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Continuing our analytic computation of the first-order self-force contribution to the “geodetic” spin
precession frequency of a small spinning body orbiting a large (nonspinning) body, we provide the exact
expressions of the 10 and 10.5 post-Newtonian terms. We also introduce a new approach to the analytic
computation of self-force regularization parameters based on a WKB analysis of the radial and angular
equations satisfied by the metric perturbations.
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I. INTRODUCTION

The impending prospect of detecting gravitational-wave
signals from coalescing compact binary systems motivates
renewed studies of the general relativistic dynamics of
binary systems made of spinning bodies. It has been
emphasized in Ref. [1] that a simple way of computing
(to linear order in each spin) the spin-dependent interaction
terms Hint ¼ ΩSO

1 · S1 þΩSO
2 · S2 in the Hamiltonian of a

binary system was to compute (when considering, say, the
term linear in S1) the spin precession angular velocity
of S1 in the gravitational field generated by the two masses
m1; m2, and, eventually, the spin S2. Indeed, this spin
precession angular velocity (which can be obtained by
writing that S1 is parallely propagated along the world line
of m1) is simply equal to the coefficient ΩSO

1 of S1 in Hint.
On the other hand, it was recently remarked [2,3] that,
in the simple case of a binary moving on circular orbits,
the (z component of the) spin precession, ΩSO

1 , could be
expressed in terms of the norm j∇kj of the covariant
derivative of the helical Killing vector k ¼ ∂t þ Ω∂ϕ

characteristic of circular motions, namely

ΩSO
1 ¼ Ω − j∇kj; ð1:1Þ

where Ω denotes the orbital frequency. (The gauge-
invariant quantity j∇kj can be viewed as a first-derivative-
level generalization of Detweiler’s redshift invariant [4],
which is expressible in terms of the norm jkj of the Killing
vector k.)
The gauge-invariant functional relation between ΩSO

1 ,
or equivalently j∇kj, and the orbital frequency Ω has been
recently studied (both numerically and analytically) in
Refs. [2,3]. In particular, we have derived (as part of a
sequence of analytical gravitational self-force studies) in
[3] the first-order self-force contribution (linear in the mass
ratio q ¼ m1=m2 ≪ 1) to the “geodetic” spin precession
frequency ΩSO

1 to the 8.5 post-Newtonian (PN) order, i.e.
up to terms of order y8.5 included, where

y ¼
�
Gm2Ω
c3

�
2=3

ð1:2Þ

is a convenient dimensionless frequency parameter of order
Oð1=c2Þ. (We henceforth use, for simplicity, units where
G ¼ c ¼ 1.) As in [3] we restrict ourselves here to the
case of a small spinning body m1;S1, orbiting a large
nonspinning body m2, S2 ¼ 0.
The aim of the present note is to report on an extension of

our previous analytical computation of spin precession to the
10.5PN level, i.e. up to terms of order y10.5 included. This
extension was motivated by private communications from
Dolan et al. [5] who pointed out apparent discrepancies
[starting at levelOðy7Þ] between some of their high-accuracy
numerical results (see Table III in Ref. [6]) and our published
8.5PN analytical results. These discrepancies led us to care-
fully reexamine our previous computations, and to push them
to higher PN orders. We also discovered that, though all our
basic analytical building blocks were correct, their manipu-
lationby an algebraic software led to some instabilities (due to
the length of the analytical expressions at high PN orders),
that had led to a few errors in our final results. (We cured these
instabilities by running our codes on different machines,
havingmore memory resources.) More precisely, the rational
term, among the seven (transcendental) contributions to the
coefficient of y7, was incorrectly obtained, and, in the
coefficient of y8 (which contains fifteen different contribu-
tions), both the rational term and the coefficient of π2 were
incorrectly obtained. Correspondingly, there were errors in
the (rational) coefficients of y7 and y8 in the subtraction term
BðyÞ. (See detailed results below.) After having found these
errors, corrected them, and communicated the corrections to
Dolan et al., the latter authors confirmed that our Oðy8Þ
corrected results were now in satisfactory agreement with
their high-accuracy numerical results. (More recently, Shah
[7] independently pointed out to us the three discrepant
coefficients mentioned above, which we had already analyti-
cally derived, and which he and his collaborators had
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independently derived by using the numerical-analytical
method of Ref. [8].)

