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We obtain a new exact solution of the 5D Einstein equations in vacuum describing a distorted
Myers-Perry black hole with a single angular momentum. Locally, the solution is interpreted as a black hole
distorted by a stationaryUð1Þ × Uð1Þ symmetric distribution of external matter. Technically, the solution is
constructed by applying a twofold Bäcklund transformation on a 5D distorted Minkowski spacetime as a
seed. The physical quantities of the solution are calculated, and a local Smarr-like relation on the black hole
horizon is derived. It possesses the same form as the Smarr-like relation for the asymptotically flat
Myers-Perry black hole. It is demonstrated that in contrast to the asymptotically flat Myers-Perry black
hole, the ratio of the horizon angular momentum and the mass J2=M3 is unbounded, and can grow
arbitrarily large. We study the properties of the ergoregion and the horizon surface. The external field
does not influence the horizon topology. The horizon geometry however is distorted, and any regular
axisymmetric geometry is possible.
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I. INTRODUCTION

Black holes are one of the most important predictions of
general relativity. They are interesting from a purely
theoretical viewpoint since they give insight into the
properties of the gravitational theory. On the other hand
they represent intriguing astrophysical objects that are
involved in various physical processes, including accretion
disks and jets. At this point there is vast observational
evidence for their existence. Besides supermassive black
holes located in the centers of galaxies there are stellar mass
black holes, which occur as companions in binary systems.
Most of the theoretical investigations concerning black

holes consider them as isolated objects. Various exact
solutions describing such systems exist, and their properties
are comparatively well studied. Such is the Kerr-Newman
family of solutions, which represents the unique stationary
charged black hole in asymptotically flat spacetime within
the classical general relativity in four dimensions. Most
astrophysical situations, however, would suggest that the
black hole is not isolated but is interacting with some
external distribution of matter. In general these systems are
dynamical, and due to their complexity are subject only to
numerical or perturbative treatment. Exact solutions exist
only in idealized cases assuming stationarity, or even
staticity, and a very special form of the external matter.

A plausible way to describe a nonisolated black hole by an
exact solution is to construct a local solution, which is
physically relevant only in a close neighborhood of the
black hole, but still incorporates into itself information
about the external matter fields. A major advantage is that
these solutions are valid for broad classes of external
matter, the only restrictions coming from some regularity
conditions. They are still stationary, since solution gen-
eration techniques rely heavily on spacetime symmetries.
However, they can be considered as a possible approxi-
mation for dynamical black holes relaxing on a time scale
much shorter than the external matter, or for equilibrium
systems of black hole and matter moving in a quasista-
tionary state. Such scenarios include for example a black
hole surrounded by an accretion disk, or a galaxy with a
central black hole.
The idea was originally developed in the work of

Geroch and Hartle [1], where they considered general
static black holes in four dimensions in the presence of
external matter fields and investigated their properties,
thermodynamical behavior and Hawking radiation. They
discussed solutions to the static Einstein equations in
vacuum which contain a regular horizon, which are free
of singularities in the domain of outer communications,
and are asymptotically nonflat if considered as global
solutions. It was suggested that such solutions can be
interesting if regarded as local solutions, which are valid
only in some neighborhood of the black hole horizon.
Provided they can be extended in some intermediate
region in spacetime to some nonvacuum solutions to
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the Einstein equations which are asymptotically flat, a
physically reasonable global solution can be constructed.
Then, the vacuum solution can be interpreted as describing
locally a black hole distorted by certain external matter. To
be able to apply the described argument, we should assume
moreover that the black hole and the external matter are
separated in spacetime, so that there exists a certain vacuum
neighborhood surrounding the black hole, and that the
external matter is confined to a compact region, in order
for the spacetime to be asymptotically flat.
Several local black hole solutions in the presence of

external matter were constructed explicitly, which were
called after the work of Geroch and Hartle distorted black
holes. Static vacuum solutions were obtained in [2–6], and
rotating generalizations describing Kerr black holes in
arbitrary axisymmetric external gravitational fields were
constructed in [7,8] using solitonic techniques. It was
observed that distorted black holes in four dimensions
can possess also a regular horizon with toroidal topology
apart from the spherical one [9,10], in contrast to their
nondistorted asymptotically flat counterparts. However, in
order to be able to make an asymptotically flat nonvacuum
extension of toroidal black hole solutions, there should
exist a region outside the horizon containing external
matter with negative energy density. Thus, the dominant
energy condition is violated, and distorted black holes with
a toroidal horizon are considered to be not of astrophysical
importance, although theoretically interesting.
In analogy with the vacuum solutions distorted charged

black holes were also constructed in the classical general
relativity and dilaton gravity in four dimensions. Static
solutions were obtained in [11,12], while a Kerr-Newman
black hole in general external gravitational field was con-
structed in [13]. They are local solutions to the static
Einstein-Maxwell(-dilaton) equations possessing only elec-
tric charge. Similar to the vacuum solutions, they should
contain a regular horizon, possess no singularities in the
domain of outer communications, and admit an extension to
a solution with external matter fields which is asymptotically
flat. In the same sense, two classes of distorted black hole
solutions to the Einstein-Klein-Gordon equations, minimally
coupled to gravity, were also obtained in [14].
With the development of string theory, brane-world

scenarios, and holographic ideas black hole solutions in
higher spacetime dimensions became relevant. In this
relation distorted black hole solutions to the static axisym-
metric Einstein-Maxwell equations in five dimensions were
obtained, including a static vacuum solution with a horizon
with spherical topology (distorted 5D Schwarzschild-
Tangherlini black hole) [15], and a static electrically charged
solution with spherical horizon topology (distorted 5D
Reissner-Nordström black hole) [16]. In this framework
the restrictions on the asymptotic structure of spacetimewere
also naturally relaxed, and spacetimes with one (or several)
compactified spacelike dimensions were considered. Static

black holes with a distorted horizon in such spacetimes were
investigated [17], however in this case the distortion of the
horizon does not result from the interaction with some
external matter, but follows from the compactification.
The distorted black holes are not only interesting as more

realistic solutions for potential astrophysical application,
but also important from a purely theoretical viewpoint.
They are more general stationary and axisymmetric sol-
utions than the isolated black holes, and can provide deeper
insights into the black hole properties. A series of works
were devoted to investigating how the properties of the
isolated black holes are influenced if they are distorted by
external matter field, and which of them remain unaffected.
It was established that the 4D static distorted black holes
belong to the Petrov type D on the horizon, like their
asymptotically flat counterparts, although in the rest of the
spacetime they are algebraically general [18]. It was also
demonstrated that the distorted Kerr-Newman black hole
satisfies on the horizon the standard Smarr relation for the
nondistorted case [13], and the same geometric inequalities
between the electric charge, horizon area, and angular
momentum [19,20]. These features were also observed in
the case of the 5D distorted Reissner-Nordström black hole
[16]. It was shown that for this solution, the spacetime
singularities are located behind the black hole’s inner
(Cauchy) horizon, provided that the sources of the dis-
tortion satisfy the strong energy condition, and the inner
horizon remains regular if the distortion fields are finite and
smooth at the outer horizon. There exists a certain duality
transformation between the inner and outer horizon surfa-
ces which links surface gravity, electrostatic potential, and
spacetime curvature invariants calculated at the black hole
horizons. The product of the inner and outer horizon areas
depends only on the black hole’s electric charge and the
geometric mean of the areas is the upper (lower) limit for
the inner (outer) horizon area.
Within the framework of isolated horizons it was proven

that a local first law of thermodynamics is valid on the
distorted black holes horizon [21–23], which possesses the
same form as the first law for the corresponding asymp-
totically flat black holes. On the other hand, the distorted
black hole can exhibit a very different horizon geometry
than the isolated black holes. Even in the four-dimensional
static case their horizon surfaces are axisymmetric, rather
than spherically symmetric, and they can be highly elon-
gated, or flattened [24]. Only in the extremal limit, the
horizon of the distorted Reissner-Nordström black hole is
proven to be spherically symmetric [25]. The distorted
black holes can also have different ratios between the mass
and the angular momentum than the asymptotically flat
ones. It is well known that the mass M and the angular
momentum J of the Kerr black hole should satisfy the
inequality ∣J∣=M2 ≤ 1 in order for an event horizon to exist.
However, if the Kerr black hole is situated in an external
matter field this ratio not only can exceed one, but become
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arbitrary large. This effect is also observed in a numerical
solution describing a similar astrophysical situation as the
distorted black holes [26,27]. A stationary and axisymmetric
configuration of a perfect fluid ring rotating around a central
black hole was investigated, and it was found that the
angular momentum/mass ratio of the black hole can reach
∣J∣=M2 > 104, meaning that it is practically unbounded.
The purpose of this work is to construct a five-

