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The Blandford-Znajek (BZ) mechanism describes a physical process for the energy extraction from a
spinning black hole (BH), which is believed to power a great variety of astrophysical sources, such as active
galactic nuclei and gamma ray bursts. The only known analytic solution to the BZ mechanism is a split
monopole perturbation solution up to Oða2Þ, where a is the spin parameter of a Kerr black hole. In this
paper, we extend the monopole solution to higher order ∼Oða4Þ. We carefully investigate the structure of
the BH magnetosphere, including the angular velocity of magnetic field linesΩ, the toroidal magnetic field

Bϕ, as well as the poloidal electric current I. In addition, the relevant energy extraction rate _E and the
stability of this high-order monopole perturbation solution are also examined.

DOI: 10.1103/PhysRevD.91.064067 PACS numbers: 04.70.-s, 95.30.Qd, 95.30.Sf

I. INTRODUCTION

Within the framework of force-free electrodynamics,
Blandford and Znajek (1977) investigated a steady-state
axisymmetric magnetosphere surrounding a spinning black
hole and put forward that the rotation energy of a Kerr black
hole could be extracted in the form of Poynting flux via
magnetic fields penetrating the central black hole [1,2].
General relativistic magnetodynamics (GRMD) simula-
tions of split monopole magnetic fields [3,4] show that
the analytic monopole perturbation solution makes good
matches with the numerical simulations, especially for
slowly rotating black holes. General relativistic magneto-
hydrodynamics (GRMHD) simulations [5,6] indicate that,
in the polar region, the monopole perturbation solution
gives a good description of the magnetic field configuration
as well as the angular distribution of energy flow, even
when black holes rotate mildly rapidly. However, the
monople solution [1] is accurate only up to Oða2Þ, where
a is the black hole spin parameter. For even more rapidly
rotating black holes, higher-order perturbation solutions are
of greater astrophysical interest. Tanabe and Nagataki [7]
extended the monopole perturbation solution to the order
of Oða4Þ. Their solution gave a better approximation to
the numerical simulation. Unfortunately, they mentioned
that their results are not fully self-consistent, since their
perturbation method breaks down at large distance from
the central black hole. Hence, it is necessary to find

self-consistent higher-order perturbation solutions to the
BZ mechanism.
To get self-consistent solutions, we need to solve a

nonlinear second-order partial differential equation, which
requires two boundary conditions. It should be noted that
boundary conditions to be imposed are still not well
understood [7–11]. Blandford and Znajek [1] imposed the
Znajek regularity condition [12] on the horizon as the first
boundary condition. The second one requires that the
perturbation solution should match the asymptotic solution
in the flat spacetime at infinity [13]. Unfortunately, the
second boundary condition is usually unavailable when
investigating higher-order perturbation solutions. Recently,
Pan and Yu [14] proposed that the physical constraint—
i.e., solutions should be convergent from the horizon to
infinity—could be exploited as the second boundary con-
dition. With the Znajek horizon regularity condition and this
new convergence constraint, perturbation solutions could
be uniquely determined. Following the approach of Pan and
Yu [14], we extend the monopole perturbation solution to the
order of Oða4Þ. Note that the perturbation method we adopt
is different from [7]. Our method works well at any distance
from the central black hole.
Some earlier analytic works [15–17] concerned the

stability of jets launched by the BZ mechanism because
of the screw instability of the magnetic field. However,
such instability was not found in recent simulations (e.g.
[18–20]). The possible reason for the discrepancy is that the
Krustkal-Shafranov (KS) criteria are used in these works,
without taking account of the stabilizing effect induced by
the magnetic field rotation [18,21,22]. With the high-order
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perturbation solution obtained in this paper, we also briefly
study the stability of the split monopole perturbation
solution of the order of Oða4Þ, taking the magnetic field
rotation into consideration.
The paper is organized as follows: basic equations

governing stationary axisymmetric force-free fields around
Kerr black holes are described in Sec. II. We discuss the
perturbation solutions of the second order and fourth order
obtained by our newly proposed method in Sec. III.
Summary and discussion are given in Sec. IV.