II. TECHNICAL REMINDERS

Let us recall the notation and main technical results
of Ref. [3] that we shall need to express our new results. We
consider a two-body system of masses m1 and m2, moving
along circular orbits, in the limit m1 ≪ m2. Here we only
endow the small mass m1 with spin S1, keeping the large
mass m2 nonspinning. This means that one is dealing with
linear perturbations hμνðxλÞ of a Schwarzschild background
of mass m2 by a small mass m1, moving on a circular orbit
of radius r0. As emphasized by Detweiler [4], the perturbed
metric admits the helical Killing vector k ¼ ∂t þ Ω∂ϕ,
i.e., the metric perturbation depends only on ϕ̄ ¼ ϕ −Ωt, r
and θ, hμνðϕ̄; r; θÞ.
The four-velocity of m1, normalized with respect to the

metric gRμνðxλÞ¼ gð0Þμν þqhRμνþOðq2Þ [here q≡m1=m2 ≪ 1

and the superscript R indicates the regular part [9] of
hμνðxλÞ around the world line of m1], can be written as

Uμ
1 ¼

kμ

jkj≡ Γkμ; Γ≡ 1

jkj ; ð2:1Þ

where (to linear order in q)

jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½−gRμνkμkν�1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m2

r0
−Ω2r20 − qhkk

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m2

r0
−Ω2r20

s �
1 −

1

2
q

hkk
1 − 2m2

r0
−Ω2r20

�
ð2:2Þ

with hkk ¼ ½hRμνðxÞkμkν�1. Writing that m1 moves along
an equatorial circular geodesic yields the conditions
∂μgRkk ¼ 0, which lead to [4]

Ω ¼
ffiffiffiffiffiffi
m2

r30

r �
1 − q

r20
4m2

½∂rhRkk�1
�
; ð2:3Þ

½∂ϕ̄h
R
kk�1 ¼ 0: ð2:4Þ

Equation (2.3) allows one to trade the gauge-dependent
radius r0 for the gauge-invariant dimensionless frequency
parameter y, Eq. (1.2), using

r0 ¼
m2

y
− q

m2
2

6y3
½∂rhRkk�1;

m2

r0
¼ y

�
1þ q

m2

6y2
½∂rhRkk�1

�
: ð2:5Þ

The geodetic spin-orbit precession frequency along the
world line of m1 has, as only nonvanishing component,
ΩSO

1 ≡ΩSO
z given by Eq. (1.1) above. In this equation, the

norm j∇kj of the covariant derivative of the helical Killing
vector k ¼ ∂t þ Ω∂ϕ is defined as

j∇kj2 ¼ 1

2
ð∇μkνÞð∇μkνÞ; ð2:6Þ

where all tensorial operations are done with the metric
gRμνðxÞ. The explicit expression of j∇kj can be written as

j∇kj ¼ j∇kjð0Þð1þ qδðyÞ þOðq2ÞÞ; ð2:7Þ
where

j∇kjð0Þ ¼ Ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3y

p
; ð2:8Þ

is the well-known result for gyroscopic precession (with
respect to a rotating, polar-coordinate frame) in a
Schwarzschild background [10], and where

