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We consider equivariant wave maps from a fixed wormhole spacetime into the 3-sphere. This toy model
is designed for gaining insight into the dissipation-by-dispersion phenomena, in particular the soliton
resolution conjecture. We first prove that for each topological degree of the map there exists a unique static
solution (harmonic map) that is linearly stable. Then, using the hyperboloidal formulation of the initial
value problem, we give numerical evidence that every solution starting from smooth initial data of any
topological degree evolves asymptotically to the harmonic map of the same degree. The late-time
asymptotics of this relaxation process is described in detail.
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I. INTRODUCTION

Dissipation of energy by radiation is a fundamental
phenomenon that is responsible for the asymptotic stabili-
zation of solutions of extended Hamiltonian systems. In
particular, for dispersive wave equations defined on spatially
unbounded domains, the relaxation to a stationary equilib-
rium is due to the radiation of excess energy to infinity. This
happens in various physical situations, for example, in the
gravitational collapse to a stationary black hole.
Notwithstanding their physical significance, the math-

ematical understanding of dissipation-by-dispersion phe-
nomena is very limited, especially in the nonperturbative
regime in which initial data are not close to the final
equilibrium. To gain insight into this kind of phenomena in
real physical situations, it is instructive to study them in toy
models. This was the motivation of a model introduced in
Ref. [1]: equivariant wave maps of which the domain is the
flat spacetime exterior to a timelike cylinder and the target
is the 3-sphere. By mixed analytical and numerical meth-
ods, it was shown in Ref. [1] that in each topological sector
there exists a unique stationary solution (harmonic map)
that serves as the global attractor in the evolution for any
finite-energy smooth initial data. Recently, this conjecture
was proven by Kenig et al. [2].
The model of Ref. [1] is very simple but rather artificial

geometrically. In this paper, we introduce a similar model,
also involving the equivariant wave maps into the 3-sphere,
but with a geometrically natural domain, namely, a worm-
hole-type spacetime. In this model, we give evidence for
the analogous soliton resolution conjecture as in Ref. [1,2].
In contrast to Ref. [1], we employ here the hyperboloidal
formulation of the initial value problem as developed by
Zenginoğlu [3] on the basis of concepts introduced by
Friedrich [4] and Frauendiener [5]. The dissipation of
energy by dispersion is inherently incorporated in the
hyperboloidal formulation, which makes this approach
ideally suited for studying relaxation to static solutions.

In particular, it allows us to describe the pointwise con-
vergence to the attractor on the entire spatial hypersurfaces,
including the null infinity.
The remainder of the paper is organized as follows. In

Sec. II, we introduce our model. We prove the existence of
harmonic maps in Sec. III and study their linear stability in
Sec. IV. In Sec. V, we describe the hyperboloidal formu-
lation of the initial value problem and formulate the main
conjecture. The numerical evidence supporting this con-
jecture is presented in Sec. VI.

II. SETUP

A map X∶ M↦N from a spacetime ðM; gαβÞ into a
Riemannian manifold ðN ; GABÞ is said to be the wave map
if it is a critical point of the action

S ¼
Z

gαβ∂αXA∂βXBGAB
ffiffiffiffiffiffi
−g

p
dx; ð1Þ

where xα and XA are local coordinates on M and N ,
respectively. Variation of the action (1) yields the system of
semilinear wave equations

□gXA þ ΓA
BCðXÞ∂αXB∂βXCgαβ ¼ 0; ð2Þ

where □g ≔ 1ffiffiffiffi−gp ∂αðgαβ ffiffiffiffiffiffi−gp ∂βÞ is the wave operator asso-
ciated with the metric gαβ and ΓA