dimensional Myers-Perry black hole in an external gravi-
tational field and examine its properties. The solution is
obtained by applying a twofold Bäcklund transformation,
which was developed by Neugebauer in order to solve the
four-dimensional stationary and axisymmetric problem.
The transformation is applied on a 5D vacuum Weyl
solution as a seed, describing a regular region in spacetime
in the presence of a static external distribution of matter. As
a result, a 5D stationary and “axisymmetric”1 vacuum
solution is obtained, which is rotating only with respect to
one of the symmetry axes. It possesses a regular Killing
horizon with spherical topology and is asymptotically
nonflat. The asymptotically flat Myers-Perry black hole
is contained in it as a limiting case. Therefore, the solution
is interpreted in the spirit of Geroch and Hartle as
describing locally a Myers-Perry black hole in the presence
of an external matter field. The solution is also a gener-
alization of the 5D distorted Schwarzschild-Tangherlini
black hole obtained in [15], which is recovered in the static
limit. The physical properties of the distorted Myers-Perry
black hole are investigated. The local mass and angular
momentum on the horizon are calculated, as well as its
temperature and entropy.
The paper is organized as follows. In the next section we

review the 5D asymptotically flat Myers-Perry black hole
and some of its distinctive features, which are relevant
for our work. We also provide a representation of the 5D
Myers-Perry solution with single rotation in prolate
spheroidal coordinates, since we will use them in the
construction of the distorted solution. In Sec. III, we briefly
describe the Bäcklund transformation, which we will apply
as a solution generation technique for obtaining the dis-
torted solution. Section IV is devoted to the actual con-
struction of the distorted Myers-Perry black hole. First, we
construct a suitable seed solution, and then we perform a
twofold Bäcklund transformation on it in prolate spheroidal
coordinates. The regularity of the solution is analyzed, and
appropriate restrictions on the solution parameters are
imposed, so that the distorted Myers-Perry black hole is
completely regular in the domain of outer communications.
In Sec. V, some physical properties of the solution are

investigated. The local mass and angular momentum of
the horizon are computed, as well as the temperature and
entropy, and a Smarr-like relation is derived. It is demon-
strated that the ratio of the horizon angular momentum and
mass is not bounded, and can grow unlimitedly. In Sec. VI,
the horizon geometry and the behavior of the ergoregion
are analyzed.

II. THE MYERS-PERRY SOLUTION

The Myers-Perry solution [28] describes a family of black
holes with spherical horizon topology in a spacetime with
arbitrary dimension D, such that D ≥ 4. It is a stationary
solution to the Einstein equations in vacuum, meaning that it
possesses an asymptotically timelike Killing vector. It is also
axisymmetric, in the sense that there exist N spacelike
Killing fields, where N is the integer part of ðD − 1Þ=2, and
they correspond to N rotational axes. Therefore, the solution
is characterized in general with N independent angular
momenta. The Myers-Perry family is the higher-dimensional
generalization of the Kerr black hole, which is included as
the particular case for D ¼ 4.
In this work, we consider the Myers-Perry black hole in

five-dimensional spacetime, which is represented in Boyer-
Lindquist coordinates by the metric

ds2 ¼ −dt2 þ Σ
�
r2

Δ
dr2 þ dθ2

�
þ ðr2 þ a21Þsin2θdϕ2 þ ðr2 þ a22Þcos2θdψ2

þm
Σ
ðdt − a1sin2θdϕ − a2cos2θdψÞ2; ð1Þ

where

Σ ¼ r2 þ a21cos
2θ þ a22sin

2θ;

Δ ¼ ðr2 þ a21Þðr2 þ a22Þ −mr2: ð2Þ

The timelike Killing field is given by ∂=∂t, while the
spacelike Killing fields are ∂=∂ϕ and ∂=∂ψ . The solution is
characterized by three parameters: m and ai, i ¼ 1; 2. The
parameter m is related to the mass of the solution, while a1
and a2 are rotation parameters related to the angular
momenta with respect to the two rotational axes Jϕ and
Jψ . In general, an event horizon is present, located at the
largest positive root r ¼ rH of the function

ΔðrÞ ¼ ðr2 þ a21Þðr2 þ a22Þ −mr2; ð3Þ

which is given explicitly by

r2H ¼ 1

2

�
m − a21 − a22 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm − a21 − a22Þ2 − 4a21a

2
2

q �
: ð4Þ

The horizon exists only if the solution parameters obey
the condition

1This solution is actually Uð1Þ × Uð1Þ symmetric. A
d-dimensional, axisymmetric spacetime which admits the
SOðd − 2Þ isometry group cannot be considered as an appro-
priate higher-dimensional generalization of the four-dimensional
Weyl form. Instead one has to consider a d-dimensional space-
time which admits the R1 × Uð1Þ × Uð1Þ isometry group.
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a21 þ a22 þ 2ja1a2j ≤ m: ð5Þ

If the function ΔðrÞ possesses another positive root
rI < rH, the solution contains an inner (Cauchy) horizon,
and it can become extremal in the limit when the two
horizon radii coincide. The event and the inner horizon are
Killing horizons with respect to the Killing field

K ¼ ∂
∂t

þ Ωϕ
∂
∂ϕ

þΩψ
∂
∂ψ

; ð6Þ

where the constant coefficients Ωϕ and Ωψ represent the
angular velocities, with which the black hole rotates with
respect to the axes of the Killing vectors ∂

∂ϕ
and ∂

∂ψ . Their
explicit form is given by the expressions

Ωϕ ¼ a1
ðr2H þ a21Þ

; Ωψ ¼ a2
ðr2H þ a22Þ

: ð7Þ

In the case when the rotation parameters a1 and a2
vanish, we obtain the five-dimensional Schwarzschild-
Tangherlini black hole

ds2 ¼ −
�
1 −

m
r2

�
dt2 þ

�
1 −

m
r2

�
−1
dr2

þ r2ðdθ2 þ sin2θdψ2 þ cos2θdϕ2Þ: ð8Þ

Physically, the five-dimensional Myers-Perry solution is
characterized by its Arnowitt-Deser-Misner (ADM) mass
M and the angular momenta with respect to the two
rotational axes Jϕ and Jψ . They can be determined either
by examining the asymptotic behavior of the metric
functions gtt, gtϕ, and gtψ , or equivalently by calculating
the corresponding Komar integrals [29]. Thus, the follow-
ing quantities are obtained2:

M ¼ 3π

8
m; Jϕ ¼ π

4
ma1; Jψ ¼ π

4
ma2: ð9Þ

The condition restricting the existence of the horizon (5)
can be expressed in terms of the physical quantities as

M3 ≥
27π

32
ðJ2ϕ þ J2ψ þ 2jJϕJψ jÞ: ð10Þ

Another form of the Myers-Perry black hole can be
obtained by introducing prolate spheroidal coordinates x
and y on the two-dimensional surfaces which are orthogo-
nal to the Killing fields. They are particularly convenient
for representing the solution in the case where one of the
angular momenta, e.g. Jϕ, vanishes. Then, the associated
rotational parameter a1 vanishes as well, and the prolate

spheroidal coordinates are related to the Boyer-Lindquist
coordinates r and θ by the expressions

x ¼ r2

2σ
− 1; y ¼ cos 2θ: ð11Þ

The parameter σ is a real number, connected to the mass
parameterm and the nonzero rotational parameter a2 of the
solution in Boyer-Lindquist coordinates as 4σ ¼ m − a22.
The Myers-Perry black hole with a single rotation acquires
the form [30]

ds2 ¼ −
x − 1 − α2ð1 − yÞ
xþ 1þ α2ð1þ yÞ

×

�
dtþ 2σ1=2α

ð1þ α2Þð1 − yÞ
x − 1 − α2ð1 − yÞ dψ

�
2

þ σ
ðx − 1Þð1 − yÞðxþ 1þ α2ð1þ yÞÞ

x − 1 − α2ð1 − yÞ dψ2

þ σðxþ 1Þð1þ yÞdϕ2

þ σ

2
ðxþ 1þ α2ð1þ yÞÞ

�
dx2

x2 − 1
þ dy2

1 − y2

�
: ð12Þ

The prolate spheroidal coordinates x and y take the ranges
x ≥ 1 and −1 ≤ y ≤ 1. The black hole horizon is located
at x ¼ 1, while the axes of the spacelike Killing fields ∂

∂ϕ
and ∂

∂ψ are located at y ¼ −1 and y ¼ 1 respectively.
The physical infinity corresponds to the limit x → ∞.
The solution is characterized by the parameters σ and α,
as the former has the meaning of a mass parameter, while
the later is interpreted as a rotational parameter. It is related
to the parameter set of the solution ðm; a2Þ in Boyer-
Lindquist coordinates as α2 ¼ a22=ðm − a22Þ. The mass M,
the angular momentum J, and the angular velocity Ω of the
solution are given in terms of the parameters fσ; αg as

M ¼ 3π

2
σð1þ α2Þ;

J ¼ 2πσ
3
2αð1þ α2Þ;

