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Solution-generating techniques for general relativity with a conformally (and minimally) coupled scalar
field are pushed forward to build a wide class of asymptotically flat, axisymmetric, and stationary
spacetimes continuously connected to Kerr spacetime. This family contains, amongst other things, rotating
extensions of the Bocharova-Bronnikov-Melnikov-Bekenstein black hole and also its angular and mass
multipolar generalizations. The addition of Newman-Unti-Tamburino charge is also discussed.
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I. INTRODUCTION

Fundamental scalar fields have been studied for a long
time in gravity and high-energy theoretical physics, with
various aims ranging from cosmology to the standard
model (of particles), scalar-tensor theories, and strings.
But lately they are enjoying renewed attention after the
experimental confirmation of the Higgs scalar field at
CERN. Historically, the interest in the scalar matter field
coupled to general relativity (GR) in a conformal-invariant
way (such as standard Maxwell electromagnetism in four
dimensions) began in the 1970s, when Bekenstein showed
that coupling could admit a black hole solution [1,2]. At the
time this constituted the first counterexample to the black
hole no-hair theorem, which states that in the gravitational
collapse forming a black hole all degrees of freedom
vanish, apart from the mass and the angular momentum
(and electric charge, if we are considering also the
electromagnetic coupling). This black hole—found by
Bocharova, Bronnikov, Melnikov, and Bekenstein [1,2]
(henceforth BBMB)—presents certain issues, which were
summarized in Ref. [3]. The main ones are the fact that the
spacetime is not stable under linear perturbations [4], and
the fact that the scalar field is divergent on the event
horizon.1 Note that in the presence of a cosmological
constant the scalar-field infinities are hidden behind the
event horizon [5], and therefore the solution becomes more
regular.
Nevertheless, lately there has been some interest in

solution-generating techniques for general relativity with
a conformally coupled scalar field [6,7] and in its main
application, i.e., the rotating generalization of the BBMB
black hole, which is still missing. Some stationary gener-
alizations of BBMB spacetime were produced that included
acceleration [8], an external magnetic field [3,6], or

Newman-Unti-Tamburino (NUT) charge [7,9]. The main
inconvenience shared by these constructions is that they are
not asymptotically flat and they do not have a proper limit
to the Kerr black hole. Recently the possibility of having a
slowly rotating generalization of the BBMB metric was
discussed in Refs. [9,10].
The aim of this paper is to fill this gap, i.e., to exploit and

enhance the techniques developed in Ref. [6] to find a
general asymptotically flat, axisymmetric, and stationary
rotating family of metrics for the conformally coupled
scalar matter, which include as a static limit the BBMB
black hole. This is done in Sec. II. For this purpose we
have to integrate the methods of Ref. [6] (based on the
Ernst formalism [11]) with the Hoenselaers-Kinnersley-
Xanthopoulos (HKX) transformation [12], which was
originally developed to add rotation to a static axisym-
metric spacetime in general relativity while preserving
asymptotic flatness. For example, these are the best trans-
formations for generating the Kerr black hole from the
Schwarzschild one. Basically we want to generalize some
of the results presented in Refs. [13,14] in the presence of a
conformally coupled scalar field, and hence multipolar
metrics are considered in Sec. III.
As explained in Ref. [6], when a scalar field is con-

formally coupled with general relativity2 the most generic
axisymmetric and stationary spacetime is not modeled by
the Lewis-Weyl-Papapetrou metric. Therefore, in order to
take advantage of the Weyl coordinates and of the inte-
grability of the system, we shift from the conformally
coupled theory (CC) to the minimally coupled one (MC),
thanks to a conformal transformation of the metric. Then
we make use of the explicit symmetries of the minimally
coupled theory, which allow us to perform an ˆHKX
transformation that is able to generate rotation, and finally
we come back to the conformally coupled theory, thanks to
a conformal transformation (which is the inverse of the first
one). With this procedure we can also generate an HKX*marco.astorino@gmail.com

1In Ref. [2] it is explained (as suggested by de Witt) that this
divergency does not cause any pathological behavior on physical
observables; for example, while crossing the horizon there is no
potential barrier and tidal forces remain finite.

2We are not considering the cosmological constant here
because a solution-generating technique in that case is not
available at the moment [15].
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transformation in the conformally coupled theory.
Pictorially this is illustrated in the following figure:

To be more precise, let us consider the action for general
relativity with a conformally coupled scalar field Ψ:

I½gμν;Ψ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

2
∂μΨ∂μΨ −

R
12

Ψ2

�
:

ð1:1Þ

Extremizing the action with respect to the metric gμν yields
the Einstein field equations, while extremizing with respect
to the scalar field Ψ gives the scalar field equation:

Rμν −
1

2
Rgμν ¼ 8πG

�
∂μΨ∂νΨ −

1

2
gμν∂σΨ∂σΨ

þ 1

6
ðgμν□ −∇μ∇ν þGμνÞΨ2

�
; ð1:2Þ

□Ψ −
1

6
RΨ ¼ 0: ð1:3Þ

We now focus on a subclass of stationary axisymmetric
spacetimes that contain the BBMB black hole in the static
case, which can be generally written as

ds2 ¼Ωf−fðdt−ωdφÞ2 þ f−1½ρ2dφ2 þ e2γðdρ2 þ dz2Þ�g;
ð1:4Þ

where all the functions f, γ, ω,and Ω depend on the ðρ; zÞ
coordinates only. Ω is the conformal factor that relates
the minimally coupled theory to the conformally coupled
one (1.1):

Ωðρ; zÞ ≔
�
1 −

4πG
3

Ψ2ðρ; zÞ
�
−1
: ð1:5Þ

Actually, any solution of general relativity with a minimally
coupled scalar field ðĝ; Ψ̂Þ, whose action is

Î½ĝμν; Ψ̂� ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
R̂

16πG
−
1

2
∇μΨ̂∇μΨ̂

�
ð1:6Þ

and whose field equations are

R̂μν −
R̂
2
ĝμν ¼ 8πG

�
∂μΨ̂∂νΨ̂ −

1

2
ĝμν∂σΨ̂∂σΨ̂

�
; ð1:7Þ

□Ψ̂ ¼ 0; ð1:8Þ

can be mapped into a solution ðg;ΨÞ of the conformally
coupled theory (1.1) by the following conformal
transformation:

Ψ̂ ⟶ Ψ ¼
ffiffiffiffiffiffiffiffiffi
6

8πG

r
tanh

 ffiffiffiffiffiffiffiffiffi
8πG
6

r
Ψ̂

!
; ð1:9Þ

ĝμν ⟶ gμν ¼ Ωĝμν: ð1:10Þ

At this point it is possible to use the solution-generating
technique developed in Ref. [6] for the theory (1.1). It
consists of building Ernst potentials for the minimally
coupled theory (1.6) and then uplifting it to the conformally
coupled theory by the conformal transformation (1.9)–
(1.10). For generating purposes, usually the best coordi-
nates are the prolate spherical ones ðx; yÞ, which are related
to ðρ; zÞ by the following transformations:

ρ ≔ κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − 1Þð1 − y2Þ

q
; z ≔ κxy; ð1:11Þ

where κ is a constant. In Ref. [6] we have learned that the
symmetries of axisymmetric and stationary solutions of
standard general relativity are inherited by the conformally
coupled theory, so we can also use the improvements of
the Ernst technique [11] developed by Hoenselaers,
Kinnersley, and Xanthopoulos in Ref. [12] (see also
Ref. [14]) to generate a stationary version of the BBMB
metric from the static one.
As a starting point we consider the Fisher-Janis-

Robinson-Winnicour metric (FJRW), which is a static
solution for the minimally coupled theory; in prolate
spherical coordinates it can be written as

d̂s2 ¼ −
�
x − 1

xþ 1

�
δ

dt2 þ
�
xþ 1

x − 1

�
δ

κ2
�
dx2 þ x2 − 1

1 − y2
dy2

þ ðx2 − 1Þð1 − y2Þdφ2

�
: ð1:12Þ

It is supported by the following scalar field:

Ψ̂0ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

16πG

r
log

�
x − 1

xþ 1

�
: ð1:13Þ

From this seed metric we can extract its Ernst potential
(since the metric is static and electromagnetically
uncharged, E ¼ f),

E0 ¼
�
x − 1

xþ 1

�
δ

; ð1:14Þ

where the distortion (or Zipoy-Voorhees) parameter δ ∈ R.
We recall that for δ ¼ 1 we have the Schwarzschild
spacetime (note that in this case the scalar field vanishes),
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while for δ ¼ 1=2 we have the BBMB black hole up to the
conformal transformation (1.5) (as explicitly shown in
the next section). Note that the scalar field (1.13) is not
the most general solution of Eq. (1.8), but rather just the
one that gives the BBMB metric; this is our motivation for
picking it. Other possible generalizations of the scalar field
(1.13) are considered in Appendix D. Note also that the
HKX transformations do not affect the scalar field, like all
transformations inherited by the vacuum symmetries.