BC are the Christoffel
symbols of the target metric GAB.
As the domain ðM; gαβÞ, we take an ultrastatic

spherically symmetric spacetime with M ¼ fðt; rÞ ∈ R2;
ðϑ;φÞ ∈ S2g and the metric

gαβdxαdxβ ¼ −dt2 þ dr2 þ ðr2 þ a2Þðdϑ2 þ sin2 ϑdφ2Þ;

where a is a positive constant. This spacetime is a
prototype example of the wormhole geometry with two
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asymptotically flat ends at r → �∞ connected by a
spherical throat (minimal surface) of area 4πa2 at r ¼ 0.
It was first considered by Ellis [6] and Bronnikov [7] and
later popularized by Morris and Thorne as a tool for
interstellar travel [8]. Note that the metric (3) does not
obey Einstein’s equations Gαβ ¼ 8πTαβ with a physically
reasonable stress-energy tensor because, due to Gtt ¼
−a2=ðr2 þ a2Þ2, the energy density of matter is negative.
As the target ðN ; GABÞ, we take the 3-sphere with the

round metric and parametrize it by spherical coordinates
XA ¼ ðU;Θ;ΦÞ,

GABdXAdXB ¼ dU2 þ sin2 UðdΘ2 þ sin2 ΘdΦ2Þ:
In addition, we assume that the map X is spherically
l-equivariant, that is

U ¼ Uðt; rÞ; ðΘ;ΦÞ ¼ Ωlðθ;ϕÞ;

where Ωl∶ S2↦S2 is a harmonic eigenmap with eigen-
value lðlþ 1Þ (l ∈ N). Under these assumptions, the
wave map equation (2) takes the form

∂ttU ¼ ∂rrU þ 2r
r2 þ a2

∂rU −
lðlþ 1Þ
2ðr2 þ a2Þ sinð2UÞ: ð3Þ

For a ¼ 0, Eq. (3) reduces to the wave map equation from
Minkowski spacetime into the 3-sphere, which is well
known to admit self-similar blowup solutions [9,10]. The
length scale a breaks the scale invariance and removes the
singularity at r ¼ 0. This renders the wave map equation
subcritical and ensures global-in-time existence for any
smooth initial data.
The conserved energy is

E ¼ 1

2

Z
∞

−∞

�
ð∂tUÞ2 þ ð∂rUÞ2 þ lðlþ 1Þ

r2 þ a2
sin2U

�
× ðr2 þ a2Þdr: ð4Þ

Finiteness of energy requires that Uðt;−∞Þ ¼ mπ,
Uðt;∞Þ ¼ nπ, where m and n are integers. Without loss
of generality, we choose m ¼ 0; then, n determines the
topological degree of the map (which is preserved in the
evolution).
The goal of this paper is to describe the asymptotic

behavior of solutions for t → ∞. Because of the dissipation
of energy by dispersion, solutions are expected to settle
down to critical points of the potential energy

EP ¼ 1

2

Z
∞

−∞

�
ð∂rUÞ2 þ lðlþ 1Þ

r2 þ a2
sin2U

�
ðr2 þ a2Þdr: ð5Þ

Geometrically, these critical points correspond to the
harmonic maps from the three-dimensional asymptotically
flat Riemannian manifold of cylindrical topology R × S2

and the metric ds2 ¼ dr2 þ ðr2 þ a2Þðdϑ2 þ sin2 ϑdφ2Þ
into the 3-sphere. In the next two sections, we establish
their existence and linear stability.

III. HARMONIC MAPS

Time-independent solutions U ¼ UðrÞ of Eq. (3) satisfy
the ordinary differential equation

U00 þ 2r
r2 þ a2

U0 −
lðlþ 1Þ
2ðr2 þ a2Þ sinð2UÞ ¼ 0: ð6Þ

To analyze solutions of this equation, it is convenient
to introduce new variables, x ¼ arcsinhðr=aÞ and
uðxÞ ¼ UðrÞ, in terms of which Eq. (6) becomes

u00 þ tanhðxÞu0 − lðlþ 1Þ
2

sinð2uÞ ¼ 0: ð7Þ

This equation can be interpreted as the equation of motion
for the unit mass particle moving in the potential