δðyÞ ¼ −
1

2
ð1 − 2yÞhrr −

y2ð1 − yÞ
2m2

2ð1 − 2yÞ hϕϕ

−
y3=2

m2ð1 − 2yÞ htϕ −
y

2ð1 − 2yÞð1 − 3yÞ hkk

−
1

2
ffiffiffi
y

p ð∂ϕhrk − ∂rhϕkÞ: ð2:9Þ

In Eq. (2.9) all quantities are to be regularized and
evaluated for θ ¼ π=2.
The quantity δðyÞ, which measures the fractional first-

order self-force (1SF) correction to j∇kj, is equivalent to
the quantity δψðyÞ which measures the 1SF contribution to
the dimensionless ratio [2]

ψðyÞ≡ΩSO
1

Ω
¼ 1−

j∇kj
Ω

¼ 1−
ffiffiffiffiffiffiffiffiffiffiffiffi
1−3y

p
½1þqδðyÞþOðq2Þ�: ð2:10Þ

Explicitly, we have

δψðyÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3y

p
δðyÞ: ð2:11Þ

Following the methodology explained in Refs. [11–15],
and extending the results of Ref. [3] to higher post-
Newtonian orders (by using radiative solutions, XðinÞ,
XðupÞ, up to l ¼ 7), we have computed δðyÞ up to order y10.5.

III. NEW HIGHER POST-NEWTONIAN TERMS
IN δðyÞ AND δψðyÞ

Before listing the complete expressions of δðyÞ and
δψðyÞ to order y10.5 let us indicate that our previous
Oðy8.5Þ-accurate results missed one term at level y7 and
two terms at level y8, while the y7.5 and y8.5 terms were
complete.

DONATO BINI AND THIBAULT DAMOUR PHYSICAL REVIEW D 91, 064064 (2015)

064064-2



More precisely, the correct Oðy8.5Þ-accurate expression
of δðyÞ is obtained by adding Δcδ7y7 þ Δcδ8y8 to Eq. (4.33)
in [3], where

Δcδ7 ¼ −
1485630311863

45831035250
;

Δcδ8 ¼
8

8505
π2 −

25377697082469367

262980313505910
: ð3:1Þ

Equivalently, the correct Oðy8.5Þ-accurate expression of
δψðyÞ is obtained by adding Δcδψ7 y7 þ Δcδψ8 y8 to Eq. (5.4)

in [3], where Δcδψ7 ¼ −Δcδ7 and Δcδψ8 ¼ −Δcδ8 þ 3
2
Δcδ7,

i.e.,

Δcδψ7 ¼ 1485630311863

45831035250
;