II. ADDING ROTATION TO THE BBMB
BLACK HOLE

In this section we want to find a stationary generalization
of the BBMB black hole. Thus we apply two rank-zero
HKX transformations to the static (and therefore real) seed
Ernst potential (1.14), as done in Refs. [13,14] for general
relativity. The presentation of the HKX formalism is rather
involved and beyond the scope of the present paper; for a
detailed introduction to HKX transformations and their
applications to vacuum Weyl metrics see Refs. [16,17].
However, we can present the action of N rank-zero HKX
transformations on a static seed Ernst potential E0 to get a
new stationary potential E,

E0 ⟶ E ¼ E0

D−

Dþ
; ð2:1Þ

where

D� ¼ det

�
δij þ i

αkUk

2SðUkÞ
exp½2BðUkÞ�

×
�
Uj þ Uk − 4UjUkz

UjSðUkÞ þ UkSðUjÞ
� 1

��
: ð2:2Þ

This transformation adds 2N parameters αk andUk because
j; k ¼ 1; 2;…; N. The function BðUkÞ satisfies the differ-
ential equation3

SðUkÞ ~∇BðUkÞð1 − 2UkzÞ ~∇
�
1

2
log E0

�

þ 2Ukρ~eφ × ~∇
�
1

2
log E0

�
; ð2:3Þ

with

S2ðUkÞ ¼ ð1 − 2UkzÞ2 þ ð2UkρÞ2: ð2:4Þ

For the two rank-zero HKX transformations k ∈ f1; 2g, so
they add four new constants α1, α2, U1, and U2, two of
which can be reabsorbed in a coordinate transformation,

U1 ¼ −U2 ¼
1

2κ
¼ U; ð2:5Þ

then,

Sð�UÞ ¼ x∓y:

By inserting this latter into Eq. (2.2) and redefining
the constants α1 ≔ α and α2 ≔ β, we get a new rotating
(and therefore complex) Ernst potential for the stationary
version of the FJRW metric:

E ¼ d−
dþ

¼ ξ − 1

ξþ 1
; with ξ ≔

dþ þ d−
dþ − d−

; ð2:6Þ

where

d�ðx; yÞ ≔ ðx� 1Þδ−1½xð1 − λμÞ þ iyðλþ μÞ
� ð1þ λμÞ∓iðλ − μÞ�; ð2:7Þ

λðx; yÞ ≔ αðx2 − 1Þ1−δðxþ yÞ2δ−2; ð2:8Þ

μðx; yÞ ≔ βðx2 − 1Þ1−δðx − yÞ2δ−2: ð2:9Þ

The two rank-zero HKX transformations add two new
independent parameters α and β, which are usually called
the rotation and reflection parameters. In general, for δ ≠ 1,
the presence of α and β (with α ≠ β) may break the
equatorial symmetry with respect to the plane y ¼ 0, while
the axisymmetry is always granted by construction through
Eq. (1.4). The HKX-transformed potential generally may
have a NUT charge, which can spoil the asymptotic flatness
of the seed metric. Therefore we perform an additional
Ehlers transformation to add another NUT charge, para-
metrized by τ, which can elide the possible preexisting one.
The Ehlers transformation in terms of ξ consists in adding a
multiplying phase, ξ ⟶ ξ̄ ¼ ξeiτ; therefore, the final Ernst
potential Ē reads

Ē ¼ ξ̄ − 1

ξ̄þ 1
¼ ðdþ þ d−Þeiτ − ðdþ − d−Þ

ðdþ þ d−Þeiτ þ ðdþ − d−Þ
: ð2:10Þ

The Ernst potential (2.10) represents the stationary rotating
version of the FJRW metric, describing a mass monopole,
which additionally is asymptotically flat, or at most NUT.
Mass multipolar solutions can also be constructed with the
help of the solution-generating techniques; this will be
done in Sec. III. We remember that a spacetime can have
both mass multipoles and angular momentum multipoles,
but generally these latter vanish in the Newtonian limit.
Moreover, we note that the δ parameter remains a real

number in the stationary case as well, and it is not limited to
integers, as is the case for the standard Tomimatsu-Sato
family.

3The differential operator ~∇ refers to the flat cylindrical
gradient in ðρ; z;φÞ coordinates.
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A. α ≠ 0 and β ¼ 0

For the sake of simplicity let us restrict to the case β ¼ 0
in Eq. (2.9), because this is the simplest case containing the
Kerr metric. In Sec. II B and Appendix B some more
general cases are considered.
First of all, we want to check that the case δ ¼ 1 contains

the Kerr Black hole. For δ ¼ 1 the Ernst potential becomes

Eð1Þ ¼
ðxþ iyαÞðcos τ þ i sin τÞ − ð1 − iαÞ
ðxþ iyαÞðcos τ þ i sin τÞ þ ð1 − iαÞ : ð2:11Þ

Then we can cancel the NUT charge by demanding
asymptotic flatness. In practice this means we have to
impose the following constraints on the parameters:

cos τ ¼ κ

m
; sin τ ¼ −

a
m
;

α ¼ a
κ
; κ2 ¼ m2 − a2: ð2:12Þ

Hence the Ernst potential for the pure Kerr metric is
found:

Eð1Þ ¼
x κ
m þ iy a

m − 1

x κ
m þ iy a

m þ 1
: ð2:13Þ

In this case the parameters a and m represent, respec-
tively, the mass and the angular momentum of the Kerr
black hole. Note that δ ¼ 1 implies the vanishing of the
scalar field and, as a consequence, the trivialization of the
conformal factor (1.5), which becomes Ω ¼ 1. It means
that the Ernst potential (2.11) (if it is properly cleaned)
describes the Kerr metric in both the Einstein and Jordan
frames.
Since we want to build a stationary version of the BBMB

black hole we have to consider δ ¼ 1=2. In fact, for this
value of δ, the static BBMB black hole can be obtained
by a conformal transformation [Eq. (1.5)] of the FJRW
spacetime. So for δ ¼ 1=2 the Ernst potential becomes

Eð1
2
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p
sin τ

2
½−αðx − 1Þðy − 1Þ þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
ðxþ yÞ� þ ffiffiffiffiffiffiffiffiffiffiffi

x − 1
p

cos τ
2
½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
ðxþ yÞ þ iαðxþ 1Þðyþ 1Þ�ffiffiffiffiffiffiffiffiffiffiffi

x − 1
p

sin τ
2
½−αðxþ 1Þðyþ 1Þ þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
ðxþ yÞ� þ ffiffiffiffiffiffiffiffiffiffiffi

xþ 1
p

cos τ
2
½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
ðxþ yÞ þ iαðx − 1Þðy − 1Þ�

:

ð2:14Þ

From the definition of the Ernst potential,

E ≔ f þ ih; ð2:15Þ

we can directly infer that the f field of the metric (1.4) is the
real part of Eq. (2.14), while ω can be obtained from the
definition of h:

~∇h ≔ −
f2

ρ
~eφ × ~∇ω: ð2:16Þ

The differential operators in spheroidal coordinates can be
written as4

~∇fðx; yÞ ∝ ~ex
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

x2 − y2

s
∂xfðx; yÞ

þ ~ey
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

x2 − y2

s
∂yfðx; yÞ; ð2:17Þ

while the two-dimensional line element in spheroidal
coordinates is

dρ2 þ dz2 ¼ κ2ðx2 − y2Þ
�

dx2

x2 − 1
þ dy2

1 − y2

�
: ð2:18Þ

Up to this point the effects of the minimally coupled scalar
field have not been taken into account, because at the level
of the Ernst formalism the minimally coupled scalar field is
actually decoupled from the Ernst potentials. But to find γ
the contributions of the scalar stress-energy tensor are
relevant. To obtain γ a quadrature is usually sufficient, once
the other fields are known. In this case, from the EEρ

