ∈ ð0; 1; 2; 3Þ and ∈ ð5; 6; 7; 8Þ, in agreement with
the assumed breaks in Sec. I. Again the operators ~Sab

determine family quantum numbers and Sab determine
family member quantum numbers. Correspondingly the
superposition of the scalar fields ~ωabt and the superposition
of the scalar fields ωabt carry the quantum numbers
determined by either the superposition of ~Sab or by the
superposition of Sab in the adjoint representations, while
they all carry the color charge, determined by the space
index t ∈ ð9; 10;…; 14Þ, in the triplet representation of the
SUð3Þ group, as we shall see. Similarly the scalars with the
space index s ∈ ð7; 8Þ carry the weak and the hypercharge
in the doublet representations [34].
The condensate of two right-handed neutrinos with the

family quantum numbers of the upper four families carries
(Table II) τ4 ¼ 1, τ23 ¼ −1, τ13 ¼ 0, Y ¼ 0,Q ¼ 0, and the
family quantum numbers of the upper four families and
gives masses to scalar and vector gauge fields with the
nonzero corresponding quantum numbers. The only vector
gauge fields which stay massless up to the electroweak

break are the hypercharge field (AY
m), the weak charge field

(~A1
m), and the color charge field (~A3

m) (besides the gravity).

1. Standard model subgroups of SOð13þ 1Þ andfSOð13þ 1Þ groups and corresponding gauge fields

This section follows Refs. [3,13]. To calculate the
quantum numbers of one Weyl representation presented
in Table III in terms of the generators of the standard model
charge groups τAi (¼ P

a;bc
Ai

abSab), one must look for the
coefficients cAiab [Eq. (3)]. Similarly the spin and the
family degrees of freedom also have to be expressed as a
superposition of Sab or ~Sab.
The same coefficients cAiab determine operators which

apply either on spinors or on vectors. The difference among
the three kinds of operators—the vector and the two kinds
of spinor operators—lies in the difference among Sab, ~Sab,
and Sab.
While Sab for spins of spinors is equal to

Sab ¼ i
4
ðγaγb − γbγaÞ; fγa; γbgþ ¼ 2ηab ð5Þ

and ~Sab for families of spinors is equal to

~Sab ¼ i
4
ð~γa ~γb − ~γb ~γaÞ; f~γa; ~γbgþ ¼ 2ηab;

fγa; ~γbgþ ¼ 0; ð6Þ

one must take on, when Sab apply to the spin connections
ωbde (¼ fαeωbdα) and ~ω ~b ~d e (¼ fαe ~ω ~b ~dα), either the space

index e or the indices ðb; d; ~b; ~dÞ, the operator

ðSabÞceAd…e…g ¼ iðηacδbe − ηbcδaeÞAd…e…g: ð7Þ
This means that the space index (e) of ωbde transforms
according to the requirement of Eq. (7), and so do (b; d) and
( ~b; ~d). Here I used again the notation ( ~b; ~d) to point out that

Sab and ~Sab (¼ ~S ~a ~b) are the generators of two independent
groups [13].
One finds [1–8] for the generators of the spin and the

charge groups, which are the subgroups of SOð13; 1Þ, the
expressions

~N�ð¼ ~NðL;RÞÞ≔
1

2
ðS23� iS01;S31� iS02;S12� iS03Þ; ð8Þ

where the generators ~N� determine representations of the
two SUð2Þ invariant subgroups of SOð3; 1Þ, the generators
~τ1 and ~τ2,

~τ1 ≔
1

2
ðS58 − S67; S57 þ S68; S56 − S78Þ;

~τ2 ≔
1

2
ðS58 þ S67; S57 − S68; S56 þ S78Þ; ð9Þ
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determine representations of the SUð2ÞI × SUð2ÞII invari-
ant subgroups of the group SOð4Þ, which is, further, the
subgroup of SOð7; 1Þ [SOð4Þ; SOð3; 1Þ are subgroups of
SOð7; 1Þ] and the generators ~τ3, τ4, and ~τ4.

~τ3 ≔
1

2

�
S9 12 − S10 11; S9 11 þ S10 12; S9 10 − S11 12;

× S9 14 − S10 13; S9 13 þ S10 14; S11 14 − S12 13;

× S11 13 þ S12 14;
1ffiffiffi
3

p ðS9 10 þ S11 12 − 2S13 14Þ
�
;

τ4 ≔ −
1

3
ðS9 10 þ S11 12 þ S13 14Þ;

~τ4 ≔ −
1

3
ð ~S9 10 þ ~S11 12 þ ~S13 14Þ ð10Þ

determine representations of SUð3Þ ×Uð1Þ, originating in
SOð6Þ, and of ~τ4, originating in fSOð6Þ.
One finds, correspondingly, the generators of the sub-

groups of fSOð7; 1Þ,

~~NL;R ≔
1

2
ð ~S23 � i ~S01; ~S31 � i ~S02; ~S12 � i ~S03Þ; ð11Þ

which determine representations of the two fSUð2Þ invariant
subgroups of fSOð3; 1Þ, while

~~τ
1 ≔

1

2
ð ~S58 − ~S67; ~S57 þ ~S68; ~S56 − ~S78Þ;

~~τ
2 ≔

1

2
ð ~S58 þ ~S67; ~S57 − ~S68; ~S56 þ ~S78Þ ð12Þ

determine representations of fSUð2ÞI × fSUð2ÞII of ~SOð4Þ.
Both fSOð3; 1Þ and fSOð4Þ are subgroups of fSOð7; 1Þ.
One further finds [3]

Y¼ τ4þτ23; Y 0 ¼−τ4tan2ϑ2þτ23; Q¼ τ13þY;

Q0 ¼−Ytan2ϑ1þτ13; ~Y¼ ~τ4þ ~τ23; ~Y 0 ¼−~τ4tan2 ~ϑ2þ ~τ23;

~Q¼ ~Yþ ~τ13; ~Q0 ¼− ~Ytan2 ~ϑ1þ ~τ13: ð13Þ
The scalar fields from the first term in the second line of

Eq. (2) (let me remind you that they are responsible [1–3]
after gaining in the electroweak break nonzero vacuum
expectation values for the masses of the family members
and of the weak bosons) are expressible in terms of the ωabc
fields and ~ωabc fields presented in Eqs. (14) and (15). One
can find the below expressions by taking into account
Eqs. (9), (10), (11), (12), and (13).

−
1

2
Ss

0s00ωs0s00s ¼ −ðg23τ23A23
s þ g13τ13A13

s þ g4τ4A4
sÞ;

g13τ13A13
s þ g23τ23A23

s þ g4τ4A4
s ¼ gQQAQ

s þ gQ
0
Q0AQ0

s þ gY
0
Y 0AY 0

s ;

A4
s ¼ −ðω9 10s þ ω11 12s þ ω13 14sÞ;

A13
s ¼ ðω56s − ω78sÞ; A23

s ¼ ðω56s þ ω78sÞ;
AQ
s ¼ sinϑ1A13

s þ cosϑ1AY
s ; AQ0

s ¼ cosϑ1A13
s − sinϑ1AY

s ;

AY
s ¼ sinϑ2A23

s þ cosϑ2A4
s ;

AY 0
s ¼ cosϑ2A23

s − sinϑ2A4
s ;

ðs ∈ ð7; 8ÞÞ: ð14Þ

In Eq. (14) the coupling constants are explicitly written
to see the analogy with the gauge fields in the standard
model:

−
1

2
~S ~a ~b ~ω ~a ~bs ¼−ð~~τ ~1 ~~A

~1

s þ ~~N ~L
~~A
~N ~L

s þ ~~τ
~2 ~~A

~2

s þ ~~N ~R
~~A
~N ~R

s Þ;
~~A
~1

s ¼ ð ~ω~5 ~8s− ~ω~6 ~7s; ~ω~5 ~7sþ ~ω~6 ~8s; ~ω~5 ~6s− ~ω~7 ~8sÞ;
~~A
~N ~L

s ¼ ð ~ω~2 ~3sþ i ~ω~0 ~1s; ~ω~3 ~1sþ i ~ω~0 ~2s; ~ω~1 ~2sþ i ~ω~0 ~3sÞ;
~~A
~2

s ¼ ð ~ω~5 ~8sþ ~ω~6 ~7s; ~ω~5 ~7s− ~ω~6 ~8s; ~ω~5 ~6sþ ~ω~7 ~8sÞ;
~~A
~N ~R

s ¼ ð ~ω~2 ~3s− i ~ω~0 ~1s; ~ω~3 ~1s − i ~ω~0 ~2s; ~ω~1 ~2s− i ~ω~0 ~3sÞ;
ðs∈ ð7;8ÞÞ: ð15Þ

Scalar fields from Eq. (15) couple to fermions due to the
family quantum numbers, while those from Eq. (14)
distinguish between family members.
The vector gauge fields ~A3

m (the color octet), ~A1
m [the

weak SUð2ÞI triplet], ~A2
m [the SUð2ÞII triplet] and ~A4

m
[the Uð1ÞII singlet originating in SOð6Þ] can be expressed
in terms of the spin connection fields and the vielbeins by
taking into account Eqs. (9) and (10). Equivalently one
finds the vector gauge fields in the tilde sector.

II. PROPERTIES OF SCALAR AND VECTOR
GAUGE FIELDS, CONTRIBUTING TO

TRANSITIONS OF ANTILEPTONS INTO QUARKS

In this—the main part of the paper—we study
the properties, quantum numbers, and discrete
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symmetries of those scalar and vector gauge fields
appearing in the action [Eqs. (1), (2), and (4)] of the
spin-charge-family theory [1–9,12] which cause transi-
tions of antileptons into quarks and back, and antiquarks
into quarks and back.

These scalar gauge fields carry the triplet or antitriplet
color charge (see Table I) and the fractional hyper- and
electromagnetic charge.
The Lagrangian densities from Eqs. (1), (2), and (4)

manifest CN · PN invariance (Appendix A). All of the

TABLE I. Quantum numbers of the scalar gauge fields carrying the space index t ¼ ð9; 10;…; 14Þ, appearing in Eq. (20), are
presented. To the color charge of all these scalar fields the space degrees of freedom contribute one of the triplet values. These scalars

are, with respect to the two SUð2Þ charges (~τ1 and ~τ2) and the two fSUð2Þ charges (~~τ
1
and ~~τ

2
), triplets (that is, in the adjoint

representations of the corresponding groups), and they all carry twice the spinor number (τ4) of the quarks. The quantum numbers of the
two vector gauge fields, the color and the Uð1ÞII ones, are added.

Field Prop. τ4 τ13 τ23 (τ33; τ38) Y Q ~τ4 ~τ13 ~τ23 ~N3
L

~N3
R

A1�
ð��Þ
9 10

scalar �� 1
3

�1 0 (�� 1
2
, �� 1

2
ffiffi
3

p ) �� 1
3

�� 1
3
þ ∓1 0 0 0 0 0

A13

ð��Þ
9 10

scalar �� 1
3

0 0 (�� 1
2
, �� 1

2
ffiffi
3

p ) �� 1
3

�� 1
3

0 0 0 0 0

A1�
ð��Þ
11 12

scalar �� 1
3

∓1 0 (�� 1
2
, �� 1

2
ffiffi
3

p ) �� 1
3

�� 1
3
þ ∓1 0 0 0 0 0

A13

ð��Þ
11 12

scalar �� 1
3

0 0 (�� 1
2
, �� 1

2
ffiffi
3

p ) �� 1
3

�� 1
3

0 0 0 0 0

A1�
ð��Þ
13 14

scalar �� 1
3

∓1 0 (0, �� 1ffiffi
3

p ) �� 1
3

�� 1
3
þ ∓1 0 0 0 0 0

A13

ð��Þ
13 14

scalar �� 1
3

0 0 (0, �� 1ffiffi
3

p ) �� 1
3

�� 1
3

0 0 0 0 0

A2�
ð��Þ
9 10

scalar �� 1
3

0 �1 (�� 1
2
, �� 1

2
ffiffi
3

p ) �� 1
3
þ ∓1 �� 1

3
þ ∓1 0 0 0 0 0

A23

ð��Þ
9 10

scalar �� 1
3

0 0 (�� 1
2
, �� 1

2
ffiffi
3

p ) �� 1
3

�� 1
3

0 0 0 0 0

� � �
~A1�
ð��Þ
9 10

scalar �� 1
3

0 0 (�� 1
2
, �� 1

2
ffiffi
3

p ) �� 1
3

�� 1
3

0 �1 0 0 0

~A13

ð��Þ
9 10

scalar �� 1
3

0 0 (�� 1
2
, �� 1

2
ffiffi
3

p ) �� 1
3

�� 1
3

0 0 0 0 0

� � �
~A2�
ð��Þ
9 10

scalar �� 1
3

0 0 (�� 1
2
, �� 1

2
ffiffi
3

p ) �� 1
3

�� 1
3

0 0 �1 0 0

~A23

ð��Þ
9 10

scalar �� 1
3

0 0 (�� 1
2
, �� 1

2
ffiffi
3

p ) �� 1
3

�� 1
3

0 0 0 0 0

� � �
~ANL �
ð��Þ
9 10

scalar �� 1
3

0 0 (�� 1
2
, �� 1

2
ffiffi
3

p ) �� 1
3

�� 1
3

0 0 0 �1 0

~ANL3

ð��Þ
9 10

scalar �� 1
3

0 0 (�� 1
2
, �� 1

2
ffiffi
3

p ) �� 1
3

�� 1
3

0 0 0 0 0

� � �
~ANR �
ð��Þ
9 10

scalar �� 1
3

0 0 (�� 1
2
, �� 1

2
ffiffi
3

p ) �� 1
3

�� 1
3

0 0 0 0 �1

~ANR3

ð��Þ
9 10

scalar �� 1
3

0 0 (�� 1
2
, �� 1

2
ffiffi
3

p ) �� 1
3

�� 1
3

0 0 0 0 0

� � �
A3i

ð��Þ
9 10

scalar �� 1
3

0 0 (�1þ�� 1
2
, �� 1

2
ffiffi
3

p ) �� 1
3

�� 1
3

0 0 0 0 0

� � �
A4

ð��Þ
9 10

scalar �� 1
3

0 0 (�� 1
2
, �� 1

2
ffiffi
3

p ) �� 1
3

�� 1
3

0 0 0 0 0

� � �
~A3
m

vector 0 0 0 octet 0 0 0 0 0 0 0

A4
m vector 0 0 0 0 0 0 0 0 0 0 0
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vector and the spinor gauge fields are before the appearance
of the condensate massless and the reactions creating
particles from antiparticles and back go in both directions
equivalently. Correspondingly there is no matter-antimatter
asymmetry.
The spin-charge-family theory breaks the matter-

