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We study D-dimensional charged static spherically symmetric black hole solutions in Gauss-Bonnet
theory coupled to nonlinear electrodynamics defined as arbitrary functions of the field invariant and
constrained by several physical conditions. These solutions are characterized in terms of the mass
parameter m, the electromagnetic energy ε, and the Gauss-Bonnet parameter l2α. We find that a general
feature of these solutions is that the metric behaves in a different way in D ¼ 5 and D > 5 space-time
dimensions. Moreover, such solutions split into two classes, according to whether they are defined
everywhere or they show branch singularities, depending on (m; ε; l2α). We describe qualitatively the
structures composed in this scenario, which largely extends the results obtained in the literature for several
particular families of nonlinear electrodynamics. An explicit new example, illustrative of our results, is
introduced. Finally we allow nonvanishing values of the cosmological constant length l2Λ and study the
existence of new structures, in both asymptotically anti–de Sitter and de Sitter spaces.
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I. INTRODUCTION

The consideration of extensions of general relativity
(GR) containing higher-order powers in the curvature
invariants is motivated by the fact that they arise in the
quantization of fields in curved space-time [1] and typically
appear in several approaches to quantum gravity, such as
those based on string theory [2]. Indeed, it is expected that
the effective Lagrangian of quantum gravity resulting from
the expansion to the low-energy regime will generically
include these higher-order curvature terms [3]. In this
sense, the finding and characterization of solutions—in
particular, black holes—is of great interest in shedding light
on the understanding of these kinds of modified, classical
gravity theories and, hopefully, in providing some insight
on the low-energy limit of quantum gravity. However, it
turns out that the class of gravitational actions made up as
functions of curvature invariants such as gμνRμν; RμνRμν,
and RμναβRμναβ generically gives rise to fourth-order differ-
ential field equations of motion and brings in ghosts.
Nonetheless, as found by Lovelock in the 1970s [4] (see
[5] for reviews on this topic), there is a particular combi-
nation of such invariants in which the field equations
contain only up to second-order derivatives of the metric
and the quantization of the linearized theory is free of
ghosts [6,7]. The Lovelock Lagrangian consists of a sum of
dimensionally extended Euler densities,

LLOV ¼
X½ðD−1Þ=2�

k¼0

ckLk; ð1Þ

where [z] is the integer part of the number z, D is the
number of space-time dimensions, ck is the kth order
Lovelock parameter. Lk is given by

Lk ¼
1

2k
δρ1σ1���ρkσkμ1ν1���μkνk R

μ1ν1
ρ1σ1 � � �Rμkνk

ρkσk ; ð2Þ

where δρ1σ1���ρkσkμ1ν1���μkνk is the generalized totally antisymmetric
Kronecker delta. For a given D, only terms with k<
ðD−1Þ=2 contribute to the equations of motion, while terms
with k > ðD − 1Þ=2 do not and the case k¼ðD−1Þ=2
becomes a topological term. The zeroth and first-order
terms in the Lagrangian (1) correspond to the cosmological
constant and the Einstein-Hilbert action, respectively, while
the second order,

LGB ¼ RμνρσRμνρσ − 4RμνRμν þ R2; ð3Þ
is the Gauss-Bonnet (GB) Lagrangian. This is the simplest
nontrivial modification of GR providing modified dynamics
and second-order field equations, as long as D > 4. For
D > 6 one may consider the next order in the curvature
invariants in (1) to provide additional modified dynamics,
and so on. Finding exact, nontrivial solutions to the field
equations of the family of Lagrangians (1) is, in general, a
hard task, only achievable in some particular cases [8].
Remarkably, the Lovelock family of Lagrangians lies at the
crossroad of themetric and Palatini formulations ofmodified
gravity, in the sense that the field equations in both
formalisms turn out to be the same, as opposed to in the
general case [9]. This fact makes Lovelock gravities physi-
cally appealing and further supports the interest in them.
Other approaches to higher-order gravity theories with
second-order field equations, dubbed quasitopological
gravities, have recently been considered in the literature [10].*drubiera@fudan.edu.cn

PHYSICAL REVIEW D 91, 064065 (2015)

1550-7998=2015=91(6)=064065(13) 064065-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.064065
http://dx.doi.org/10.1103/PhysRevD.91.064065
http://dx.doi.org/10.1103/PhysRevD.91.064065
http://dx.doi.org/10.1103/PhysRevD.91.064065


In GR, Gauss-Bonnet, and Lovelock gravities, much
interest has been paid to charged, nonrotating black holes.
This is due, on the one hand, to the fact that exact solutions
are more easily accessible in this case. On the other hand,
classical models have attracted a great deal of attention as a
way of modeling the behavior of charged particles.
Historically, the first example of such a model was the
Born-Infeld (BI) Lagrangian, introduced in the 1930s to
eliminate the divergence of the electron’s self-energy in
classical electrodynamics [11]. Indeed, BI-like Lagrangians
have been found to arise in the low-energy limit of string
and D-brane physics [12]. This has led to a renewed interest
in the consideration of nonlinear electrodynamics (NED)
in a variety of gravitational backgrounds. For instance,
electrostatic, spherically symmetric black hole solutions of
BI theory have been studied in the context of GR [13],
in anti–de Sitter spaces in several dimensions [14], in
GB theory [15], and in fðRÞ models [16]. Other physical
motivations for considering NED models include the
effective Lagrangian description of quantum electrodynam-
ics effects [17], the finding of regular black hole solutions
in GR [18,19], and the existence of models for which
Maxwell conformal invariance holds in any dimension
[20]. When any of these modifications of Maxwell electro-
dynamics are coupled to a particular gravity theory, a
different structure of the corresponding black hole solutions
arises. This manifests itself in the structure of their
singularities, or in the number and type of black hole
horizons, both qualitatively and quantitatively [21–28].
The main objective of this paper is to show that, no

matter what physical motivation underlies a particular NED
model, it is possible to establish general statements on the
features of electrostatic spherically symmetric (ESS) sol-
utions in GB theory coupled to NED models without
explicitly specifying the form of the Lagrangian density
function. This is possible provided that a number of
physically reasonable conditions on the form of the NED
Lagrangian density function (“admissibility”) are assumed.
This means that NED models are defined here as arbitrary
functions of the field invariants. These models fall into
classes according to the qualitative features of the corre-
sponding black hole solutions—the same for all models
within a given class. This framework largely broadens the
class of NED models studied in the literature since, as
opposed to the aforementioned studies, a full classification
of the corresponding gravitating structures in any such
admissible theories coupled to GB gravity takes place in
terms of a few parameters. No explicit form for the NED
function is needed. More specifically, these parameters are
the relation between the flat-space ESS energy, ε,1 and the

mass parameter, m, the number of space-time dimensions,
D, and the value of the GB coupling constant, l2α [and the
cosmological constant length, l2Λ, in asymptotically (anti–)
de Sitter backgrounds]. In some cases the behavior of these
solutions, when defined everywhere, differs largely between
the space-time dimensions D > 5 and D ¼ 5.
As an illustrative example of our analysis, the third-order

Lagrangian of quantum electrodynamics (the second-order
one is the well-known Euler-Heisenberg Lagrangian of
quantum electrodynamics [17]) is briefly discussed. In this
work we consider only horizons with the usual spherical
topology k ¼ 1.