Δcδψ8 ¼ −
8

8505
π2 þ 629539392522290711

13149015675295500
: ð3:2Þ

The full Oðy10.5Þ-accurate expressions of δðyÞ and
δψðyÞ read

δðyÞ¼−y2þ3

2
y3þ69

8
y4þ

�
53321

240
þ496

15
lnð2Þþ16γþ8 lnðyÞ−20471

1024
π2
�
y5

þ
�
15462423

4480
þ172

5
γþ1436

105
lnð2Þ−357521

1024
π2þ86

5
lnðyÞþ729

14
lnð3Þ

�
y6þ26536

1575
y13=2π

þ
�
16156122817

1209600
−
30832

105
γ−

3344

21
lnð2Þ−512537515

393216
π2−

15416

105
lnðyÞ−40581

140
lnð3Þþ1407987

524288
π4
�
y7

þ670667

22050
y15=2πþ

�
−
41432062371919

2540160000
þ96697099

141750
γ−

58208

105
lnð2Þ2−1291394011

3638250
lnð2Þ−1007542476707

353894400
π2

þ9765625

28512
lnð5Þþ96697099

283500
lnðyÞþ2364633

12320
lnð3Þ−856

25
lnðyÞ2þ162286431837

335544320
π4−

869696

1575
lnð2Þγ

þ1344

5
ζð3Þ−3424

25
γ lnðyÞ−3424

25
γ2−

434848

1575
lnð2Þ lnðyÞ

�
y8−

3872542979

13097700
y17=2π

þ
�
−
4084955265168837911

1173553920000
þ118580138377

14553000
γþ45728

1225
lnð2Þ2þ58794404629417

3972969000
lnð2Þ

þ7776

5
ζð3Þ−100335874551071

26424115200
π2−

20486328125

5189184
lnð5Þþ118580138377

29106000
lnðyÞ

−
32288

75
γ2þ143985009429

15695680
lnð3Þ−8072=75 lnðyÞ2þ773697968441461

21474836480
π4−

28431

49
lnðyÞ lnð3Þ

−
56862

49
γ lnð3Þ−56862

49
lnð2Þ lnð3Þ−1210816

2205
lnð2Þγ−32288

75
γ lnðyÞ−605408

2205
lnð2Þ lnðyÞ−28431

49
lnð3Þ2

�
y9

þ
�
460314955849127

524431908000
π−

6228256

11025
lnð2Þπ−23264368

165375
π lnðyÞþ434848

4725
π3−

46528736

165375
πγ

�
y19=2

þ
�
−
5405869945189728461825461

169160756244480000
−
164976460027543

15891876000
γ−

4653978748

467775
lnð2Þ2

−
164366211989143

31783752000
lnðyÞþ144656188561370737

4719887172000
lnð2Þþ1337603

2205
lnðyÞ2−489993464291995

532710162432
π2

−
80728

21
ζð3Þþ5350412

2205
γ lnðyÞ−1169541476

3274425
lnð2Þ lnðyÞ−2339082952

3274425
lnð2Þγþ5350412

2205
γ2

þ86209353

26950
lnð3Þ2−167271372501741

3453049600
lnð3Þþ161107421875

10378368
lnð5Þþ906012273831305533

2748779069440
π4

−
21138410295

134217728
π6þ86209353

26950
lnðyÞ lnð3Þþ86209353

13475
γ lnð3Þþ86209353

13475
lnð2Þ lnð3Þþ678223072849

370656000
lnð7Þ

�
y10

þ
�
1242850565271443431

159077678760000
þ3164198

6615
π2−

60364562

77175
γ−

26484566

55125
lnð2Þ−369603

343
lnð3Þ−30182281

77175
lnðyÞ

�
πy21=2

þOlnðy11Þ: ð3:3Þ
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δψ ¼ y2 − 3y3 −
15