ρ

and EEρ
z components of the Einstein equations in the

minimally coupled theory (1.7), we have, respectively,

∂ργ ¼ −
1

4

f2

ρ
½ð∂ρωÞ2 − ð∂zωÞ2� þ

1

4

ρ

f2
½ð∂ρfÞ2 − ð∂zfÞ2�

þ 4πGρ½ð∂ρΨ̂Þ2 − ð∂zΨ̂Þ2�; ð2:19Þ

∂zγ ¼
ρ

2f2
ð∂zfÞð∂ρfÞ

−
f2

2ρ
ð∂zωÞð∂ρωÞ þ 8πGρð∂zΨ̂Þð∂ρΨ̂Þ: ð2:20Þ

Note that by defining γ ¼ γ0 þ γΨ, where γ0 is a solution
for general relativity (when Ψ ¼ 0), the previous system of
partial differential equations (2.19)–(2.20) (thanks to its
linearity) reduces to

4The orthonormal frame is defined by the ordered triad
ð~ex; ~ey; ~eφÞ.
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∂ργΨ ¼ 4πGρ½ð∂ρΨ̂Þ2 − ð∂zΨ̂Þ2�; ð2:21Þ

∂zγΨ ¼ 8πGρð∂zΨ̂Þð∂ρΨ̂Þ: ð2:22Þ

This means that from any axisymmetric and stationary
solution of general relativity we can generate a new
solution for the same theory with the addition of a
minimally [or conformally, depending on whether it is
properly conformally transformed according to Eqs. (1.9)–
(1.10)] coupled scalar field. This can be done by adding the
γΨ contribution given by a harmonic scalar field satisfying
Eqs. (2.21)–(2.22). The harmonicity is required by the
scalar field equation (1.8).
The most general solution of Eq. (1.8) achievable by

separation of variables can be expressed, in prolate spheri-
cal coordinates, as an expansion in terms of the Legendre
polynomials of the first and second kind (more details in
Appendix A), denoted by PnðxÞ and QnðxÞ, respectively,

Ψ̂ ¼
X∞
n¼0

½anQnðxÞ þ bnPnðxÞ�½cnQnðyÞ þ dnPnðyÞ�:

ð2:23Þ

By imposing some regularity properties on the scalar field,
it is possible to constrain the coefficients an, bn, cn, and dn;
for instance, imposing regularity along the symmetry axis
(y ¼ �1) fixes cn ¼ 0. In Appendix D the first orders of the
scalar field expansion (2.23) and their contributions to γ are
considered, for some suitable boundary conditions.
The scalar field (1.13) that we are focusing on in this

paper (i.e., the one that gives the BBMB black hole) can
be obtained from the general solution (2.23) by keeping
only the a0 and d0 coefficients non-null, such that
a0d0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − δ2Þ=ð16πGÞ

p
. In this case it is easy to

evaluate the scalar field contribution γΨ to the total γ;
integrating Eqs. (2.21)–(2.22), we have

γΨ ¼ κ2 −
1

2
ðδ2 − 1Þ log

�
x2 − 1

x2 − y2

�
; ð2:24Þ

where κ2 is an integrating constant, which can be fixed to
fulfill the desired boundary conditions or guarantee the
regularity of the metric, such as elementary asymptotic
flatness. To sum up, the resulting fields for the conformally
coupled theory and δ ¼ 1=2 are

fðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
½ðxþ yÞ2 − α2ð1 − y2Þ�

cos τ½ðxþ yÞ2 − α2ð1þ 2xyþ y2Þ� þ α2ðxy2 þ xþ 2yÞ þ ðxþ 2α sin τÞðxþ yÞ2 ; ð2:25Þ

ωðx; yÞ ¼ κ
sin τ½yðxþ yÞ2 þ α2ð1 − y2Þð2xþ yÞ� − 2αy cos τðxþ yÞ2 þ 2α3ð1 − y2Þ

ðxþ yÞ2 þ α2ðy2 − 1Þ ; ð2:26Þ

γðx; yÞ ¼ 1

2
log

�
x2 − 1

x2 − y2
−
α2ðx2 − 1Þð1 − y2Þ
ðxþ yÞ2ðx2 − y2Þ

�
; ð2:27Þ

ΨðxÞ ¼
ffiffiffiffiffiffiffiffiffi
3

4πG

r
tanh

�
1

4
log

�
x − 1

xþ 1

��
: ð2:28Þ

γ is independent of the NUT parameter τ, but not of ω. When α ¼ 0 we recover the NUT-BBMB metric recently found in
Refs. [7,9]. In order for the metric to be free from the NUT charge we have to ask that ωðx; yÞ → 0 at spatial infinity, that is,
for large x. Therefore, we have properly fixed the arbitrary integration constant of ω, and furthermore we have to constrain
the τ parameter as follows:

τ ¼ ArcTan

�
−
α

δ

�
: ð2:29Þ

Under these flat boundary conditions the functions f and ω simplify to

ω ¼ 2α3κð1 − y2Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α2

p
þ 2xþ yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4α2
p

½ðxþ yÞ2 − α2ð1 − y2Þ� ; ð2:30Þ

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
½ðxþ yÞ2 − α2ð1 − y2Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4α2
p

½α2ðxy2 þ xþ 2yÞ þ xðxþ yÞ2� þ ð1þ 4α2Þðxþ yÞ2 − α2ð2xyþ y2 þ 1Þ : ð2:31Þ
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The metric is free from conical singularities on the axes of
symmetry, since limy→�1γ ¼ 0 and asymptotically it ap-
proaches the Minkowski spacetime. When the parameter
α ¼ 0, one recovers the BBMB static black hole,

ds2jα¼0 ¼ −
�
1 −

m
R

�
2

dτ2 þ dR2

ð1 − m
RÞ2

þ R2ðdθ2 þ sin2θdϕ2Þ; ð2:32Þ

ΨðRÞ ¼ �
ffiffiffiffiffiffiffiffiffi
3

4πG

r �
1 −

R
m

�
−1
; ð2:33Þ

where the following relation between the coordinate x and
the radial coordinate5 R is used:

x ≔
R2

2mðR −mÞ − 1: ð2:34Þ

The double-degenerate horizon is located at R ¼ m. There-
fore, given that RðxÞ ¼ mðxþ 1∓ ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 − 1
p

Þ, in terms
of the x coordinate the horizon can be approached in the
limit x → ∞ by taking the minus branch, and the radial
coordinate RðxÞ points towards spatial infinity for x → ∞
when taking the plus branch.
In the stationary case we do not have a unique criterion to

define a radial coordinate, as can be done in the static case
requiring, for instance, a spherically symmetric base
manifold. Therefore, several possibilities for the radial
coordinate can be considered in the rotating case, which
physically may not be equivalent everywhere because of
the nondifferentiability of the change of coordinates. The
fact that the two charts are not diffeomorphic everywhere
stems from the only constraint we have to impose, namely,
that the radial coordinate converges to the static one (2.34)
in the nonrotating limit (α ¼ 0). The easiest radial coor-
dinate in the rotating case we can define is6

x ≔
2R2

κð2R − κÞ − 1⟶
α→0

R2

2mðR −mÞ − 1: ð2:35Þ

The mass and angular momentum can be read from the
asymptotic behavior of the metric, because the scalar field
does not contribute to the charges. This is because the
scalar field depends only on the radial coordinate and it
quickly decays to zero at spatial infinity, and in the

Hamiltonian formalism one can see that it does not
contribute. For large values of the radial coordinate R
the metric approaches spatial infinity as

ds2 ∼ −
�
1 −

2m
R

�
dt2 þ

�
1þ 2m

R

�
dR2

þ 8κ2α3sin2θ

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α2

p dtdφþ R2ðdθ2 þ sin2θdφ2Þ

þO

�
1

R2

�
: ð2:36Þ

We now try to adapt the definition of the constant
parameters κ and α, as in the Kerr case, while also taking
into account the extra constant δ:

κ ≔
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 þ α2
p ; α ≔

aδ
κ
: ð2:37Þ

This value we have chosen for κ coincides (setting β ¼ 0)
with the more general one given in Ref. [18],

κ ¼ mð1 − αβÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½δðαβ − 1Þ − 2αβ�2 þ ðα − βÞ2

p : ð2:38Þ

With these definitions the mass M and angular momentum
J become, respectively,

M ¼ m; J ¼ −
8α3m2

ð1þ 4α2Þ3=2 : ð2:39Þ

With the help of Appendix C we can compute the mass and
angular multipole moments up to the octupole for the scalar
generalization of the FJRW metric (with δ ¼ 1=2) defined
by Eqs. (2.31), (2.30), and (2.27) in the Einstein frame,

M0 ¼ m; J0 ¼ 0;

M1 ¼ −
4α2m2

ð1þ 4α2Þ3=2 ; J1 ¼ −
8α3m2

ð1þ 4α2Þ3=2 ;

M2 ¼
ð1þ 8α2 − 16α4Þm3

ð1þ 4α2Þ2 ; J2 ¼
16α3m3

ð1þ 4α2Þ2 ;

M3 ¼ −
4α2ð4α2 þ 3Þm4

ð1þ 4α2Þ5=2 ; J3 ¼
8α3ð1 − 4α2Þm4

ð1þ 4α2Þ5=2 :

ð2:40Þ

A spacetime that is symmetric with respect to the equatorial
plane y ¼ 0 has a multipolar expansion characterized by
even (power of 2) mass poles (monopole, quadrupole, …)
and odd angular poles (dipole, octupole, …), such as the
Kerr spacetime (see Appendix C). The fact that both even
and odd multipole moments are present means that the
metric is asymmetric with respect to the equatorial plane. In
fact, odd powers of y are present in the metric functions
(2.27)–(2.31).