II. INTEGRATION OF THE FIELD EQUATIONS

The D-dimensional action for the GB theory coupled to
NED models reads

S ¼ 1

2κ2

Z
dDx

ffiffiffiffiffiffi
−g

p ½ðR − 2ΛÞ þ αLGB� þ SNED; ð4Þ

where k2 ¼ 8πGD, GD is the D-dimensional gravitational
constant, Λ is the cosmological constant, and α is the GB
constant with dimensions of ðlengthÞ2. As was already
mentioned, the GB term is a topological invariant inD ¼ 4.
Thus, it does not contribute to the field equations, so in
order to obtain modified dynamics as compared to GR,
D ≥ 5 is assumed in what follows. The matter (NED)
action is given by

SNED ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
φðXÞ; ð5Þ

where φðXÞ is an arbitrary function of the field invariant
X ¼ − 1

2
FμνFμν, constructed with the field strength tensor

Fμν ¼ ∂μAν − ∂νAμ. In D ¼ 4 another field invariant can
be constructed, namely, −1

2
FμνF�μν, where F�μν¼1

2
ϵμναβFαβ

is the dual of the field strength tensor. However, because of
the dependence on F�μν, such an invariant cannot be
defined for D > 4. In addition, for D odd, one might
add a Chern-Simons term to the action (4), but we shall not
consider it here and will restrict ourselves to the electro-
magnetic field invariant X. Examples of nonlinear actions
for the electromagnetic field coupled to gravity and
considered in the literature include, among many others,
Born-Infeld [11,13–15], generalized Born-Infeld [21], log-
arithmic [22], Euler-Heisenberg [17,23], derivative correc-
tions to Maxwell [24], powerlike and conformally invariant
[20], Hoffman-Infeld [25], Coulomb-like [29], and models
leading to regular solutions [19].
For a given (unspecified) φðXÞ function, and for ESS

solutions whose unique nonvanishing component is EðrÞ ¼
Ftr, the components of the energy-momentum tensor

Tμ
ν ¼ 2φXFα

μFα
ν − δμ

νφðXÞ; ð6Þ

1That this energy be finite or not depends on the behavior of
the ESS field around the center of the solutions. This, in turn, is
just a consequence of the functional form of the matter Lagran-
gian density; see Sec. III.
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(where φX ≡ ∂φ
∂X) are obtained as

Tt
t ¼ Tr

r ¼ 2φX
~E2 − φðXÞ

Tθi
θi
¼ T

θj
θj
¼ −φðXÞ; i; j ¼ 2 � � �D − 1: ð7Þ

On the other hand, the line element for a static, spherically
symmetric space-time may be written as

ds2 ¼ eνðrÞdt2 − eλðrÞdr2 − r2dΩ2
D−2; ð8Þ

where dΩ2
D−2 ¼ dθ21 þ

P
D−2
i¼2

Q
i−2
j¼1 sin

2θjdθ2i is the metric
on the unit (D − 2) sphere. Because of the source symmetry
Tt
t ¼ Tr

r, it can be shown that the (t; t) and (r; r) compo-
nents of the Einstein equations lead to a single independent
metric function that may be written, without loss of
generality, as gαðrÞ ¼ eνðrÞ ¼ e−λðrÞ. The general procedure
to obtain the metric function gαðrÞ for a given NED source
Tt
t in GB theory was nicely described in Ref. [30] (and was

employed in several particular cases; see [15,25–27]).
Therefore, we shall not repeat the derivation and will
instead briefly summarize the main steps. From action (4)
the variational principle leads to the field equations

Gμν þ Λgμν ¼ Rμν −
1

2
gμνRþ αGGB

μν þ Λgμν ¼ κ2Tμν;

ð9Þ
where the correction GGB

μν is given by

GGB
μν ¼ 2½RRμν − 2RμαRα

ν − 2RαβRμανβ

þ Rαβγ
μ Rναβγ� −

1

2
gμνLGB: ð10Þ

For line element (8) these equations lead to the relation
[ ~α≡ ðD − 3ÞðD − 4Þα]

gαðrÞ − g0ðrÞ ¼
~α

r2
ð1 − gαðrÞÞ2; ð11Þ

between gαðrÞ and the solution with α ¼ 0. This corre-
sponds to the metric function that one would obtain for the
very same problem in GR formulated inD dimensions, i.e.,
static spherically symmetric solutions of the Einstein-
Hilbert Lagrangian coupled to NED matter (5) and with
a cosmological constant term. The finding of such a
solution g0ðrÞ is obtained by taking advantage of the fact
that X ¼ E2ðr; qÞ does not depend explicitly on the metric
as a consequence of gttgrr ¼ −1. Using this, the field
equations ∇μðφXFμνÞ ¼ 0, for ESS fields, admit a first
integral given by

rD−2φXEðrÞ ¼ q; ð12Þ

where q is an integration constant, related to the physical
charge Q of the ESS field as

Q2 ¼ ðD − 2ÞðD − 3Þ
2

q2: ð13Þ

It is worth mentioning that (12) takes the same form as it
does in the absence of gravity. Moreover, it also remains
unmodified for the GB theory, as a consequence of the
source symmetry Tt

t ¼ Tr
r. Such a first integral determines

the ESS field once the Lagrangian density function is given.
This field takes the same form, in the Schwarzschild-like
coordinate system (8), as in the absence of gravitation in
spherical coordinates. The Einstein equations in this case
can be easily integrated using (12). [In what follows we

redefine ~κ2 ¼ κ2=ωD−2, where ωD−2 ¼ 2π
D−1
2

ΓððD−1Þ=2Þ is the

surface volume of the ðD − 2Þ-dimensional unit sphere
and, subsequently, we drop the tilde for notational sim-
plicity.] This leads to

g0ðrÞ ¼ 1 −
m

rD−3 þ
2κ2

ðD − 2ÞrD−3 εexðr; qÞ þ
r2

l2Λ
; ð14Þ

where m is an integration constant related to the Arnowitt-
Deser-Misner mass, M, of the solution as [31]

M ¼ ðD − 2ÞωD−2

16π
m: ð15Þ

Here, we have defined

εexðr; qÞ ¼ ωD−2

Z
∞

r
RD−2T0

0ðR; qÞdR; ð16Þ

which is physically interpreted as the energy of the ESS
field outside of the sphere of radius r in the absence of

gravity. In (14) the anti–de Sitter (AdS) radius l2Λ ¼
− ðD−1ÞðD−2Þ

2Λ parametrizes the cosmological constant term.
Once the solution in Einstein gravity (14) is known, the
above equation (11) can be easily solved as

gαðrÞ¼1þr2

l2α

×

0
@1þϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2l2α

rD−1

�
m−

2κ2

D−2
εexðr;qÞ−

rD−1

l2Λ

�s 1
A;