antimatter symmetry through the appearance of the con-
densate (Sec. III) and also by nonzero vacuum expectation
values of the scalar fields causing the electroweak phase
transition (Sec. IV). I shall show that there is the condensate
of two right-handed neutrinos which breaks this symmetry,
giving masses to all of the scalar gauge fields and to all of
those vector gauge fields which would contradict the
observations.
Let us start by analyzing the Lagrangian density pre-

sented in Eq. (4) before the appearance of the condensate.
The term γt 1

2
Ss

0s00ωs0s00t in Eq. (4) can be rewritten, if taking
into account Eq. (B8), as follows:

γt
1

2
Ss

0s00ωs0s00t ¼
X
þ;−

X
ðtt0Þ

ð��Þ
tt0 1

2
Ss

0s00ω
s00s00ð��Þ

tt0 ;

ω
s00s00ð��Þ

tt0 ∶ ¼ ω
s00s00ð�Þ

tt0 ¼ ðωs0s00t ∓ iωs0s00t0 Þ;

ð��Þ
tt0

≔ ð�Þ
tt0

¼ 1

2
ðγt � γt

0 Þ;
ðtt0Þ ∈ ðð910Þ; ð1112Þ; ð1314ÞÞ: ð16Þ

I introduced the notations ð��Þ
tt0

and ω
s00s00ð��Þ

tt0 to distinguish

between different superpositions of states in the equa-
tions below.
Using Eqs. (9), (10), and (14), the expression ð��Þ

tt0
1
2
Ss

0s00

ω
s00s00ð��Þ

tt0 can be further rewritten as follows:

ð��Þ
tt0 1

2
Ss

0s00ω
s00s00ð��Þ

tt0 ¼ ð��Þ
tt0

fτ2þA2þ
ð��Þ
tt0 þ τ2−A2−

ð��Þ
tt0 þ τ23A23

ð��Þ
tt0 þ τ1þA1þ

ð��Þ
tt0 þ τ1−A1−

ð��Þ
tt0 þ τ13A13

ð��Þ
tt0 g;

A2�
ð��Þ
tt0 ¼ ðω

58ð��Þ
tt0 þ ω

67ð��Þ
tt0 Þ∓ iðω

57ð��Þ
tt0 − ω

68ð��Þ
tt0 Þ; A23

ð��Þ
tt0 ¼ ðω

56ð��Þ
tt0 þ ω

78ð��Þ
tt0 Þ;

A1�
ð��Þ
tt0 ¼ ðω

58ð��Þ
tt0 − ω

67ð��Þ
tt0 Þ∓ iðω

57ð��Þ
tt0 þ ω

68ð��Þ
tt0 Þ; A13

ð��Þ
tt0 ¼ ðω

56ð��Þ
tt0 − ω

78ð��Þ
tt0 Þ: ð17Þ

Equivalently one expresses the term γt 1
2
~Sab ~ωabt in Eq. (4), by using Eqs. (11), (12), and (15), as

γt
1

2
~Sab ~ωabt ¼ ð��Þ

tt0 1

2
~Sab ~ω

abð��Þ
tt0 ¼ ð��Þ

tt0

f~τ2þ ~A2þ
ð��Þ
tt0 þ ~τ2− ~A2−

ð��Þ
tt0 þ ~τ23 ~A23

ð��Þ
tt0 þ ~τ1þ ~A1þ

ð��Þ
tt0 þ ~τ1− ~A1−

ð��Þ
tt0 þ ~τ13 ~A13

ð��Þ
tt0

þ ~Nþ
R
~ANRþ
ð��Þ
tt0 þ ~N−

R
~ANR−

ð��Þ
tt0 þ ~N3

R
~ANR3

ð��Þ
tt0 þ ~Nþ

L
~ANLþ
ð��Þ
tt0 þ ~N−

L
~ANL−

ð��Þ
tt0 þ ~N3

L
~ANL3

ð��Þ
tt0 g;

~ANR �
ð��Þ
tt0 ¼ ð ~ω

23ð��Þ
tt0 − i ~ω

01ð��Þ
tt0 Þ∓ ið ~ω

31ð��Þ
tt0 − i ~ω

02ð��Þ
tt0 Þ; ~ANR3

ð��Þ
tt0 ¼ ð ~ω

12ð��Þ
tt0 − i ~ω

03ð��Þ
tt0 Þ;

~ANL �
ð��Þ
tt0 ¼ ð ~ω

23ð��Þ
tt0 þ i ~ω

01ð��Þ
tt0 Þ∓ ið ~ω

31ð��Þ
tt0 þ i ~ω

02ð��Þ
tt0 Þ; ~ANR3

ð��Þ
tt0 ¼ ð ~ω

12ð��Þ
tt0 þ i ~ω

03ð��Þ
tt0 Þ: ð18Þ

The expressions for ~A2�
ð��Þ
tt0 ,

~A23

ð��Þ
tt0 , ~A

1�
ð��Þ
tt0 , and

~A13

ð��Þ
tt0 can easily be obtained from Eq. (17) by replacing, in the expressions for

A2�
ð��Þ
tt0 , A

23

ð��Þ
tt0 , A

1�
ð��Þ
tt0 and A13

ð��Þ
tt0 , respectively, ω

s0s00ð��Þ
tt0 by ~ω

s0s00ð��Þ
tt0 .

There is the additional term in Eq. (4): γt 1
2
St

0t00ωt0t00t. This term can be rewritten with respect to the generators St
0t00 as one

color octet scalar field and one Uð1ÞII singlet scalar field [Eq. (10)]

γt
1

2
St

00t000ωt00t000t ¼
X
þ;−

X
ðtt0Þ

ð��Þ
tt0

f~τ3 · ~A3

ð��Þ
tt0 þ τ4 · A4

ð��Þ
tt0 g;

ðtt0Þ ∈ ðð9 10Þ; 11 12Þ; 13 14ÞÞ: ð19Þ
Taking all of the above equations [(16), (17), (18), and (19)] into account, Eq. (4) can be rewritten, if we leave out p

ð��Þ
tt0 ,

since in the low energy limit the momentum does not play any role, as follows:
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Lf00 ¼ ψ†γ0ð−Þ
�X

þ;−

X
ðtt0Þ

ð��Þ
tt0

·½τ2þA2þ
ð��Þ
tt0 þ τ2−A2−

ð��Þ
tt0 þ τ23A23

ð��Þ
tt0 þ τ1þA1þ

ð��Þ
tt0 þ τ1−A1−

ð��Þ
tt0 þ τ13A13

ð��Þ
tt0

þ ~τ2þ ~A2þ
ð��Þ
tt0 þ ~τ2− ~A2−

ð��Þ
tt0 þ ~τ23 ~A23

ð��Þ
tt0 þ ~τ1þ ~A1þ

ð��Þ
tt0 þ ~τ1− ~A1−

ð��Þ
tt0 þ ~τ13 ~A13

ð��Þ
tt0 þ ~Nþ

R
~ANRþ
ð��Þ
tt0 þ ~N−

R
~ANR−

ð��Þ
tt0 þ ~N3

R
~ANR3

ð��Þ
tt0

þ ~Nþ
L
~ANLþ
ð��Þ
tt0 þ ~N−

L
~ANL−

ð��Þ
tt0 þ ~N3

L
~ANL3

ð��Þ
tt0 þ τ3iA3i

ð��Þ
tt0 þ τ4A4

ð��Þ
tt0 �

�
ψ ; ð20Þ

where ðt; t0Þ run in pairs over ½ð9; 10Þ;…ð13; 14Þ� and the
summation must go over the þ and the − of

ð��Þ
tt0 .

Let us now calculate the quantum numbers of the
scalar and vector gauge fields appearing in Eq. (20)
by taking into account the fact that the spin of the gauge
fields is determined according to Eq. (7)
[ðSabÞceAd…e…g ¼ iðηacδbd − ηbcδadÞAd…e…g, for each index
(∈ ðd…gÞ) of a bosonic field Ad…g separately]. We must
also take into account the relation among Sab and the
charges (the relations are, of course, the same for bosons
and fermions) [Eqs. (8), (9), (10), (11), and (12)].
In Table I properties of the scalar gauge fields appearing

in Eq. (20) are presented.
The scalar fields with the scalar index

s ¼ ð9; 10;…; 14Þ, presented in Table I, carry one of the
triplet color charges and the spinor charge equal to twice
the quark spinor charge, or the antitriplet color charges and
the antispinor charge. They carry in addition the quantum
numbers of the adjoint representations originating in Sab or
in ~Sab. Although carrying the color charge in one of the
triplet or antitriplet states, these fields cannot be interpreted
as superpartners of the quarks, as required by, let us say, the
N ¼ 1 supersymmetry. The hypercharges and the electro-
magnetic charges are, namely, not those required by the
supersymmetric partners to the family members.
Let us have a look at what the scalar fields appearing in

Eq. (20) and Table I do when applying the left-handed
members of the Weyl representation presented in Table III,
containing quarks and leptons and antiquarks and anti-
leptons [4,15,35]. Let us choose the 57th line of Table III,
which represents in the spinor technique the left-handed
positron, ēþL . If we make, let us say, the choice of the term

(γ0ðþÞ
910

τ2⊟) A2⊟

ð⊕Þ
9 10 (the scalar field A2⊟

ð⊕Þ
9 10 is presented in the

seventh line in Table I and in the first line of Eq. (20)], the
family quantum numbers will not be affected and thus can
be any number. The state carries the spinor (lepton) number
τ4 ¼ 1

2
, the weak charge τ13 ¼ 0, the second SUð2ÞII

charge τ23 ¼ 1
2
, and the color charge ðτ33; τ38Þ ¼

ð0; 0Þ. Correspondingly, its hypercharge [Yð¼ τ4 þ τ23Þ]
is 1 and the electromagnetic charge Qð¼ Y þ τ13Þ is 1.
So, what does the term γ0ðþÞ

9 10

τ2⊟ A2⊟

ð⊕Þ
9 10 make of this

spinor ēþL ? Making use of Eqs. (B10), (B12), and (B20) of

Appendix B one easily finds that the operator γ0ðþÞ
9 10

τ2− transforms the left-handed positron into

ðþiÞ
03

ðþÞ
12

j½−�
56

½−�
78

jjðþÞ
9 10

ð−Þ
11 12

ð−Þ
13 14

, which is dc1R , presented

on line 3 of Table III. Namely, γ0 transforms ½−i�
03

into

ðþiÞ
03

, ðþÞ
9 10

transforms ½−�
9 10

into ðþÞ
9 10

, and τ2− [¼ −ð−Þ
56

ð−Þ
78

]

transforms ðþÞ
56

ðþÞ
78

into ½−�
56

½−�
78

. The state dc1R carries the
spinor (quark) number τ4 ¼ 1

6
, the weak charge τ13 ¼ 0, the

second SUð2ÞII charge τ23 ¼ − 1
2
, and the color charge

ðτ33; τ38Þ ¼ ð1
2
; 1

2
ffiffi
3

p Þ. Correspondingly its hypercharge is

(Y ¼ τ4 þ τ23 ¼) − 1
3

and the electromagnetic charge

(Q ¼ Y þ τ13 ¼) − 1
3
. The scalar field A2⊟

ð⊕Þ
9 10 carries just

the needed quantum numbers, as we can see in the seventh
line of Table I.
If the antiquark ūc̄2L , from line 43 (it is not presented, but

one can very easily construct it) in Table III, with the spinor

TABLE II. The condensate of the two right-handed neutrinos νR, with the VIIIth family quantum number, coupled to spin zero and
belonging to a triplet with respect to the generators τ2i, is presented, together with its two partners. The condensate carries τ13 ¼ 0,
τ23 ¼ 1, τ4 ¼ −1, and Q ¼ 0 ¼ Y. The triplet carries ~τ4 ¼ −1, ~τ23 ¼ 1, and ~N3

R ¼ 1, ~N3
L ¼ 0, ~Y ¼ 0, ~Q ¼ 0. The family quantum

numbers are presented in Table IV.