II. STATIONARY AXISYMMETRIC FORCE-FREE
FIELDS AROUND KERR BLACK HOLES

In this section, we briefly recap basic equations gov-
erning stationary axisymmetric force-free fields around
Kerr black holes (see [14] and references therein for
more details). We adopt the Kerr-Schild coordinate (e.g.,
McKinney and Gammie [5]) with the line element

ds2 ¼ −
�
1 −

2r
Σ

�
dt2 þ

�
4r
Σ

�
drdtþ

�
1þ 2r

Σ

�
dr2

þ Σdθ2 −
4arsin2θ

Σ
dϕdt − 2a

�
1þ 2r

Σ

�
sin2θdϕdr

þ sin2θ

�
Δþ 2rðr2 þ a2Þ

Σ

�
dϕ2; ð1Þ

where Σ ¼ r2 þ a2 cos2 θ, Δ ¼ r2 − 2rþ a2, andffiffiffiffiffiffi−gp ¼ Σ sin θ.
The energy momentum tensor for the force-free field

is dominated by the electromagnetic field, which
can be written as Tμν ¼ Tμν

matter þ Tμν
EM ≈ Tμν

EM ¼
FμτFν

τ − 1
4
δμνFαβFαβ, where the antisymmetric Faraday

tensor is defined as Fμν ¼ ∂μAν − ∂νAμ and A is the 4-
potential of the electromagnetic field. We define the angular
velocity of the magnetic field Ωðr; θÞ as follows,

−Ω≡ dAt

dAϕ
¼ At;θ

Aϕ;θ
¼ At;r

Aϕ;r
: ð2Þ

It is evident that Ftϕ ¼ 0 for the axisymmetric and steady
state force-free field. The nonzero parts of the Faraday
tensor Fμν are listed below:

Frϕ ¼ −Fϕr ¼ Aϕ;r; Fθϕ ¼ −Fϕθ ¼ Aϕ;θ; ð3Þ

Ftr ¼ −Frt ¼ ΩAϕ;r; Ftθ ¼ −Fθt ¼ ΩAϕ;θ; ð4Þ

Frθ ¼ −Fθr ¼
ffiffiffiffiffiffi
−g

p
Bϕ: ð5Þ

Note that the force-free field is specified by three quantities,
i.e., Ωðr; θÞ, Aϕðr; θÞ, and Bϕðr; θÞ. Once they are speci-
fied, the force-free field is uniquely determined.

Note that Tθ
t ¼ −ΩTθ

ϕ and Tr
t ¼ −ΩTr

ϕ. The energy
and angular momentum conservation equations Tμ

t;μ ¼ 0

and Tμ
ϕ;μ ¼ 0 can be cast as Ω;rAϕ;θ ¼ Ω;θAϕ;r and

ð ffiffiffiffiffiffi−gp
FθrÞ;rAϕ;θ ¼ ð ffiffiffiffiffiffi−gp

FθrÞ;θAϕ;r, respectively. These
two equations indicate that Ω and

ffiffiffiffiffiffi−gp
Fθr are functions

of Aϕ, viz.,

Ω≡ΩðAϕÞ;
ffiffiffiffiffiffi
−g

p
Fθr ≡ IðAϕÞ; ð6Þ

where the angular velocity of magnetic field Ω and the
poloidal electric current I are to be specified. Substituting
Equations (3), (4), (5) and (6) into the equation
Fθr ¼ gθμgrνFμν, we can readily arrive at

Bϕ ¼ −
IΣþ ð2Ωr − aÞ sin θAϕ;θ

ΔΣsin2θ
: ð7Þ

This is an important relation that connects the toroidal
magnetic field Bϕ with the functions Aϕðr; θÞ, ΩðAϕÞ
and IðAϕÞ.
The remaining momentum conservation equations in

the r and θ direction Tμ
r;μ ¼ 0 and Tμ

θ;μ ¼ 0 are actually
equivalent and read

− Ω½ð ffiffiffiffiffiffi
−g

p
FtrÞ;r þ ð ffiffiffiffiffiffi

−g
p

FtθÞ;θ� þ FrθI0ðAϕÞ
þ ½ð ffiffiffiffiffiffi

−g
p

FϕrÞ;r þ ð ffiffiffiffiffiffi
−g

p
FϕθÞ;θ� ¼ 0; ð8Þ

where the prime denotes derivative with respect to Aϕ.
The three functions Aϕðr; θÞ, ΩðAϕÞ, and IðAϕÞ are related
by the above nonlinear equation (8), which is also widely
known as the Grad-Shafranov (GS) equation [9,23].