ð17Þ

where we have defined l2α ¼ 2~α. In the limit α → 0 this
expression reduces to the one of (14). Thus, we recover
the solution of the Einstein-NED-Λ system, while in the
limit q → 0 we obtain the solution of Boulware and Deser
[6]. Note that there are two different branches for solution
(17), depending on ϵ ¼ �1, which come from taking a
square root in the resolution of a quadratic equation for
gαðrÞ. In the limit α → 0, the “plus” branch leads to
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gþα ≃ 1þ r2

l2Λ
− 1

rD−3 ðmþ 2κ2

ðD−2Þ εexðr; qÞÞ, which possesses

an opposite sign for the gravitational mass. It has been
argued by Boulware and Deser that in the vacuum case this
branch is intrinsically unstable and that the associated
graviton becomes a ghost [6], suggesting that this branch is
physically of less interest (see, however, [32]). On the other
hand, the “negative” branch recovers the right GR limit, and
thus in this work only this branch will be considered.

III. THE MODELS AND THE ESS FIELDS

Up to now our discussion is valid for any NED model
and static spherically symmetric electrovacuum solutions.
Let us now specify the class of NED models that shall be
considered throughout this paper. This analysis extends
the one performed in [33] to the D-dimensional case, as
detailed next. First we restrict ourselves to models for
which the definiteness, derivability, and single-valuedness
conditions on the NED function φðXÞ hold in all of the
domains of the definition of X > 0 covered by their ESS
solutions (see Ref. [34]). Such conditions are imposed in
order to avoid multibranched Lagrangian densities [35],
which carry potential singularities at the junction points in
the effective geometry as seen by photons (see the analysis
of [36], in the case of GR).
The second requirement concerns the fulfillment of the

positive definiteness of the energy functional in the absence
of gravity, which—for a diagonal energy-momentum ten-
sor, Tμν¼diagðρ;pr;p2;…;pD−1Þ—reads simply ρ¼pr>0.
Note that the weak energy condition (WEC) Tμνξ

μξν ≥ 0,
with ξμ a timelike vector, implies, in addition, p2 ¼ � � � ¼
pD−1, which holds automatically for the NED energy-
momentum tensor (7). This implies that our models will
thus satisfy the WEC. Explicitly, this constraint on the
energy density implies that

ρ ¼ Tt
t ¼ 2XφX − φðXÞ ≥ 0; ð18Þ

which must be satisfied everywhere for any field configu-
ration. Let us point out that wormhole solutions violating
the energy conditions (phantom energy models) have been
considered in the literature,2 giving rise to a very active
field of research [37]. Here, we shall not get into such
considerations and will instead restrict ourselves to models
satisfying the two above conditions.
To extract information from (18), we first assume that the

energy density vanishes in vacuum (X ≡ E2 ¼ 0), which
implies that φð0Þ ¼ 0. By analyzing inequality (18), one
easily obtains that three conditions on the function φðXÞ
must hold. From the fact that the ESS field can grow to
arbitrarily large values, we must have φX > 0ð∀X ≠ 0Þ,

implying that φðXÞ is a strictly monotonically increasing
function (except at X ¼ 0, where its derivative can vanish).
If we assume that the Lagrangian density is defined
everywhere, then the condition φðXÞ < 0 must hold in
the region X < 0. Finally, in the region X ≥ 0, inequality
(18) implies that the function φðXÞ= ffiffiffiffi

X
p

must be positive
increasing. If we add to this discussion the first integral
(12), it follows immediately that these admissibility con-
ditions endorse the everywhere definiteness, the strictly
monotonic behavior, and the single-branched character of
the (asymptotically vanishing) ESS solutions. An important
consequence of these admissibility conditions is the fact
that the function εexðr; qÞ in (16) becomes a monotonically
decreasing and concave function of r, as can be easily seen
in the double derivation of (16), and taking into account the
admissibility conditions established above.
Let us now study the behavior of the total energy in the

ESS field in D dimensions, which is obtained as

εðqÞ ¼ ωD−2

Z
∞

0

rD−2Tt
tðr; qÞdr

¼ ωD−2

Z
∞

0

dRð2qE − RD−2φÞ

¼ q
D−1
D−2εðq ¼ 1Þ; ð19Þ

where εðq ¼ 1Þ is the solution of unit charge. The con-
ditions for the finiteness of (20) are easily obtained using
Eq. (12), and they amount to a simple extension of the
results derived in Ref. [33] for the case of arbitrary D ≥ 4.
In order for (20) to converge at r → ∞, we assume that

the field vanishes asymptotically as [see the definition of Tt
t

in Eq. (7)]

EðrÞ ∼ β

rp
; ð20Þ

where β is a constant. We must next determine the value of
the parameter p > for convergence of the energy. Using
(12) the associated behavior for the Lagrangian density
function is given by

φðXÞ ∼ Xα; ð21Þ

where α ¼ pþD−2
2p . Inserting these behaviors into (20) and

noting that rD−2φ ∼ E, it follows that the finiteness of the
energy implies that p > 1. Therefore, one has
α < ðD − 1Þ=2, with a lower bound given by α > 1=2
(corresponding to p → ∞). Thus the ESS field approaches
its asymptotically vanishing values slower than
(p < D − 2), equal to (p ¼ D − 2), or faster than
(p > D − 2) the D-dimensional Coulombian one.
Consequently, a NED model for which the energy of the
ESS field at r → ∞ in four space-time dimensions is finite

2In these models it is usually assumed that violations of the
energy conditions can occur due to quantum fluctuations, at least
at some scales.
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leads also to asymptotically finite-energy ESS solutions in
the D-dimensional case (D > 4).
For the central region r → 0 there are, for admissible

models, two field behaviors compatible with the finite-
energy requirement. In class A1 the ESS field behaves as in
(20) (it diverges at r → 0), but now with α > ðD − 1Þ=2 for
convergence of the energy there, which implies 0 < p < 1.
The Lagrangian density behaves as in Eq. (21), with the
same relation among α, p, and D. This implies that if we
have a model whose finite-energy ESS solutions belong to
this class in D ¼ 4 dimensions (implying α > 3=2), they
become of divergent energy for some larger D. An explicit
example of this is the Euler-Heisenberg (EH) model [17],
defined by a Lagrangian density function (in D ¼ 4)
φðX; YÞ ¼ X