2
y4 þ

�
−
6277

30
−
496

15
lnð2Þ − 16γ − 8 lnðyÞ þ 20471

1024
π2
�
y5

þ
�
−
87055

28
þ 3772

105
lnð2Þ − 52

5
γ −

26

5
lnðyÞ þ 653629

2048
π2 −

729

14
lnð3Þ

�
y6 −

26536

1575
y13=2π

þ
�
−
149628163

18900
þ 7628

21
γ þ 3814

21
lnðyÞ þ 4556

21
lnð2Þ þ 12879

35
lnð3Þ − 1407987

524288
π4 þ 297761947

393216
π2
�
y7

−
113411

22050
y15=2π þ

�
−
74909462

70875
γ þ 58208

105
lnð2Þ2 þ 340681718

1819125
lnð2Þ þ 164673979457

353894400
π2

−
160934764317

335544320
π4 −

1344

5
ζð3Þ þ 869696

1575
lnð2Þγ þ 3424

25
γ2 −

199989

352
lnð3Þ

−
9765625

28512
lnð5Þ þ 856

25
lnðyÞ2 þ 434848

1575
lnð2Þ lnðyÞ − 37454731

70875
lnðyÞþ 403109158099

9922500
þ 3424

25
γ lnðyÞ

�
y8

þ 1179591206

3274425
y17=2π þ

�
−
4454779894

606375
γ −

1064368

1225
lnð2Þ2 − 138895624334

9029475
lnð2Þ − 22832200546571

8808038400
π2

−
758053590944149

21474836480
π4 − 1152ζð3Þ − 3077728

11025
lnð2Þγ þ 3376

15
γ2 þ 28431

49
lnð3Þ2

−
71602663581

7847840
lnð3Þ þ 11576171875

2594592
lnð5Þ þ 844

15
lnðyÞ2 þ 28431

49
lnðyÞ lnð3Þ − 1538864

11025
lnð2Þ lnðyÞ

−
2227389947

606375
lnðyÞ þ 56862

49
γ lnð3Þ þ 3985926908910281

1146048750
þ 56862

49
lnð2Þ lnð3Þ þ 3376

15
γ lnðyÞ

�
y9

þ
�
−
660044682996077

524431908000
π −

434848

4725
π3 þ 46528736

165375
πγ þ 6228256

11025
lnð2Þπþ 23264368

165375
π lnðyÞ

�
y19=2

þ
�
11467229058074

496621125
γ þ 21138410295

134217728
π6 þ 30719079112

3274425
lnð2Þ2 − 1306135539288758

147496474125
lnð2Þ

−
152033994681460553

13317754060800
π2 −

755954175166870909

2748779069440
π4 þ 680336

105
ζð3Þ − 478423984

654885
lnð2Þγ

−
35570296

11025
γ2 −

54832464

13475
lnð3Þ2 þ 214411899501351

3453049600
lnð3Þ − 437134765625

20756736
lnð5Þ − 8892574

11025
lnðyÞ2

−
54832464

13475
lnðyÞ lnð3Þ − 239211992

654885
lnð2Þ lnðyÞ þ 5724079403437

496621125
lnðyÞ − 109664928

13475
γ lnð3Þ

þ 552424223705497767347

20649506377500
−
109664928

13475
lnð2Þ lnð3Þ − 35570296

11025
γ lnðyÞ− 678223072849

370656000
lnð7Þ

�
y10

þ
�
−
178279193702345741

26512946460000
π −

11255086

33075
π3 þ 46324078

128625
πγ −

2889622

7875
lnð2Þπ

þ 369603

343
π lnð3Þ þ 23162039

128625
π lnðyÞ

�
y21=2 þOlnðy11Þ: ð3:4Þ

Note that, in the above expressions, we used the computer-
algebra-related notation lnðaÞn to denote lnnðaÞ andOlnðy11Þ
to denote a term of order y11 lnn y for some n. The
corresponding Olnðu11Þ-accurate expansion of the effective
gyrogravitomagnetic ration g1SFS� ðuÞ is given in theAppendix.

IV. ANALYTIC EXPRESSION OF THE
SUBTRACTION TERM

Prompted by Dolan et al. [5], who pointed out discrep-
ancies at order y7 and y8 between our Eq. (4.30) in [3] and

their corresponding expression (Eq. (3.8) in [6]) for the
subtraction term BðyÞ, we have found a way to derive an
exact analytic expression for BðyÞ within our formalism,
which is based on Regge-Wheeler-Zerilli-type tensorial
multipolar expansions. As we shall now explain, our
derivation is a novel approach grounded on a Wentzel-
Kramers-Brillouin (WKB) analysis of the homogeneous
radial [Regge-Wheeler (RW)] equation satisfied by the
fundamental building blocks, Xin and Xup, of our formal-
ism. This WKB approach (which we explain in detail
below) is quite different from the approach traditionally
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used in gravitational self-force theory, which is based on
local, Hadamard-type expansions of the metric hμν, in
Lorenz-gauge, near the world line of m1 (see e.g.,
[9,16,17]). Our WKB analysis is also different from the
Hadamard-WKB expansion used in Refs. [18,19]. In addi-
tion, our approach defines the subtraction terms by consid-
ering the limit l → ∞ where l denotes the degree in a
tensorial multipolar expansion, while the usual self-force
calculations define subtraction terms by considering a limit
ls → ∞, where ls denotes the order in a scalar multipolar
expansion. One can show that, for the quantities we shall
consider, the two different limiting procedures should give
the same subtraction terms at leading order. [However, at
higher orders in local singularity expansions, the extension
ambiguities of such expansions do not imply anymore their
equivalence.]
Let us start by recalling the form of the WKB approxi-