5In order to minimize the confusion between the radial
coordinate R and the scalar curvature invariants (such as the
Ricci scalar R), a different font is used for the latter.

6Note that in the Kerr case this difficulty is not present because
the rotating metric we want to recover is already a known
solution, and therefore the change of coordinate can be easily
established. For instance, an alternative radial coordinate [which
recovers Eq. (2.34) in the static limit] is xðRÞ ≔ R2

κðR−mÞ −
2m
κ , but

other choices are possible.
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Moreover, the spacetime (2.27)–(2.31) presents diver-
gences of the scalar curvature invariants, such as the
Riemann squared RμνσλRμνσλ, which are not covered by a
horizon.

B. α ¼ β ≠ 0

Interestingly enough the Kerr spacetime can be obtained
using the general potential (2.10) in ways other than that
used in Sec. II A. We will see that, although for δ ¼ 1 the
two constructions coincide, whenever δ ≠ 1 they give rise
to inequivalent Ernst potentials. Therefore, we can have
different stationary solutions with the same δ that also have
the same static limit to the BBMB black hole. This occurs
even without adding mass multipoles, which produce extra
degeneracy; we will further consider these multipolar
generalizations of the FJRW metric in Sec. III.
In this section let us also consider a non-null μðx; yÞ, but

for simplicity we set β ¼ α in Eq. (2.9), and thus we will
again keep only one rotation/reflection-independent param-
eter. With these settings, fixing δ ¼ 1 in Eq. (2.10) gives us
the usual Ernst potential for the Kerr-NUT spacetime [19]:

E ¼ ξeiτ − 1

ξeiτ þ 1
; with ξ ¼ pxþ iqy; ð2:41Þ

where

p ¼ 1 − α2

1þ α2
; q ¼ 2α

1þ α2
: ð2:42Þ

Note that p2 þ q2 ¼ 1, as is expected for the Kerr solution.
In order to neutralize the NUT charge in this case an Ehlers
transformation is not necessary; we can achieve the same
result by simply imposing τ ¼ 0. In this way we remain
with the Ernst potential for the Kerr black hole, as in
Eq. (2.13), and the E simplifies to d−=dþ.
Now we will play the same game as in the previous

section (where β ¼ 0) for the FJRW metric with δ ¼ 1=2,
but under the assumption α ¼ β ≠ 0. In the same way we

can derive ω through Eq. (2.16) and then analyze its
asymptotic behavior for large x:

ω ≈
−4α3κ þ α2ω0 þ ð3α2 þ 1Þκy sinðτÞ − ω0

α2 − 1

−
8ðα3κðy2 − 1Þ cosðτÞÞ

ðα2 − 1Þ2x þO

�
1

x2

�
: ð2:43Þ

In order to have a good falloff behavior we require that
ω → 0 at spatial infinity, so we impose

ωo ¼
4α3κ

α2 − 1
and τ ¼ 0:

Therefore, as in the δ ¼ 1 case, when α ¼ β the vanishing
of the NUT charge is achieved for τ ¼ 0. A general
expression for τ in the case α ≠ 0 ≠ β is given in Ref. [18],

τ ¼ α − β

δðαβ − 1Þ − αβ
: ð2:44Þ

Thus, when α ¼ β, τ is independent from δ, in contrast with
what happened in Sec. II A. Hence, for these values of the
parameters, the asymptotically flat Ernst potential E is just
d−=dþ,

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
½α2ðxþ 1Þ2 þ y2 − x2� − 2iαx2yþ 2iαy

ðxþ 1Þfα2 − 2iyα
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
þ x½α2ðx − 2Þ − x� þ y2g

:

ð2:45Þ
In order to avoid a conical singularity on the axis of
symmetry, when integrating γ one has to set the arbitrary
integration constant to fulfill

lim
y→�1

γ ¼ 0: ð2:46Þ

Finally, after having imposed the elementary flat boundary
conditions, we have

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
½α4ðx2 − 1Þ2 þ ðx2 − y2Þ2 − 2α2½x4 þ x2ð1 − 3y2Þ þ y2��

−2α2ðx2 − 1Þ½ðx − 1Þx2 − ð3xþ 1Þy2� þ ðxþ 1Þðx2 − y2Þ2 þ α4ðx − 1Þ4ðxþ 1Þ ; ð2:47Þ

ω ¼ 4α3κðy2 − 1Þ½2x3 þ x2 − α2ðx − 1Þ2ð2xþ 1Þ þ y2�
ðα2 − 1Þ½α4ðx2 − 1Þ2 þ ðx2 − y2Þ2 − 2α2½x4 þ x2ð1 − 3y2Þ þ y2�� ; ð2:48Þ

e2γ ¼ 1

ðα2 − 1Þ2
�
x2 − 1

x2 − y2
−
2α2ðx2 − 1Þðx4 − 3x2y2 þ x2 þ y2Þ

ðx2 − y2Þ3 þ α4ðx2 − 1Þ3
ðx2 − y2Þ3

�
: ð2:49Þ

Note that for δ ¼ 1 the metrics built here and in the
previous section coincide with the Kerr spacetime.
But for δ ¼ 1=2 (and possibly ∀ δ ≠ 1) the two con-
structions give rise to inequivalent Ernst potentials.

Since the coordinate system ðx; yÞ used for both con-
structions is the same (i.e., prolate spherical), the two
spacetimes are different, as scalar curvature invariants
show. Another difference between the two rotating
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BBMB spacetimes presented here and in Sec. II A lies
in the multipolar expansion. In fact, with the help
of Appendix C and Eq. (2.38), we can compute the
mass and angular multipole moments up to the octu-
pole, for the metric (2.47)–(2.49) in the Einstein
frame:

M0 ¼ m; J0 ¼ 0;

M1 ¼ 0; J1 ¼ −
16α3m2

ð1þ 3α2Þ2 ;

M2 ¼
ð−5α6 − 69α4 þ 9α2 þ 1Þm3

ð1þ 3α2Þ3 ; J2 ¼ 0;

M3 ¼ 0; J3 ¼
8κ4α3ðα2 þ 1Þ
ðα2 − 1Þ4 : ð2:50Þ

This multipolar moment expansion differs both quali-
tatively and quantitatively with respect to the one in
Eq. (2.40). Since the multipole moments considered
here are not coordinate dependent, for δ ¼ 1=2 the
metrics constructed in here and in Sec. II A are not
diffeomorphic, and thus they describe different space-
times, in contrast with the case δ ¼ 1. In particular,
the multipole expansion (2.50) is typical of metrics
that are symmetric with respect to the equatorial plane
y ¼ 0, as can be directly checked in Eqs. (2.47)–
(2.49).
For large values of the radial coordinate R [as defined in

Eq. (2.35) and taking into account the relation (2.38)] the
metric approaches spatial infinity as

ds2 ∼ −
�
1 −

2m
R

�
dt2 þ

�
1þ 2m

R

�
dR2

þ 64m2α3sin2θ
Rð1 − α2Þ2 dtdφþ R2ðdθ2 þ sin2θdφ2Þ

þO

�
1

R2

�
:

As explained in Ref. [20], for this class of stationary and
axisymmetric spacetimes, the null horizons can be found
from the relation

gttgφφ ¼ g2φt ⇒
ρ2

ð1 − 8πG
6
Ψ2Þ2 ¼ 0: ð2:51Þ

So [using the radial coordinate (2.35)] the RH ¼ κ=2
hypersurface is null, gRRðRHÞ ¼ 0, and in the no-rotation
limit it coincides with the BBMB event horizon,