State S03 S12 τ13 τ23 τ4 Y Q ~τ13 ~τ23 ~τ4 ~Y ~Q ~N3
L

~N3
R

ðjνVIII1R i1jνVIII2R i2Þ 0 0 0 1 −1 0 0 0 1 −1 0 0 0 1

ðjνVIII1R i1jeVIII2R i2Þ 0 0 0 0 −1 −1 −1 0 1 −1 0 0 0 1

ðjeVIII1R i1jeVIII2R i2Þ 0 0 0 −1 −1 −2 −2 0 1 −1 0 0 0 1
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TABLE III. The left-handed [Γð13;1Þ ¼ −1] multiplet of spinors—the members of the SOð13; 1Þ group, manifesting the subgroup
SOð7; 1Þ—of the color charged quarks and antiquarks and the colorless leptons and antileptons is presented on a massless basis using
the technique presented in Appendix B. It contains the left-handed [Γð3;1Þ ¼ −1] weak charged (τ13 ¼ � 1

2
) and SUð2ÞII chargeless

(τ23 ¼ 0) quarks and the right-handed weak chargeless and SUð2ÞII charged (τ23 ¼ � 1
2
) quarks of three colors [ci ¼ ðτ33; τ38Þ] with the

spinor charge (τ4 ¼ 1
6
) and the colorless left-handed weak charged leptons and the right-handed weak chargeless leptons with the spinor

charge (τ4 ¼ − 1
2
). S12 defines the ordinary spin � 1

2
. The vacuum state jvacifam, on which the nilpotents and projectors operate, is not

shown. The reader can find this Weyl representation also in Refs. [3,35]. Left-handed antiquarks and antileptons are weak chargeless and
carry opposite charges.

i jaψ ii Γð3;1Þ S12 Γð4Þ τ13 τ23 τ33 τ38 τ4 Y Q

Octet, Γð1;7Þ ¼ 1;Γð6Þ ¼ −1 of quarks and leptons
1 uc1R ðþiÞ

03

ðþÞ
12

jðþÞ
56

ðþÞ
78

jjðþÞ
9 10

ð−Þ
11 12

ð−Þ
13 14 1 1

2
1 0 1

2
1
2

1

2
ffiffi
3

p 1
6

2
3

2
3

2 uc1R ½−i�
03

½−�
12

jðþÞ
56

ðþÞ
78

jjðþÞ
9 10

ð−Þ
11 12

ð−Þ
13 14 1 − 1

2
1 0 1

2
1
2

1

2
ffiffi
3

p 1
6

2
3

2
3

3 dc1R ðþiÞ
03

ðþÞ
12

j½−�
56

½−�
78

jjðþÞ
9 10

ð−Þ
11 12

ð−Þ
13 14 1 1

2
1 0 − 1

2
1
2

1

2
ffiffi
3

p 1
6

− 1
3

− 1
3

4 dc1R ½−i�
03

½−�
12

j½−�
56

½−�
78

jjðþÞ
9 10

ð−Þ
11 12

ð−Þ
13 14 1 − 1

2
1 0 − 1

2
1
2

1

2
ffiffi
3

p 1
6

− 1
3

− 1
3

5 dc1L ½−i�
03

ðþÞ
12

j½−�
56

ðþÞ
78

jjðþÞ
9 10

ð−Þ
11 12

ð−Þ
13 14 −1 1

2
−1 − 1

2
0 1

2
1

2
ffiffi
3

p 1
6

1
6

− 1
3

6 dc1L ðþiÞ
03

½−�
12

j½−�
56

ðþÞ
78

jjðþÞ
9 10

ð−Þ
11 12

ð−Þ
13 14 −1 − 1

2
−1 − 1

2
0 1

2
1

2
ffiffi
3

p 1
6

1
6

− 1
3

7 uc1L ½−i�
03

ðþÞ
12

jðþÞ
56

½−�
78

jjðþÞ
9 10

ð−Þ
11 12

ð−Þ
13 14 −1 1

2
−1 1

2
0 1

2
1

2
ffiffi
3

p 1
6

1
6

2
3

8 uc1L ðþiÞ
03

½−�
12

jðþÞ
56

½−�
78

jjðþÞ
9 10

ð−Þ
11 12

ð−Þ
13 14 −1 − 1

2
−1 1

2
0 1

2
1

2
ffiffi
3

p 1
6

1
6

2
3

9 uc2R ðþiÞ
03

ðþÞ
12

jðþÞ
56

ðþÞ
78

jj½−�
9 10

½þ�
11 12

ð−Þ
13 14 1 1

2
1 0 1

2
− 1

2
1

2
ffiffi
3

p 1
6

2
3

2
3

10 uc2R ½−i�
03

½−�
12

jðþÞ
56

ðþÞ
78

jj½−�
9 10

½þ�
11 12

ð−Þ
13 14 1 − 1

2
1 0 1

2
− 1

2
1

2
ffiffi
3

p 1
6

2
3

2
3

� � �
17 uc3R ðþiÞ

03

ðþÞ
12

jðþÞ
56

ðþÞ
78

jj½−�
9 10

ð−Þ
11 12

½þ�
13 14 1 1

2
1 0 1

2
0 − 1ffiffi

3
p 1

6
2
3

2
3

18 uc3R ½−i�
03

½−�
12

jðþÞ
56

ðþÞ
78

jj½−�
9 10

ð−Þ
11 12

½þ�
13 14 1 − 1

2
1 0 1

2
0 − 1ffiffi

3
p 1

6
2
3

2
3

� � �
25 νR ðþiÞ

03

ðþÞ
12

jðþÞ
56

ðþÞ
78

jjðþÞ
9 10

½þ�
11 12

½þ�
13 14 1 1

2
1 0 1

2
0 0 − 1

2
0 0

26 νR ½−i�
03

½−�
12

jðþÞ
56

ðþÞ
78

jjðþÞ
9 10

½þ�
11 12

½þ�
13 14 1 − 1

2
1 0 1

2
0 0 − 1

2
0 0

27 eR ðþiÞ
03

ðþÞ
12

j½−�
56

½−�
78

jjðþÞ
9 10

½þ�
11 12

½þ�
13 14 1 1

2
1 0 − 1

2
0 0 − 1

2
−1 −1

28 eR ½−i�
03

½−�
12

j½−�
56

½−�
78

jjðþÞ
9 10

½þ�
11 12

½þ�
13 14 1 − 1

2
1 0 − 1

2
0 0 − 1

2
−1 −1

29 eL ½−i�
03

ðþÞ
12

j½−�
56

ðþÞ
78

jjðþÞ
9 10

½þ�
11 12

½þ�
13 14 −1 1

2
−1 − 1

2
0 0 0 − 1

2
− 1

2
−1

30 eL ðþiÞ
03

½−�
12

j½−�
56

ðþÞ
78

jjðþÞ
9 10

½þ�
11 12

½þ�
13 14 −1 − 1

2
−1 − 1

2
0 0 0 − 1

2
− 1

2
−1

31 νL ½−i�
03

ðþÞ
12

jðþÞ
56

½−�
78

jjðþÞ
9 10

½þ�
11 12

½þ�
13 14 −1 1

2
−1 1

2
0 0 0 − 1

2
− 1

2
0

32 νL ðþiÞ
03

½−�
12

jðþÞ
56

½−�
78

jjðþÞ
9 10

½þ�
11 12

½þ�
13 14 −1 − 1

2
−1 1

2
0 0 0 − 1

2
− 1

2
0

33 d̄c̄1L ½−i�
03

ðþÞ
12

jðþÞ
56

ðþÞ
78

jj½−�
9 10

½þ�
11 12

½þ�
13 14 −1 1

2
1 0 1

2
− 1

2
− 1

2
ffiffi
3

p − 1
6

1
3

1
3

34 d̄c̄1L ðþiÞ
03

½−�
12

jðþÞ
56

ðþÞ
78

jj½−�
9 10

½þ�
11 12

½þ�
13 14 −1 − 1

2
1 0 1

2
− 1

2
− 1

2
ffiffi
3

p − 1
6

1
3

1
3

35 ūc̄1L ½−i�
03

ðþÞ
12

j½−�
56

½−�
78

jj½−�
9 10

½þ�
11 12

½þ�
13 14 −1 1

2
1 0 − 1

2
− 1

2
− 1

2
ffiffi
3

p − 1
6

− 2
3

− 2
3

36 ūc̄1L ðþiÞ
03

½−�
12

j½−�
56

½−�
78

jj½−�
9 10

½þ�
11 12

½þ�
13 14 −1 − 1

2
1 0 − 1

2
− 1

2
− 1

2
ffiffi
3

p − 1
6

− 2
3

− 2
3

37 d̄c̄1R ðþiÞ
03

ðþÞ
12

jðþÞ
56

½−�
78

jj½−�
910

½þ�
1112

½þ�
1314 1 1

2
−1 1

2
0 − 1

2
− 1

2
ffiffi
3

p − 1
6

− 1
6

1
3

38 d̄c̄1R ½−i�
03

½−�
12

jðþÞ
56

½−�
78

jj½−�
9 10

½þ�
11 12

½þ�
13 14 1 − 1

2
−1 1

2
0 − 1

2
− 1

2
ffiffi
3

p − 1
6

− 1
6

1
3

39 ūc̄1R ðþiÞ
03

ðþÞ
12

j½−�
56

ðþÞ
78

jj½−�
9 10

½þ�
11 12

½þ�
13 14 1 1

2
−1 − 1

2
0 − 1

2
− 1

2
ffiffi
3

p − 1
6

− 1
6

− 2
3

(Table continued)
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charge τ4 ¼ − 1
6
, the weak charge τ13 ¼ 0, the second

SUð2ÞII charge τ23 ¼ − 1
2
, the color charge

ðτ33; τ38Þ ¼ ð1
2
;− 1

2
ffiffi
3

p Þ, the hypercharge Yð¼ τ4 þ τ23 ¼Þ
− 2

3
and the electromagnetic charge Qð¼ Y þ τ13 ¼Þ − 2

3

submits the A2⊟

ð⊕Þ
9 10 scalar field, it transforms into uc3R from

line 17 of Table III, carrying the quantum numbers τ4 ¼ 1
6
,

τ13 ¼ 0, τ23 ¼ 1
2
, ðτ33; τ38Þ ¼ ð0;− 1ffiffi

3
p Þ, Y ¼ 2

3
, and Q ¼ 2

3
.

These two quarks, dc1R and uc3R , can bind together with uc2R
from the ninth line of the same table (at low enough energy,
after the electroweak transition, and if they belong in a
superposition with the left-handed partners to the first
family) into the color chargeless baryon—a proton. This
transition is presented in Fig. 1.
The opposite transition at low energies would make the

proton decay.
Let us look at one more example. The 63rd line of

Table III represents, in the spinor technique, the right-
handed positron, ēþR . Since we shall not again look at a
transition in which scalar fields with the nonzero family
quantum numbers are involved, the family quantum
number of this positron is not important. The state carries
the spinor (lepton) number τ4 ¼ 1

2
, the weak charge τ13 ¼ 1

2
,

the second SUð2ÞII charge τ23 ¼ 0, and the color
charge ðτ33; τ38Þ ¼ ð0; 0Þ. Correspondingly, its hyper-
charge (Y ¼ τ4 þ τ23) is 1

2
and the electromagnetic charge

Q ¼ Y þ τ13 is 1.