mation of the solutions of a one-dimensional Schrödinger
equation, say

d2

dx2
Ψ ¼ QðxÞ

ℏ2
ΨðxÞ: ð4:1Þ

The WKB solutions of Eq. (4.1) are written in the form

ΨðxÞ ¼ e
S0
ℏþS1þOðℏÞ: ð4:2Þ

As indicated here, it will be sufficient for our purpose to
keep only the leading and next-to-leading terms in the
WKB expansion. At this order of approximation, the two
independent solutions of Eq. (4.1) read

Ψ�ðxÞ ¼ C�
e�

R
pðxÞdxffiffiffiffiffiffiffiffiffiffi
pðxÞp ; pðxÞ ¼

ffiffiffiffiffiffiffiffiffiffi
QðxÞ

p
; ð4:3Þ

corresponding to

S0
ℏ

¼ �
Z

pðxÞdx; S1 ¼ −
1

2
lnpðxÞ: ð4:4Þ

The choiceC� ¼ 1=
ffiffiffi
2

p
would imply that the Wronskian of

these solutions is 1:

W ¼ Ψ−Ψ0þ −ΨþΨ0− ¼ 1: ð4:5Þ

Note that we will use the WKB approximation in the
classically forbidden domain, whereQðxÞ is positive so that
the solutions Ψ� are exponentially growing or decaying.
We first apply this approximation to the (homogeneous)

radial RW equation

d2

dr�2
X¼

�
fðrÞ

�
lðlþ1Þ

r2
−
6Mη2

r3

�
−η2m2Ω2

�
X: ð4:6Þ

Here, η≡ 1=c, m is the spherical harmonics order, Ω
denotes the orbital frequency, and

dr� ¼
dr
fðrÞ ; fðrÞ ¼ 1 −

2Mη2

r
: ð4:7Þ

The spatial variable [denoted x in Eq. (4.1)] in this one-
dimensional Schrödinger equation is r�, while we shall take
as small expansion parameter ℏ the quantity

ℏ≡ 1

L
; ð4:8Þ

where we introduced the convenient notation

L ¼ lþ 1

2
: ð4:9Þ

Note indeed that the coefficient lðlþ 1Þ in the centrifugal
potential can be written as

lðlþ 1Þ ¼ L2 −
1

4
; ð4:10Þ

and is of order ∼ 1
ℏ2.

In order to capture the near-world-line singularity
expansion within our tensorial multipolar expansion,
we need to consider a limit where both l ∼ L and m
tend to infinity with the ratio w≡m=L being kept fixed.
In this limit the two dominant terms (of order 1=ℏ2) in
Eq. (4.1) are

Q�
ℏ2

¼ lðlþ 1Þ
�
1

r2
fðrÞ − η2

m2

lðlþ 1ÞΩ
2

�
þOðL0Þ

¼ L2

�
1

r2
fðrÞ − η2

m2

L2
Ω2

�
þOðL0Þ

¼ L2

�
1

r2
fðrÞ − η2w2Ω2

�
þOðL0Þ: ð4:11Þ

Correspondingly to the accuracy used in Eq. (4.2), we can
neglect the terms of order OðL0Þ in the above equation,
which notably means neglecting the term 6M=r3 in
Eq. (4.6). (This subdominant character of the term 6M=r3

in a WKB analysis is reminiscent of the result of [20]
concerning the s independence of the direct part of the Green
function for their variable sX.) At this stage no expansion is
performed in the PN-parameter η ¼ 1=c.
Introducing the notation