Ω ¼ α

2
ffiffiffi
σ

p ð1þ α2Þ : ð13Þ

In the limit when the rotation parameter α vanishes, the
solution reduces to the five-dimensional Schwarzschild-
Tangherlini black hole in the prolate spheroidal coordinates

ds2 ¼ −
x − 1

xþ 1
dt2 þ σð1 − yÞðxþ 1Þdψ2

þ σðxþ 1Þð1þ yÞdϕ2

þ σ

2
ðxþ 1Þ

�
dx2

x2 − 1
þ dy2

1 − y2

�
: ð14Þ2We use geometrical units, i.e. the gravitational constant is set

to G ¼ 1.
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III. GENERATION OF STATIONARY
AXISYMMETRIC SOLUTIONS BY

MEANS OF BÄCKLUND
TRANSFORMATIONS

The construction of analytic solutions to the 5D
stationary and axisymmetric Einstein equations in vacuum
is comparatively well studied. It is proven that the problem
is completely integrable [31,32], an associated linear
problem is constructed, and a solution generation technique
by means of the inverse scattering method is developed
[33–35]. In the particular case when the solution is rotating
only with respect to a single axis, i.e. one of the spacelike
Killing fields is hypersurface orthogonal, a Bäcklund
transformation is also obtained which can be applied to
generate a new solution. In this section we will briefly
describe the method of construction of solutions by using
the Bäcklund transformation found by Neugebauer [36–38].
The Bäcklund transformations relate different solutions of a
partial differential equation in an algebraic way. Thus,
applied on an already known solution, called a seed, they
lead to a new solution with minimal analytic operations.
Neugebauer’s transformation was originally derived in order
to solve the four-dimensional stationary and axisymmetric
problem. However, it can be also applied to the five-
dimensional stationary and axisymmetric Einstein equations
in vacuum, when one of the spacelike Killing fields is
hypersurface orthogonal [30,39–44], since the correspond-
ing field equations closely resemble the four-dimensional
case.
The general stationary and axisymmetric solution to the

five-dimensional Einstein equations, which rotates only in a
single plane, can be represented by the metric

ds2 ¼ −e2χ−uðdt − ωdψÞ2 þ e−2χ−uρ2dψ2

þ e−2χ−ue2Γðdρ2 þ dz2Þ þ e2udϕ2: ð15Þ

The asymptotically timelike Killing field is represented
as ∂=∂t, and the spacelike Killing fields are given by
∂=∂ϕ and ∂=∂ψ . The two-dimensional surfaces orthogo-
nal to the Killing fields are parametrized by the Weyl
coordinates ρ and z, and all the metric functions depend
only on them. The Einstein equations in vacuum
determining such a solution consist of a nonlinear
system of equations for the metric function χ and the
twist potential f defined as

∂ρf ¼ −
e4χ

ρ
∂zω; ∂zf ¼ e4χ

ρ
∂ρω; ð16Þ

a Laplace equation for the metric function u, and a
decoupled linear system for the remaining metric func-
tion Γ. It is always integrable for a particular solution
ðχ; u; fÞ. In analogy to the four-dimensional case we can
introduce an Ernst potential E defined as

E ¼ e2χ þ if; ð17Þ

and describe the problem by means of E and its complex
conjugate Ē instead of the couple of functions ðχ; fÞ.
The field equations acquire the form

ðE þ ĒÞð∂2
ρE þ ρ−1∂ρE þ ∂2

zEÞ
¼ 2ð∂ρE∂ρE þ ∂zE∂zEÞ;
∂2
ρuþ ρ−1∂ρuþ ∂2

zu ¼ 0; ð18Þ

ρ−1∂ρΓ ¼ 1

ðE þ ĒÞ2 ½∂ρE∂ρĒ − ∂zE∂zĒ�

þ 3

4
½ð∂ρuÞ2 − ð∂zuÞ2�;

ρ−1∂zΓ ¼ 2

ðE þ ĒÞ2 ∂ρE∂zĒ þ 3

2
∂ρu∂zu:

Similar to the four-dimensional case we obtain a nonlinear
equation for the Ernst potential, called the Ernst equation,
and it represents the main difficulty for solving the system.
The solutions to the Laplace equation are well studied, and
provided the Ernst potential and the metric function u are
known, the metric function Γ can be obtained in a straight-
forward (although technically cumbersome) way.
Solutions to the Ernst equation can be constructed by

using the Bäcklund transformation developed by
Neugebauer. The Bäcklund transformation relates a new
solution for the Ernst potential E to an already known
solution E0, called a seed, in an algebraic way, after
performing minimal analytic operations. In some cases
the solution which we try to obtain is related to a particular
seed solution by a sequence of N subsequent Bäcklund
transformations, referred to as an N-fold Bäcklund trans-
formation. The Bäcklund transformation is determined by a
couple of functions α and λ which are solutions to the
following system of Riccati equations [37]:

dλ¼ ρ−1ðλ− 1Þ½λρ;ζdζþ ρ;ζ̄dζ̄�;
dα¼ ðE0 þ Ē0Þ−1½ðα− λ1=2ÞĒ0;ζ þ ðα2λ1=2 − αÞE0;ζ�dζ

þ ðE0 þ Ē0Þ−1½ðα− λ−1=2ÞĒ0;ζ̄ þ ðα2λ−1=2 − αÞE0;ζ̄�dζ̄;
ð19Þ

where E0 is the Ernst potential for the seed solution,
ζ ¼ ρþ iz, the bar denotes complex conjugation, and
ð…Þ denotes differentiation. The equation for λ is solved
by the function

λ ¼ k − iζ̄
kþ iζ

; ð20Þ

where k is a real integration constant. The equation for α
depends on the explicit form of the Ernst potential for the
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seed solution E0 and its complex conjugate Ē0. An
important class of seed solutions, which is convenient
for the applications, is the Weyl class of static axisymmetic
solutions to the 5D Einstein equations in vacuum [45].
They are described by the line element (15) in the particular
case when we require that the twist potential f vanishes,
and the Ernst potential corresponding to them is real
E0 ¼ e2χ0 . The second Riccati equation for such a seed
is solved by the function

α ¼ μþ ie2Φ

μ − ie2Φ
; ð21Þ

where μ is a real integration constant, and Φ obeys the
equation

dΦ ¼ 1

2
λ1=2∂ζðln E0Þdζ þ

1

2
λ−1=2∂ ζ̄ðln E0Þdζ̄: ð22Þ

A single Bäcklund transformation performed on a seed
solution E0 requires the integration of (19), which intro-
duces a couple of integration constants ðk1; μ1Þ. Performing
N subsequent Bäcklund transformations on a seed solution
E0 includes solving the same Riccati equations, but each
iteration introduces a new pair of integration constants

ðkn; μnÞ, n ¼ 1…N. The Ernst potential obtained by the
application of 2N Bäcklund transformations on a seed
potential E0 is constructed in the form [37,46]

E ¼ E0

det
�
αpRkp−αqRkq

kp−kq
− 1

�
det

�
αpRkp−αqRkq

kp−kq
þ 1

� ; ð23Þ

where p ¼ 1; 3;…; N − 1, q ¼ 2; 4;…; N, αn is the sol-
ution to (21) corresponding to the integration constants
ðkn; μnÞ, and the functions Rkn are given by

Rkn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − knÞ2

q
: ð24Þ

Having obtained the Ernst potential for the new solution,
the metric functions χ and ω can be extracted from it by
considering its definition (17), and integrating the relations
for the twist potential (16). In the case of a twofold
Bäcklund transformation their explicit form is found to be

e2χ ¼ e2χ0
W1

W2

; ω ¼ e−2χ0
ω̂

W1

þ Cω; ð25Þ

introducing the following notations:

W1 ¼ ½ðRk1 þ Rk2Þ2 − ðΔkÞ2�ð1þ abÞ2 þ ½ðRk1 − Rk2Þ2 − ðΔkÞ2�ða − bÞ2;
W2 ¼ ½ðRk1 þ Rk2 þ ΔkÞ þ ðRk1 þ Rk2 − ΔkÞab�2 þ ½ðRk1 − Rk2 − ΔkÞa − ðRk1 − Rk2 þ ΔkÞb�2; ð26Þ

ω̂ ¼ ½ðRk1 þ Rk2Þ2 − ðΔkÞ2�ð1þ abÞ½ðRk1 − Rk2 þ ΔkÞbþ ðRk1 − Rk2 − ΔkÞa�
− ½ðRk1 − Rk2Þ2 − ðΔkÞ2�ðb − aÞ½ðRk1 þ Rk2 þ ΔkÞ − ðRk1 þ Rk2 − ΔkÞab�;

where Δk ¼ k2 − k1 and Cω is a constant. The functions a
and b are related to the functions Φ1 and Φ2, which
represent the solutions of (22) with integration constants
k1 and k2, respectively

a ¼ μ−11 e2Φ1 ; b ¼ −μ2e−2Φ2 : ð27Þ
In this way if we consider a 5D Weyl solution as a seed,

which is described by the metric

ds2 ¼ −e2χ0−u0dt2 þ e−2χ0−u0ρ2dψ2

þ e−2χ0−u0e2Γ0ðdρ2 þ dz2Þ þ e2u0dϕ2;

we can construct a 5D stationary axisymmetric solution
with single rotation in the form

ds2 ¼ −
W1

W2

e2χ0−u0ðdt − ωdψÞ2 þW2

W1

e−2χ0−u0ρ2dψ2

þ e2u0dϕ2 þW2

W1

e2Γe−2χ0−u0ðdρ2 þ dz2Þ; ð28Þ

by applying a twofold Bäcklund transformation on it. The
functions W1, W2, and ω are given by the expressions (25)

and (26), and the only analytical operation involved is solving
Eq. (22) for the particular Ernst potential of the seed solution.
The metric function u satisfies a Laplace equation in Weyl
coordinates, as well as the corresponding metric function for
the seed solution u0. Therefore, it is convenient to preserve
the metric function for the seed solution, and choose such a
seed that u0 coincides with the metric function u for the
solution we want to construct. The remaining metric function
Γ can be expressed in the form [47,48]

e2Γ ¼ C1

W1e2γ

ðRk1 þ Rk2Þ2 − ðΔkÞ2 ; ð29Þ

where C1 is an integration constant and γ is a solution to the
linear system

ρ−1∂ργ ¼ ð∂ρ ~χ0Þ2 − ð∂z ~χ0Þ2 þ
3

4
½ð∂ρu0Þ2 − ð∂zu0Þ2�;