RH ¼ m
1 − α2

1þ 3α2
⟶
α→0

m: ð2:52Þ

Actually, the hypersurface RH ¼ κ=2 is double degenerate,
as it occurs in the static case, where the geometry is
extremal even though the mass parameter is free (and the
addition of electromagnetic charges to the BBMB black
hole cannot alter its extremality). For a reasonable range of
the mass and rotation parameters and radial coordinate R,
the scalar curvature invariants (such as the Riemann
squared RμνσλRμνσλ) diverge only at R ¼ 0, as can be seen

FIG. 1 (color online). Plot of the RμνσλRμνσλðR; yÞ curvature invariant for particular values of the parameters δ ¼ 1=2, α ¼ 1=2, and
κ ¼ 1. It diverges when the radial coordinate R → 0. This behavior remains qualitatively the same for other values of α, κ in the range
0 ≤ α ≤ 1 and κ ≥ 0.
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in Fig. 1. The symmetry axis is located at y ¼ �1, as can be
checked by the fact that gtφ and gφφ vanish there.
The surface horizon area, defined by R ¼ κ=2, is

given by

SH ¼
Z

2π

0

dφ
Z

1

−1
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gyygφφ

p jR¼m ¼ πκ2: ð2:53Þ

Therefore, similarly to the standard GR case where the
Kerr black hole’s event horizon area is given by
8πmðmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
Þ, the presence of the rotation shrinks

the size of the horizon for a given value of the mass.
Nevertheless its geometry remains spherical as in the static
case; this can be understood by looking at the equatorial
and polar circumferences, which are, respectively,

Ce ¼
Z

2π

0

ffiffiffiffiffiffiffi
gφφ

p
dφ ¼ πκ; ð2:54Þ

Cp ¼
Z

1

−1

ffiffiffiffiffiffi
gyy

p
dy ¼ πκ: ð2:55Þ

The topology of the Sh surface can be checked with the
help of the Gauss-Bonnet theorem. The Euler characteristic
is given by

χðShÞ ¼
1

2π

Z
2π

0

dφ
Z

1

−1
dy

ffiffiffī
g

p
R̄ ¼ 2; ð2:56Þ

where ḡ and R̄ are the determinant and Ricci scalar curva-
ture of the metric defined on the surface’s horizon Sh at
constant time. Therefore the genus g ¼ χðShÞ=2 − 1 of the
surface Sh is null, so the horizon topology is spherical.
The radial coordinate (2.35) was chosen because it is the

simplest one that contains the static radial coordinates (2.34)
in the limit of null rotation. But a better-suited coordinate
transformation xðRÞmight exist for describing the stationary
spacetime, in particular for a black hole interpretation.
Thanks to the Yamakazi potentials [18] it is possible to

write the spacetime defined by the Ernst potential (2.6) in a
closed metric form with the parameters δ;α; κ free. This is
useful to recognize the limits to some notable spacetimes,
such as Schwarzschild, Kerr or BBMB. Thus, when the
scalar field is conformally coupled and for α ¼ β [and
consequently, according to Eq. (2.44), τ ¼ 0], the structure
functions in the metric (1.4) become7

f ¼ Rþ
Lþ

�
x − 1

xþ 1

�
δ−1

; ð2:57Þ

ω ¼ κ1 − 2κ
Mþ
Rþ

�
x − 1

xþ 1

�
1−δ

; ð2:58Þ

γ ¼ 1

2
log

�
κ2Rþ
x2 − y2

�
; ð2:59Þ

Ψ ¼
ffiffiffiffiffiffiffiffiffi
6

8πG

r
tanh

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

12

r
log

�
x − 1

xþ 1

��
; ð2:60Þ

where

Rþðx; yÞ ¼ ðx2 − 1Þð1 − λμÞ2 − ð1 − y2Þðλþ μÞ2; ð2:61Þ

Lþðx; yÞ ¼ ð1 − λμÞ½ðxþ 1Þ2 − λμðx − 1Þ2�
þ ðλþ μÞ½λð1 − yÞ2 þ μð1þ yÞ2�; ð2:62Þ

Mþðx; yÞ ¼ ðx2 − 1Þð1 − λμÞ½λþ μ − yðλ − μÞ�
þ ð1 − y2Þðλþ μÞ½1 − λμþ xð1þ λμÞ�;

ð2:63Þ

while the conformal factor Ω is given by Eq. (1.5), and
λðx; yÞ and μðx; yÞ are the same as in Eqs. (2.8) and (2.9),
respectively. The integration constants κ1 and κ2 are fixed
by requiring elementary asymptotic flatness of the metric
(2.57)–(2.60) as follows:

lim
x→∞

ω ¼ 0 ⇒ κ1 ¼
4κα

α2 − 1
; ð2:64Þ

lim
y→�1

γ ¼ 0 ⇒ κ2 ¼ ðα2 − 1Þ−2; ð2:65Þ

while κ remains the same as in Eq. (2.38). The constraint
(2.64) for κ1 also arise demanding the regularity of the
metric on the rotation axis. In fact, according to Ref. [20]
gφφ and gtφ have to vanish where the killing vector ∂φ ¼ 0.
The main difference with respect to standard general
relativity [14] appears in γðx; yÞ, which in our case
[according to Eqs. (2.19)–(2.24)] assumes the simple
expression (2.59). Actually, when δ ¼ 1 the scalar field
vanishes, and we recover the rotating black hole of Einstein
theory: the Kerr spacetime.
Some limits to notable spacetimes are shown in Table I.
In order to have the Kerr spacetime in the standard

Boyer-Lindquist coordinate representation, we define

x ¼ r −m
κ

; y ¼ cos θ; ð2:66Þ

while to recover the static BBMB black hole (2.32) one has
to use the coordinate transformation (2.34).
Even though the distortion parameter δ continuously

connects the Kerr black hole with the rotating version of the
BBMB black hole we do not expect to have a physical
process that actually connects these two black holes. This is
because even in the static limit (when 1=2 < δ < 1) one has
naked singularities.

7A MATHEMATICA notebook with this metric can be found at
https://sites.google.com/site/marcoastorino/papers/1412‑3539.
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Note that these spacetimes are naturally NUT free
(because α ¼ β), but is possible to add NUT charge with
an extra Ehlers transformation, as we have done to obtain
the more general case (2.10).

III. MULTIPOLAR FJRW METRICS

It is possible to push the solution-generating mechanism
with the minimally and conformally coupled scalar field
further to construct mass and angular multipolar general-
izations of the FJRW solutions with an infinite number of
independent parameters. We recall that the mass multipole
solutions have the peculiar property that they do not vanish
in the Newtonian limit, unlike the angular multipoles (i.e.,
the ones carried by the Tomimatsu-Sato solution). On
the other hand, the angular multipoles are produced
by the mass deformation of the body due to the rotation.
The simplest example—the case of a null scalar field—is
given by the Erez-Rosen metric which is a static spacetime
endowed with a quadrupole moment. Of course these
solutions in general have a curvature singularity that is
not covered by an event horizon, and therefore they are not
suitable to describe black holes (but they can describe other
astrophysical objects). By applying the HKX transforma-
tion it is possible to build new exact stationary and
axisymmetric vacuum solutions possessing an arbitrary
large number of independent parameters [14].
These results can be directly generalized to the case of a

minimally or conformally coupled scalar field, as we have
done in the monopolar solutions of Secs. II A and II B. To
do so one has to generalize Eqs. (2.8)–(2.10) to

λ̄ ¼ αðx2 − 1Þ1−δðxþ yÞ2δ−2 exp
�
2δ
X∞
n¼1

ð−1ÞnqnBn−

�
;

ð3:1Þ

μ̄ ¼ βðx2 − 1Þ1−δðx − yÞ2δ−2 exp
�
2δ
X∞
n¼1

ð−1ÞnqnBnþ

�
;

ð3:2Þ

Ē ¼ ðdþ þ d−e2δψÞeiτ − ðdþ − d−e2δψÞ
ðdþ þ d−e2δψÞeiτ þ ðdþ − d−e2δψÞ

; ð3:3Þ

where, for n ≥ 0,

Bn� ¼ ð�1Þn
2

log

�ðx∓yÞ2
x2 − 1

�
− ð�1ÞnQ1ðxÞ þPnðyÞQn−1ðxÞ

−
Xn−1
k¼1

ð�1ÞkPn−kðyÞ½Qn−kþ1ðxÞ−Qn−k−1ðxÞ�;