− lðlþ1Þ
2

sin2 u and subject to damping with the time-
dependent damping coefficient tanh x. The harmonic
map of degree n corresponds to the trajectory of which
the projection on the phase plane ðu; u0Þ starts from the
saddle point (0,0) at x ¼ −∞ and goes to the saddle point
ðnπ; 0Þ for x ¼ þ∞. The existence and uniqueness of such
a connecting trajectory for each n follows from an
elementary shooting argument. For example, let the particle
be located at u ¼ π=2 for x ¼ 0. If the velocity b ¼ u0ð0Þ is
too small, then the particle will never reach the hilltop at
u ¼ π, while if b is sufficiently large, it will reach u ¼ π in
finite time with nonzero velocity. By continuity, there must
be a critical velocity b1 for which the particle reaches the
hilltop in infinite time. From the reflection symmetry
x→−x, the particle sent backward in time reaches u ¼ 0
for x → −∞, giving the desired connecting trajectory with
n ¼ 1. Repeating this argument for higher n, we get a
countable family of connecting trajectories un that are
symmetric with respect to the midpoint uð0Þ ¼ nπ=2, that
is unðxÞ þ unð−xÞ ¼ nπ. Near x ¼ 0,

unðxÞ ¼
nπ
2

þ bnxþOðx3Þ;

where the parameter bn uniquely determines the trajectory.
Equation (7) is asymptotically autonomous, so via standard
phase-plane analysis, we find that the equilibria ðnπ; 0Þ are
saddle points with the eigenvalues l and −ðlþ 1Þ.
Therefore, for each n, the stable manifolds of these points
can be parametrized for x → ∞ by

unðxÞ ¼ nπ − ane−ðlþ1Þx þOðe−ðlþ3ÞxÞ;
where the coefficients of all higher-order terms are deter-
mined by an. Translating the above analysis back to the
original variables, we conclude that for each l ∈ N and
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each integer n there exists a unique harmonic map UnðrÞ
satisfying the boundary conditions Unð−∞Þ ¼ 0 and
Unð∞Þ ¼ nπ. This solution can be parametrized by

bn ¼ aUn
0ð0Þ or an ¼ lim

r→∞

�
2r
a

�
lþ1

ðnπ −UnðrÞÞ:

ð8Þ

The parameters bn and an can be determined numerically
with the help of a shooting method. A few values of these
parameters for different l and n are listed in Table I, while
Fig. 1 depicts the profiles UnðrÞ for n ¼ 1; 2.

IV. LINEAR PERTURBATIONS

In this section, we determine the linear stability
properties of harmonic maps UnðrÞ. Plugging Uðt; rÞ ¼
UnðrÞ þ wðt; rÞ into Eq. (3) and neglecting nonlinear terms
in w, we get the evolution equation for linear perturbations:

∂ttw ¼ ∂rrwþ 2r
r2 þ a2

∂rw −
lðlþ 1Þ
r2 þ a2

cosð2UnÞw: ð9Þ

Substituting wðt; rÞ ¼ eλtðr2 þ a2Þ−1
2vðrÞ into Eq. (9), we

obtain the eigenvalue problem for the one-dimensional
Schrödinger operator,

Lnv ≔ ð−∂rr þ VnÞv ¼ −λ2v; ð10Þ

with the potential

VnðrÞ ¼
a2

ðr2 þ a2Þ2 þ
lðlþ 1Þ
r2 þ a2

cosð2UnÞ:

The operator Ln has no negative eigenvalues. To see this,
consider the function vnðrÞ ≔ ðr2 þ a2ÞU0

nðrÞ. Multiplying
Eq. (6) by ðr2 þ a2Þ and then differentiating it, one finds
that

~Lnvn ¼ 0 where ~Ln ¼ Ln −
a2

ðr2 þ a2Þ2 : ð11Þ

Since UnðrÞ is monotone increasing, the zero mode vnðrÞ
has no zeros, which implies by the Sturm oscillation
theorem that the operator ~Ln, and therefore Ln as well,
has no negative eigenvalues. Thus, the harmonic maps Un
are linearly stable. Establishing linear stability is only the
first step in understanding the evolution in the vicinity of
harmonic maps. In the next step, in order to describe the
intermediate stages of the relaxation to harmonic maps, we
need to determine quasinormal modes. They are defined as
solutions of the eigenvalue equation (10) with ℜðλÞ < 0

and the outgoing wave conditions vðrÞ∼ r−ðlþ1Þ expð∓ λrÞ
for r → �∞. For our subsequent considerations, only the
two least-damped quasinormal modes will be relevant. In