III. FOURTH-ORDER PERTURBATION
SOLUTIONS

Since the Farady tensor depends on the first-order
derivative of Aϕ, it is clear that the GS equation (8) is
actually a second-order partial differential equation for Aϕ.
The solution can be attained when complemented with two
boundary conditions, i.e., the Znajek horizon regularity
condition [12] and the convergence constraint [1,14]. The
zeroth-order monopole solution can be readily obtained
when the black hole is nonrotating, i.e., a ¼ 0. When the
spin parameter a ≠ 0, we expand the GS equation in terms
of a. To get the second-order perturbation solutions, we
ignore all terms in the GS equation that are higher than
the order of Oða2Þ. Based on the second-order solutions,
the fourth-order perturbation solution can be achieved in a
similar way.
The zeroth-order monopole solution around a nonrotat-

ing black hole can be explicitly written as [1]

Ω0 ¼ 0; Bϕ
0 ¼ 0; Aϕ ¼ A0 ¼ − cos θ: ð9Þ
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Since Ω and
ffiffiffiffiffiffi−gp

Fθr are functions of Aϕ, we can expand
them, accurate to the order of Oða4Þ, as

Ω ¼ ΩðAϕÞ ¼ aω1ðAϕÞ þ a3ω3ðAϕÞ
¼ aω1ðA0 þ a2A2Þ þ a3ω3ðA0 þ a2A2Þ;ffiffiffiffiffiffi

−g
p

Fθr ¼ IðAϕÞ ¼ ai1ðAϕÞ þ a3i3ðAϕÞ
¼ ai1ðA0 þ a2A2Þ þ a3i3ðA0 þ a2A2Þ; ð10Þ

where Ω, ω1, ω3, I, i1, i3 are unknown functions of Aϕ to
be specified self-consistently. The entire fourth-order per-
turbation solutions can be expressed in a more compact
form as

Aϕ ¼ A0 þ a2A2 þ a4A4 þOða6Þ;
Ω ¼ aΩ1 þ a3Ω3 þOða5Þ;ffiffiffiffiffiffi

−g
p

Fθr ¼ aI1 þ a3I3 þOða5Þ;
Bϕ ¼ aB1 þ a3B3 þOða5Þ: ð11Þ

It should be noted that Ωn and ωn, In and in (n ¼ 1; 3) are
related by

Ω1 ¼ ω1ðA0Þ; Ω3 ¼ ω0
1ðA0ÞA2 þ ω3ðA0Þ;

I1 ¼ i1ðA0Þ; I3 ¼ i01ðA0ÞA2 þ i3ðA0Þ; ð12Þ

where the prime designates the derivative with respect
to A0.

A. Second-order perturbation solutions

We can get the second-order perturbation solutions by
expanding the GS equation (8) to the order of Oða2Þ. It is
interesting that the original BZ monopole perturbation
solution could be naturally achieved with our convergence
constraint. Expanding Eq. (7) to the order of Oða2Þ, we
have that

r2I1 ¼ sin θA0;θð1 − 2rΩ1Þ − sin2θB1ðr2 − 2rÞr2: ð13Þ

According to the Znajek horizon condition [12], the
toroidal field B1 should be well behaved on the horizon
ðr ¼ 2Þ, then r ¼ 2 must be a root to equation r2I1 ¼
sin2 θð1 − 2rΩ1Þ. So we have

i1 ¼ I1 ¼ sin2θ

�
1

4
−Ω1

�
;

B1 ¼ −
1

r2

�
1

4
−Ω1 þ

1

2r

�
: ð14Þ

The GS equation (8), accurate to the order of Oða2Þ, can
then be cast as

LA2 ¼ Sðr; θÞ; ð15Þ

where the operator

L≡ 1

sin θ
∂
∂r

�
1 −

2

r

� ∂
∂rþ

1

r2
∂
∂θ

1

sin θ
∂
∂θ ; ð16Þ

and the source

Sðr; θÞ ¼ 4 sin θ cos θ

�
Ω1 −

1

8

��
1

4
þ 1

2r
þ 1

r2

�

− 2 sin θ cos θ
1

r2

�
1

2r
þ 1

r2

�

þ sin2θΩ1;θ

�
1

4
þ 1

2r
þ 1

r2

�
: ð17Þ

According to the convergence constraint [1], the condition
for the existence of a convergent solution is that the
following integral,