ρ−1∂zγ ¼ 2∂ρ ~χ0∂z ~χ0 þ
3

2
∂ρu0∂zu0: ð30Þ

The function ~χ0, which is involved in it, is related to the
metric function of the seed solution χ0 as
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~χ0 ¼ χ0 þ
1

2
ln
Rk1 þ Rk2 − Δk
Rk1 þ Rk2 þ Δk

: ð31Þ

IV. CONSTRUCTION OF 5D DISTORTED
MYERS-PERRY BLACK HOLE

In this section, we will construct a five-dimensional
distorted Myers-Perry black hole rotating only in a single
plane by applying a twofold Bäcklund transformation. The
solution is an asymptotically nonflat generalization of the
5D Myers-Perry black hole presented in Sec. II, and can be
interpreted as a local solution describing a black hole in the
presence of an external distribution of matter fields. The
twofold Bäcklund transformation involves the integration
of the Riccati equation (22), and is parametrized by two
couples of integration constants (k1, k2) and (μ1, μ2),
introduced by the double integration of Eq. (19). The
integration constants k1 and k2 are actually not indepen-
dent. The Weyl coordinate z is defined only up to a
translation, therefore we can always set k1 ¼ σ and k2 ¼
−σ for some real positive parameter σ. This identification
corresponds to a shift in the z coordinate z → zþ z0, where
z0 ¼ 1

2
ðk1 þ k2Þ. Furthermore, we expect that the distorted

Myers-Perry solution will be represented most conven-
iently in prolate spheroidal coordinates, in analogy with the
distorted Kerr black hole [8]. The prolate spheroidal
coordinates x and y are closely related to the Weyl
coordinates ρ and z. They are defined by the transformation

ρ ¼ κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − 1Þð1 − y2Þ

q
; z ¼ κxy; ð32Þ

where κ is a real constant. As we already mentioned, the
prolate spheroidal coordinates take the ranges x ≥ 1 and
−1 ≤ y ≤ 1, and the physical infinity corresponds to the
limit x → ∞. We can always set κ equal to the parameter of
the Bäcklund transformation σ, which will simplify the
form of the constructed solution. In order to obtain a
solution in prolate spheroidal coordinates by means of the
twofold Bäcklund transformation we described, we should
transform the metric functions W1, W2, and ω in terms of

x and y, and represent the differential equations (22) and
(30), which we need to solve, in the same coordinates.
Consequently, the general solution (28) acquires the form

ds2 ¼ −
W1

W2

e2χ0−u0ðdt − ωdψÞ2 þW2

W1

e−2χ0−u0ρ2dψ2

þ e2u0dϕ2 þ C1

W2e2γ

x2 − 1

× e−2χ0−u0ðx2 − y2Þ
�

dx2

x2 − 1
þ dy2

1 − y2

�
;

ω ¼ 2σe−2χ0
ω̂

W1

þ Cω; ð33Þ

where the zero indices refer to the metric functions of the
seed solution, and the metric functions W1, W2, and ω̂ are
determined by the expressions

W1 ¼ ðx2 − 1Þð1þ abÞ2 − ð1 − y2Þðb − aÞ2;
W2 ¼ ½ðxþ 1Þ þ ðx − 1Þab�2 þ ½ð1þ yÞaþ ð1 − yÞb�2;
ω̂ ¼ ðx2 − 1Þð1þ abÞ½b − a − yðaþ bÞ�

þ ð1 − y2Þðb − aÞ½1þ abþ xð1 − abÞ�; ð34Þ

with C1 and Cω being real constants. Instead of represent-
ing the differential equation for Φ (22) in term of x and y, it
is more convenient to obtain directly the equations for the
related metric functions a and b in prolate spheroidal
coordinates. They possess the form [49]

ðx − yÞ∂xa ¼ 2a½ðxy − 1Þ∂xχ0 þ ð1 − y2Þ∂yχ0�;
ðx − yÞ∂ya ¼ 2a½−ðx2 − 1Þ∂xχ0 þ ðxy − 1Þ∂yχ0�;
ðxþ yÞ∂xb ¼ −2b½ðxyþ 1Þ∂xχ0 þ ð1 − y2Þ∂yχ0�;
ðxþ yÞ∂yb ¼ −2b½−ðx2 − 1Þ∂xχ0 þ ðxyþ 1Þ∂yχ0�; ð35Þ

and depend as expected on the metric function of the seed
solution χ0. The equations for the remaining metric
function γ are transformed into the following system:

∂xγ ¼
1 − y2

ðx2 − y2Þ ½xðx
2 − 1Þð∂xχ

0Þ2 − xð1 − y2Þð∂yχ
0Þ2 − 2yðx2 − 1Þ∂xχ

0∂yχ
0�

þ 3ð1 − y2Þ
4ðx2 − y2Þ ½xðx

2 − 1Þð∂xu0Þ2 − xð1 − y2Þð∂yu0Þ2 − 2yðx2 − 1Þ∂xu0∂yu0�;

∂yγ ¼
x2 − 1

ðx2 − y2Þ ½yðx
2 − 1Þð∂xχ

0Þ2 − yð1 − y2Þð∂yχ
0Þ2 þ 2xð1 − y2Þ∂xχ

0∂yχ
0�

þ 3ðx2 − 1Þ
4ðx2 − y2Þ ½yðx

2 − 1Þð∂xu0Þ2 − yð1 − y2Þð∂yu0Þ2 þ 2xð1 − y2Þ∂xu0∂yu0�; ð36Þ

where χ0 ¼ 1
2
lnðx−1xþ1

Þ þ χ0.

MYERS-PERRY BLACK HOLE IN AN EXTERNAL … PHYSICAL REVIEW D 91, 064068 (2015)

064068-7



A. Seed solution

A nontrivial step in the construction of solutions by
means of Bäcklund transformations is choosing the seed
solution. As we mentioned, a convenient class of seed
solutions is the static Weyl class, since they are compara-
tively simple and minimize the technical difficulties. A
general 5D Weyl solution in prolate spheroidal coordinates
possesses the form

ds2 ¼ −e2χ0−u0dt2 þ e−2χ0−u0ρ2dψ2 þ e2u0dϕ2

þe2γe−2χ0−u0ðx2 − y2Þ
�

dx2

x2 − 1
þ dy2

1 − y2

�
; ð37Þ

where all the metric functions depend only on x and y, and
the metric functions χ0 and u0 obey a Laplace equation in
3D flat space. The most general solution to the Laplace
equation, which is regular on the symmetry axes, can be
presented in the form [50,51]

χ0 ¼
X∞
n¼0

cn
Rnþ1

Pn

�
xy
R

�
þ
X∞
n¼0

bnRnPn

�
xy
R

�
; ð38Þ

and equivalently for u0. The parameters cn and bn are real
constants, n is a natural number, Pn are the Legendre
polynomials, and the function R is defined by

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 − 1

q
: ð39Þ

The first part of the sum in the solution of the Laplace
equation corresponds to an asymptotically flat solution of
the static Einstein equations in vacuum. It describes a
deformed mass source, and the parameters cn are related
to the mass multipole moments of the solution. The
second part of the sum corresponds to an asymptotically
nonflat solution, which is interpreted as a local solution in
an external gravitational field, and the constants bn are
related to the characteristics of the external field. The
twofold Bäcklund transformation preserves the asymptotic
structure of the seed solution. Therefore, if we want to
obtain a solution describing a black hole in an external
gravitational field, we should choose a seed with nonzero
constants bn. A suitable seed solution is a regular Weyl
solution describing a static external distribution of matter,
which contains no horizons, and in the limit when the
external gravitational fields vanish reduces to the 5D
Minkowski spacetime. The 5D Minkowski spacetime
can be represented in prolate spheroidal coordinates by
the metric

ds2 ¼ −dt2 þ e−2W0dψ2 þ e−2U0dϕ2

þ σ

2
ðx − yÞ

�
dx2

x2 − 1
þ dy2

1 − y2

�
;

e−2W0 ¼ σðx − 1Þð1 − yÞ; e−2U0 ¼ σðxþ 1Þð1þ yÞ:
ð40Þ

The functions U0 and W0 are solutions to the Laplace
equation in 3D flat space, and in Weyl coordinates their
sum satisfies U0 þW0 ¼ ln ρ, as required for a 5D Weyl
solution [45]. If we replace the functions U0 and W0 by
asymptotically nonflat solutions of the Laplace equation,
and calculate the remaining metric function γ, we can
obtain an asymptotically nonflat Weyl solution which
contains no horizons.3 It can be interpreted as describing
locally a vacuum region in spacetime which is influenced
by the presence of some static and axisymmetric distribu-
tion of matter situated in its exterior. Therefore, it can be
called distorted Minkowski spacetime in analogy with the
distorted black hole solution. For general static and
axisymmetric external gravitational fields the metric of
the distorted Minkowski spacetime acquires the form

ds2 ¼ −e2ðbUþbWÞdt2 þ e−2Wdψ2 þ e−2Udϕ2

þ σ

2
ðx − yÞe2V

�
dx2

x2 − 1
þ dy2

1 − y2

�
; ð41Þ

where the functions U ¼ U0 þ bU and W ¼ W0 þ bW
include a contribution from the nondistorted Minkowski
metric (40) denoted with zero index, and terms bU and bW
characterizing the external sources. The most general form
of bU and bW is given by the expressions