What does, let us say, the term γ0ðþÞ
9 10

τ1⊟ A1⊟

ð⊕Þ
9 10 (the scalar

field A1⊟

ð⊕Þ
9 10 is presented in the first line of Table I) make on

ēþR? Making use of Eqs. (B10), (B12), and (B20) of
Appendix B, one easily finds that the right-handed positron

transforms under the application of γ0 τ1− ðþÞ
9 10

into

½−i�
03

ðþÞ
12

j½−�
56

ðþÞ
78

jjðþÞ
9 10

ð−Þ
11 12

ð−Þ
13 14

, which is dc1L , presented

in line 5 of Table III. Namely, γ0 transforms ðþiÞ
03

into

½−i�
03

, ðþÞ
9 10

transforms ½−�
9 10

into ðþÞ
9 10

, and τ1⊟ [¼ ð−Þ
56

ðþÞ
78

]

transforms ðþÞ
56

½−�
56

into ½−�
56

ðþÞ
56

. The state dc1L carries the
spinor (quark) number τ4 ¼ 1

6
, the weak charge τ13 ¼ − 1

2
,

the second SUð2ÞII charge τ23 ¼ 0, and the color charge
ðτ33; τ38Þ ¼ ð1

2
; 1

2
ffiffi
3

p Þ. Correspondingly its hypercharge is

(Y ¼ τ4 þ τ23 ¼) 1
6

and the electromagnetic charge

(Q ¼ Y þ τ13 ¼) − 1
3
. The scalar field A1⊟

ð⊕Þ
9 10 carries all of

the needed quantum numbers, as one can see in Fig. 1.
If the antiquark ūc̄2R , from line 47 in Table III (the reader

can easily find the expression ðþiÞ
03

ðþÞ
12

j½−�
56

ðþÞ
78

jj
ðþÞ
9 10

ð−Þ
11 12

½þ�
13 14

), with the spinor charge τ4 ¼ − 1
6
, the weak

charge τ13 ¼ − 1
2
, the second SUð2ÞII charge τ23 ¼ 0, the

color charge ðτ33; τ38Þ ¼ ð1
2
;− 1

2
ffiffi
3

p Þ, the hypercharge

(Y ¼ τ4 þ τ23 ¼) − 1
6
, and the electromagnetic charge

(Q ¼ Y þ τ13 ¼) − 2
3
, submits the A1⊟

ð⊕Þ
9 10 scalar field, it

transforms into uc3L from line 23 of Table III

(½−i�
03

ðþÞ
12

jðþÞ
56

½−�
78

jj½−�
9 10

ð−Þ
11 12

½þ�
13 14

), carrying the quantum
numbers τ4 ¼ 1

6
, τ13 ¼ 1

2
, τ23 ¼ 0, ðτ33; τ38Þ ¼ ð0;− 1ffiffi

3
p Þ,

i jaψ ii Γð3;1Þ S12 Γð4Þ τ13 τ23 τ33 τ38 τ4 Y Q

40 ūc̄1R ½−i�
03

½−�
12

j½−�
56

ðþÞ
78

jj½−�
9 10

½þ�
11 12

½þ�
13 14 1 − 1

2
−1 − 1

2
0 − 1

2
− 1

2
ffiffi
3

p − 1
6

− 1
6

− 2
3

41 d̄c̄2L ½−i�
03

ðþÞ
12

jðþÞ
56

ðþÞ
78

jjðþÞ
9 10

ð−Þ
11 12

½þ�
13 14 −1 1

2
1 0 1

2
1
2

− 1

2
ffiffi
3

p − 1
6

1
3

1
3

� � �
49 d̄c̄3L ½−i�

03

ðþÞ
12

jðþÞ
56

ðþÞ
78

jjðþÞ
9 10

½þ�
11 12

ð−Þ
13 14 −1 1

2
1 0 1

2
0 − 1ffiffi

3
p − 1

6
1
3

1
3

� � �
57 ēL ½−i�

03

ðþÞ
12

jðþÞ
56

ðþÞ
78

jj½−�
9 10

ð−Þ
11 12

ð−Þ
13 14 −1 1

2
1 0 1

2
0 0 1

2
1 1

58 ēL ðþiÞ
03

½−�
12

jðþÞ
56

ðþÞ
78

jj½−�
9 10

ð−Þ
11 12

ð−Þ
13 14 −1 − 1

2
1 0 1

2
0 0 1

2
1 1

59 ν̄L ½−i�
03

ðþÞ
12

j½−�
56

½−�
78

jj½−�
9 10

ð−Þ
11 12

ð−Þ
13 14 −1 1

2
1 0 − 1

2
0 0 1

2
0 0

60 ν̄L ðþiÞ
03

½−�
12

j½−�
56

½−�
78

jj½−�
9 10

ð−Þ
11 12

ð−Þ
13 14 −1 − 1

2
1 0 − 1

2
0 0 1

2
0 0

61 ν̄R ðþiÞ
03

ðþÞ
12

j½−�
56

ðþÞ
78

jj½−�
9 10

ð−Þ
11 12

ð−Þ
13 14 1 1

2
−1 − 1

2
0 0 0 1

2
1
2

0

62 ν̄R ½−i�
03

½−�
12

j½−�
56

ðþÞ
78

jj½−�
9 10

ð−Þ
11 12

ð−Þ
13 14 1 − 1

2
−1 − 1

2
0 0 0 1

2
1
2

0

63 ēR ðþiÞ
03

ðþÞ
12

jðþÞ
56

½−�
78

jj½−�
9 10

ð−Þ
11 12

ð−Þ
13 14 1 1

2
−1 1

2
0 0 0 1

2
1
2

1

64 ēR ½−i�
03

½−�
12

jðþÞ
56

½−�
78

jj½−�
9 10

ð−Þ
11 12

ð−Þ
13 14 1 − 1

2
−1 1

2
0 0 0 1

2
1
2

1

TABLE III. (Continued)
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Y ¼ 1
6
, and Q ¼ 2

3
. These two quarks, dc1L and uc3L , can bind

together (at low enough energy, when making the electro-
weak transition after the superposition with the right-
handed partners) with uc2L from the 15th line of the same
table into the color chargeless baryon—a proton. This
transition is presented in Fig. 2.
The opposite transition would make the proton decay.
Similar transitions also go with other scalars from

Eq. (20) and Table I. The ~~A
1

ðþÞ
t0t00 , ~~A

2

ðþÞ
t0 t00 , ~~A

NL

ðþÞ
t0 t00 , and ~~A

NL

ðþÞ
t0t00 fields

cause transitions among the family members, changing a
particular member into an antimember of another color and

another family. The term γ0 ðþÞ
910

~N−
R A

~NR−

ð⊕Þ
9 10 transforms ēþR

into uc1L , changing the family quantum numbers.
The action from Eqs. (1), (2), and (4) manifests CN · PN

invariance. All of the vector and spinor gauge fields are
massless.
Since none of the scalar fields from Table I have been

observed, nor any vector gauge fields like ~A2
m, A4

m or other
scalar or vector fields, we shall discuss this topic in Sec. V,
a mechanism must exist which makes the nonobserved
scalar and vector gauge fields massive enough.
Scalar fields from Table I carry the color and the

electromagnetic charge. Therefore their nonzero vacuum
expectation values would not be in agreement with the
observed phenomena. One notices, however, that all of the

scalar gauge fields from Table I and several other scalar and
vector gauge fields (see Sec. V) couple to the condensate
with the nonzero quantum numbers τ4 and τ23 and nonzero
family quantum numbers.
It is not difficult to recognize that the desired condensate

must have spin zero, Y ¼ τ4 þ τ23 ¼ 0, Q ¼ Y þ τ13 ¼ 0,
and ~τ1 ¼ 0 in order that, in the low energy limit, the spin-
charge-family theory would manifest effectively as the
standard model.
I make a choice of the two right-handed neutrinos of the

VIIIth family coupled into a scalar, with τ4 ¼ −1, τ23 ¼ 1,
and, correspondingly, Y ¼ 0, Q ¼ 0, and ~τ1 ¼ 0, and
with family quantum numbers [Eqs. (12) and (11)]
~τ4 ¼ −1, ~τ23 ¼ 1, ~N3

R ¼ 1, and, correspondingly, with
~Y ¼ ~τ4 þ ~τ23 ¼ 0, ~Q ¼ ~Y þ ~τ13 ¼ 0, and ~~τ

1 ¼ 0. The con-
densate carries the family quantum numbers of the upper
four families.
The condensate made out of spinors couples to spinors

differently than to antispinors (the anticondensate would,
namely, carry τ4 ¼ 1 and τ23 ¼ −1) breaking, correspond-
ingly, the CN · PN symmetry: The reactions creating
particles from antiparticles are no longer symmetric to
those creating antiparticles from particles.
Such a condensate leaves the hyperfield AY

m

(¼ sin ϑ2A23
m þ cosϑ2A4

m) [for the choice that sin ϑ2 ¼
cosϑ2 and g4 ¼ g2, there is no justification for such a
choice, AY

m ¼ 1ffiffi
2

p ðA23
m þ A4

mÞ follows] massless, while it

FIG. 1. The birth of a right-handed proton out of a positron ēþL , an antiquark ūc̄2L , and a quark (spectator) uc2R . The family quantum
number can be any number.
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gives masses to A2�
m and AY 0

m [¼ 1ffiffi
2

p ðA4
m − A23

m Þ for sin ϑ2 ¼
cosϑ2] and it also gives masses to all of the scalar gauge
fields from Table I since they all couple to the condensate
through τ4.
The weak vector gauge fields, ~A1

m, the hypercharge
vector gauge fields, AY

m, and the color vector gauge fields,
~A1
m, stay massless.
The scalar fields with the scalar space index s ¼ ð7; 8Þ

(there are three singlets which couple to all eight families,
two triplets which couple only to the upper four families,
and another two triplets which couple only to the lower four
families)—carrying the weak and the hypercharges of the
Higgs scalar—wait for gaining nonzero vacuum expect-
ation values to change their masses while causing the
electroweak break.
The condensate does what is needed so that in the low

energy regime the spin-charge-family theory manifests as
an effective theory which agrees with the standard model to
such an extent that it is in agreement with the observed
phenomena, explaining the standard model assumptions
and predicting new fermion and boson fields.
It also may hopefully explain the observed matter-

antimatter asymmetry if the conditions in the expanding
Universe would be appropriate (Sec. VI). The work needed
to check these conditions in the expanding Universe within
the spin-charge-family theory is very demanding. Although
we do have some experience with following the history of

the expanding Universe [12], this study needs much more
effort, not only in calculations, but also in understanding
the mechanism of the condensate appearance and relations
among the velocity of the expansion, the temperature, and
the dimension of space-time in the period of the appearance
of the condensate. This study has not yet really begun.

III. PROPERTIES OF THE CONDENSATE

In Table II the properties of the condensate of the two
right-handed neutrinos (jνVIIIR i1jνVIIIR i2), one with spin up
and another with spin down (Table III, lines 25 and 26),
carrying the family quantum numbers of the VIIIth family
(Table IV), are presented. The condensate carries the
quantum numbers of SUð2ÞII , τ23 ¼ 1 [Eq. (9)], of
Uð1ÞII originating in SOð6Þ, τ4 ¼ −1 [Eq. (10)], and,
correspondingly, Y ¼ 0, Q ¼ 0, and the family quantum
numbers (Table IV) ~τ4 ¼ −1 [Eq. (10)], ~τ23 ¼ 1 [Eq. (12)],
and ~N3

R ¼ 1 [Eq. (11)]. Each of the two neutrinos could
belong to a different family of the upper four families. In
this case the family quantum numbers of the condensate
change.
The condensate is presented in the first line of Table II as

a member of a triplet of the group SUð2ÞII with the
generators τ2i. Correspondingly the condensate couples
to all of the vector gauge fields which carry nonzero τ2i, τ4,

~τ2i, ~Ni
R, and ~τ4. The fields AY

m; ~A
3
m, and ~A1

m stay massless.

FIG. 2. The birth of a left-handed proton out of a positron ēþR , an antiquark ūc̄2R , and a quark (spectator) uc2L . The family quantum
number can be any number.
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The condensate also couples to all of the scalar gauge fields
with the scalar indices s ∈ ð5; 6; 7; 8; 9;…; 14Þ since they
all carry either nonzero τ4 or nonzero τ23.
The coupling of the scalar gauge fields to the condensate

is proportional to

ðhνVIII1R j1hνVIII2R jÞðγ0ð��Þ
tt0

τAiAAi

ð��Þ
tt0 Þ†

× ðγ0ð��Þ
tt0

τAiAAi

ð��Þ
tt0 ÞðjνVIII1R i1jνVIII2R iÞ

∝ ðAAi

ð��Þ
tt0 Þ†ðAAi

ð��Þ
tt0 Þ;

ðtt0Þ ∈ ½ð56Þ; ð78Þ; ð9 10Þ;…; ð13 14Þ�: ð21Þ

The condensate does break the CN · PN symmetry. (The
anticondensate would, namely, carry τ23 ¼ −1 and τ4 ¼ 1).
The condensate gives masses to all of the scalars from

Table I because they couple to the condensate either due to
τ4 or due to the τ4 and τ23 quantum numbers. It also gives
masses to all of the scalar fields with s ∈ ð5; 6; 7; 8Þ since
they couple to the condensate due to the nonzero τ23. The
scalar fields with the quantum numbers of the upper four
families couple in addition through their family quantum
numbers.
The condensate also couples to all of the vector gauge

fields except to the gauge color octet field ~A3
m, the

hypercharge vector fields AY
m, and the weak charge vector

triplet fields ~A1
m since they carry zero τ23, τ4, and Y

quantum numbers.