U1

U2
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0

Π

2

Π

3 Π

2

2 Π

r

U
n

FIG. 1. The profiles of the harmonic maps UnðrÞ for l ¼ 1 and
n ¼ 1; 2.

TABLE I. The parameters of the harmonic maps UnðrÞ for
n ¼ 1; 2 and a few l.

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

b1 1.797149 2.703436 3.652577 4.621404 5.600560
a1 2.447230 2.607113 2.679588 2.703437 2.742340
b2 2.313377 2.526036 2.682482 2.804565 2.903891
a2 7.468230 10.870128 14.20889 17.48116 20.69089
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FIG. 2. The potentials VnðrÞ for l ¼ 1; 2 and n ¼ 1 (upper
plot) and n ¼ 2 (lower plot).

WAVE MAPS ON A WORMHOLE PHYSICAL REVIEW D 91, 065003 (2015)

065003-3



the n ¼ 0 case (that is U0 ¼ 0), there are several possible
methods of computing quasinormal modes semianalyti-
cally (notably, the method of continued fractions), but the
least-effort way is to use the fact that Eq. (10) is the
confluent Heun equation and get Maple to do the job [11].
For n ¼ 0, the general solution of Eq. (10) (in Maple
notation) is

vðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
½γ1HeunCð0;−α; 0; β; δ;−r2Þ

þ γ2rHeunCð0; α; 0; β; δ;−r2Þ�;

where α ¼ 1
2
; β ¼ λ2

4
; δ ¼ 1

4
ð1 − l − l2 − λ2Þ. The quasi-

normal modes are alternately even (γ2 ¼ 0) and odd
(γ1 ¼ 0). Consider a solution with a given parity (even
or odd). For r → ∞, it behaves as vðrÞ∼
r−ðlþ1Þ½γþðλÞ expðλrÞ þ γ−ðλÞ expð−λrÞ�, and the quanti-
zation condition for the quasinormal modes is γþðλÞ ¼ 0
(no ingoing wave). Unfortunately, the connection problem
for the Heun equation remains unsolved, and the coeffi-
cients γ�ðλÞ are not known explicitly, so we must resort to a
numerical computation. The difficulty is that for ℜðλÞ < 0
the ingoing wave is exponentially small for large r and
therefore very hard to be tracked down numerically.
However, Maple is able to evaluate the confluent Heun
function in the whole complex r plane, which allows us to
impose the quantization condition along a rotated ray reiθ

where the ingoing solution is dominant [11]. Since θ
depends on λ, this approach in principle requires a careful
examination of Stokes’s lines and branch cuts, but in
practice [especially when we know the quasinormal fre-
quency approximately, for example, from dynamical evo-
lution or the WKB approximation], the range of angles θ
for which the procedure is convergent can be easily
determined empirically. The quasinormal frequencies
obtained in this manner are given in the first two rows
in Table II.
The above method is not applicable for n ≥ 1 because

the harmonic maps Un are not known explicitly. In this
situation, the simplest way to get the two least-damped
quasinormal frequencies is to solve Eq. (9) numerically (for
even and odd initial data, respectively) and then fit an
exponentially damped sinusoid to wðt; r0Þ at some fixed r0

over a suitably chosen interval of intermediate times (after
the direct signal from the data has passed through r0 but
before the polynomial tail has unfolded). The results are
shown in Table II.
Notice that for n ≥ 1 the fundamental quasinormal

modes are very weakly damped. This is due to the deep
single well (for odd n) and double well (for even n) in the
potential VnðrÞ (see Fig. 2). As l increases, the outer
barriers of these potential wells increase, and consequently
the damping rates of fundamental quasinormal modes tend
to zero. This leads to a metastable trapping of waves.