2
þ ξð4X2 þ 7Y2Þ; ξ > 0. It can be readily

checked that this model contains finite-energy ESS sol-
utions in D ¼ 4 dimensions, but not for D > 4. However,
higher-dimensional finite-energy ESS solutions of this
class A1 can be obtained by supplementing the EH
Lagrangian with higher powers of X (see Sec. IV C).
It is worth pointing out that if the A1 family is allowed to

cover the case with p > 1, this leads to another family of
ESS solutions (the A0 class), now with divergent energy.
The D-dimensional Coulomb field (p ¼ D − 2) belongs to
this family. Given the monotonically decreasing and con-
cave character of εexðr; qÞ for admissible models, the
behavior of all of the models in this family corresponds
to taking ε → ∞ in the discussion of Sec. IV below and, as
a consequence, its behavior will be similar to the Reissner-
Nordström-GB one (first studied in the first entry
of Ref. [15]).
On the other hand, in class A2 the ESS field attains a

finite value at the center, behaving there as

EðrÞ ∼ a − brσ; σ > 0; ð22Þ

while the behavior of the Lagrangian density becomes, by
using (12),

φðXÞ ∼ ð
ffiffiffiffi
X

p
− aÞγ þ Δ; ð23Þ

where Δ is an integration constant and the restriction γ ¼
σ−Dþ2

σ < 1must hold for the finiteness of the energy. In this
family there are two different behaviors for the Lagrangian
density functions. If 0 < γ < 1 (σ > D − 2), the
Lagrangian density takes a finite value around r → 0 given
by the value Δ ¼ φða2Þ, while for γ < 0 (σ < D − 2), the
Lagrangian diverges as X → a2. The case γ ¼ 0
(σ ¼ D − 2) is singular, behaving as

φðXÞ ∼ −ln ða −
ffiffiffiffi
X

p
Þ; ð24Þ

but it shows the same behavior as the γ < 0 one. The Born-
Infeld Lagrangian [11] is a well-known member of this
family, with σ ¼ 4.

In Table 1 we have summarized the different behaviours
of ESS fields at r → ∞ and at the center, together with the
conditions for finiteness of the energy there.

IV. GAUSS-BONNET-NED BLACK HOLES

Having discussed the behaviors of the ESS field that are
compatible with the admissibility requirement and the
finiteness of the energy, as well as the consequences for
the qualitative behavior of the function εexðr; qÞ in (16), we
proceed to study their black hole solutions within GB
theory. In this section we shall deal with asymptotically flat
solutions, so we set the cosmological constant term to zero
(Λ ¼ 0). As we shall see, all of the cases with D > 5
possess the same structure of horizons, but the behavior of
the metric in some of the cases for D ¼ 5 shows
differences, leading to some new structures. This is due
to the fact that, in the equation of the horizons (if any), i.e.,
the solutions of gtt ¼ 0, for the different configurations

2κ2

D − 2
εexðrh; qÞ ¼ m −

l2α
2
rD−5
h − rD−3

h ; ð25Þ

the right-hand side at rh → 0 takes the value m for D > 5,
but m − l2α=2 in the D ¼ 5 case. Now, by taking into
account the monotonic and concave character of εexðr; qÞ
for admissible models, the horizons can be obtained from
the cut points between the curve 2κ2

D−2 εexðr; qÞ and the beam
of curves m − rD−3 − ðl2α=2ÞrD−5, corresponding to differ-
ent values ofm once l2α is fixed (see Fig. 1). This leads to an
immediate classification of a number of possible horizons.
Indeed, since the large-rh behavior of this beam is governed
by the term −rD−3

h , this implies that it can be, at most, two
cut points between the curves in Eq. (25), regardless of the
sign and value of l2α. However, a new feature arises here as
compared with the GR case since the term

aðrÞ ¼ 1þ 2l2α
rD−1

�
m −

2κ2

D − 2
εexðr; qÞ

�
ð26Þ

inside the square root appearing in (17) can become
negative. This leads to a complex metric for a radius
smaller than a certain rS, which is the solution of the
equation

TABLE I. The NED models and their ESS solutions, together
with the condition for the finiteness of ε in Eq. (20). In this table
α ¼ ðpþD − 2Þ=ð2pÞ and γ ¼ ðσ −Dþ 2Þ=σ.
Models Field Lagrangian Finiteness of ε

r → ∞ EðrÞ ∼ β=rp φðXÞ ∼ Xα α < ðD − 1Þ=2
A1 EðrÞ ∼ β=rp φðXÞ ∼ Xα α > ðD − 1Þ=2
A2 EðrÞ ∼ a − brσ φðXÞ ∼ ða −

ffiffiffiffi
X

p Þγ γ < 1
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rD−1
S þ 2l2α0

�
m −

2κ2

D − 2
εexðrS; qÞ

�
¼ 0; ð27Þ

where l2α0 is the value for which a
0ðrSÞ ¼ 0 is satisfied. This

corresponds to

ðD − 1ÞðD − 2Þ þ 4κ2l2α0T
t
tðrS; qÞ ¼ 0: ð28Þ

This is a new kind of singularity, dubbed branch singularity
(BS), that arises at a nonvanishing horizon radius. This fact
splits the solutions into those defined everywhere and those
exhibiting branch singularities, according to the existence
or the absence of a value l2α0 . On the other hand, the
asymptotic behavior of the metric compatible with the
finiteness of the energy there [see Eqs. (20) and (21)] is
given by

gαðrÞ ∼ 1þ r2

l2α

�
1þ ϵ

�
1þ 2l2α

rD−1

×

�
m −

4κ2ðD − 2Þβq
ðp − 1ÞðpþD − 2Þrp−1

��
1=2

�
: ð29Þ

So, for asymptotically Coulombian fields [p ¼ D − 2 in
Eq. (20)], we recover the GB-Reissner-Nordström solution
obtained by Wiltshire in Ref. [15].
For all of the GB-NED solutions, the sign of the quantity

ΣðqÞ ¼ m −
2κ2

D − 2
εðqÞ; ð30Þ

as well as the one of l2α, becomes essential for their proper
characterization. Let us now characterize the Gauss-
Bonnet-NED black holes by first analyzing those whose
metric is defined everywhere.

A. Solutions defined everywhere

1. ΣðqÞ ≥ 0; l2α > 0

As seen in Fig. 1, the horizons (if any) of the different
configurations are obtained though the cut points between
the beam of curves m − rD−3

h − ðl2α=2ÞrD−5
h and the (mono-

tonically decreasing) curve 2κ2

D−2 εexðr; qÞ. From the posi-
tivity of l2α, any curve of the beam in the right-hand side of
Eq. (25) for D > 5 is a strictly monotonically decreasing
function, starting fromm ≥ 2κ2

D−2 εexðr; qÞ, and thus there is a
single cut point with εexðr; qÞ in this case. For D > 5 the
metric at the center behaves as

gαðr ∼ 0Þ ⋍ 1 −
ð2l2αΣðqÞÞ1=2

l2αr
D−5
2

þ � � � ; ð31Þ

and, consequently, it diverges there to −∞. Together with
the asymptotic behavior in (29), this confirms that there is a
black hole solution with a single horizon rh, given by the
solution of Eq. (25).