The spin connection fields, of either tilde ( ~Sab) or
nontilde (Sab) origin, which do not couple to the spinor
condensate, are auxiliary fields, expressible with vielbein
fields (Appendix C).
Below, the scalar and vector gauge fields, which get their

masses through the interaction with the condensate, are
presented:

A2�
ð��Þ
tt0 ; A23

ð��Þ
tt0 ; A1�

ð��Þ
tt0 ; A13

ð��Þ
tt0 ;

~A3

ð��Þ
tt0 ;

~A2�
ð��Þ
tt0 ;

~A23

ð��Þ
tt0 ; ~A1�

ð��Þ
tt0 ;

~A13

ð��Þ
tt0 ;

~ANL �
ð��Þ
tt0 ; ~ANL3

ð��Þ
tt0 ;

~ANR �
ð��Þ
tt0 ; ~ANR3

ð��Þ
tt0 ;

ðtt0Þ ∈ ½ð9 10Þ; ð11 12Þ; ð13 14Þ�;

A2�
ð��Þ
ss0 ; AY 0

ð��Þ
ss0 ¼ 1ffiffiffi

2
p ðA23

ð��Þ
ss0 − A4

ð��Þ
ss0 Þ;

ðss0Þ ∈ ½ð56Þ; ð78Þ�;

A2�
m ; AY 0

m ¼ 1ffiffiffi
2

p ðA23
m − A4

mÞ;

~~A
2

m; ~A4
m;

~~A
NR

m ;

m ∈ ð0; 1; 2; 3Þ: ð22Þ
An expression for AY 0

m;s ϑ2 ¼ π
4
is chosen just for simplicity,

with no justification so far.
It remains an open question as to what has made the

right-handed neutrinos form such a condensate in the
history of the Universe.

TABLE IV. Eight families of the right-handed uc1R (III) quark with spin 1
2
, the color charge [τ33 ¼ 1=2, τ38 ¼ 1=ð2 ffiffiffi

3
p Þ], and the

colorless right-handed neutrino νR of spin 1
2
(III) are presented in the left and right columns, respectively. They belong to two groups of

four families: One (I) is a doublet with respect to [ ~~NL and ~~τ
ð1Þ
] and a singlet with respect to [ ~~NR and ~~τ

ð2Þ
], the other (II) is a singlet with

respect to [ ~~NL and ~~τ
ð1Þ
] and a doublet with respect to [ ~~NR and ~~τ

ð2Þ
]. All of the families follow from the starting one by the application of

the operators [ ~N�
R;L, ~τð2;1Þ�], Eq. (B20). The generators (N�

R;L, τ
ð2;1Þ�) [Eq. (B20)] transform u1R to all of the members of one family of

the same color. The same generators equivalently transform the right-handed neutrino ν1R to all of the colorless members of the same
family.

~τ13 ~τ23 ~N3
L

~N3
R ~τ4

I uc1R1 ðþiÞ
03

½þ�
12

j½þ�
56

ðþÞ
78

jjðþÞ
9 10

½−�
11 12

½−�
13 14 νR2 ðþiÞ

03

½þ�
12

j½þ�
56

ðþÞ
78

jjðþÞ
9 10

ðþÞ
11 12

ðþÞ
13 14 − 1

2
0 − 1

2
0 − 1

2

I uc1R2 ½þi�
03

ðþÞ
12

j½þ�
56

ðþÞ
78

jjðþÞ
9 10

½−�
11 12

½−�
13 14 νR2 ½þi�

03

ðþÞ
12

j½þ�
56

ðþÞ
78

jjðþÞ
9 10

ðþÞ
11 12

ðþÞ
13 14 − 1

2
0 1

2
0 − 1

2

I uc1R3 ðþiÞ
03

½þ�
12

jðþÞ
56

½þ�
78

jjðþÞ
9 10

½−�
11 12

½−�
13 14 νR3 ðþiÞ

03

½þ�
12

jðþÞ
56

½þ�
78

jjðþÞ
9 10

ðþÞ
11 12

ðþÞ
13 14 1

2
0 − 1

2
0 − 1

2

I uc1R4 ½þi�
03

ðþÞ
12

jðþÞ
56

½þ�
78

jjðþÞ
9 10

½−�
11 12

½−�
13 14 νR4 ½þi�

03

ðþÞ
12

jðþÞ
56

½þ�
78

jjðþÞ
9 10

ðþÞ
11 12

ðþÞ
13 14 1

2
0 1

2
0 − 1

2

II uc1R5 ½þi�
03

½þ�
12

j½þ�
56

½þ�
78

jjðþÞ
9 10

½−�
11 12

½−�
13 14 νR5 ½þi�

03

½þ�
12

j½þ�
56

½þ�
78

jjðþÞ
9 10

ðþÞ
11 12

ðþÞ
13 14 0 − 1

2
0 − 1

2
− 1

2

II uc1R6 ðþiÞ
03

ðþÞ
12

j½þ�
56

½þ�
78

jjðþÞ
9 10

½−�
11 12

½−�
13 14 νR6 ðþiÞ

03

ðþÞ
12

j½þ�
56

½þ�
78

jjðþÞ
9 10

ðþÞ
11 12

ðþÞ
13 14 0 − 1

2
0 1

2
− 1

2

II uc1R7 ½þi�
03

½þ�
12

jðþÞ
56

ðþÞ
78

jjðþÞ
9 10

½−�
11 12

½−�
13 14 νR7 ½þi�

03

½þ�
12

jðþÞ
56

ðþÞ
78

jjðþÞ
9 10

ðþÞ
11 12

ðþÞ
13 14 0 1

2
0 − 1

2
− 1

2

II uc1R8 ðþiÞ
03

ðþÞ
12

jðþÞ
56

ðþÞ
78

jjðþÞ
9 10

½−�
11 12

½−�
13 14 νR8 ðþiÞ

03

ðþÞ
12

jðþÞ
56

ðþÞ
78

jjðþÞ
9 10

ðþÞ
11 12

ðþÞ
13 14 0 1

2
0 1

2
− 1

2
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Since AAi
s ; s ∈ ð5; 6Þ couple to the condensate and get

masses, while (by assumption) they do not get nonzero
vacuum expectation values during the electroweak break
[which changes the masses of the scalar fields AAi

s ; s ∈
ð7; 8Þ] the restriction in the sum in Eq. (2) is justified.
The scalar fields, causing the birth of baryons, have the

triplet color charges. They resemble the supersymmetric
partners of the quarks, but since they do not carry all of the
quantum numbers of the quarks, they are not.

IV. PROPERTIES OF SCALAR FIELDS WHICH
DETERMINE MASS MATRICES OF FERMIONS

This section is a short overview of Ref. [13].
There are two kinds of scalar gauge fields which gain at

the electroweak break nonzero vacuum expectation values
and determine, correspondingly, masses of the families of
quarks and leptons and masses of gauge weak bosons: the
kind originating in ~ω ~a ~b s and the kind originating in ωs0s00s.
Both kinds have the space index s ¼ ð7; 8Þ and carry,
correspondingly, the weak and the hypercharge as the
Higgs scalar. These scalar fields are presented in the
Lagrangian density for fermions [Eq. (2)] on the second
line. The tilde kind influences the family quantum numbers
of fermions, the Dirac kind influences the family member
quantum numbers.
The two triplets (~~A

1

s ,
~~A
NL

s ) influence the lower four
families (the lowest three families are already observed),

while (~~A
2

s ,
~~A
NR

s ) influence the upper four families, the stable
of which constitute dark matter. Recognizing that

~~τ
1 ~~A

1

s þ ~~NL
~~A
NL

s þ ~~τ
2 ~~A

2

s þ ~~NR
~~A
NR

s ¼ 1
2
~Sab ~ωabs, s ¼ ð7; 8Þ,

one easily finds, taking into account Eqs. (11) and (12),

the expressions ~~A
1

s¼ð ~ω58s− ~ω67s; ~ω57sþ ~ω68s; ~ω56s− ~ω78sÞ,
~~A
NL

s ¼ ð ~ω23s þ i ~ω01s; ~ω31s þ i ~ω02s; ~ω12s þ i ~ω03sÞ, ~~A
2

s ¼
ð ~ω58s þ ~ω67s; ~ω57s − ~ω68s; ~ω56s þ ~ω78sÞ, ~~A

NR

s ¼ ð ~ω23s−
i ~ω01s; ~ω31s − i ~ω02s; ~ω12s − i ~ω03sÞ, s ¼ ð7; 8Þ, presented
already in Eq. (15). Similarly one finds, taking into account
Eqs. (8), (9), (10), and (13), the expressions for AQ

s , A
Q0
s ,

and AY 0
s , presented in Eq. (14).

The scalar fields AQ
s , A

Q0
s , and AY 0

s distinguish among
the family members, coupling to them through the
family members quantum numbers Q [Q ¼ ðτ13 þ YÞ,
Y ð¼ τ23 þ τ4Þ], Q0ð¼ −Ytan2ϑ1 þ τ13Þ and Y 0 ¼
ðτ23 − tanϑ2τ4Þ, τ4 ¼ − 1

3
ðS9 10 þ S11 12 þ S13 14Þ.

The scalars, originating in ~ωabs and distinguishing
among families, couple to the family quantum numbers

through ~~τ
1
and ~~NL, or through ~~τ

2
and ~~NR. These scalars are

all in the adjoint representations of the corresponding
subgroups of the ~SOð7; 1Þ group.
Let us now prove that all of the scalar fields with the

space [scalar with respect to d ¼ ð3þ 1Þ] index s ¼ ð7; 8Þ
carry the weak and the hypercharge (τ13, Y) equal to either

(− 1
2
; 1
2
) or to (1

2
;− 1

2
). Let us first simplify the notation, using

a common name AAi
s for all of the scalar fields with the

scalar index s ¼ ð7; 8Þ,

AAi
s ¼ ðAQ

s ; A
Q0
s ; AY 0

s ; ~A
4
s ;
~~A
2

s ;
~~A
1

s ;
~~A
NR

s ; ~~A
NL

s Þ; ð23Þ

and let us rewrite the term
P

s¼7;8 ψ̄ γsp0sψ in Eq. (2) as
follows:

X
s¼7;8

ψ̄ γsp0sψ ; ¼ ψ̄fðþÞ
78

p0þ þ ð−Þ
78

p0−gψ ;

p0� ¼ ðp07 ∓ ip08Þ;
ðp07 ∓ ip08Þ ¼ ðp7 ∓ ip8Þ − τAiðAAi

7 ∓ iAAi
8 Þ

ð�Þ
78

¼ 1

2
ðγ7 � iγ8Þ: ð24Þ

Let us now apply the operators Y;Q, Eq. (13),
and τ13 ¼ 1

2
ðS56 − S78Þ, Eq. (9), on the fields

AAi

ð�Þ
78 ¼ ðAAi

7 ∓ iAAi
8 Þ. One finds

τ13ðAAi
7 ∓ iAAi

8 Þ ¼ � 1

2
ðAAi

7 ∓ iAAi
8 Þ;

YðAAi
7 ∓ iAAi

8 Þ ¼∓ 1

2
ðAAi

7 ∓ iAAi
8 Þ;

QðAAi
7 ∓ iAAi

8 Þ ¼ 0; ð25Þ

This is, with respect to the weak, the hyper-, and the
electromagnetic charge, just what the standard model
assumes for the Higgs scalars. The proof is complete.

One can also check, using Eq. (B10), that γ0ð−Þ
78

trans-
forms the uc1R from the first line of Table III into uc1L from
the seventh line of the same table, or νR from the 25th line
into the νL from the 31st line of the same table.
The scalars AAi

ð−Þ
78 obviously bring the weak charge 1

2
and

the hypercharge − 1
2
to the right-handed family members

(uR, νR), and the scalars AAi

ðþÞ
78 bring the weak charge − 1

2
and

the hypercharge 1
2
to (dR, eR).

Let us now prove that the scalar fields of Eq. (23) are
either triplets with respect to the family quantum numbers

[ ~~NR;
~~NL; ~~τ

2
; ~~τ

1
; Eqs. (11) and (12)] or singlets as the

gauge fields of Q ¼ τ13 þ Y;Q0 ¼ τ13 − Y tan2 ϑ1, and

Y 0 ¼ τ23 − tan2 ϑ2τ4. One can prove this by applying ~~τ2,

~~τ
1
, ~~NR,

~~NL, and Q;Q0; Y 0 on the states belonging to
representations of these operators. Let us calculate, as an

example, ~N3
L and Q on ~ANL �

ð�Þ
78 , ~ANL3

ð�Þ
78 , and AQ

ð�Þ
78 , taking into

account Eqs. (11), (10), (9), and (7):
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~N3
L
~ANL �
ð�Þ
78 ¼ � ~ANL �

ð�Þ
78 ; ~N3

L
~ANL3

ð�Þ
78 ¼ 0;

QAQ

ð�Þ
78 ¼ 0;

~ANL �
ð�Þ
78 ¼ fð ~ω

23ð�Þ
78 þ i ~ω

01ð�Þ
78 Þ ∓ ið ~ω

31ð�Þ
78 þ i ~ω

02ð�Þ
78 Þg;

~ANL3

ð�Þ
78 ¼ ð ~ω

12ð�Þ
78 þ i ~ω

03ð�Þ
78 Þ

AQ

ð�Þ
78 ¼ sinϑ1A13

ð�Þ
78 þ cosϑ1ð−Þðω

9 10ð�Þ
78

þ ω
11 12ð�Þ

78 þ ω
13 14ð�Þ

78 Þ; ð26Þ

with Q ¼ S56 þ τ4 ¼ S56 − 1
3
ðS9 10 þ S11 12 þ S13 14Þ, and

with τ4 defined in Eq. (10).
Nonzero vacuum expectation values of the scalar fields

[Eq. (23)], which carry the scalar index s ¼ ð7; 8Þ, and,
correspondingly, the weak and the hypercharges as calcu-
lated in Eq. (25), break the mass protection mechanism of
quarks and leptons of the lower and upper four families. In

the loop corrections besides ~AAi
s and the scalar fields which

are the gauge fields ofQ;Q0; Y 0 also the vector gauge fields
contribute to all of the matrix elements of mass matrices of
any family members.