Û¼
X∞
n¼0

anRnPn

�
xy
R

�
; Ŵ¼

X∞
n¼0

bnRnPn

�
xy
R

�
; ð42Þ

according to the solution of the Laplace equation (38). The
metric function V is obtained in the form

V ¼
X∞
n;k¼1

nk
nþ k

ðanak þ anbk þ bnbkÞ

× RnþkðPnPk − Pn−1Pk−1Þ

þ 1

2

X∞
n¼1

ðan − bnÞ
Xn−1
k¼0

ð−1Þn−kþ1ðxþ yÞRkPk

�
xy
R

�

−
1

2

X∞
n¼0

ðan þ bnÞRnPn

�
xy
R

�
: ð43Þ

3The metric function γ is a solution to (36) with χ0 ¼ χ0, where
χ0 and u0 are the metric functions appearing in the line element
(37).
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For general values of the parameters an and bn character-
izing the external gravitational field the solution is not
completely regular, since it contains conical singularities.
They can be removed by requiring that the solution is
Lorenzian (elementary flat) in the vicinity of the axes of the
spacelike Killing fields ∂=∂ϕ and ∂=∂ψ located at y ¼ −1
and y ¼ 1, respectively. The condition ensuring elementary
flatness is given by the relation [46,52]

1

4X
gμν∂μX∂νX ⟶ 1; ð44Þ

which should be satisfied by the norm X of each of the
spacelike Killing fields in the neighborhood of their axes. It
leads to the following constraints:

exp
�
−
X∞
n¼0

ð−1Þnðan − bnÞ
�
¼ 1; y ¼ 1;

exp

�X∞
n¼0

ð−1Þnðan − bnÞ
�
¼ 1; y ¼ −1: ð45Þ

Therefore, the distorted Minkowski solution is free
of conical singularities only if the parameters character-
izing the external gravitational field satisfy the relationP∞

n¼0ð−1Þnðan − bnÞ ¼ 0.

B. Distorted 5D Myers-Perry black hole

We will apply the twofold Bäcklund transformation on
the distorted Minskowski spacetime (41) as a background.
The transformation can be performed with respect to either
of the spacelike Killing fields, leading to a solution rotating
around its axis. Since we aim to construct a Myers-Perry
black hole, which is axially symmetric, both approaches
will result in equivalent solutions. Here we choose to
perform the transformation with respect to the Killing
field ∂=∂ψ . Then, comparing the metric of the distorted
Minkowski spacetime with the general expression (37) we
conclude that the functions χ0 and u0 are given by

2χ0 ¼ −U0 þ 2 bW þ bU; u0 ¼ −U0 − Û: ð46Þ

Taking advantage of these expressions we solve equa-
tions (35) and obtain the functions a and b in a similar way
as in [8]

a ¼ α

ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

yþ 1

s
exp

�X∞
n¼1

ðan þ 2bnÞ
Xn−1
k¼0

ðx − yÞRkPk

�
xy
R

��
;

b ¼ β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxþ 1Þðyþ 1Þp
xþ y

exp

�X∞
n¼1

ðan þ 2bnÞðxþ yÞ

×
Xn−1
k¼0

ð−1Þn−kRkPk

�
xy
R

��
; ð47Þ

where α and β are real constants.4 The equations for the
metric function γ can be also solved in resemblance to [8],
leading to the following result:

γ ¼ γ0 þ γ̂;

γ0 ¼
1

2
lnðx2 − 1Þ − 1

2
lnðx2 − y2Þ þ 1

2
lnðyþ 1Þ;

γ̂ ¼
X∞
n;k¼1

nk
nþ k

ðanak þ anbk þ bnbkÞ

× RnþkðPnPk − Pn−1Pk−1Þ

þ 1

2

X∞
n¼1

ð2an þ bnÞ
Xn−1
k¼0

ð−1Þn−kþ1ðxþ yÞRkPk

�
xy
R

�

−
1

2

X∞
n¼1

ðan þ 2bnÞ
Xn−1
k¼0

ðx − yÞRkPk

�
xy
R

�

−
1

2

X∞
n¼0

ðan − bnÞRnPn

�
xy
R

�
; ð48Þ

where all the Legendre polynomials have the same
argument xy=R.
These functions determine completely a new stationary

and axisymmetric solution to the 5D Einstein equations in
vacuum with metric given by (1). The constructed solution
possesses an event horizon with S3 topology located at
x ¼ 1, −1 ≤ y ≤ 1, which rotates with respect to the axis of
the Killing field ∂=∂ψ . The axes of the spacelike Killing
fields ∂=∂ϕ and ∂=∂ψ correspond to y ¼ −1 and y ¼ 1,
respectively. The solution is not regular outside the black
hole horizon for general values of the transformation
parameters, since the metric function W1 gets singular at
x ¼ 1, y ¼ −1. This pathological feature can be avoided if
we set the parameter β equal to zero. Then, the function b
vanishes and the explicit form of the solution simplifies
considerably. It can be presented as

ds2 ¼ −
x − 1 − â2ð1 − yÞ
xþ 1þ â2ð1þ yÞ e

2ðbUþbWÞðdt − ωdψÞ2

þ xþ 1þ â2ð1þ yÞ
x − 1 − â2ð1 − yÞ e

−2Wdψ2 þ e−2Udϕ2

þ C1½xþ 1þ â2ð1þ yÞ�e2ðγ̂−bWÞ
�

dx2

x2 − 1
þ dy2

1 − y2

�
;

ð49Þ

ω ¼ −2
ffiffiffi
σ

p ðx − yÞâe−2bW−bU
ðx − 1Þ − ð1 − yÞâ2 þ Cω; ð50Þ

4The parameters α and β are the equivalent of the parameters of
the Bäcklund transformation μ1 and μ2, which we introduced
before. They are related as α ¼ μ−11 and β ¼ −μ2.
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â ¼ α exp

�X∞
n¼1

ðan þ 2bnÞ
Xn−1
k¼0

ðx − yÞRkPk

�
xy
R

��
; ð51Þ

where the metric functions U andW correspond to the seed
solution (41), and γ̂ is given by the expression (48). The
solution contains two integration constants C1 and Cω,
which should be chosen appropriately in order to avoid
pathological behavior. The value of Cω should be deter-
mined by the requirement that the solution is regular on the
axis of rotation, i.e. it should be satisfied that ω ¼ 0 on the
axis y ¼ 1. Examining the behavior of the function (50) at
y ¼ 1 we obtain

Cω ¼ 2
ffiffiffi
σ

p
α exp

�
−
X∞
n¼0

ðan þ 2bnÞ
�
: ð52Þ

The value of the constant C1 is connected with the
requirement that the solution is Lorentzian (elementary flat)
in the vicinity of the axes of the spacelike Killing fields
located at y ¼ −1 and y ¼ 1. Otherwise, the solution will
contain conical singularities. The absence of conical
singularities is ensured if the norm X of each of the
spacelike Killing fields ∂=∂ϕ and ∂=∂ψ satisfies the
condition [46,52]

1

4X
gμν∂μX∂νX ⟶ 1; ð53Þ

in the vicinity of the corresponding rotational axis. It is
equivalent to requiring that the orbits of the Killing fields
are 2π periodic in the neighborhood of their axes.
Evaluating (53) at y ¼ 1 leads to the constraint

2C1

σ
exp

�X∞
n¼0

ðb2n − a2nÞ þ 3
X∞
n¼0

ða2nþ1 þ b2nþ1Þ
�
¼ 1;

ð54Þ

while at y ¼ −1 we obtain the relation

2C1

σ
exp

�
−
X∞
n¼0

ðb2n − a2nÞ − 3
X∞
n¼0

ða2nþ1 þ b2nþ1Þ
�
¼ 1:

ð55Þ

Both conditions are compatible only if the parameters an
and bn characterizing the external gravitational field satisfy

X∞
n¼0

ðb2n − a2nÞ þ 3
X∞
n¼0

ða2nþ1 þ b2nþ1Þ ¼ 0: ð56Þ

Then, the constant C1 is determined to be C1 ¼ σ
2
.