However, for D ¼ 5, at r → 0 the above beam of curves

takes the value m − l2α
2
≷ 2κ2

3
εðqÞ. When > holds, there is a

single cut point (see Fig. 1) between the curve 2κ2

D−2 εexðr; qÞ
and the beam of curves in the right-hand side of Eq. (25),
while two, one (degenerate), or none appear when < holds.
The metric at the center takes a (finite and < 1) value
given by

gαðr → 0Þ≃ 1 −
ð2l2αΣðqÞÞ1=2

l2α
þ � � � : ð32Þ

The derivative of the metric there depends on the central-
field behavior of the ESS fields. For the A1 class the
leading behavior term is given by (0 < p < 1)

g0αðr → 0Þ≃ −
4κ2qα

ðpþ 3Þð2l2αΣðqÞÞ1=2rp
þ � � � ; ð33Þ

(where g0 ≡ dg=dr) which diverges to −∞. In contrast,
for class A2 this derivative takes a finite (negative) value
given by

g0αðr → 0Þ≃ −
4κ2qb

3ð2l2αΣðqÞÞ1=2
þ � � � : ð34Þ

Consistent with the previous considerations, if ΣðqÞ≥ l2α=2,
then the metric around the center is negative and there is a
black hole with a single horizon. Extreme black holes may

FIG. 1. Qualitative procedure to obtain the number of horizons
in admissible models and solutions defined everywhere (see
Sec. IVA). The solid curves represent y ¼ 2κ2

D−2 εexðr; qÞ for cases
A2 (finite slope at r → 0) and A1 (divergent derivative). Each
curve begins at the value 2κ2

D−2 εðqÞ [these curves have been
normalized in the figure to some value εðqÞ for simplicity];
see Eq. (25). The cut points with the beam of (dashed) curves
m − l2α=2 − r2 (with l2α > 0, and different values of m) give the
horizons for the different configurations. Each curve of this beam
takes the value m when D > 5 and m − l2α=2 for D ¼ 5. The case
with l2α < 0 would show a positive slope at r → 0 for the beam of
curves, but the number of cut points with y are the same as in the
l2α > 0 case. For BS solutions, only cut points corresponding to
r > rS are relevant to the existence of horizons.
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arise (see Fig. 1) in the case 0 < ΣðqÞ < l2α=2 (the metric at
the center is now negative). They are defined by the
conditions gαðrhÞ ¼ g0αðrhÞ ¼ 0, which lead to

κ2

3
r2hextrðqÞT0

0ðrhextr; qÞ ¼ 1: ð35Þ

Their mass is given by

mhextrðqÞ ¼
1

4
½r2hextr þ l2α þ 2κ2qΦðrhextr; qÞ�; ð36Þ

where an integration by parts of the term εexðr; qÞ has been
performed. The quantity Φðrhextr; qÞ ¼

R∞
rhextr

Eðr; qÞdr is
the electric potential measured at infinity with respect to the
horizon. For any ESS field of form (20), the potential at
infinity vanishes and we then have Φ ¼ A0ðrhextr; qÞ.
In this D ¼ 5 case, besides extreme black holes

[m ¼ mextrðqÞ], there may be black holes with inner and
outer horizons [m > mextrðqÞ], or naked singularities oth-
erwise [m < mextrðqÞ]. Let us mention that, for the critical
value of the mass m ¼ 2κ2

3
εðqÞ, which corresponds to a

critical charge qcrit ¼ ð 3m
2κ2εðq¼1ÞÞ

3
4 [so Σ ¼ 0; see Eqs. (20)

and (30)], the metric at the center is gαðr ¼ 0Þ ¼ 1. Such
solutions are on the verge of becoming those of the subcases
with branch singularities (subcases IV B 2 and IV B 3; see
Sec. IV B) when m is decreased.

2. Σ < 0; l2α0 < l2α < 0

In this case the beam of the curves in Eq. (25) can cut the
curve εexðr; qÞ two, one (degenerate), or zero times,
regardless of the value of D since m − l2α=2 − r2h∣r→0 is
always below 2κ2

D−2 εðqÞ. For this class of solutions, an
extreme black hole is formed for the tangent cut point to
the beam (25). This leads to the extreme black hole radius
rextrðqÞ, obtained as

κ2r4hextrT
0
0ðrhextr; qÞ ¼

ðD − 2ÞðD − 3Þ
2

r2hextr

þ ðD − 2ÞðD − 5Þ
4

l2α; ð37Þ

of which Eq. (35) is a particular case. As in subcase IVA 1
with D ¼ 5, the associated extreme black hole mass in
these solutions for any D can be obtained by substituting
condition (37) into Eq. (25), leading to

mhextrðqÞ ¼
1

D − 1
½rD−3

hextr þ l2αrD−5
hextr þ 2κ2Φðrhextr; qÞ�:

ð38Þ
However, although the structure of the horizons is the same
in theD > 5 andD ¼ 5 cases (naked singularities, extreme
black holes, or two-horizon black holes), the behavior of
the metric at the center is not. As r → 0 the metric is

obtained as in Eq. (31), so it diverges there to þ∞ when
D > 5, while in the case D ¼ 5 it takes a finite value given
by Eq. (32) which, as opposed to the previous subcase, is
now larger than one.
All of these everywhere defined solutions have a curva-

ture singularity at the center due to the divergence of some
of the curvature invariants, such as R;RμνRμν; RμναβRμναβ.
This is an unavoidable feature for the models studied here
(classes A0, A1, and A2), resulting from the admissibility
requirement. However, somemodels studied in the literature
in the case of GR [19] have been found to support
singularity-free gravitating solutions. In such a case the
ESS field at the center vanishes and, as a consequence
of Eq. (12), neither the ESS field nor εexðr; qÞ are mono-
tonically decreasing any longer and the associated
Lagrangian densities correspond to multivalued functions
[35]. As a consequence the energy density may become
nonpositive definite. Let us also note that another
Lagrangian with vanishing (at the center) ESS solutions
is the Hoffman-Infeld model studied by Aiello et al. [26],
given by a Lagrangian density of the form

LHI ¼ 2β2ð1 − ηðXÞ − logðXÞÞ; ð39Þ

where ηðXÞ ¼ X
2β2

ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X=β2

p
Þ−1. These solutions in

GB gravity present a double-peak behavior for the temper-
ature function. Such classes of ESS solutions violate the
admissibility conditions of Sec. III and shall not be con-
sidered here.

B. Solutions with branch singularities

As was already discussed, in some cases the equation of
the horizons (25) is defined only beyond the singularity
radius rS. Thus, in our procedure of obtaining the horizons,
the cut points between the curve y ¼ 2κ2

D−2 εexðr; qÞ and the
beam of curves in (25) makes sense only for r > rS. There
are three cases to be analyzed separately.