Z
∞

2

dr
Z

π

0

dθ
jSðr; θÞj

r
; ð18Þ

should be convergent. The convergence condition requires
that all the terms in Sðr; θÞ of the order of Oð1Þ should
vanish, i.e.,

0 ¼ 4 sin θ cos θ

�
Ω1 −

1

8

�
þ sin2θΩ1;θ: ð19Þ

Consequently, we have

Ω1 ¼ ω1 ¼
1

8
;

I1 ¼ i1 ¼
1

8
sin2θ;

B1 ¼ −
1

r2

�
1

8
þ 1

2r

�
: ð20Þ

It is interesting to note that all physical quantities of the
order OðaÞ are already obtained before we actually solve
the complicated GS equation. The second-order part of Aϕ,
i.e., A2, can be obtained by the following equation,

LA2 ¼ −2 sin θ cos θ 1

r2

�
1

2r
þ 1

r2

�
: ð21Þ

It is straightforward while tedious to check that this
equation has the following variable separable solution [1],

A2 ¼ RðrÞsin2θ cos θ; ð22Þ

where
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RðrÞ ¼ 1þ 3r − 6r2

12
ln

�
r
2

�
þ 11

72
þ 1

3r
þ r
2
−
r2

2

þ
�
Li2

�
2

r

�
− ln

�
1 −

2

r

�
ln

�
r
2

��
r2ð2r − 3Þ

8
;

ð23Þ
and

Li2ðxÞ ¼ −
Z

1

0

dt
lnð1 − txÞ

t
: ð24Þ

The value of the function RðrÞ at the horizon, r ¼ 2, is of
particular importance. Explicitly, it is

Rr¼2 ¼ Rðr ¼ 2Þ ¼ 6π2 − 49

72
: ð25Þ

B. Fourth-order perturbation solutions

Once the second-order perturbation solutions are known,
the fourth-order perturbation solutions could be obtained
by further expanding the GS equation to the order ofOða4Þ.
Accurate to Oða4Þ, Eq. (7) is

r2I3 þ cos2θI1 ¼ sin θ½A2;θð1 − 2rΩ1Þ − A0;θ2rΩ3�
− sin2θ½B3ðr2 − 2rÞr2
þB1ðr2 − 2rÞcos2θ þ B1r2�: ð26Þ

The toroidal field B3 should be well behaved on the
horizon. Subsequently, we can get

i3 þ sin2θω3 ¼
�
−
Rr¼2

8
þ 1

32

�
sin4θ þ 1

16
sin2θ; ð27Þ

and the toroidal field B3 is

sin2θB3 ¼
1

r2 − 2r

�
−
2sin2θ

r
ω3

þ
�
1

r2
−

1

4r

�
sin θ

�
A2;θ −

sin θcos2θ
r2

�

þ sin2θ
r2

�
1

8
þ 1

2r

�
−
�
cos θ
4

A2 þ i3

��
; ð28Þ

where we have made use of Eqs. (12) and (20). The GS
equation (8) of the order of Oða4Þ is of the following form,

LA4 ¼ ω1

�
sin θ

�
r2

8
−
2

r

�
A2;r

�
;r
− ω3

�
−
�
1þ 2

r

�
1

8
sin2θ þ 2rsin2θB1

�
;θ

−ω1

�
− sin θ

�
1þ 2

r

��
1

8
A2;θ þ ω3 sin θ

�
þ sin2θcos2θ

4r3
þ 2rsin2θB3

�
;θ
þ r2 sin θB1

�
−
1

4
A2 þ i03ðA0Þ

�

þ 1

4
cos θ sin θðcos2θB1 þ r2B3Þ −

�
sin θ
4r

A2;r þ
2cos2θ
r3 sin θ

A2;r

�
;r
þ
�
sin2θB3 þ

cos2θ
r4 sin θ

A2;θ −
cos4θ
r6

�
;θ
: ð29Þ

The convergence condition requires that all source terms of
the order Oð1Þ should vanish, i.e.,

0 ¼ ω3

�
1

8
sin2θ

�
;θ
þ ω1ðsin2θω3Þ;θ þ r2 sin θB1i30ðA0Þ

þ 1

4
sin θ cos θr2B3: ð30Þ

The above equation could be further simplified as

ω3ðsin2θÞ;θ þ ðsin2θω3Þ;θ
¼ i3;θ þ 2

cos θ
sin θ

i3

¼ 1

sin2θ
ðsin2θi3Þ;θ⇔sin2θω3 ¼ i3; ð31Þ

where we have used the result of Eqs. (20) and (28).
Together with Eq. (27), we have that

i3 ¼
1

2

�
−
Rr¼2

8
þ 1

32

�
sin4θ þ 1

32
sin2θ;