Assigning the constants Cω and C1 the values we
obtained, leads to a black hole solution, which contains

a nonsingular horizon, and is completely regular in the
domain of outer communications. If we take the limit when
an ¼ 0, bn ¼ 0 for every n the metric functions describing
the external sources vanish. Then, the solution reduces to
the asymptotically flat Myers-Perry black hole with single
rotation, which is represented in prolate spheroidal coor-
dinates by (12). Another interesting limit is if we set the
rotation parameter α ¼ 0. In this case the solution becomes
static, and we recover the 5D distorted Schwarzschild-
Tangherlini black hole, which is obtained in [15]. The
coordinates ðη; θÞ, in which the solution is represented, are
related to the prolate spheroidal coordinates ðx; yÞ as x ¼ η,
y ¼ cos θ, and the solution parameter r0 is connected with
σ as σ ¼ r20=4. Furthermore, the parameters an and bn
characterizing the external gravitational field are inter-
changed in the two solutions an ⟷ bn.
The 5D stationary and axisymmetric solutions are

conveniently described by their interval structure [53]. It
specifies the location of the horizons and the axes of the
spacelike Killing fields in the factor space of the spacetime
with respect to the isometry group. If we introduce theWeyl
coordinates ρ and z on the two-dimensional surfaces
orthogonal to the Killing fields, the factor space is
represented by the upper ðρ; zÞ half-plane, and its boundary
coincides with the z axis. The fixed point sets of the
spacelike Killing fields and the horizons correspond to
intervals on the z axis. In addition, a direction vector
consisting of integer numbers is associated with each
interval. It specifies the coefficients in the linear combi-
nation of Killing fields which vanishes on it.
The interval structure of the 5D distorted Minkowski

spacetime and the distorted Myers-Perry black hole are
presented in Fig. 1. The distorted solutions are interpreted
as local solutions describing a certain vacuum neighbor-
hood which is influenced by external matter sources.
Therefore, the interval structure corresponding to them
should also be interpreted as characterizing only the
region where the distorted solution is valid, and not the
whole spacetime. The direction vectors corresponding to
each interval are specified above it, as the directions
are given with respect to a basis of Killing vectors
f∂=∂t; ∂=∂ψ ; ∂=∂ϕg.
In Fig. 1 it is demonstrated that the axes of the spacelike

Killing fields ∂=∂ϕ and ∂=∂ψ for the distorted Myers-
Perry black hole are located in Weyl coordinates at z ≤ −σ,
and z ≥ σ, respectively. The interval −σ ≤ z ≤ σ corre-
sponds to a Killing horizon for the Killing field
V ¼ ∂=∂tþ Ω∂=∂ψ , i.e. V becomes null on the 3D
hypersurface at constant t located at −σ ≤ z ≤ σ, ρ ¼ 0.
The constant coefficient in the linear combination of
Killing fields Ω represents the angular velocity of the
horizon rotating with respect to the axis of the Killing field
∂=∂ψ . It is equal to the value of the metric function ω−1 on
the hypersurface −σ ≤ z ≤ σ, ρ ¼ 0, or equivalently at
x ¼ 1, −1 ≤ y ≤ 1 in prolate spheroidal coordinates.
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Taking into account the relations (50) and (52), the angular
velocity is calculated to be

Ω ¼ α

2
ffiffiffi
σ

p ð1þ α2Þ exp
�X∞
n¼0

ðan þ 2bnÞ
�
: ð57Þ

In the limit when the parameters an and bn vanish, the
expression reduces to the angular velocity of the asymp-
totically flat Myers-Perry black hole (13). Therefore, the
exponential factor can be interpreted as describing the
influence of the external matter fields on the horizon
rotation. The interval structure contains also information
about the topology of the horizon hypersurface. If we
consider the directions of the intervals adjacent to the
horizon interval, we can determine whether the horizon is
topologically a sphere, a ring (S1 × S2), or a general lens
space Lðp; qÞ [53]. In our case the horizon possesses S3

topology, as the nondistorted Myers-Perry black hole. In
fact the interval structure for the distorted Myers-Perry
black hole in Fig. 1 is equivalent in the vicinity of the
horizon to the interval structure of the nondistorted Myers-
Perry solution (12), differing only in the value of the
angular velocity Ω. Consequently, the horizon location also
coincides with that in the isolated Myers-Perry case.

V. MASS, ANGULAR MOMENTUM,
AND SMARR-LIKE RELATIONS

The distorted Myers-Perry solution is stationary and
axisymmetric, therefore we can define locally mass and
angular momentum of a particular region of the spacetime
by Komar integrals [29]. We denote by ξ the 1-form dual to
the Killing field ∂=∂t, and by ζ the 1-form dual to the
Killing field ∂=∂ψ . Then, the Komar massMH and angular
momentum JH associated with the black hole horizon are
defined as

MH ¼ −
3

32π

Z
H
⋆dξ;

JH ¼ 1

16π

Z
H
⋆dζ; ð58Þ

where the integration is performed over the horizon cross
section. Calculating the Komar integrals we obtain the
expressions

MH ¼ 3π

2
σð1þ α2Þ; ð59Þ

JH ¼ 2πσ
3
2αð1þ α2Þ exp

�
−
X∞
n¼0

ðan þ 2bnÞ
�
; ð60Þ

which can be interpreted as the intrinsic mass and the
angular momentum of the black hole. Comparing with the
corresponding expressions for the asymptotically flat
Myers-Perry black hole (13), we see that the mass pos-
sesses the same form, while the angular momentum differs
by the exponential factor. We should also note that the mass
expression in the asymptotically flat case refers both to the
Komar mass at the horizon, and the ADM mass of the
spacetime, since in that case they coincide. The mass of
the distorted black hole (59) is only the local Komar mass
on the horizon. Since the solution is not asymptotically flat,
and an appropriate extension is required in order to
construct an asymptotically flat solution, the ADM mass
is not defined. Assuming that the solution is extended
outside the horizon to some asymptotically flat solution
containing matter fields, the ADM mass, which will
correspond to it, will contain also terms characterizing
the matter fields. The ADM mass is equivalent to the
Komar integral ([29]), however evaluated on a 3D-sphere at
infinity S∞, instead of the horizon. Using Stokes’s theorem,
the integral can be represented as a sum of the Komar
integral on the horizon, representing the local mass of the
black hole, and a bulk integral of the Ricci 1-form5

MADM ¼ −
3

32π

Z
S∞

⋆dξ ¼ −
3

32π

Z
H
⋆dξ − 3

16π

Z
M̂
⋆RðξÞ:
ð61Þ

The Ricci 1-form RðξÞ is connected to the stress-energy
tensor of the matter fields through the field equations.
Therefore, the bulk integral will introduce corrections to the
horizon mass MH, which depend on the external matter
fields, in the expression for the total ADM mass of the
spacetime. A similar argument applies also for the angular

FIG. 1. Rod structure of the seed solution (left panel) and the distorted Myers-Perry black hole with single rotation (right panel).

5We assume that the solution contains no other horizons or
bolts for the spacelike Killing fields.
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momentum on the horizon, which will not coincide with the
total angular momentum of the spacetime if external matter
is present.
The horizon mass and angular momentum satisfy a local

Smarr-like relation defined on the black hole horizon which
is equivalent to the Smarr relation for the nondistorted
Myers-Perry black hole. We can define a surface gravity on
the horizon by the standard relation

κ2H ¼ −
1

4λ
gμν∂μλ∂νλ; ð62Þ

where λ ¼ gðV; VÞ is the norm of the Killing field
V ¼ ∂=∂tþ Ω∂=∂ψ , which becomes null on the horizon.
Performing the calculations we obtain the expression

κH ¼ 1

2
ffiffiffi
σ

p ð1þ α2Þ

× exp

�
3

2

X∞
n¼0

ða2n þ b2nÞ þ
1

2

X∞
n¼0

ðb2nþ1 − a2nþ1Þ
�
:

ð63Þ
The surface gravity is defined only up to a constant scale
factor, since we do not have a normalization of the Killing
field V at infinity. We have fixed the freedom by assuming
that the distorted solution can be extended to an asymp-
totically flat one. We can calculate also the horizon area
using the restriction of the metric on the horizon gH defined
by x ¼ 1 and t ¼ const:

AH ¼
Z
H

ffiffiffiffiffiffiffiffiffiffiffiffi
det gH

p
dϕdψdy

¼ 16π2σ
3
2ð1þ α2Þ

× exp

�
−
3

2

X∞
n¼0

ða2n þ b2nÞ −
1

2

X∞
n¼0

ðb2nþ1 − a2nþ1Þ
�
:

ð64Þ
In the limit when no external matter is present, i.e.
an ¼ bn ¼ 0, the surface gravity and the horizon area
reduce to the corresponding quantities for the nondistorted
Myers-Perry black hole. The surface gravity is related to the
temperature associated with the horizon T ¼ κH=2π, and
the horizon area is proportional to the entropy of the black
hole S ¼ AH=4.
Taking advantage of the expression for the angular

velocity (57), we see that a local Smarr-like relation is
satisfied for the physical quantities defined on the black
hole horizon

MH ¼ 3

16π
κHAH þ 3

2
ΩJH: ð65Þ

It coincides exactly with the local Smarr-like relation for
the nondistorted Myers-Perry black hole, which in this case

is also a global relation for the ADM mass and angular
momentum, since they are equivalent to the corresponding
quantities on the black hole horizon.
Finally, we will discuss the possible values that the

horizon massMH and angular momentum JH can attain. In
the case of the asymptotically flat Myers-Perry black hole
their values are restricted, since the following relation
should be satisfied:

27π

32

J2H
M3

H
< 1; ð66Þ

in order for the event horizon to exist [see (10)]. In the
representation of the solution in prolate spheroidal coor-
dinates the parameters σ and α are introduced in such a way
that (66) is automatically satisfied,

27π

32

J2H
M3

H
¼ α2

1þ α2
< 1; ð67Þ

i.e. the metric (12) always describes a black hole. If we
examine the relation J2H=M

3
H for the distorted Myers-Perry

black hole we obtain the expression

27π

32

J2H
M3

H
¼ α2

1þ α2
exp

�
−2

X∞
n¼0

ðan þ 2bnÞ
�
: ð68Þ

The parameters an and bn characterize the external
matter field, and their values are not connected with the
existence of a horizon. Therefore, for some matter distri-
butions they can certainly possess such values that the ratio
27π
32

J2H
M3

H
exceeds one. Moreover, since it is not bounded, it is

allowed to grow unlimitedly.
A similar effect was noticed in the investigation of a

numerical solution representing the Kerr black hole sur-
rounded by a perfect fluid ring [26,27]. The corresponding
ratio of the angular momentum and the mass for an isolated
Kerr black hole should satisfy the bound ∣J∣=M2 ≤ 1.
However, when a matter ring is present, it is demonstrated
that the ratio can grow arbitrarily large. The effect can be
easily foreseen from the analytical expressions for the
horizon mass and the angular momentum of the Kerr black
hole situated in an arbitrary stationary and axisymmetric
external gravitational field, which were obtained in [8]. The
horizon mass and angular momentum ratio is given by

∣J∣
M2

¼ 2α

1þ α2
exp

�
−2

X∞
n¼1

a2n

�
; 0 < α < 1; ð69Þ

where α is a rotation parameter and the parameters an
characterize the external field. Again, for certain values of
the parameters an characterizing the external field the ratio
can grow unlimitedly.
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A. Particular case

We consider a particular case of the general distorted
Myers-Perry solution (49) in which the parameters an and
bn characterizing the external matter field obey the relation
an þ 2bn ¼ 0 for every n. Then, the metric function â
reduces to the rotation parameter α and the metric acquires
the form

ds2 ¼ −
x − 1 − α2ð1 − yÞ
xþ 1þ α2ð1þ yÞ e

−2Ŵðdt − ωdψÞ2

þ xþ 1þ α2ð1þ yÞ
x − 1 − α2ð1 − yÞ e

−2Wdψ2 þ e−2Udϕ2

þ σ

2
½xþ 1þ α2ð1þ yÞ�e2ðγ̂−ŴÞ

�
dx2

x2 − 1
þ dy2

1 − y2

�
;

ð70Þ

ω ¼ −2
ffiffiffi
σ

p
α

ðx − yÞ
ðx − 1Þ − ð1 − yÞα2 þ 2

ffiffiffi
σ

p
α; ð71Þ

where γ̂ is given by the expression (48) with an ¼ −2bn.
The influence of the external matter fields appears only
in the exponents containing the functions bU, bW, and γ̂,
while the remaining part of the line element coincides
with the metric of the nondistorted solution. In particu-
lar, the metric function ω is equal in this case to the
corresponding metric function for the asymptotically flat
Myers-Perry black hole. Consequently, the angular
velocity of the horizon is also equal in the two cases,
and the ergoregion behaves as in the asymptotically flat
case (see Sec. VI). It is confined to a compact region in
spacetime encompassing the horizon, and the ergosur-
face intersects the axes of the spacelike Killing fields at
the points fx ¼ 1; y ¼ 1g and fx ¼ 1þ 2α2; y ¼ −1g.
Since the metric function ω is already asymptotically
flat, it is in general possible to extend the distorted
black hole solution to an asymptotically flat solution
involving matter fields, which do not possess intrinsic
angular velocity.
The condition for absence of conical singularities takes

the form

X∞
n¼0

ð−1Þnbn ¼ 0; ð72Þ

and examining the expressions for the horizon area, surface
gravity, and angular momentum, we see that they coincide
with the corresponding quantities for the asymptotically flat
Myers-Perry black hole. Thus, the physical characteristics
of the solution remain unaffected by the external distribu-
tion of matter.

VI. PROPERTIES OF THE HORIZON
AND THE ERGOREGION

The three-dimensional surface of the horizon is defined
by t ¼ const and x ¼ 1. The corresponding metric on the
horizon surface is given by the expression

ds2H ¼ 4σð1þ α2Þ2
2þ â2ð1þ yÞ ð1 − yÞe−2Ŵdψ2

þ 2σð1þ yÞe−2Ûdϕ2

þ σ

2
½2þ â2ð1þ yÞ�e2ðγ̂−ŴÞ dy2

1 − y2
; ð73Þ

where the metric functions â, bW, bU, and γ̂ possess the
following form:

Û ¼
X∞
n¼0

anyn; Ŵ ¼
X∞
n¼0

bnyn;

â ¼ α exp

�
−
X∞
n¼0

ðan þ 2bnÞðyn − 1Þ
�
;

γ̂ ¼
X∞
n¼0

ðan þ 2bnÞyn −
3

2

X∞
n¼0

ða2n þ b2nÞ

−
1

2

X∞
n¼0

ðb2nþ1 − a2nþ1Þ:

The structure of the metric on the horizon cross section is
more transparent if we introduce the angular coordinate
0 ≤ θ ≤ π, such that y ¼ cos θ. Then, it acquires the form

ds2H ¼ 4σð1þ α2Þ2
1þ â2ðθÞcos2ðθ

2
Þ sin

2

�
θ

2

�
e−2ŴðθÞdψ2

þ 4σcos2
�
θ

2

�
e−2ÛðθÞdϕ2

þ σ

�
1þ â2ðθÞcos2

�
θ

2

��
e2ðγ̂ðθÞ−ŴðθÞÞdθ2; ð74Þ

which can be written also as

ds2H ¼ 4σ

�
FðλÞe2ðγ̂ðλÞ−bWðλÞÞdλ2þð1þα2Þ2e−2bWðλÞ

FðλÞ sin2λdψ2

þe−2bUðλÞcos2λdϕ2

�
; ð75Þ

where λ ¼ θ=2 and FðλÞ ¼ 1þ â2ðλÞ cos2 λ. In the limit
when the rotation parameter α and the external matter
parameters an and bn vanish, we obtain the metric on the
3-sphere with radius R ¼ 2

ffiffiffi
σ

p
:

ds2H ¼ 4σ½dλ2 þ sin2λdψ2 þ cos2λdϕ2�; ð76Þ
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in the Hopf coordinates f0 ≤ λ ≤ π=2; 0 < ψ < 2π;
0 < ϕ < 2πg. Comparing the metric on the 3-sphere with
(75) we can see that the horizon geometry is deformed from
the spherical, and all the analytic axisymmetric horizon
geometries are possible depending on the type of the
external matter fields. In the absence of external matter
the horizon is also deformed:

ds2H ¼ 4σ

�
FðλÞdλ2 þ ð1þ α2Þ2

FðλÞ sin2λdψ2 þ cos2λdϕ2

�
:

ð77Þ

However, the deformation is more restricted since it is
determined only by the function FðλÞ ¼ 1þ α2 cos2 λ,
where α is the rotation parameter.
The horizon is encompassed by an ergoregion defined as

the region where the Killing field ∂=∂t is spacelike:

gtt ¼ −
x − 1 − â2ð1 − yÞ
xþ 1þ â2ð1þ yÞ e

2ðÛþŴÞ > 0: ð78Þ

Since the denominator is always positive, the ergoregion is
determined by the sign of the function

G ¼ x − 1 − ð1 − yÞâ2;

â ¼ α exp

�X∞
n¼1

ðan þ 2bnÞ
Xn−1
k¼0

ðx − yÞRkPk

�
xy
R

��
; ð79Þ

and the boundary of the ergoregion gtt ¼ 0 defines the
ergosurface. In the case of the nondistorted Myers-Perry
black hole the ergosurface is always a compact 3D hyper-
surface which touches the horizon at the point
fx ¼ 1; y ¼ 1g, and intersects the symmetry axis y ¼ −1
at x ¼ 1þ α2. Increasing the rotation parameter α the
ergoregion extends further from the horizon (see Fig. 2).
In the case of the Myers-Perry black hole in an external
gravitational field the ergoregion has a more complicated
behavior. We can see that there always exists a small
neighborhood of the horizon x → 1, x > 1, where (79) is
positive. Since the ergoregion should be axially symmetric,
we can estimate its qualitative behavior by investigating the
points in which the ergosurface intersects the axes of the
spacelike Killing fields. As for the nondistorted Myers-
Perry black hole the ergosurface always touches the
horizon x ¼ 1 at the axis y ¼ 1. The intersection point
with the axis of the Killing field ∂=∂ϕ depends on the
values of the parameters an, bn, and α. The restriction of the
function â on the axis y ¼ −1 is given by the expression