1. Σ ≥ 0; l2α < 0

At the BS point given by Eq. (27), the metric in this case
takes the value

gðrSÞ ¼ 1þ r2S
l2α

< 1; ð40Þ

while the leading terms of its derivative there are given by

g0αðrSÞ⋍−
a0ðrSÞrS

2ðD−2Þl2α
�
1þ 2l2α

rD−1
S

ðm− 2κ2

D−2εexðrS;qÞÞ
�
1=2þ���

ð41Þ
[see Eq. (26) for the definition of aðrSÞ]. In the present
case, the derivative in (41) is positive as we approach r −
rS → 0þ since a0ðrSÞ < 0. The number of cut points
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between 2κ2

D−2 εexðr; qÞ and the beam of curves in (25) now
depends on the ratio r2S=l

2
α ⋛ −1. Indeed, when 0 >

r2S=l
2
α > −1 the metric is everywhere positive and we are

thus led to a naked singularity, while if r2S=l
2
α < −1we have

a black hole with a single horizon. The location of such a
horizon merges with that of the BS point in the limit
r2S=l

2
α → −1. Note, however, that the conditions determin-

ing the existence of BS [the values of lα0 and ΣðqÞ] are not
independent; indeed, they are related by Eq. (28) since the
NED energy-momentum tensor enters into both of them.

2. Σ < 0; l2α > 0

As in subcase IV B 1 the metric at the BS point rS is
finite, but now gðrSÞ ¼ 1þ r2S=l

2
α > 1. Its slope there,

given by Eq. (41), becomes negative in this case.
Consequently, the associated gravitational configurations
correspond to black holes with two horizons, extreme black
holes, or naked singularities, depending on the value of the
mass as compared with the extreme one, mextr, given
by Eq. (38).

3. Σ < 0; l2α < l2α0 < 0

In this case the BS condition (27) is satisfied twice, i.e.,
rS < rS0 , and, consequently, the metric is defined only for
r < rS and r > rS0 . Since εexðr; qÞ is a monotonically
decreasing function and is larger than m at r → 0, as we
increase the radius, the function aðrÞ becomes negative in
an interval (when l2α < l2α0) before becoming positive again.
The metric diverges at the center to þ∞ as a consequence
of Eq. (31). As pointed out in the first entry of Ref. [15], for
an observer in the asymptotic region of space-time only, the
region beyond the outer singularity radius is physically
accessible. This implies that in this case we are led to
single-horizon black holes or naked singularities, depend-
ing on gαðrS0 Þ≶ 0.
Consequently, we see that black hole solutions in GB

theory coupled to NED models supporting finite-energy
ESS fields (see Table II) interpolate somewhat between
GB-Reissner-Nordström-type solutions [εðqÞ → ∞] with a
timelike singularity (subcases IVA 2, IV B 2, and IV B 3)
and GB-Schwarzschild-type solutions [εðqÞ ¼ 0] with
spacelike singularities (subcases IVA 1 and IV B 1).

C. A particular model

The following example of the above solutions captures
the main features of the analysis performed here. Let us
consider a model belonging to the A1 class of solutions,
given by the Lagrangian density

φðXÞ ¼ X
2
þ α1X2 þ α2X3; ð42Þ

with α1 and α2 being positive constants, in order to satisfy
the admissibility conditions. InD ¼ 4 the two first terms in
(42) define the Euler-Heisenberg effective Lagrangian [in
this case an additional term in Y2 must be added to (42),
which vanishes for ESS solutions in D ¼ 4 and cannot be
defined in D > 4] of quantum electrodynamics (QED)
[17]. The EH model has been shown to contain finite-
energy ESS solutions in D ¼ 4 [34]. However, for D > 4

the term in X3 must be added in order to keep the energy
finite. ForD > 6, higher order terms in X must be added to
(42) for this finite character of the energy to hold. Let us
note that those terms containing higher powers in the field
invariant X arise from a low-energy expansion of QED,
once the heavy degrees of freedom are integrated out in the
path integral of the original action [38] (see also [39]). For
simplicity, here we shall restrict ourselves to the cases
D ¼ 5; 6, which will allow us to illustrate the different
structures found here.
Using (12), the field behavior at r → ∞ and as r ∼ 0

becomes

Eðr→∞;qÞ ∼ 2q
rD−2 ;Eðr ∼ 0;qÞ ∼

�
q
3α2

�
1=5 1

r
D−2
5

; ð43Þ

and thus we are dealing with an asymptotically
Coulombian ESS field, belonging to the class A1 as
r ∼ 0 if D < 7, as can be seen from (43) and the consid-
erations of Sec. III. The behavior of the associated energy
density in these limits is given by

T0
0ðr → ∞; qÞ ∼ q2

2r2ðD−2Þ

T0
0ðr ∼ 0; qÞ ∼ 5

�
q

3α1=62

�6
5 1

r
6ðD−2Þ

5

: ð44Þ

The total energy can be calculated by integrating by parts in
(20) and using y ¼ EðrÞ as the integration variable, leading
to (an additional term, vanishing for the finite-energy ESS
solutions, has been omitted in this formula)

εðqÞ ¼ 4ωD−2

D − 1
q

D−1
D−2

Z
yð∞Þ

yð0Þ

dy

ðy · φXðX ¼ y2ÞÞ 1
D−2

; ð45Þ

which, for family (42) reads

TABLE II. The GB black holes for admissible models, and the
corresponding number of horizons. In this table we use the labels
DE: defined everywhere, BS: branch singularities, e: extreme.

Parameters Range Horizons D > 5 Horizons D ¼ 5

ΣðqÞ ≥ 0; l2α > 0 DE 1 2, 1(e), 0, or 1
Σ < 0; l2α0 < l2α < 0 DE 2, 1(e), 0 2, 1(e), 0
Σ ≥ 0; l2α < 0 BS 1, 0 1, 0
Σ < 0; l2α > 0 BS 2, 1(e), 0 2, 1(e), 0
Σ < 0; l2α < l2α0 < 0 BS 1, 0 1, 0

D. RUBIERA-GARCIA PHYSICAL REVIEW D 91, 064065 (2015)

064065-8



εðqÞ¼4ωD−2

D−1
q

D−1
D−2

Z
∞

0

dy

ðyð1
2
þ2α1y2þ3α2y4ÞÞ 1

D−2
: ð46Þ

Its value can be obtained once the model parameters α1; α2
are given. It can be easily verified that this energy is always
finite for D < 7, regardless of the values of the constants
α1; α2, as expected. For this model we failed to explicitly
work εexðr; qÞ out. However, it is possible to numerically
characterize the different gravitational configurations for
this model3 by using Eq. (17). In Fig. 2 we have plotted the
behavior of gαðrÞ for the model parameters α1 ¼ α2 ¼ 1,
unit charge [for which εðD ¼ 5; q ¼ 1Þ ≃ 2.508 and
εðD ¼ 6; q ¼ 1Þ ≃ 3.446], l2α ¼ 2, and Σ > 0. As
expected, the structures for this case are those discussed
in Sec. IVA. We see that in the D ¼ 5 case the metric
around the center is finite and its slope diverges there to
−∞, leading to four classes of configurations (naked
singularities, extreme black holes, and black holes with
two or a single nondegenerate horizon), while for D ¼ 6
the metric diverges to −∞ as r ∼ 0 and there is a black hole
with a single horizon.
In Fig. 3 we have plotted the metric behavior for

the second class of solutions defined everywhere (see
Sec. IVA), corresponding to ΣðqÞ< 0 and l2α0 < l2α ¼
−0.05< 0, with model parameters α1 ¼ α2 ¼ 1 and a unit
charge. For D ¼ 6 the metric at the center diverges to þ∞
and one finds naked singularities, extreme black holes, or
two-horizon black holes. Similar structures are found for
D ¼ 5 (see the inset in Fig. 3) but in this case themetric at the
center is finite and larger than one. The BS solutions of
Sec. IV B for thismodel can be obtained in a similar way.All

of these results for this particular model are in complete
agreement with the general statements of the previous
sections.