The gauge fields of ~~NR and ~~τ
2
contribute only to the

masses of the upper four families, while the gauge fields of
~~NL and ~~τ1 contribute only to the masses of the lower four
families. The triplet scalar fields with the scalar index s ¼
ð7; 8Þ and the family charges ~~NR and ~~τ2 transform any
family member belonging to the group of the upper four
families into the same family member belonging to another
family of the same group of four families, changing the
right-handed member into the left-handed partner, while

those triplets with the family charges ~~NL and ~~τ
1
transform

any family member of a particular handedness and belong-
ing to the lower four families into its partner of the opposite
handedness, belonging to another family of the lower four
families.
The scalars AQ

ð�Þ
78 [Eq. (26)], AQ0

ð�Þ
78 (¼ cosϑ1A13

ð�Þ
78 −

sinϑ1AY

ð�Þ
78 ), and AY 0

ð�Þ
78 [Eq. (14)] contribute to all eight

families, distinguishing among the family members and not
among the families.
The mass matrix of any family member, belonging to any

of the two groups of the four families, manifests—due to
the fSUð2ÞðR;LÞ × fSUð2ÞðII;IÞ [either (R; II) or (L; I)] struc-
ture of the scalar fields, which are the gauge fields of the
~~NR;L and ~~τ

2;1
—the symmetry presented in Eq. (27)

Mα ¼

0
BBB@

−a1 − a e d b
e −a2 − a b d
d b a2 − a e
b d e a1 − a

1
CCCA

α

: ð27Þ

In Ref. [11] the mass matrices for the quarks, which are in
agreement with the experimental data, are presented and
predictions are made. It is demonstrated in this reference
that the improved measurements of the quark mixing
matrix are in better agreement with the predicted symmetry
of the mass matrices by the spin-charge-family theory than
the previous ones.

V. CONDENSATE AND NONZERO VACUUM
EXPECTATION VALUES OF SCALAR FIELDS
MAKE SPINORS AND MOST SCALAR AND

VECTOR GAUGE FIELDS MASSIVE

Let us make a short overview of the properties of the
scalar and vector gauge fields:
(i.) after two right-handed neutrinos (coupled to spin

zero and with the family quantum numbers, Table IV, of the
upper four families) make a condensate (Table II) at the
scale ≥ 1016 GeV and
(ii.) after the electroweak break, when the scalar fields

with the space index s ¼ ð7; 8Þ get nonzero vacuum
expectation values.
All of the scalar gauge fields AAi

t ; t ∈
ð5; 6; 7; 8; 9;…; 14Þ [Eqs. (2), (20), and (22), Table I]
interact with the condensate through the quantum numbers
τ4 and τ23—those with the family quantum numbers of the
upper four families also interact through the family

quantum numbers ~~τ
2
or ~~NR—getting masses of the order

of the condensate scale [Eq. (22)].
At the electroweak break, the scalar fields AAi

s ; s ∈ ð7; 8Þ
from Eq. (23) get nonzero vacuum expectation values,
changing, correspondingly, their own masses and deter-
mining masses of quarks and leptons, as well as of the weak
vector gauge fields.
The vector gauge fields A2�

m ; AY 0
m ,

~~A
2�
m , ~AY 0

m , and
~~A
NR

m
[Eq. (22)] get masses due to the interaction with the
condensate through τ23 and τ4 (the first two) or due
to the family quantum numbers of the upper four families
(the last three, respectively).
The vector gauge fields ~A3

m, ~A
1
m, and AY

m stay massless up
to the electroweak break when the scalar gauge fields,
which are weak doublets with the hypercharge making
their electromagnetic charge Q equal to zero, give masses

to the weak bosons [A1�
m ¼ 1ffiffi

2
p ðA11

m ∓ iA12
m Þ and AQ0

m ¼
cosϑ1A13

m − sinϑ1AY
m], while the electromagnetic vector

field (AQ
m ¼ sinϑ1A13

m þ cosϑ1AY
m) and the color vector

gauge field stay massless.
At the electroweak break, when the nonzero vacuum

expectation values of the scalar fields break the weak and
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the hypercharge global symmetry, all eight families of
quarks and leptons also get masses. Up to the electroweak
break the families were mass protected since the right-
handed partners were distinguished from the left-handed
ones in the weak and hypercharges, which were the
conserved quantum numbers that disabled them to make
the superposition manifesting masses.

VI. SAKHAROV CONDITIONS AS SEEN IN VIEW
OF THE SPIN-CHARGE-FAMILY THEORY

The condensate of the right-handed neutrinos, as well as
the nonzero vacuum expectation values of the scalar fields
AAi

ð�Þ
78 —if leading to the complex matrix elements of the

mixing matrices—cause the CN PN violation terms, which
generate the matter-antimatter asymmetry.
It is a question whether both generators of the matter-

antimatter asymmetry—the condensate and the complex
phases of the mixing matrices of quarks and leptons (this
last one alone cannot with one complex phase and also very
probably not with the three complex phases of the lower
four families)—can at all explain the observed matter-
antimatter asymmetry of the ordinary matter, that is, the
matter consisting mostly of the first family of quarks and
leptons.
The lowest of the upper four families determine the dark

matter. For dark matter any relation among matter and
antimatter is, so far, experimentally allowed.
Both origins of the matter-antimatter asymmetry—the

condensate and the nonzero vacuum expectation values of
the scalar fields carrying the weak and the hypercharge—
(are assumed to) appear spontaneously.
Sakharov [36] states that, for the matter-antimatter

asymmetry, three conditions must be fulfilled:
(a.) (CN and) CN PN must not be conserved.
(b.) Baryon number nonconserving processes must

take place.
(c.) Thermal nonequilibrium must be present not to

equilibrate the number of baryons and antibaryons.
Sakharov uses for (c.) the requirement that CPT must

be conserved and that fCPT ; Hg− ¼ 0. In a thermal
equilibrium the average number of baryons hnBi¼
Trðe−βHnBÞ¼Trðe−βHCPT nBðCPT Þ−1Þ¼hn̄Bi. Therefore
hnBi − hn̄Bi ¼ 0 at the thermal equilibrium and there is no
excess of baryons with respect to antibaryons. In the
expanding Universe, however, the temperature is changing
with time. It is necessary that the discrete symmetry CN
PN is broken to break the symmetry between matter and
antimatter if the Universe starts with no matter-antimatter
asymmetry.
The spin-charge-family theory starting action [Eq. (1)] is

invariant under CN PN symmetry. The scalar fields
[Eq. (20)] of this theory cause transitions in which a quark
is born out of a positron (Figs. 1 and 2) and a quark is born
out of antiquark, and back. These reactions go in both

directions with the same probability until the spontaneous
break of CN PN symmetry is caused by the appearance of
the condensate of the two right-handed neutrinos (Table II).
But after the appearance of the condensate [and in

addition to the appearance of the nonzero vacuum expect-
ation values of the scalar fields with the space index
s ∈ ð7; 8Þ], family members see the vacuum differently
than the antimembers. And this might explain the matter-
antimatter asymmetry, provided that the conditions of the
expanding Universe at the appearance of the condensate
(and later at the electroweak break) make the matter-
antimatter asymmetry strong enough so that it is not later
washed out. Massive scalar fields with the color charge also
predict the proton decay.
It is, of course, a question as to whether both phenomena

can at all explain the observed matter-antimatter asymme-
try. I agree completely with the referee of this paper that
before answering the question whether or not the spin-
charge-family theory explains this observed phenomena,
one must do a lot of additional work to find out the
following. (i.) Which is the order of the phase transition
which leads to the appearance of the condensate? (ii.) How
strong is the thermal nonequilibrium which leads to the
matter-antimatter asymmetry during the phase transition?
(iii.) How rapid is the appearance of the matter-antimatter
asymmetry in comparison with the expansion of the
Universe? (iv.) Does the later history of the expanding
Universe enable the produced asymmetry to survive
until today?
Although we do have some experience with solving the

Boltzmann equations for fermions and antifermions [12] to
follow the history of dark matter within the spin-
charge-family theory, the study of the history of the
Universe from the very high temperature to the baryon
production within the same theory in order to see the
matter-antimatter asymmetry in the present time is a much
more demanding task. These questions are under consid-
eration, but still at a preliminary point since a lot of things
must be understood before we can start on the calculations.
What I can conclude is only that the spin-charge-family

theory does offer the opportunity for an explanation of the
observed matter-antimatter asymmetry.

VII. CONCLUSIONS

The spin-charge-family [1–13,15] theory is a kind of
Kaluza-Klein theory in d ¼ ð13þ 1Þ but with the families
introduced by the second kind of gamma operators—the ~γa

operators in addition to the Dirac γa. The theory assumes a
simple starting action [Eq. (1)] in d ¼ ð13þ 1Þ. This
simple action manifests in the low energy regime, after
the breaks of symmetries (Sec. I A), all of the degrees of
freedom assumed in the standard model, offering an
explanation for all of the properties of the quarks and
leptons (right-handed neutrinos are, in this theory, the
regular members of each family) and antiquarks and
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antileptons. The theory explains the existence of the
observed gauge vector fields. It explains the origin of
the scalar fields (the Higgs scalars and the Yukawa
couplings) responsible for the quark and lepton masses
and the masses of the weak bosons [13].
The theory also offers an explanation for the matter-

antimatter asymmetry and for the appearance of dark
matter.
The spin-charge-family theory predicts two decoupled

groups of four families [3,4,9,12]: The fourth of the lower
group of four families will be measured at the LHC [10]
and the lowest of the upper four families constitutes the
dark matter [12] and was already seen. It also predicts that
there might be more scalar fields observable at the LHC.
The upper four families manifest, due to their high masses,
a new nuclear force among their baryons.
All of these degrees of freedom are contained in the

simple starting action. The scalar fields with weak and
hypercharges equal to (∓ 1

2
;� 1

2
), respectively (Sec. IV),

have the space index s ¼ ð7; 8Þ, while they also carry in
addition to the weak and the hypercharges either the family
quantum numbers originating in ~Sab [they form two groups
of twice SUð2Þ triplets] or the family member quantum
numbers originating in Sab [they form three singlets with
the quantum numbers (Q;Q0; Y 0)]. These scalar fields cause
the transitions of the right-handed family members into the
left-handed partners and back. Those with the family
quantum numbers cause at the same time transitions among
families within each of the two family groups of the four
families. They all gain in the electroweak break nonzero
vacuum expectation values, giving masses to both groups
of the four families of quarks and leptons and to weak
bosons (also changing their own masses).
There are also, in this theory, scalar fields with the space

index s ¼ ð5; 6Þ. They carry, with respect to this degree of
freedom, the weak charge equal to the hypercharge
(∓ 1

2
, ∓ 1

2
, respectively). They also carry additional

quantum numbers [Eq. (22)] like all of the other scalar
fields: Either the family quantum numbers originating in
~Sab or the family member quantum numbers originating
in Sab.
There are also the scalar fields with the scalar index

s ¼ ð9; 10;…; 14Þ. These scalars carry the triplet color
charge with respect to the space index and the additional
quantum numbers (Table I), originating either in the family
quantum numbers ~Sab or in the family member quantum
numbers Sab.
There are no additional scalar gauge fields in this theory.
There are the vector gauge fields with respect to

d ¼ ð3þ 1Þ: AAi
m , with Ai staying for the groups SUð3Þ

and Uð1Þ [both originating in SOð6Þ of SOð13; 1Þ], for the
groups SUð2ÞII and SUð2ÞI [both originating in SOð4Þ of
SOð7; 1Þ] and for the groups SUð2Þ × SUð2Þ [∈ SOð3; 1Þ]
in both sectors, the Sab and ~Sab ones.