V. HYPERBOLOIDAL INITIAL VALUE PROBLEM

In this section, we set the stage for numerical simula-
tions. We will use the method of hyperboloidal foliations
and scri-fixing [3]. To implement this method, we define
new dimensionless coordinates

s ¼ t
a
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

a2
þ 1

s
; y ¼ arctan

�
r
a

�
:

The hypersurfaces Σs of constant s are “hyperboloidal”;
that is, they are spacelike hypersurfaces that approach the
“right” future null infinity J þ

R along outgoing null cones of
constant retarded time u ¼ t − r and the “left” future null
infinity along J þ

L outgoing null cones of constant advanced
time v ¼ tþ r. In terms of the coordinates ðs; yÞ and
Fðs; yÞ ¼ Uðt; rÞ, Eq. (3) takes the form

∂ssF þ 2 sin y∂syF þ 1þ sin2 y
cos y

∂sF

¼ cos2 y∂yyF −
lðlþ 1Þ

2
sinð2FÞ: ð12Þ

The principal part of this hyperbolic equation degenerates
to ∂sð∂s � 2∂yÞF at the endpoints y ¼ �π=2, and hence
there are no ingoing characteristics at the boundaries, and
consequently no boundary conditions are required (and
allowed). This, of course, reflects the fact that no informa-
tion comes in from the future null infinities.
We want to solve the Cauchy problem for Eq. (12)

for finite-energy smooth initial data [Fð0; yÞ; ∂sFð0; yÞ].

TABLE II. The two least-damped quasinormal frequencies λn;j for n ¼ 0; 1; 2. For n ¼ 0, the WKB approximation
λ20;j ≈ −V0ð0Þ − iðjþ 1

2
Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2V 00
0ð0Þ

p
gives λ0;j ≈ −ðjþ 1=2Þ � ðlþ 1=2Þi for large l.

ðn; jÞ l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4

(0,0) −0.5297� 1.5727i −0.5127� 2.5466i −0.5069� 3.5343i −0.5043� 4.5270i
(0,1) −1.7024� 1.2558i −1.5726� 2.3449i −1.5372� 3.3901i −1.5226� 4.4151i
(1,0) −0.1079� 0.7130i −8.365 × 10−3 � 0.8698 −1.697 × 10−4 � 0.9348i −1.291 × 10−6 � 0.9605i
(1,1) −1.0443� 1.1965i −0.8751� 2.2765i −0.7996� 3.025i −0.75192� 4.3184i
(2,0) −0.1126� 0.5063i −1.303 × 10−2 � 0.6809i −4.489 × 10−4 � 0.7788i −5.368 × 10−6 � 0.8316i
(2,1) −0.3711� 0.7143i −0.1328� 1.1831i −2.292 × 10−2 � 1.5208i −3.024 × 10−3 � 1.7585i
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As mentioned above, the global-in-time regularity is not an
issue; all solutions that are smooth initially remain smooth
forever and enjoy the Bondi-type expansions near the
future null infinities J þ

L and J þ
R :

Fðs; yÞ ¼
8<
:

P
k¼1

c−k ðsÞðπ2 þ yÞk for y → − π
2
;

nπ þ P
k¼1

cþk ðsÞðπ2 − yÞk for y → π
2
:

ð13Þ

Multiplying Eq. (12) by ∂sF, we get the local conservation
law

∂sρþ ∂yf ¼ 0; ð14Þ

where

ρ ¼ 1

2

�
1

cos2y
ð∂sFÞ2 þ ð∂yFÞ2 þ lðlþ 1Þ sin

2F
cos2y

�
;

f ¼ sin y
cos2y

ð∂sFÞ2 − ∂sF∂yF:

Defining the Bondi-type energy

EðsÞ ¼
Z

π=2

−π=2
ρðs; yÞdy ð15Þ

and integrating Eq. (14) over a hypersurface Σs, one gets
the energy balance (where · ¼ d=ds)