ψðx; yÞ ¼
X∞
n¼1

ð−1Þnþ1qnPnðyÞQnðxÞ; ð3:4Þ

where PnðyÞ are the Legendre polynomials and QnðxÞ are
the Legendre functions of the second kind8; d� follows the
definition (2.7). fqngn¼0;1;2;::. are independent constants
related to the metric multipolar expansion, for both angular
or mass multipole moments. To be more precise, the qn
term gives contributions to the 2n multipole; further details
can be found in Appendix C or in Ref. [14]. Here,
integration constants are set to zero according to

lim
x→∞

Bn� ¼ 0:

In Secs. II A and II B we considered the simplest case,
where q0 ¼ 1 and qj ¼ 0 ∀ j > 0; in that case Eqs. (3.1)–
(3.3) trivially reduced to Eqs. (2.8)–(2.10).
Up to this point the Ernst potential worked well for both

the vacuum case (describing stationary rotating multipolar
Zipoy-Woorhees metrics) and the scalar coupling (describ-
ing stationary rotating FJRW metrics). From the Ernst
potential we can extract the fðx; yÞ and ωðx; yÞ fields. But
the main difference in the two theories consists of the
remaining γðx; yÞ structure function of the Lewis-Weyl-
Papapetrou metric, and a further possible conformal trans-
formation if we want to work in the conformally coupled
theory. To obtain γðx; yÞ one has to integrate Eqs. (2.19)–
(2.20), where the presence of a nontrivial scalar field
becomes relevant. For the scalar field (1.13) considered
in this paper, the correction with respect to standard general
relativity is given in Eq. (2.24).
As a significant example we will now build the Erez-

Rosen metric with a minimally coupled scalar field. The
standard Erez-Rosen metric can be built from Eqs. (3.1)–
(3.4) by fixing the parameters as follows:

q0 ¼ 1; q1 ¼ 0; q2 ≠ 0; qj ¼ 0 ðj > 2Þ;
κ ¼ m; α ¼ β ¼ τ ¼ 0; δ ¼ 1:

Analogously, if we want to have a Erez-Rosen metric in the
presence of a minimally (or conformally) coupled scalar
field (1.13) [or Eq. (2.28)] we have to choose the same
values for the parameters qj, κ, α, β as in the vacuum case,

TABLE I. Some specializations of the metric (l.4) and (2.57)–
(2.63), for some values of its parameters. m and a denote the
standard mass and angular momentum (in units of mass) of the
Kerr spacetime.

Spacetime α ¼ β κ δ

Kerr black hole �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m−

ffiffiffiffiffiffiffiffiffiffi
m2−a2

p

mþ
ffiffiffiffiffiffiffiffiffiffi
m2−a2

p
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 − a2
p

1

Schwarzschild black hole 0 m 1
BBMB black hole 0 2m 1=2
Rotating BBMB α 2m ð1−α2Þ

1þ3α2
1=2

8See Appendix A for more information about the Legendre
functions of the second kind.
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so that asymptotically and in the weak-field limit, for small
m, the scalar coupled cases have a similar multipolar
behavior with respect to the vacuum case. Obviously in
this case δ ¼ 1=2 because the metric has to reduce to FJRW
(or BBMB) spacetime when the quadrupole moment of the
source vanishes (i.e., q2 ¼ 0), in the same way the Erez-
Rosen metric reduces to the Schwarzschild black hole.
With this parametric imposition the Ernst potential (3.3)
becomes

E ¼ f ¼ exp

�
q2ð3y2 − 1Þ

×

�
1

4
ð3x2 − 1Þ log

�
x − 1

xþ 1

�
þ 3

2
x

�� ffiffiffiffiffiffiffiffiffiffiffi
x − 1

xþ 1

r
: ð3:5Þ

Since the spacetime is static, the Ernst potential is not
complex and ω ¼ 0; therefore, the remaining unknown
function can be obtained by integrating Eqs. (2.19) and
(2.20), which gives

γ ¼ 1

2

�
1þ q2

2
þ q22

4

�
log

�
x2 − 1

x2 − y2

�

þ 9q22
256

ðx2 − 1Þðy2 − 1Þ

× ½x2ð9y2 − 1Þ − y2 þ 1�log2
�
x − 1

xþ 1

�

þ 3q2
64

ðy2 − 1Þ
��

1þ x log

�
x − 1

xþ 1

��
× ½8þ q2½3ð9x2 − 7Þy2 − 3x2 þ 5��

þ ½8þ q2ð9y2 − 1Þ�
�
:

Here the arbitrary integration constant was set to fulfill
Eq. (2.46) to avoid conical singularities on the symmetry
axis. The scalar field remains as in Eq. (1.13) or Eq. (2.28)
depending on if we are considering the Einstein or Jordan
frame, respectively. Let us compute the first mass and
angular multipole moments for the above spacetime. Using
the general results of Appendix C we have, for the
minimally coupled system,

M0 ¼ m; M1 ¼ 0; M2 ¼ m3

�
1þ 8

15
q2

�
;

ð3:6Þ

Jj ¼ 0; ∀ j ≥ 0: ð3:7Þ

There is a difference with respect to the Erez-Rosen mass
multipole moments that is basically due to the different
value of the Zipoy parameter δ, which (for instance) can be
seen by looking at the mass quadrupole moment (the Erez-
Rosen value is MER

2 ¼ 2q2m3=15).

IV. COMMENTS AND CONCLUSIONS

In this paper, the Ernst solution-generating technique, in
the context of standard Einstein gravity with a (minimally
or) conformally coupled scalar field, was enhanced to
include the HKX transformations. These transformations
are able to add rotation while preserving asymptotic and
elementary flatness. Applying these methods, we were able
to generate a large family of asymptotically flat, axisym-
metric, and stationary solutions for both the minimally and
conformally coupled theories, containing (apart from the
Zipoy-Woorhees distortion parameter δ and the mass m)
two independent parameters: the rotation and reflection
parameters α and β. We explained how to remove the
possible NUT charge emerging from the HKX transforma-
tion. As significant examples, we analyzed some special
cases that are continuously connected to the Kerr black hole
by the distortion parameter, where only one independent
extra parameter was left: the rotation (i.e., β ¼ 0 and
α ¼ β). In the minimal frame they can be considered as
the stationary extension of the Janis-Winnicour-Robinson-
Fisher solution, while in the conformally coupled theory
they include a rotating generalization of the BBMB black
hole. Although both cases have a clear limit to the BBMB
black hole when the rotation parameter is turned off, the
case with α ¼ β is the most similar to the rotating black
hole in GR, that is, an angular and mass multipolar
expansion and a geometry similar to the extremal Kerr
spacetime. Depending on the relative values of the α and β
parameters introduced by the HKX transformation, these
axisymmetric spacetimes may or may not be symmetric
with respect to the equatorial plane. The more general case
where both the rotation and reflection parameters are not
null and independent remains to be studied.
This family has been further generalized to contain an

arbitrary number of independent parameters related to
additional mass multipoles. As an example, we provided
an Erez-Rosen-like spacetime in the presence of a scalar
field.
Note that the static seed metric of the BBMB black hole

coincides with that of the extremal Reissner-Nordström
black hole. Therefore, if one wants to apply the Janis-
Newman (JN) algorithm for adding rotation, the extremal
Kerr-Newman metric would be obtained, which is not a
solution for the theory we are dealing with. This occurs
because the JN algorithm was discovered a posteriori to
work within Einstein-Maxwell general relativity, and it is
just a (complex) coordinate transformation and thus not
dependent of the specific theory one is actually consider-
ing. On the other hand, the resulting stationary metrics we
have built (after the HKX transformation in the Ernst
formalism) are different from the Kerr-Newman metric, and
they are proper solutions of the field equations.
It may also be interesting for future work to add the

cosmological constant term, because it turned out to be
useful in regularizing the behavior of the scalar field on the
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horizon. This is because the cosmological constant (of the
appropriate positivity) shifts the position of the horizon so
that the divergence of the scalar field is protected by the
event horizon [5]. Of course, this is not a trivial task since a
solution-generating technique that includes the cosmologi-
cal term is not known at the moment [15].
HKX transformations can be adapted in other gravity

theories connected to general relativity with a minimally
coupled scalar field by a conformal transformation [such as
Brans-Dicke or some fðRÞ gravity theories], in basically
the same way as described in this paper for general
relativity with a conformally coupled scalar field.