FIG. 2. Behavior of the ergoregion (grey area) for negative distortion parameter b1 and different values of the rotation parameter : the
dependence of the ergoregion on b1 is investigated for fixed values of α ¼ 0.6 (a), and α ¼ 0.8 (b). The ergoregion for the non-distorted
Myers-Perry black hole (b1 ¼ 0) is also presented.
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â ¼ α exp

�X∞
n¼0

ðan þ 2bnÞð1 − ð−1ÞnxnÞ
�
;

and examining Eq. (79) we can see that there exist values of
the parameters an and bn for which it is never satisfied. This
behavior means that the ergoregion extends to infinity, if we
consider the distorted Myers-Perry black hole as a global
solution. Considering it as a local solution, which is valid
only in some neighborhood of the horizon, it means that in
some cases the ergoregion is not compact in the region of
validity.
We demonstrate some of the possible configurations of

the ergoregion by investigating some simple cases of
distortion. The ergoregion is independent of the solution
parameters σ, a0, and b0. Therefore, the most simple
nontrivial type of distortion is described by setting
b1 ≠ 0, and requiring the other external matter parameters
to vanish. We will refer to this case as dipole distortion.
Setting a1 ≠ 0 instead, and requiring the other distortion
parameters to vanish leads to the same qualitative behavior
of the ergoregion, and the two cases are related by the shift
a1 ⟷ 2b1. Similarly, all the arguments for the case b1 ≠ 0
refer also for distortions of the type a1 ≠ 0, b1 ≠ 0, and the
other distortion parameters vanishing.
Examining the behavior of (79) in the case of dipole

distortion b1 ≠ 0 we obtain that for negative values of b1
the ergoregion is always a compact region encompassing
the horizon, similar to the nondistorted solution. If the
distortion parameter b1 is positive, however, the ergo-
region always contains a noncompact part which extends
to infinity if we consider our solution as a global one.
Furthermore, the ergoregion can be either simply con-
nected, or include two parts separated in spacetime, one
of which is a compact region in the vicinity of the
horizon.
In the case of the dipole distortion the number of

the separated parts of the ergoregion is determined by
the number of the crossing points of the ergosurface with
the axis y ¼ −1, or equivalently by the number of the real
roots of the equation

G ¼ x − 1 − ð1 − yÞâ2 ¼ 0; ð80Þ

evaluated at y ¼ −1. For negative values of the external
matter parameter b1, Eq. (80) has always a single real root,
and consequently a single intersection point of the ergosur-
face with the y ¼ −1 axis. This corresponds to a compact
ergoregion encompassing the horizon for all values of
b1 < 0, and the rotation parameter α. If we keep α fixed and
vary b1, we obtain that the ergoregion gets smaller as ∣b1∣
grows. Keeping b1 fixed and varying α, we observe that the
ergoregion gets larger with the increase of the rotation
parameter, and extends further from the horizon. The
behavior of the ergoregion for negative b1 is presented
in Fig. 2. For comparison we have also illustrated the

ergoregion for the nondistorted Myers-Perry black hole for
the same values of the rotation parameter α.
If we consider positive values of the distortion parameter

b1 > 0, Eq. (80) can possess at most two real roots.
Provided we keep the rotation parameter α constant and
vary b1, two roots occur for small b1, and there exists a
critical value b1crit , depending on the particular value of α,
when Eq. (80) possesses only a single real root. For b1 >
b1crit no real roots exist. Consequently, for b1 < b1crit we
observe two separated ergoregions, one of which extends to
infinity. When b1 approaches b1crit the two regions get
closer to each other, and for b1 ¼ b1crit they touch at the
common crossing point of their boundaries with the axis
y ¼ −1. When b1 exceeds b1crit the two parts of the
ergoregion merge into a single noncompact ergoregion
which extends to infinity. This is in agreement with the fact
that for b1 > b1crit the ergosurface does not intersect the
y ¼ −1 axis.
If we keep the parameter b1 fixed and vary the rotation

parameter α a similar behavior is observed. Again, there
exists a critical value of the rotation parameter αcrit, when
Eq. (80) has a single real root, two real roots for
0<α<αcrit, and none for α>αcrit. Thus, for 0<α<αcrit
two separated parts of the ergoregion are observed, which
touch at α ¼ αcrit, and merge for α > αcrit into a single
ergoregion extending to infinity. The behavior of the
ergoregion for positive b1 is demonstrated in Fig. 3. In
Fig. 3(a) we investigate the ergoregion for a constant value
of the rotation parameter 0 < α < 1, and different values of
b1 > 0. In Fig. 3(b) we keep the distortion parameter b1
fixed and study the influence of the rotation on the
ergoregion by varying α.
We will obtain a richer structure of the ergoregion if

we consider more complicated types of distortion by
keeping other external matter parameters an and bn
different from zero. We illustrate some possible con-
figurations in the case when the distortion parameter
b2 ≠ 0, and the others are vanishing, which we call
quadrupole distortion (see Figs. 4 and 5). In contrast to
the case of dipole distortion, for all values of b2 the
ergoregion is not compact. For negative b2 the ergo-
region behaves qualitatively as in the case of positive
dipole distortion b1 > 0. For low values of ∣b2∣ two
separated parts of the ergoregion exist, intersecting the
axis y ¼ −1, which merge into a single one as ∣b2∣
grows. The same structure is observed if we keep b2 < 0
fixed and vary the rotation parameter α (Fig. 4). For
positive values of the distortion parameter b2 another
type of behavior of the ergoregion is demonstrated. For
low values of b2 the ergoregion consists of two parts—a
compact one in the vicinity of the horizon and a
noncompact one separated from it in spacetime.
However, the noncompact part is situated in the region
0 < y < 1, and does not intersect the axis y ¼ −1. When
b2 grows, the two parts merge in a single ergoregion,
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(a)

(b)

FIG. 4. Behavior of the ergoregion (grey area) for quadrupole distortion b2 < 0: (a) the dependence of the ergoregion on b2 is
investigated for fixed value of the rotation parameter α ¼ 0.4; (b) the dependence of the ergoregion on the rotation is investigated for
fixed value of b2 ¼ −0.2.

(a)

(b)

FIG. 3. Behavior of the ergoregion (grey area) for positive distortion parameter b1: (a) the dependence of the ergoregion on b1 is
investigated for fixed value of the rotation parameter α ¼ 0.2; (b) the dependence of the ergoregion on the rotation is investigated for
fixed value of b1 ¼ 0.2.
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and the same behavior is observed if we keep b2 > 0
fixed, and vary the rotation parameter α (Fig. 5).
In this work we consider the distorted Myers-Perry

black hole (49) as a local solution, which is valid only
in a certain neighborhood of the horizon. In general, a
global solution can be constructed if (49) is extended to
an asymptotically flat solution by some sewing tech-
nique. This can be realized by cutting the spacetime
manifold in the region where the metric (49) is valid and
attaching to it another spacetime manifold where the
solution is not vacuum anymore, but the sources of the
distorting matter are also included. In the cases where
the ergoregion consists of a compact region close to the
horizon and another noncompact region, one can
always choose to cut the manifold at such a value of
the x and y coordinates that the noncompact region is
not included. In this way one may be able to construct
an extension to an asymptotically flat solution with a
compact ergoregion.

VII. CONCLUSION

We have obtained a new exact solution of the 5D
Einstein equations in vacuum representing a Myers-Perry
black hole with a single angular momentum in an
external gravitational field. Locally, the solution is

interpreted as a black hole distorted by a stationary
Uð1Þ ×Uð1Þ symmetric distribution of external matter.
We have constructed the solution by applying a twofold
Bäcklund transformation on a 5D distorted Minkowski
spacetime as a seed. The physical quantities of the
solution have been calculated, and a local Smarr-like
relation on the black hole horizon has been derived. The
solution satisfies the same Smarr-like relation as the
asymptotically flat Myers-Perry black hole. However, in
contrast to the nondistorted Myers-Perry black hole the
ratio of the horizon mass and angular momentum,
J2H=M

3
H, can become arbitrarily large. We have then

considered a particular case of the general distorted
Myers-Perry solution (49), in which the parameters an
and bn characterizing the external matter field obey
the relation an þ 2bn ¼ 0 for every n. Consequently,
the angular velocity of the horizon is equal to the one
of the asymptotically flat Myers-Perry case, and the
ergoregion behaves also as in the asymptotically flat
Myers-Perry case.
We have further considered the effect of dipole

distortions and quadrupole distortions on the ergoregions.
There exists a small neighborhood of the horizon x → 1,
x > 1 belonging to the ergoregion. In some cases, the
ergoregion appears to be noncompact in the region of
validity of the solution. In the cases when the ergoregion

(a)

(b)

FIG. 5. Behavior of the ergoregion (grey area) for quadrupole distortion b2 > 0: (a) the dependence of the ergoregion on b2 is
investigated for fixed value of the rotation parameter α ¼ 0.8; (b) the dependence of the ergoregion on the rotation is investigated for
fixed value of b2 ¼ 0.66.
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consists of a compact region close to the horizon and
another noncompact region, one can always choose to cut
the manifold at a value of the x and y coordinates such
that the noncompact region in not included, in order to
construct an asymptotically flat solution with a compact
ergoregion. However, we have not discussed the particu-
lar extension of the solution to the asymptotically
flat cases.
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