_EðsÞ ¼ −ð_c−1 ðsÞÞ2 − ð_cþ1 ðsÞÞ2: ð16Þ

We shall refer to c−1 ðsÞ and cþ1 ðsÞ as the radiation
coefficients. The formula (16) expresses the loss of energy
due to radiation through J þ

L and J þ
R . Since the energy EðsÞ

is positive and monotone decreasing, it has a nonnegative
limit for s → ∞. It is natural to expect that this limit is given
by the energy of a static end state of evolution. This leads
us to:
Conjecture: For any degree n smooth initial data, there

exists a unique global smooth solution Fðs; yÞ that con-
verges pointwise to the harmonic map FnðyÞ as s → ∞.
In the remainder of the paper, we give numerical

evidence corroborating this conjecture, putting special
emphasis on the quantitative rates of convergence.

VI. NUMERICAL RESULTS

Following Ref. [12], we define the auxiliary variables

Ψ ¼ ∂yF and Π ¼ ∂sF þ sin y∂yF

and rewrite Eq. (12) as the first-order symmetric hyperbolic
system

∂sF ¼ Π − sin yΨ; ð17aÞ

∂sΨ ¼ ∂yðΠ − sin yΨÞ; ð17bÞ
∂sΠ ¼ ∂yðΨ − sin yΠÞ þ 2 tan y ðΨ − sin yΠÞ

−
lðlþ 1Þ

2
sinð2FÞ: ð17cÞ

We solve this system numerically using the method of lines
with a fourth-order Runge–Kutta time integration and
eighth-order spatial finite differences. One-sided stencils
are used at the boundaries. Kreiss–Oliger dissipation is
added in the interior in order to reduce unphysical high-
frequency noise. To suppress violation of the constraint
C ≔ Ψ − ∂yF ¼ 0, we add the term −0.1C to the right-hand
side of Eq. (17b). To determine precisely the late-time
asymptotic behavior of solutions, it was necessary to use
quadruple precision in some cases, especially for n ≥ 1.
To construct initial data for the system (17), we take

Fð0; yÞ ¼ gðyÞ and ∂sFð0; yÞ ¼ hðyÞ, where gðyÞ and hðyÞ
are smooth functions satisfying gð−π=2Þ ¼ 0, gðπ=2Þ ¼ nπ,
and hð�π=2Þ ¼ 0. Then,

Fð0; yÞ ¼ gðyÞ; Ψð0; yÞ ¼ g0ðyÞ;
Πð0; yÞ ¼ hðyÞ þ sin yg0ðyÞ:

In agreement with the above conjecture, we find that for
initial data of a given degree n the solution tends to the
harmonic map FnðyÞ as s → ∞. This is illustrated in Fig. 3
for sample initial data

gðyÞ ¼ nπ
2
ð1þ sin yÞ

þ sin

���
y −

1

4

�
2

þ 1

20

�
−1
��

y2 −
π2

4

�
;

hðyÞ ¼ 0: ð18Þ

FIG. 3 (color online). The series of snapshots of Fðs; yÞ for
l ¼ 1 and sample initial data (18) of degree 1 (n ¼ 1).
The solution converges pointwise to the harmonic map
F1ðyÞ (red curve).
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As shown in Fig. 4, at a given point y0, one can clearly
distinguish three stages of evolution: (i) the direct signal
from the initial data, (ii) the intermediate stage dominated
by the quasinormal ringdown, and (iii) the final stage
dominated by the polynomial decay (tail).
The quasinormal ringdown is a well-understood linear

phenomenon. For general initial data, it is dominated by the
fundamental quasinormal mode. As mentioned above, this
mode is damped very weakly for n ≥ 1, and therefore it
takes very long before a tail uncovers, especially for large
values of l (see Fig. 5). A simple way to shorten the
duration of ringdown is to take odd initial data. Since
Eq. (12) is invariant under reflection y → −y, the parity of
solutions is preserved in the evolution, and hence for odd
initial data, the ringdown is governed by the least-damped
odd quasinormal mode. As shown in Table II, this mode
(labelled by the index j ¼ 1) is damped much faster than
the fundamental mode, which makes odd data convenient
in the study of tails. Figure 6 illustrates how one can use the