V. NONVANISHING COSMOLOGICAL
CONSTANT Λ ≠ 0

Let us now consider the effect of a nonvanishing value of
Λ in the metric function (17). The interest in black holes in
AdS spaces is mainly motivated by AdS/CFT correspon-
dence [40], which establishes a relation between the
thermodynamics of a black hole and the conformal dual
field theory lying on the boundary of the AdS space. It
should be noted that these nonlinear corrections to the
dynamics of the electromagnetic field are expected to
modify the physics on the conformal field theory (CFT)
side, which could have an impact, for instance, within
applications to holographic superconductors [41]. A similar
problem to that considered here, for GB theory in a
vacuum, was studied in [42] for AdS spaces and in [43]
for de Sitter (dS) spaces. Moreover, exhaustive analysis
of these space-times in the neutral [44] and charged
case under Maxwell theory [45] have been also performed.
The results obtained in this section extend those for
spherical topology horizons k ¼ 1 to the general class of
admissible NED models supporting finite-energy ESS
solutions. In our models, the equations giving the horizons
(25) and the extreme black hole radius (37) receive l2Λ
corrections as

l2α
2
rD−5
h þ rD−3

h −
�
m −

2κ2εexðrh; qÞ
D − 2

�
þ rD−1

h

l2Λ
¼ 0 ð47Þ

FIG. 2. Behavior of the metric function for model (42) with the
parameters α1 ¼ α2 ¼ q ¼ 1; l2α ¼ 2, in the case ΣðqÞ>0;l2α>0.
In D ¼ 5 the energy is εðq ¼ 1Þ≃ 2.508 and there are four
structures: (I) m ¼ 2.52: naked singularity, (II) m≃ 2.841: ex-
treme black hole, (III) m ¼ 3.45: two-horizons black hole and
(IV) m ¼ 4.2: single-horizon black hole. For D ¼ 6 (dashed
curve, m ¼ 4.25), we find a single-horizon black hole. All
solutions are asymptotically flat.

FIG. 3. Behavior of the metric function for model (42) with the
parameters α1 ¼ α2 ¼ 1 and q ¼ 1 in the case ΣðqÞ < 0; l2α0 <
l2α < 0; l2α ¼ −0.05 and for D ¼ 6. As in Fig. 2, the set of solid
lines (diverging to þ∞ as r → 0) corresponds to different values
of m, leading to naked singularities, extreme black holes, or two-
horizon black holes. The plot in the inset shows the behavior for
D ¼ 5. In this case the metric as r → 0 is finite but the associated
structures are the same as for D ¼ 6.

3For simplicity, in this example we take units in which
ωD−2κ

2 ¼ 1.
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κ2r4hextr

�
Tt
tðrhextr; qÞ −

ðD − 1ÞðD − 2Þ
2l2Λ

�

¼ ðD − 2ÞðD − 3Þ
2

r2hextr þ
ðD − 2ÞðD − 5Þ

4
l2α; ð48Þ

while for the extreme black hole mass these corrections
cancel each other out and Eq. (38) remains unmodified.
Concerning the metric function gαðrÞ, its behavior around
the center is still dominated by the quantity ΣðqÞ, but the
large-rh behavior is now given by

gαðrÞ → 1þ r2

l2α

�
1 −

�
1 −

2l2α
l2Λ

�
1=2

�
: ð49Þ

The usual cosmological constant l2Λ is replaced by the
effective l2eff at large r, defined as

l2eff ¼
l2α

1 −
h
1 − 2l2α

l2Λ

i
1=2 : ð50Þ

However, the signs of l2Λ and l2eff coincide in all cases,
which leads to the usual correspondence between the sign
of l2Λ and the asymptotically (A)dS structures. Moreover,
the combination of this sign with the one of l2α leads to four
different cases. Let us analyze each case separately, again
using the sign of Σ.

A. Asymptotically AdS solutions (l2Λ > 0)

1. l2α > 0

The term under the square root in (49) may become
negative. Consequently, the cosmological constant term
must be bounded by below as l2Λ > 2l2α for the metric to be
well defined. When ΣðqÞ > 0 the behavior of the metric
for D > 5 becomes similar to subcase IVA 1, but with an
AdS asymptotics r2=l2eff . Consequently, when D > 5 this
space-time is asymptotically similar to the Schwarzschild-
AdS one. For D ¼ 5 the metric at the center is finite and
there are again solutions with a single nondegenerate
horizon if l2α < 2Σ, and two, one (degenerate), or zero
horizons otherwise, as in the asymptotically flat case of
Sec. IVA.
On the other hand, if ΣðqÞ < 0 the solutions exhibit a

BS, becoming similar as those of subcase IV B 2 for all D,
but with an AdS asymptotics, as in the previous case.

2. l2α < 0

The term under the square root in (49) is always positive
and thus l2Λ is unbounded. The solutions in this case are
similar to those of subcases IVA 2, IV B 1, and IV B 3,
again with an AdS asymptotics r2=l2eff . Note that the typical
behavior of the Reissner-Nordström-AdS solution is

obtained when D > 5;ΣðqÞ > 0; l2α0 < l2α < 0. It is worth
mentioning that in the special case l2Λ ¼ 2l2α, the effective
cosmological constant of Eq. (50) is precisely l2α, and the
GB parameter α is thus identified (times a constant) with
the effective cosmological constant of the theory.

B. Asymptotically dS solutions (l2Λ < 0)

This case becomes much more involved due to the
interplay among m, ε, l2α, and l2Λ. As a consequence, there
are several additional black hole structures already found in
the GR-NED system (see, e.g., [14]). Let us briefly discuss
the different possibilities.