ω3 ¼
1

2

�
−
Rr¼2

8
þ 1

32

�
sin2θ þ 1

32
>

1

32
: ð32Þ

With the help of Eqs. (12) and (20), we finally arrive at

Ω¼ ΩðAϕÞ ¼
a
8
þ a3ω3;

ffiffiffiffiffiffi
−g

p
Fθr ¼ IðAϕÞ ¼

a
8
sin2θþ a3

�
1

4
RðrÞsin2θcos2θþ i3

�
:

ð33Þ

IV. DISCUSSION AND SUMMARY

A. Discussion

The angular distribution of the fourth-order angular
velocity Ω and poloidal electric current I on the horizon
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is shown in Fig. 1. For comparison, the corresponding
simulation results are also available (cf. Figs. 1 and 2 of
[3]). Both simulations and our analytic solution imply that
Ω ¼ ΩH=2 is a rather good approximation for a wide range
of black hole spins (at least for a≲ 0.9), where ΩH ¼
a=2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ is the angular velocity of the central BH.

The fourth-order poloidal electric current I also shows
better agreement with the simulation result than the second-
order one, especially for large spins.
The energy extraction rate, which is defined as

_E¼−2π
R
π
0

ffiffiffiffiffiffi−gp
Tr

tdθ¼2π
R
IðAϕÞΩðAϕÞdAϕ [1,14,24],

could be written as

_E¼2πa2
Z

i1ω1dA0þ2πa4
Z

i1ω3þω1i3þði1ω1A2Þ0dA0

¼2πa2
Z

i1ω1dA0þ2πa4
Z

1

8
ði3þsin2θω3ÞdA0

¼ π

24
a2þð56−3π2Þπ

1080
a4; ð34Þ

where the prime denotes derivative with respect to A0. Note
that the second term on the right-hand side only depends on
the combination, i3 þ sin2 θω3, which can be specified by
the Znajek horizon condition [i.e., Eq. (27)]. In fact, this
coincidence explains why Tanabe and Nagataki [7] could
obtain the correct energy extraction rate _E without explic-
itly solving Ω and I.
The stability is another interesting issue. Some analytic

works [15–17] implied that the screw instability may occur
in the monopole perturbation solution due to the Kruskal-
Shafranov criterion. But no instability was noticed in time-
dependent GRMD (e.g. [3,4]) or GRMHD simulations (e.g.
[18,20]). To understand the discrepancy between analytic
and numerical works, Narayan et al. [25] and [18,21]
pointed out that Kruskal-Shafranov criterion may not be
appropriate for jet stability analysis, since it neglects the
stabilizing effect of the rotation of magnetic field lines.

According to the analysis of Tomimatsu et al. [21], which
takes the field rotation into account, the monopole pertur-
bation solution is possibly unstable only when Ω < ΩH=2.
Our fourth-order solution [i.e., Eq. (33)] means that

Ω >
1

2
ΩH ¼ a

8
þ a3

32
: ð35Þ

Obviously, the fourth-order monopole perturbation solution
is stable and is consistent with numerical simulations.

B. SUMMARY

Two major difficulties are encountered in solving the GS
equation (8): (1) it is a highly nonlinear second-order partial
differential equation and (2) two proper boundary con-
ditions are necessary to uniquely specify the solution. The
nonlinearity could be partially removed by the perturbation
technique. To fix the boundary conditions problem, we
impose the regularity condition on the horizon [Eq. (7)]
and the convergence constraint [Eq. (18)]. The latter one
actually serves as the boundary condition at infinity. With
these two boundary conditions, we reestablish the split
monopole solution to the order of Oða2Þ and get the new
perturbation solution up to the order of Oða4Þ. By taking
account of the stabilizing effect of field rotation, we prove
that the fourth-order monopole perturbation solution is
stable against the screw instability.
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FIG. 1 (color online). Angular distribution of the ratio Ω=ΩH and the electric current I on horizon (r ¼ 2), where we keep the angular
velocity of the BH accurate to fourth order, i.e., ΩH ¼ a=4þ a3=16.
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