dependence of damping rates of quasinormal modes on
parity to control the ringdown.
We turn now to the description of the final stage of

evolution, the polynomial tail. The late-time tails for
equivariant wave maps from Minkowski and nearly
Minkowski spacetimes into the 3-sphere were studied in
Refs. [13,14]. It was found there that the dominant
contribution to the tail does not come from the linear
backscattering off the effective potential but from the cubic
nonlinearity (in the expansion of the sine function). In other
words, the tail is nonlinear at the leading order. More
precisely, it follows from Ref. [14] [see Eqs. (36) and (46)
there] that for solutions of Eq. (3) on r ≥ 0 with a ¼ 0 (i.e.,
Minkowski domain) starting from topologically trivial
compactly supported small initial data the tail for t → ∞
and all r ≥ 0 is given by

Uðt; rÞ ∼

8>>><
>>>:

~A1rt
ðt2 − r2Þ3 if l ¼ 1

~Alrl

ðt2 − r2Þlþ1
if l ≥ 2;

ð19Þ

where the constants ~Al depend on initial data.
It is natural to expect that the formulas (19) provide good

approximations to the tails (both the profiles and decay rates)
in the asymptotically flat regions of the wormhole spacetime
where r2 ≫ a2, independently of n. Outside of these
asymptotic regions, the profiles are of course different;
however, the decay rates should be the same at all interior
points y0 ∈ ð−π=2; π=2Þ, namely, as follows from (19)

Fðs; y0Þ − Fnðy0Þ ∼
�
B1s−5 if l ¼ 1

Bls−ð2lþ2Þ if l ≥ 2;
ð20Þ

where the constants Bl depend on initial data and y0. The
numerical verification of this expectation is shown in Fig. 7.

FIG. 4. The evolution of the solution from Fig. 3 is observed at
a sample interior point y0 ¼ π=4. The quasinormal ringdown (for
early times) and the polynomial tail (for late times) are clearly
seen. Because of the slow falloff of initial data at infinity, the tail
decays by one power more slowly than in Eq. (20).

FIG. 5. Evolution of initial data (18) with n ¼ 2 and two values
of l ¼ 1; 2. For large perturbations of harmonic maps, the
ringdown is preceded by nonlinear oscillations that are due to
the nonlinear coupling between the quasinormal modes.

FIG. 6. The ringdown for l ¼ 2 and n ¼ 2 initial data of the

form gðyÞ ¼ F2ðyÞ þ ðtanh yþ 10−5Þ expð− tan2y
4
Þ; hðyÞ ¼ 0. Ini-

tially, the ringdown is governed by the first odd quasinormal
mode, which is rapidly decaying. For later times, the fundamen-
tal, slowly decaying, even quasinormal mode takes over.
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The tails along future null infinity decay more slowly.
Using Eqs. (13) and (19), we obtain

c�1 ðsÞ ∼ A�
l s

−k; k ¼
�
3 if l ¼ 1

lþ 1 if l ≥ 2:
ð21Þ

The constants A−
l and Aþ

l depend on initial data and are, in
general, unequal. It follows from Eqs. (16) and (21) that the
Bondi energy (15) tends to the harmonic map energy at the
rate

E − En ∼
k2

2kþ 1
½ðAþ

1 Þ2 þ ðA−
1 Þ2�s−2k−1:

The mismatch between the decay rates of tails in the
interior (20) and along J þ

R and J þ
R (21) leads to the

development of boundary layers near �π=2, which is
reflected in the growth of sufficiently high transversal

derivatives ∂ðkÞ
y Fðs;�π=2Þ ¼ ð∓ 1Þkk!c�k ðsÞ. To show

this, we insert the series (13) into Eq. (12). This yields
an infinite system of ordinary differential equations for the
coefficients c�k ðsÞ. The first four equations read [since the
equations for c−k and cþk ðsÞ are the same, to avoid clutter in
notation below we drop the superscripts �]