1. l2α > 0

l2Λ is now unbounded. If Σ ≥ 0 and D > 5, the metric
diverges to −∞ both as r ∼ 0 and at r → ∞. We find black
holes with an extreme (degenerate) horizon with mass
m ¼ mhextrðqÞ, naked singularities [m < mhextrðqÞ], and
two-horizon black holes (m < mhextr), resembling the usual
Schwarzschild-dS behavior. A similar number of horizons
are found when D ¼ 5 if l2α < 2Σ, for which the metric at
the center of Eq. (17) is negative (but finite). However,
when l2α > 2Σ, the metric at the center of (17) is positive
(for the A0, A1, and A2 fields) and the interplay between l2α
and l2Λ leads to new kinds of structures formed with three
types of horizons (inner, outer, and cosmological). Indeed,
there now exist two kinds of extreme solutions, with masses

mð1Þ
hextrðqÞ < mð2Þ

hextrðqÞ, given by Eq. (38). In the former
case, the degenerate horizon is realized through a joining
between the inner and outer horizons (with an additional
cosmological horizon) representing the extreme black hole
space-time, while in the latter the outer and cosmological
ones join and there is an additional inner horizon. For

masses such that m > mð2Þ
hextrðqÞ or m < mð1Þ

hextrðqÞ, there is
a solution with a single (cosmological) horizon. Finally, for

mð1Þ
hextrðqÞ < m < mð2Þ

hextrðqÞ, we are led to black holes with
three nondegenerate horizons. These kinds of structures are
also found in the GB-Maxwell case [45].
On the other hand, if Σ < 0, as was already stated (see

Sec. IV B), the metric shows a BS at r ¼ rS, taking
a (finite) positive (>1) value there for any D > 4.
Consequently, the structures in terms of horizons are the
same as in the case D ¼ 5, l2α > 2Σ.

2. l2α < 0

Now l2Λ is bounded as l2Λ < 2l2α and there are three
subcases for the metric behavior. When ΣðqÞ ≥ 0 the metric
at the BS point gαðrSÞ ¼ 1þ r2S=l

2
α can be either positive or

negative, depending on jl2αj ≤ r2S (its derivative there is
always positive). The former case leads to a single-horizon
black hole while in the latter there can be black holes with
two horizons (event and cosmological), a single one
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(extremal: the event and the cosmological horizons join), or
naked singularities, depending on the mass according to
m ⪋ mhextrðqÞ. Note that, as in the previous cases, l2α and r2S
are not independent, being related through Eq. (27).
When ΣðqÞ < 0 and l2α0 < l2α < 0, as we have already

seen, the metric diverges around the center when
D > 5, while for D ¼ 5 it takes a positive finite value

gαð0Þ → 1 − ð2l2αΣðqÞÞ1=2
l2α

> 1. However, the structure

of the horizons in both cases is similar to that found in

subcase V B 1 with ΣðqÞ < 0: extreme solutions m ¼
mð1Þ

hextr (degenerate inner þ outer horizon and cosmological

horizon) and m ¼ mð2Þ
hextr (inner horizon and degenerate

outer þ cosmological horizon), black holes with three

horizons mð1Þ
hextrðqÞ < m < mð2Þ

hextrðqÞ, and solutions with

a single cosmological horizon for m < mð1Þ
hextrðqÞ or

m > mð2Þ
hextrðqÞ. Finally the case ΣðqÞ < 0; l2α < l2α0 < 0

shows two branch singularities and, since the region
beyond the outer BS radius is the physically relevant
one, the structure of horizons is similar to that in the case
Σ < 0; l2α > 0.

VI. CONCLUSIONS

In this paper the families of NED models, constrained by
several physical admissibility requirements and supporting
ESS solutions whose energy in flat space is finite, were
considered in the framework of Gauss-Bonnet theory. This
is the simplest nontrivial extension of general relativity
incorporating higher-order curvature invariants and leading
to second-order field equations. The finite character of the
energy of the ESS field is established according to the
asymptotic and central-field behavior of the ESS field in
the absence of gravity. In the latter case two field behaviors
compatible with the finite-energy requirement were deter-
mined: one divergent at the origin and the other one
attaining a finite value there.
With these results we have shown that the associated

gravitating structures for these NED models, when
coupled to the Einstein-Gauss-Bonnet action, can be
qualitatively characterized in terms of the relation
between the mass parameter m and the ESS energy
εðqÞ. These structures fall into two classes according to
the Gauss-Bonnet parameter l2α, one defining solutions
whose domain of existence is the whole space-time, and
another for which the solutions are not defined every-
where, showing a singularity at a finite radius. In the
former case the nature of the ESS field at the center (A0,
A1, A2) and the space-time dimension D critically affects
the metric behavior. Indeed, the case D ¼ 5 was shown
to possess a different structure compared to the remaining
cases with D > 5. In addition, when a cosmological
constant term is introduced in the system, the relation
between the module and the sign of l2α and l2Λ determines

the effective value of the cosmological constant of the
corresponding asymptotically (anti–)de Sitter space.
While in the former case the number and the kind of
gravitating structures remain unmodified, in the latter
new structures may appear, including black holes with
three nondegenerate horizons, or black holes with both a
degenerated and a nondegenerate horizon. The analysis
performed here goes beyond previous results obtained
in the literature corresponding to several particular
Lagrangian densities [15], extending them to the family
of physically admissible gravitating NED models with
finite-energy ESS solutions in the context of Gauss-
Bonnet theory.
Although here we have analyzed only black holes with

the usual spherical topology for the horizon, it is possible to
extend these results to the cases of negative constant or zero
curvature hypersurfaces. Also, a suitable extension of this
work would be the analysis of the thermodynamic features
of these solutions, concerning also those with the different
horizon topologies mentioned above. Indeed, it is well
known that while entropy of black holes usually equals one
quarter of the horizon radius, this property does not hold, in
general, for higher-order curvature theories [46]. Thus, it
would be worth studying such features, in a way similar to
that used in [42,43], for (A)dS-GB theory in a vacuum and
with a Maxwell field. It is expected that, analogous to the
geometric study carried out in this paper, thermodynamics
of the corresponding solutions will also depend on a few
pieces of data. Therefore, a similar systematic analysis will
also be possible. Such investigations, for a nonvanishing
cosmological constant term, could be of potential relevance
within the framework of gauge/gravity dualities. At this
point of our research, and in the absence of specific settings
on the CFT side, it is difficult to foresee what kind of
particular NED theory would be useful on the gravity side.
This further supports the interest in methods like those
developed here to characterize the generic geometric and
thermodynamic behavior of physically consistent NED
theories in asymptotically AdS space-times, which could
prove useful in the future for matching particular CFT
settings.
To conclude, since Gauss-Bonnet and, more generally,

Lovelock gravities are at the crossroad of the metric and
Palatini formulations [9], the study of these higher-order
gravity theories and their solutions may reveal useful
information for effective approaches to quantum gravity.
A final remark concerns the fact that GB theories coupled
to admissible NED models are unable to provide a solution
free of curvature singularities everywhere, a situation
reminiscent to that of GR, where the central singularity
is only avoided (for purely electric fields) through ad hoc
nonphysical choices of the NED Lagrangian density [19].
This will inspire further investigations on the avoidance of
curvature singularities in other scenarios of modified
gravity.
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