The condensate of the two right-handed neutrinos with
the family charges of the upper four families (Table II)
gives masses to all of the scalar and vector gauge fields,
except for the color octet vector, the hypersinglet vector,
and the weak triplet vector gauge fields, to which the
condensate does not couple. Those vector gauge fields of
either Sab or ~Sab origin, which do not couple to the
condensate, are expressible with the corresponding viel-
beins (Appendixes (C1) and (C2); they are auxiliary fields.
The condensate breaks the CN PN symmetry (Sec. III and
Appendix A).
There are no additional vector gauge fields in this theory.
Nonzero vacuum expectation values of the scalar gauge

fields with the space index s ¼ ð7; 8Þ and the quantum
numbers as explained in the fourth paragraph of this section
change their own masses in the electroweak break, while all
of the other scalars or vectors either stay massless (the color
octet, the electromagnetic field) or keep the masses of the
scale of the condensate. The only vector fields that are
massless before the electroweak break which become
massive at the electroweak break are the heavy bosons.
It is extremely encouraging that the simple starting

action of the spin-charge-family offers, at low energies,
explanations for so many observed phenomena. However, it
is also true that the starting assumptions (Sec. I A) wait to
be derived from the initial and boundary conditions of the
expanding Universe.
This paper is a step towards understanding the matter-

antimatter asymmetry within the spin-charge-family theory
and also predicts the proton decay. The theory obviously
offers the possibility that the scalar gauge fields with the
space index s ¼ ð9; 10;…; 14Þ explain, after the appear-
ance of the condensate, the matter-antimatter asymmetry.
To prove, however, that this indeed happens requires
additional study to follow the Universe through the phase
transitions which break the CN PN symmetry at the level
of the condensate and further through the electroweak
phase transition up to now, to determine how much of the
matter-antimatter asymmetry is left. The experience when
following the history of the expanding Universe to see
whether the spin-charge-family theory can explain the dark
matter content [12] is of some help. However, answering
the question regarding to which extent this theory can
explain the observed matter-antimatter asymmetry will
require a lot of additional understanding and work.
Let me conclude with the recognition, pointed out

already in the Introduction, that the spin-charge-family
theory overlaps in many points with other unifying theories
[21–26] since all of the unifying groups can be recognized
as subgroups of the large enough orthogonal groups, with
family groups included. There are also many differences,
though: The spin-charge-family theory starts with a very
simple action, from which all of the properties of spinors
and the gauge vector and scalar fields follow, provided
that the breaks of symmetries occur in the desired way.
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Consequently it differs from other unifying theories in the
degrees of freedom of spinors and scalar and vector gauge
fields which show up on different levels of the break of
symmetries, in the unification scheme, in the family
degrees of freedom, and, correspondingly, also in the
evolution of our Universe.
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APPENDIX A: DISCRETE SYMMETRY
OPERATORS

I present here the discrete symmetry operators in the
second quantized picture, for the description of which the
Dirac sea is used. I will follow Ref. [15]. The discrete
symmetry operators of this reference are designed for
Kaluza-Klein-like theories, in which the total angular
momentum in higher than ð3þ 1Þ dimensions manifests
as charges in d ¼ ð3þ 1Þ. The dimension of space-time is
even, as it is in the case of the spin-charge-family theory:

CN ¼
Y3

ℑγm;m¼0

γmΓð3þ1ÞKIx6;x8;…;xd ;

T N ¼
Y3

ℜγm;m¼1

γmΓð3þ1ÞKIx0Ix5;x7;…;xd−1 ;

PN ¼ γ0Γð3þ1ÞΓðdÞI~x3 : ðA1Þ
The operator of handedness in even d-dimensional spaces
is defined as

ΓðdÞ ≔ ðiÞd=2
Y
a

ð
ffiffiffiffiffiffiffi
ηaa

p
γaÞ; ðA2Þ

with products of γa in ascending order.We choose γ0, γ1 real,
γ2 imaginary, γ3 real, γ5 imaginary, γ6 real, alternating imagi-
nary, and real up to γd real. Operators I operate as follows:
Ix0x

0 ¼ −x0; Ixxa ¼ −xa; Ix0x
a ¼ ð−x0; ~xÞ; I~x~x ¼ −~x;

I~x3x
a ¼ ðx0;−x1;−x2;−x3; x5; x6;…; xdÞ; Ix5;x7;…;xd−1ðx0;

x1; x2; x3; x5; x6; x7; x8;…; xd−1; xdÞ ¼ ðx0; x1; x2; x3;−x5;
x6;−x7;…;−xd−1; xdÞ; Ix6;x8;…;xdðx0; x1; x2; x3; x5; x6; x7;
x8;…; xd−1; xdÞ ¼ ðx0; x1; x2; x3; x5;−x6; x7;−x8;…; xd−1;
−xdÞ, d ¼ 2n.
CN transforms the state, put on the top of the Dirac sea,

into the corresponding negative energy state in the
Dirac sea.
The operator, which is called CN [1,15,16], is needed,

which transforms the starting single particle state on top of
the Dirac sea into the negative energy state and then
empties this negative energy state. This hole in the Dirac
sea is the antiparticle state put on top of the Dirac sea. Both

a particle and its antiparticle state (both put on top of the
Dirac sea) must solve the Weyl equations of motion.
This CN is defined as a product of the operator emptying

[1,16] (making transformations into a completely different
Fock space),

emptying ¼
Y
ℜγa

γaK ¼ ð−Þd2þ1
Y
ℑγa

γaΓðdÞK; ðA3Þ

and CN :

CN ¼
Yd

ℜγa;a¼0

γaK
Y3

ℑγm;m¼0

γmΓð3þ1ÞKIx6;x8;…;xd

¼
Yd

ℜγs;s¼5

γsIx6;x8;…;xd : ðA4Þ

We shall indeed need only the product of operators
CNPN , T N and CNPN T N since both CN and PN have
an odd number of γa operators in even-dimensional spaces
with d ¼ 2ð2nþ 1Þ, transforming, accordingly, states from
the representation of one handedness in d ¼ 2ð2nþ 1Þ into
the Weyl of another handedness:

CNPN ¼ γ0
Yd

ℑγs;s¼5

γsI~x3Ix6;x8;…;xd ;

CNPNT N ¼
Yd

ℑγa;a¼0

γaKIx: ðA5Þ

APPENDIX B: SHORT PRESENTATION
OF TECHNIQUE

I make in this appendix a short review of the technique
[18,20] initiated and developed [5–8] when proposing the
spin-charge-family theory [1–12] assuming that all of the
internal degrees of freedom of spinors, with family quan-
tum number included, are describable in the space of d-
anticommuting (Grassmann) coordinates [6] if the dimen-
sion of ordinary space is d. There are two kinds of operators
in the Grassmann space fulfilling the Clifford algebra
which anticommute with one another. The technique was
further developed in the present shape together with
Nielsen [18,20] by identifying one kind of Clifford object
with γs’s and another with ~γa’s.
The objects γa and ~γa have the properties

fγa; γbgþ ¼ 2ηab; f~γa; ~γbgþ ¼ 2ηab;

fγa; ~γbgþ ¼ 0; ðB1Þ

If B is a Clifford algebra object, let us say a
polynomial of γa, B ¼ a0 þ aaγa þ aabγaγb þ � � � þ
aa1a2…adγ

a1γa2 � � � γad , then one finds
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ð~γaB≔ ið−ÞnBBγaÞjψ0i;
B ¼ a0 þ aa0γ

a0 þ aa1a2γ
a1γa2 þ � � � þ aa1…adγ

a1 � � � γad ;
ðB2Þ

where jψ0i is a vacuum state, defined in Eq. (B16), and
ð−ÞnB is equal to 1 for the term in the polynomial which has
an even number of γb ’s, and to −1 for the term with an odd
number of γb’s.
In this last stage we constructed a spinor basis as

products of nilpotents and projectors formed as odd and
even objects of γa’s, respectively, and chosen to be
eigenstates of a Cartan subalgebra of the Lorentz groups
defined by γa’s and ~γa’s.
The technique can be used to construct a spinor basis for

any dimension d and any signature in an easy and trans-
parent way. Equipped with the graphic presentation of basic
states, the technique offers an elegant way to see all of the
quantum numbers of states with respect to the two Lorentz
groups, as well as transformation properties of the states
under any Clifford algebra object.
The Clifford algebra objects Sab and ~Sab close the

algebra of the Lorentz group

Sab ≔ ði=4Þðγaγb − γbγaÞ;
~Sab ≔ ði=4Þð~γa ~γb − ~γb ~γaÞ;

fSab; ~Scdg− ¼ 0;

fSab; Scdg− ¼ iðηadSbc þ ηbcSad − ηacSbd − ηbdSacÞ;
f ~Sab; ~Scdg− ¼ iðηad ~Sbc þ ηbc ~Sad − ηac ~Sbd − ηbd ~SacÞ:

ðB3Þ

We assume the Hermiticity property for γa’s and ~γa’s:

γa† ¼ ηaaγa; ~γa† ¼ ηaa ~γa; ðB4Þ

in order that γa and ~γa are compatible with (B1) and
formally unitary, i.e., γa†γa ¼ I and ~γa† ~γa ¼ I.
One finds from Eq. (B4) that ðSabÞ† ¼ ηaaηbbSab.
Recognizing from Eq. (B3) that the two Clifford algebra

objects Sab; Scd with all indices different commute and,
equivalently, for ~Sab; ~Scd, we select the Cartan subalgebra
of the algebra of the two groups, which form equivalent
representations with respect to one another:

S03; S12; S56;…; Sd−1d; if d ¼ 2n ≥ 4;

S03; S12;…; Sd−2d−1; if d ¼ ð2nþ 1Þ > 4;

~S03; ~S12; ~S56;…; ~Sd−1d; if d ¼ 2n ≥ 4;

~S03; ~S12;…; ~Sd−2d−1; if d ¼ ð2nþ 1Þ > 4: ðB5Þ

The choice for the Cartan subalgebra in d < 4 is
straightforward. It is useful to define one of the Casimirs

of the Lorentz group, the handedness Γ (fΓ; Sabg− ¼ 0) in
any d,

ΓðdÞ ≔ ðiÞd=2
Y
a

ð
ffiffiffiffiffiffiffi
ηaa

p
γaÞ; if d ¼ 2n;

ΓðdÞ ≔ ðiÞðd−1Þ=2
Y
a

ð
ffiffiffiffiffiffiffi
ηaa

p
γaÞ; if d ¼ 2nþ 1: ðB6Þ

One proceeds equivalently for ~ΓðdÞ, substituting ~γa’s for
γa’s. We understand the product of γa’s in the ascending
order with respect to the index a: γ0γ1…γd. It follows from
Eq. (B4) for any choice of the signature ηaa that
Γ† ¼ Γ;Γ2 ¼ I. We also find that for d even the handed-
ness anticommutes with the Clifford algebra objects γa

(fγa;Γgþ ¼ 0), while for d odd it commutes with
γa (fγa;Γg− ¼ 0).
To make the technique simple we introduce the graphic

presentation as follows:

ðkÞ
ab

≔
1

2

�
γa þ ηaa

ik
γb
�
; ½k�

ab
≔

1

2

�
1þ i

k
γaγb

�
;

∘þ ≔
1

2
ð1þ ΓÞ; •

−
≔

1

2
ð1 − ΓÞ; ðB7Þ

where k2 ¼ ηaaηbb. It follows then that

γa ¼ ðkÞ
ab

þ ð−kÞ
ab

; γb ¼ ikηaaððkÞ
ab

− ð−kÞ
ab

Þ;

Sab ¼ k
2
ð½k�
ab

− ½−k�
ab

Þ: ðB8Þ

One can easily check, by taking into account the Clifford
algebra relation [Eq. (B1)] and the definitions of Sab and
~Sab [Eq. (B3)], that if one multiplies by Sab or ~Sab from the

left-hand side the Clifford algebra objects ðkÞ
ab

and ½k�
ab
, it

follows that

SabðkÞ
ab

¼ 1

2
kðkÞ

ab
; Sab½k�

ab
¼ 1

2
k½k�
ab
;

~SabðkÞ
ab

¼ 1

2
kðkÞ

ab
; ~Sab½k�

ab
¼ −

1

2
k½k�
ab
; ðB9Þ

which means that we get the same objects back multiplied

by the constant 1
2
k in the case of Sab, while ~Sab multiply ðkÞ

ab

by k and ½k�
ab

by ð−kÞ rather than ðkÞ. This also means that

when ðkÞ
ab

and ½k�
ab

act from the left-hand side on a vacuum
state jψ0i, the obtained states are the eigenvectors of Sab.