2_c2 ¼ c̈1 þ lðlþ 1Þc1; ð22aÞ

4_c3 ¼ c̈2 þ ½lðlþ 1Þ − 2�c2 þ
1

3
_c1; ð22bÞ

6_c4 ¼ c̈3 þ ½lðlþ 1Þ − 6�c3 þ
4

3
_c2 −

2lðlþ 1Þ
3

c31;

ð22cÞ

8_c5 ¼ c̈4 þ
7

3
_c3 þ

11

90
_c1 þ ½lðlþ 1Þ − 12�c4

þ 2

3
c2 − 2lðlþ 1Þc21c2: ð22dÞ

Note that for l ¼ 1 integration of Eq. (22b) gives a
conserved quantity:

_c2 þ
1

3
c1 − 4c3 ¼ const: ð23Þ

Starting from c1ðsÞ given by Eq. (21) and integrating the
equations (22) one by one, we can determine the leading-
order behavior of subsequent coefficients ckðsÞ. For exam-
ple, for l ¼ 1, we obtain

c2 ¼
an
2
−
A1

2
s−2 þOðs−4Þ; ð24aÞ

c3 ¼
A1

3
s−3 þOðs−5Þ; ð24bÞ

c4 ¼
an
30

þ C4 −
A1

4
s−4 þOðs−6Þ; ð24cÞ

c5 ¼ −
5

4
C4sþOð1Þ: ð24dÞ

In these expressions, there are two kinds of integration
constants. The constant an comes from the leading-order
falloff (8) of the harmonic maps FnðyÞ. This constant does
not lead to the growth of c3ðsÞ because the coefficient
multiplying c2 in Eq. (22b) vanishes. Because of the
conservation law (23) and the assumption that initial data
have the form of compactly supported perturbations of
FnðyÞ, there is no constant of integration in Eq. (24b). The
first nonzero integration constant that depends on initial
data, C4, appears in Eq. (24c). This constant leads to the

FIG. 7. The log-log plot of the evolution of compactly
supported large perturbations of harmonic maps of the form

gðyÞ ¼ FnðyÞ þ 10 expð− tan2y
4
Þ; hðyÞ ¼ 0 for l ¼ 1. For late

times, ∂sFðs; π=4Þ decays as s−6 independently of n, in agree-
ment with Eq. (20).

FIG. 8. The log-log plot of the coefficients cþk ðsÞ for l ¼ 1 and

n ¼ 0 initial data gðyÞ ¼ expð− tan2y
4
Þ tanhðyÞ; hðyÞ ¼ 0. The

dashed lines depict the leading-order behavior (24) with
a0 ¼ 0 and the fitted constants A1 ¼ 1.458, C4 ¼ 0.365.
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polynomial growth in time of the coefficients ck ¼ Oðsk−4Þ
for k ≥ 5. This behavior is depicted in Fig. 8 for topologi-
cally trivial initial data.
Similar analysis can be performed for l ≥ 2; however, in

this case, there is no conservation law that prevents a
nonzero constant of integration appearing in the coefficient
clþ2, and hence the polynomial growth starts already from
the coefficient clþ3 (for compactly supported perturbations
of Fn). It should be emphasized that the polynomial growth
of the coefficients ckðsÞ is a general property of the Bondi-
type expansion of massless fields in any asymptotically flat
spacetime (in particular, Minkowski spacetime) and does
not correspond to any instability [15].
Concluding, the toy model presented in this paper seems

to provide a very simple setting for the studies of asymp-
totic stability of solitons. The key attractive feature of this

model is that Eq. (3) is truly 1þ 1 dimensional (in the sense
that the radial variable r ranges over the whole real line and
there is no singularity at r ¼ 0), yet it inherits strong
dispersive decay from the original 3þ 1-dimensional
problem. It would be interesting to combine the hyper-
boloidal approach used by us here with the rigorous
methods developed in Ref. [2].
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