ACKNOWLEDGMENTS

I would like to thank Eloy Ayon-Beato, Fiorenza de
Micheli, Mokhtar Hassaine, Cristian Erices, Hideki Maeda,
and Cristián Martínez for fruitful discussions. This work
has been funded by the Fondecyt Grant No. 3120236. The
Centro de Estudios Científicos (CECs) is funded by the
Chilean Government through the Centers of Excellence
Base Financing Program of Conicyt.

APPENDIX A: LEGENDRE POLYNOMIALS AND
FUNCTIONS OF THE SECOND KIND

Legendre polynomials PnðxÞ can be obtained by the
Rodrigues formula,

PnðxÞ ¼
1

2nn!
dn

dxn
½ðx2 − 1Þn�: ðA1Þ

Legendre functions of the second kind QnðxÞ can be built
by means of PnðxÞ with the following prescription:

QnðxÞ ¼
1

2
PnðxÞ log

�
xþ 1

x − 1

�
−Wn−1ðxÞ; ðA2Þ

where

Wnþ1 ¼
Xn
k¼1

1

k
Pk−1ðxÞPn−1ðxÞ: ðA3Þ

Thus, the first few are

Q0ðxÞ ¼
1

2
log

�
xþ 1

x − 1

�
; ðA4Þ

Q1ðxÞ ¼
1

2
x log

�
xþ 1

x − 1

�
− 1; ðA5Þ

Q2ðxÞ ¼
1

4
ð3x2 − 1Þ log

�
xþ 1

x − 1

�
−
3

2
x; ðA6Þ

Q3ðxÞ ¼
1

4
ð5x3 − 3xÞ log

�
xþ 1

x − 1

�
−
5

2
x2 þ 2

3
: ðA7Þ

APPENDIX B: COSGROVE’S METRICS
WITH A SCALAR FIELD

For sake of completeness we also present the extension
of another solution-generating technique (based on Ernst
equations and complex potentials) that is able to achieve
stationarity without spoiling the asymptotic flatness, given
by Cosgrove in Refs. [21,22]. It provides the rotating
generalisation of the Zipoy-Woorhess metric and the
generalization of the Tomimatsu-Sato metric for noninteger
δ (which is not equivalent to the generalizations studied in
Secs. II A, II B, and III, which are based on the HKX
transformation). For a generic δ, it is concise enough to
work directly in the metric formalism, and not only in the
Ernst picture. Let us begin by considering an example
containing both the Kerr and Zipoy-Woorhess metrics. We
will present the standard separable Cosgrove solution of
Ref. [22] and we will show how to adapt it to the presence
of the scalar field according to Eqs. (2.21)–(2.22). It can be
most compactly expressed when the NUT charge is not
null; further on we will show how to remove it, if so
desired. When the scalar field is null the axisymmetric
stationary metric is given by the following Ernst potential:

E ¼ dþ − d−
dþ þ d−

; ðB1Þ

with

d� ¼ p
2
ðx2 − 1Þδ̄½ðxþ 1Þδ̄þ1ð1 − yÞδ̄

� ðx − 1Þδ̄þ1ð1þ yÞδ̄� þ iq
2
ð1 − y2Þδ̄

× ½ðxþ 1Þδ̄ð1 − yÞδ̄þ1∓ðx − 1Þδ̄ð1þ yÞδ̄þ1�: ðB2Þ

p and q are two dependent parameters related to the mass
and angular momentum: when q ¼ 0 the Ernst potential
remains real, so the metric is static; in this case the
parameters are related by the usual constraint
p2 þ q2 ¼ 1. δ̄ is chosen to fit the notation of Ref. [22]
and is related to ours by δ ¼ δ̄þ 1; hence, the Kerr
spacetime is now given for δ̄ ¼ 0. Note that for −1 ≤ δ̄ ≤
0 (or 0 ≤ δ ≤ 1) the scalar field is real; otherwise, it is
imaginary.
Explicitly, the Ernst potential (B1) has the form

E ¼
�ðx − 1Þð1þ yÞ
ðxþ 1Þð1 − yÞ

�
δ̄

×
pðx2 − 1Þδ̄ðx − 1Þ − iqð1 − y2Þδ̄ð1þ yÞ
pðx2 − 1Þδ̄ðxþ 1Þ − iqð1 − y2Þδ̄ðy − 1Þ : ðB3Þ

Note that this potential does not contain the static BBMB
spacetime, and therefore it cannot considered a good seed
for a stationary BBMB.
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The structure functions of the Lewis-Weyl-Papapetrou
metric descending from the potential (B1) are

f ¼
�ðx − 1Þð1þ yÞ
ðxþ 1Þð1 − yÞ

�
δ̄

×
p2ðx2 − 1Þ2δ̄þ1 − q2ð1 − y2Þ2δ̄þ1

p2ð1þ xÞ2ðx2 − 1Þ2δ̄ þ q2ð1 − yÞ2ð1 − y2Þ2δ̄ ;

ðB4Þ

ω ¼ −κ
2pq½ðxþ 1Þð1 − yÞ�2δ̄þ1ðxþ yÞ
p2ðx2 − 1Þ2δ̄þ1 − q2ð1 − y2Þ2δ̄þ1

; ðB5Þ

e2γ0 ¼ b
ðx2 − 1Þδ̄2ð1 − y2Þδ̄2
ðx − yÞð2δ̄þ1Þ2ðxþ yÞ

× ½p2ðx2 − 1Þ2δ̄þ1 − q2ð1 − y2Þ2δ̄þ1�; ðB6Þ

where b is an arbitrary integration constant. When the
scalar field (1.13) is present the only structure function of
the Lewis-Weyl-Papapetrou metric that changes is γ. It can
be found thanks to Eqs. (2.19)–(2.20):

e2γΨ ¼ b
ðxþ yÞδ̄2þ2δ̄−1ð1 − y2Þδ̄2
ðx − yÞ3δ̄2þ2δ̄þ1ðx2 − 1Þ2δ̄

× ½p2ðx2 − 1Þ2δ̄þ1 − q2ð1 − y2Þ2δ̄þ1�

¼ e2γ0
�
x2 − y2

x2 − 1

�
δ̄2þ2δ̄

: ðB7Þ

For δ̄ ¼ 0 the scalar field is null, γΨ → γ, and the spacetime
becomes a Kerr-NUT black hole. We can remove the
NUT charge by applying an Ehlers transformation to the
Ernst potential of Ref. [21] and requiring the appropriate
falloff boundary conditions. So we add an extra NUT
charge, parametrized by τ, as done in Sec. II. The Ehlers-
transformed Ernst potential (B1) is

E ¼ dþeiτ − d−
dþeiτ þ d−

: ðB8Þ

When δ̄ ¼ 0 the ω function coming from this potential is
given by

ω ¼ ω0 þ
2κ

q
ðp cos τ þ q sin τÞ − 2κpðx2 − 1Þ½ðp2x − q2yÞ cos τ þ p2 þ pqðxþ yÞ sin τ þ q2�

p2qðx2 − 1Þ þ q3ðy2 − 1Þ ; ðB9Þ

whose asymptotic behavior for large x is given by

ω ≈
�
−
2κq
p

−
2κp
q

þ 2κqy cos τ
p

− 2κy sin τ þ ω0

�
þ 2κqðy2 − 1Þ½p cos τ þ q sin τ�

p2x
þO

�
1

x2

�
: ðB10Þ

Requiring the usual falloff at spatial infinity [Oð1=xÞ], we
impose

cos τ ¼ p and ω0 ¼
2κ

pq
: ðB11Þ

Note that Eq. (B11) with p2 þ q2 ¼ 1 implies that
sin τ ¼ q. By fine-tuning the NUT charge we have erased
the previous existing one. Therefore we remain with a pure
Kerr spacetime. To convince oneself of this, it is sufficient
to check the constrained Ernst potential, which is exactly
that of Kerr spacetime:

Ejδ̄¼0 ¼ 1 −
2ðpþ iqÞ

pþ iqþ eiτðpx − iqyÞ →
px − iqy − 1

px − iqyþ 1
:

ðB12Þ
For δ > 0 the spacetimes (B4)–(B7) are NUT free, so we

do not need an additional Ehlers transformation (but Ψ
becomes imaginary). On the other hand, γ and γΨ remain
the same as before [Eqs. (B6) and (B7), respectively],

because the Ehlers transformations do not affect Eqs. (2.19)
and (2.20) [19].