We further recognize that γa transform ðkÞ
ab

into ½−k�
ab

, never

to ½k�
ab
, while ~γa transform ðkÞ

ab
into ½k�

ab
, never to ½−k�

ab
:
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γaðkÞ
ab

¼ ηaa½−k�
ab

; γbðkÞ
ab

¼ −ik½−k�
ab

; γa½k�
ab

¼ ð−kÞ
ab

; γb½k�
ab

¼ −ikηaað−kÞ
ab

;

~γa ðkÞ
ab

¼ −iηaa½k�
ab
; ~γb ðkÞ

ab
¼ −k½k�

ab
; ~γa ½k�

ab
¼ iðkÞ

ab
; ~γb ½k�

ab
¼ −kηaaðkÞ

ab
: ðB10Þ

From Eq. (B10) it follows that

SacðkÞ
ab

ðkÞ
cd

¼ −
i
2
ηaaηcc½−k�

ab
½−k�
cd

; ~SacðkÞ
ab

ðkÞ
cd

¼ i
2
ηaaηcc½k�

ab
½k�
cd
;

Sac½k�
ab

½k�
cd

¼ i
2
ð−kÞ
ab

ð−kÞ
cd

; ~Sac½k�
ab

½k�
cd

¼ −
i
2
ðkÞ
ab

ðkÞ
cd
;

SacðkÞ
ab

½k�
cd

¼ −
i
2
ηaa½−k�

ab
ð−kÞ
cd

; ~SacðkÞ
ab

½k�
cd

¼ −
i
2
ηaa½k�

ab
ðkÞ
cd
;

Sac½k�
ab

ðkÞ
cd

¼ i
2
ηccð−kÞ

ab
½−k�
cd

; ~Sac½k�
ab

ðkÞ
cd

¼ i
2
ηccðkÞ

ab
½k�
cd

: ðB11Þ

From Eq. (B11) we conclude that ~Sab generate the equivalent representations with respect to Sab and the opposite.
Let us deduce some useful relations:

ðkÞ
ab

ðkÞ
ab

¼ 0; ðkÞ
ab

ð−kÞ
ab

¼ ηaa½k�
ab
; ð−kÞ

ab
ðkÞ
ab

¼ ηaa½−k�
ab

; ð−kÞ
ab

ð−kÞ
ab

¼ 0;

½k�
ab

½k�
ab

¼ ½k�
ab
; ½k�

ab
½−k�
ab

¼ 0; ½−k�
ab

½k�
ab

¼ 0; ½−k�
ab

½−k�
ab

¼ ½−k�
ab

;

ðkÞ
ab

½k�
ab

¼ 0; ½k�
ab

ðkÞ
ab

¼ ðkÞ
ab

; ð−kÞ
ab

½k�
ab

¼ ð−kÞ
ab

; ð−kÞ
ab

½−k�
ab

¼ 0;

ðkÞ
ab

½−k�
ab

¼ ðkÞ
ab

; ½k�
ab

ð−kÞ
ab

¼ 0; ½−k�
ab

ðkÞ
ab

¼ 0; ½−k�
ab

ð−kÞ
ab

¼ ð−kÞ
ab

: ðB12Þ

We recognize in the first equation of the first line and the
first and second equations of the second line the demon-
stration of the nilpotent and the projector character of the

Clifford algebra objects ðkÞ
ab

and ½k�
ab
, respectively. Defining

~ð�iÞ
ab

¼ 1

2
ð~γa ∓ ~γbÞ; ~ð�1Þ

ab

¼ 1

2
ð~γa � i~γbÞ; ðB13Þ

one recognizes that

~ðkÞ
ab

ðkÞ
ab

¼ 0; ~ð−kÞ
ab

ðkÞ
ab

¼ −iηaa½k�
ab
;

~ðkÞ
ab

½k�
ab

¼ iðkÞ
ab

; ~ðkÞ
ab

½−k�
ab

¼ 0: ðB14Þ
Recognizing that

ðkÞ
ab †

¼ ηaað−kÞ
ab

; ½k�
ab †

¼ ½k�
ab
; ðB15Þ

we define a vacuum state jψ0i so that one finds

hðkÞ
ab †

ðkÞ
ab

i ¼ 1; h½k�
ab †

½k�
ab
i ¼ 1: ðB16Þ

Taking into account the above equations it is easy to find
a Weyl spinor irreducible representation for d-dimensional
space, with d even or odd.

For d even we simply make a starting state as a product

of d=2, let us say, only nilpotents ðkÞ
ab

, one for each Sab of
the Cartan subalgebra elements [Eq. (B5)], applying it on
an (unimportant) vacuum state. For d odd the basic states
are products of the ðd − 1Þ=2 nilpotents and a factor
ð1� ΓÞ. Then the generators Sab, which do not belong
to the Cartan subalgebra, being applied on the starting state
from the left, generate all of the members of one Weyl
spinor.

ðk0dÞ
0d

ðk12Þ
12

ðk35Þ
35

� � � ðkd−1d−2Þ
d−1d−2

ψ0

½−k0d�
0d

½−k12�
12

ðk35Þ
35

� � � ðkd−1d−2Þ
d−1d−2

ψ0

½−k0d�
0d

ðk12Þ
12

½−k35�
35

� � � ðkd−1d−2Þ
d−1d−2

ψ0

..

.

½−k0d�
0d

ðk12Þ
12

ðk35Þ
35

� � � ½−kd−1d−2�
d−1d−2

ψ0

ðk0dÞ
od

½−k12�
12

½−k35�
35

� � � ðkd−1d−2Þ
d−1d−2

ψ0

..

. ðB17Þ
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All of the states have the handedness Γ since fΓ; Sabg ¼ 0.
States belonging to one multiplet with respect to the group
SOðq; d − qÞ, that is, to one irreducible representation of
spinors (one Weyl spinor), can have any phase. We made a
choice of the simplest one, taking all phases equal to one.
The above graphic representation demonstrates that for d

even all of the states of one irreducible Weyl representation
of a definite handedness follow from a starting state, which

is, for example, a product of nilpotents ðkabÞ
ab

, by trans-

forming all possible pairs of ðkabÞ
ab

ðkmnÞ
mn

into ½−kab�
ab

½−kmn�
mn

.
There are Sam; San; Sbm; Sbn, which all do this. The pro-
cedure gives 2ðd=2−1Þ states. A Clifford algebra object γa

being applied from the left-hand side transforms a Weyl
spinor of one handedness into a Weyl spinor of the opposite
handedness. Both Weyl spinors form a Dirac spinor.
For d odd a Weyl spinor has, besides a product of

ðd − 1Þ=2 nilpotents or projectors, also either the factor

∘þ ≔ 1
2
ð1þ ΓÞ or the factor •− ≔ 1

2
ð1 − ΓÞ. As in the case of

d even, all of the states of one irreducible Weyl represen-
tation of a definite handedness follow from a starting state,
which is, for example, a product of ð1þ ΓÞ and ðd − 1Þ=2
nilpotents ðkabÞ

ab
, by transforming all possible pairs of

ðkabÞ
ab

ðkmnÞ
mn

into ½−kab�
ab

½−kmn�
mn

. However, γa’s, being
applied from the left-hand side, do not change the handed-
ness of the Weyl spinor since fΓ; γag− ¼ 0 for d odd.
A Dirac and a Weyl spinor are for d odd identical and a
family has, accordingly, 2ðd−1Þ=2 members of basic states of
a definite handedness.
We shall speak about left-handedness when Γ ¼ −1 and

about right-handedness when Γ ¼ 1 for either d even
or odd.
While Sab which do not belong to the Cartan subalgebra

[Eq. (B5)] generate all of the states of one representation,
~Sab which do not belong to the Cartan subalgebra
[Eq. (B5)] generate the states of 2d=2−1 equivalent
representations.
Making a choice of the Cartan subalgebra set [Eq. (B5)]

of the algebra Sab and ~Sab a left-handed (Γð13;1Þ ¼ −1)
eigenstate of all of the members of the Cartan subalgebra,
representing a weak chargeless uR quark with spin-up,
hypercharge (2=3), and color (1=2; 1=ð2 ffiffiffi

3
p Þ), for example,

can be written as

ðþiÞ
03

ðþÞ
12

jðþÞ
56

ðþÞ
78

∥ðþÞ
9 10

ð−Þ
11 12

ð−Þ
13 14

jψi

¼ 1

27
ðγ0 − γ3Þðγ1 þ iγ2Þjðγ5 þ iγ6Þðγ7 þ iγ8Þ∥

× ðγ9 þ iγ10Þðγ11 − iγ12Þðγ13 − iγ14Þjψi: ðB18Þ

This state is an eigenstate of all Sab and ~Sab which are
members of the Cartan subalgebra [Eq. (B5)].

The operators ~Sab, which do not belong to the Cartan
subalgebra [Eq. (B5)], generate families from the starting
uR quark, transforming the uR quark from Eq. (B18) to the
uR of another family, keeping all of the properties with
respect to Sab unchanged. In particular, ~S01 applied on a
right-handed uR quark, weak chargeless, with spin-up,
hypercharge (2=3), and the color charge [1=2; 1=ð2 ffiffiffi

3
p Þ]

from Eq. (B18) generates a state which is again a right-
handed uR quark, weak chargeless, with spin-up, hyper-
charge (2=3), and the color charge [1=2; 1=ð2 ffiffiffi

3
p Þ]:

~S01ðþiÞ
03

ðþÞ
12

jðþÞ
56

ðþÞ
78

∥ðþÞ
910

ð−Þ
1112

ð−Þ
1314

¼ −
i
2
½þi�
03

½þ�
12

jðþÞ
56

ðþÞ
78

∥ðþÞ
910

ð−Þ
1112

ð−Þ
1314

: ðB19Þ

Some useful relations [3] are presented below:

N�þ ¼ N1þ � iN2þ ¼ −ð∓ iÞ
03

ð�Þ
12

;

N�
− ¼ N1

− � iN2
− ¼ ð�iÞ

03

ð�Þ
12

;

~N�
þ ¼ − ~ð∓ iÞ

03

~ð�Þ
12

; ~N�
− ¼ ~ð�iÞ

03

~ð�Þ
12

;

τ1� ¼ ð∓Þð�Þ
56

ð∓Þ
78

; τ2∓ ¼ ð∓Þð∓Þ
56

ð∓Þ
78

;

~τ1� ¼ ð∓Þ ~ð�Þ
56

~ð∓Þ
78

; ~τ2∓ ¼ ð∓Þ ~ð∓Þ
56

~ð∓Þ
78

: ðB20Þ

I present at the end one Weyl representation of SOð13þ 1Þ
and the family quantum numbers of the two groups of four
families.
One Weyl representation of SOð13þ 1Þ contains left-

handed weak charged and the second SUð2Þ chargeless
colored quarks and colorless leptons and right-handed
weak chargeless, and the second SUð2Þ charged quarks
and leptons (electrons and neutrinos). It carries also the
family quantum numbers, not mentioned in this table. The
table is taken from Ref. [3,4].
The eight families of the first member of the eight-plet of

quarks from Table III, for example, that is of the right
handed u1R quark, are presented in the left column of
Table IV [3]. In the right column of the same table the
equivalent eight-plet of the right-handed neutrinos ν1R are
presented. All of the other members of any of the eight
families of quarks or leptons follow from any member of a
particular family by the application of the operators N�

R;L

and τð2;1Þ� on this particular member.
The eight-plets separate into two group of four families.

One group contains doublets with respect to ~~NR and ~~τ2;

these families are singlets with respect to ~~NL and ~~τ
1
.

Another group of families contains doublets with respect to
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~~NL and ~~τ1; these families are singlets with respect to ~~NR

and ~~τ
2
.

The scalar fields which are the gauge scalars of ~~NR and
~~τ
2
couple only to the four families which are doublets with

respect to these two groups. The scalar fields which are the

gauge scalars of ~~NL and ~~τ
1
couple only to the four families

which are doublets with respect to these last two groups.

APPENDIX C: EXPRESSIONS FOR THE SPIN
CONNECTION FIELDS IN TERMS OF

VIELBEINS AND THE SPINOR SOURCES

The expressions for the spin connection of both kinds,
ωabα and ~ωabα, in terms of the vielbeins and the spinor
sources of both kinds are presented, obtained by a variation
of action (1). The expression for the spin connectionωabα is
taken from Ref. [37]:

ωabα ¼ −
1

2E

�
eeαebγ∂βðEfγ½efβa�Þ þ eeαeaγ∂βðEfγ ½bfβe�Þ − eeαeeγ∂βðEfγ ½afβb�Þ

�

−
eeα
4

�
Ψ̄

�
γeSab þ

3i
2
ðδebγa − δeaγbÞ

�
Ψ

�

−
1

d − 2

�
eaα

�
1

E
edγ∂βðEfγ ½dfβb�Þ þ

1

2
Ψ̄γdSdbΨ

�
− ebα

�
1

E
edγ∂βðEfγ ½dfβa�Þ þ

1

2
Ψ̄γdSdaΨ

��
: ðC1Þ

One notices that if there are no spinor sources, carrying the spinor quantum numbers Sab, then ωabα is completely
determined by the vielbeins.
Equivalently, one obtains expressions for the spin connection fields carrying family quantum numbers:

~ωabα ¼ −
1

2E

�
eeαebγ∂βðEfγ½efβa�Þ þ eeαeaγ∂βðEfγ ½bfβe�Þ − eeαeeγ∂βðEfγ ½afβb�Þ

�

−
eeα
4

�
Ψ̄

�
γe ~Sab þ

3i
2
ðδebγa − δeaγbÞ

�
Ψ

�

−
1

d − 2

�
eaα

�
1

E
edγ∂βðEfγ ½dfβb�Þ þ

1

2
Ψ̄γd ~SdbΨ

�
− ebα

�
1

E
edγ∂βðEfγ ½dfβa�Þ þ

1

2
Ψ̄γd ~SdaΨ

��
: ðC2Þ
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