APPENDIX C: MULTIPOLAR MOMENTS

It is possible to compute the angular and mass multipole
moments from the Ernst potential in prolate spheroidal
coordinate [14,23]. This can clarify the role of the indepen-
dent constants that appear in the general multipolar metric
presented in Sec. III. There are several definitionsofmultipole
moments for axisymmetric fields; we consider here those
given by Geroch-Hansen ones [24]. These have the advan-
tages of being coordinate independent and they coincidewith
the Newtonian moments (in the case of flat spacetime).
According to the notation used in Eqs. (3.1)–(3.3), we

list the first massMj and angular Jj multipole moments (for
more details see Ref. [14]9):

9After the completion of this paper, Ref. [25] was published
where the contribution of the scalar field is also taken into
account.
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M0 ¼ κ

�
δq0 þ

2αβ

1 − αβ

�
; ðC1Þ

M1 ¼ κ2
�
−
δq1
3

þ β2 − α2

ð1 − αβÞ2
�
;

M2 ¼ κ3
�
2δq2
5

−
δ3

3
−

2δ2αβ

1 − αβ
þ δ

�
1

3
þ αβð−2 − 2αβ þ 3α2 þ 3β2 þ 4α2β2Þ − 3ðα2 þ β2Þ

ð1 − αβÞ3
�

þ 2
ðαþ βÞ2 − αβð1þ 2α2 þ 2β2 þ 2αβ þ α2β2Þ

ð1 − αβÞ3
�
;

M3 ¼ −
k4ðα2 − β2Þfα2½3β2ðδ − 1Þ2 − 1� − 2αβ½3ðδ − 2Þδþ 4� − β2 þ 3ðδ − 1Þ2g

ðαβ − 1Þ4 ;

J0 ¼ −κ
α − β

1 − αβ
;

J1 ¼ −κ2
αþ β

ð1 − αβÞ2 ½3αβ þ 2δð1 − αβÞ − 1�;

J2 ¼ −
κ3

1 − αβ

�
−
2

3
δq1ðαþ βÞ þ ðα − βÞð1 − δÞ2

�
−

κ3

ð1 − αβÞ3 ðβ
3 − α3 þ αβ2 − α2βÞ;

J3 ¼
κ4ðαþ βÞ½5α3ðβ3 þ βÞ þ α2ðβ2 − 3Þ þ αβð5β2 − 3Þ − 3β2 þ 1�

ð1 − αβÞ4 ;

þ δκ4ðαþ βÞfα2½β2ð2δ2 − 15δþ 28Þ þ 12� − 4αβðδ2 − 3δ − 1Þ þ 12β2 þ 2δ2 þ 3δ − 8g
3ð1 − αβÞ3 : ðC2Þ

For simplicity, we put qi ¼ 0 ∀ i in M3 and J3. When the
NUT parameter τ ≠ 0 the angular and mass multipole
moments, for n ≤ 3, are modified as follows:

M0
n ¼ Mn cos τ − Jn sin τ;

J0n ¼ Mn sin τ þ Jn cos τ: ðC3Þ

The presence of odd mass multipole and even angular
multipole moments means that the metric is not symmetric
with respect to the equatorial plane, y ¼ 0. Using
Eqs. (C1)–(C3), it is easy to obtain the first multipole
moments for the Kerr black hole of Secs. II A and II B:

M0¼m; M1¼0; M2¼−ma2; M3¼0; ðC4Þ

J0¼0; J1¼am; J2¼0; J3¼−ma3: ðC5Þ

The monopole term is the mass of the black hole, while
the angular dipole moment coincides with the angular

momentum. The higher multipoles are due to the rotation
and reflect the fact that the stationary Kerr black hole loses
the spherical symmetry typical of the static Schwarzschild
one.

APPENDIX D: MORE GENERAL
SCALAR FIELDS

The most general form for the scalar field in the minimal
frame that can be obtained by variable separation is given
by Eq. (2.23),

Ψ̂ ¼
X∞
n¼0

½anQnðxÞ þ bnPnðxÞ�½cnQnðyÞ þ dnPnðyÞ�:

ðD1Þ

Applying the condition of asymptotic flatness, we set to
zero the coefficients bn and cn, and considering δ ¼ 1=2,
the scalar field becomes

Ψ̂ ¼
X∞
n¼0

anQnðxÞPnðyÞ ¼
a0
2
log

�
x − 1

xþ 1

�
þ a1

�
x
2
log

�
x − 1

xþ 1

�
þ 1

�
yþ a2

�
3x2 − 1

4
log

�
x − 1

xþ 1

�
þ 3

2
x

��
3y2 − 1

2

�
þ…:

ðD2Þ
We can evaluate the contribution of the scalar’s first-term expansion to the γ ¼ γ0 þ

P∞
n¼0 γΨn

field. According to
Eqs. (2.21)–(2.22) the first contributions are given by
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γΨ0
¼ c0 þ

a20
4
8πG log

�
x2 − 1

x2 − y2

�
; ðD3Þ

γΨ1
¼ a21

16
8πG

�
4 log

�
x2 − 1

x2 − y2

�
þ ðy2 − 1Þ log

�
x − 1

xþ 1

��
4xþ ðx2 − 1Þ log

�
x − 1

xþ 1

���
; ðD4Þ

γΨ2
¼ a22

32
8πG

�
8 log

�
x2 − 1

x2 − y2

�
þ 9x2 þ 6y2ð8 − 15x2Þ þ 9y4ð9x2 − 4Þ þ 3

4
ðy2 − 1Þ log

�
x − 1

xþ 1

�

·

�
4x½5 − 3x2 þ 3ð9x2 − 7Þy2� þ 3ðx2 − 1Þ½1 − x2 þ ð9x2 − 1Þy2� log

�
x − 1

xþ 1

���
; ðD5Þ

where c0 is an integration constant that can be fixed by
physical requirements, such as the absence of conical
singularities.
If we relax the boundary conditions a little by

allowing a constant falloff of the scalar field, and the
coefficient b0 can be turned on. The effect of a non-null
b0 is simply a constant shift of the scalar field in the
minimally coupled theory [which is a symmetry in the
action (1.6)], but it reflects nontrivially in the confor-
mally coupled theory. In fact, by starting from any seed
solution ðds20;Ψ0Þ of the conformally coupled theory it
is possible to obtain a nonequivalent new solution in
this way:

ds20 ↦ ds2 ¼ 1 − 8πG
6
Ψ2

0

1 − 8πG
6
Ψ2

ds20; ðD6Þ

Ψ0 ↦ Ψ

¼
ffiffiffiffiffiffiffiffiffi
6

8πG

r
tanh

×

� ffiffiffiffiffiffiffiffiffi
8πG
6

r �
b0 þ

ffiffiffiffiffiffiffiffiffi
6

8πG

r
arctanh

� ffiffiffiffiffiffiffiffiffi
8πG
6

r
Ψ0

���
:

ðD7Þ

These transformations, parametrized by the real number
b0, map solutions of the theory of general relativity
with a conformally coupled scalar field onto itself.
In particular, when the seed metric is the BBMB
black hole (2.32) we obtain after the transformation
(D6)–(D7),

ds2 ¼ ½ρðsþ 1Þ − 2ms�2
4s½ρ −m�2

h
−
	
1 −

m
ρ



2
dt2 þ dρ2

ð1 − m
ρÞ2

þ ρ2dθ2 þ ρ2sin2θdφ2
i
; ðD8Þ

Ψ ¼ −
ffiffiffiffiffiffiffiffiffi
8πG
6

r
ρðs − 1Þ − 2ms
ρðsþ 1Þ − 2ms

; ðD9Þ

where for simplicity we have defined the parameter

b0 ¼
ffiffiffiffiffiffi
8πG
6

q
1
2
log s. Of course when the parameter b0

vanishes (and thus s ¼ 1) the transformation (D6)–(D7)
becomes the identity and we recover the standard
BBMB black hole (2.32). On the other hand, for
non-null b0 the transformation is not trivial, as can
be seen (for instance) by looking at the contribution of
the s parameter in the scalar curvature invariants.
This solution was first found, by direct integration, in

Ref. [26] and interpreted as a traversable wormhole. In the
case where the cosmological constant is not null, the
constant shift in the scalar field have the effect to map,
in the action, the conformal scalar potential from a quartic
power10 to a quartic polynomial; for further details see
Ref. [27]. Recently a solution to this system was found in
Ref. [28]. It admits a black hole interpretation and general-
izes Ref. [26] to the presence of the cosmological constant.
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