ΔðrÞ ¼ 1 −
2Mη2

r
− η2w2Ω2r2; ð4:12Þ

we have

Q� ¼ p2� ¼ L2
ΔðrÞ
r2

; p� ¼ L

ffiffiffiffiffiffiffiffiffiffi
ΔðrÞp
r

; ð4:13Þ

so that the building blocks of the WKB solution (4.3) read
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S0
ℏ
¼�

Z
p�dr� ¼�

Z
p�

dr
f
¼�L

Z ffiffiffiffiffiffiffiffiffiffi
ΔðrÞp
fðrÞ

dr
r
; ð4:14Þ

and

S1 ¼ −
1

2
lnp�: ð4:15Þ

More explicitly

ffiffiffiffiffi
p�

p ¼
ffiffiffiffi
L

p Δ1=4ffiffiffi
r

p ð4:16Þ

so that

C�ffiffiffiffiffi
p�

p ¼ ~C�

ffiffiffi
r

p
Δ1=4 ð4:17Þ

where we have reabsorbed the factor
ffiffiffiffi
L

p
in the constant

C� [ ~C� ¼ C�=
ffiffiffiffi
L

p
].

The final result of this WKB analysis is that two
independent solutions of the RW equation (4.6) are

X� ¼ ~C�

ffiffiffi
r

p
Δ1=4 e

�L
R ffiffi

Δ
p
f

dr
r : ð4:18Þ

We checked that the PN expanded solutions of the RW
equation that we constructed in our formalism [11–15]
agree with those WKB solutions, with the following
correspondence:

XðinÞ ≈
ffiffiffi
r

p
Δ1=4 e

L
R ffiffi

Δ
p
rf dr;

XðupÞ ≈
ffiffiffi
r

p
Δ1=4 e

−L
R ffiffi

Δ
p
rf dr: ð4:19Þ

Note for instance that, when expanding in powers of η the
right-hand side (rhs) of XðinÞ, as given in Eq. (4.19), its
leading order is

ffiffiffi
r

p
eL ln r ¼ rlþ1 in agreement with the

normalization of our PN solution which was chosen as

Xlω
ðinÞðrÞ ¼ rlþ1ð1þ AlωðrÞÞ; ð4:20Þ

with AlωðrÞ ¼ Oðη2Þ.
Inserting the above WKB solutions for XðinÞ and XðupÞ in

the analytical expressions for δ�ðodd=evenÞ
lm given in Ref. [3]

[see Eqs. (4.10) and (4.12) together with Eqs. (4.11),
(4.13), and (4.23) there] yields expressions for δ�l ðyÞ ¼
δ�;even
l ðyÞ þ δ�odd

l ðyÞ of the form of Eq. (4.28) there, i.e.,

δ�l ðyÞ≡
X
m

δ�lmðyÞ¼�LAðyÞþBðyÞþO

�
1

L2

�
: ð4:21Þ

At this stage the subtraction term BðyÞ is given by a sum
over m of the form

X
m

f

�
m
L

�
jYlmj2 þ g

�
m
L

����� dYlm

dθ

����2; ð4:22Þ

where Ylmðθ;ϕÞ and its θ derivative are both evaluated at
θ ¼ π=2 (and ϕ ¼ 0). Such a sum can be asymptotically
evaluated, in the limit L → ∞ with m=L fixed, in terms of
an integral, between −1 and 1, over the variable w ¼ m=L.
In order to do so one needs asymptotic estimates for jYlmj2
and j dYlm

dθ j2 as functions of w in the large L limit. Such
asymptotic estimates can be derived by a WKB analysis of
the θ differential equation satisfied by ΘlmðθÞ [defined by
factoring Ylmðθ;ϕÞ ¼ ΘlmðθÞeimϕ]. Indeed, ΘlmðθÞ satis-
fies a one-dimensional Schrödinger equation of the type
(4.1), when using the variable λ ¼ R

π=2 dθ= sin θ, namely

d2

dλ2
Θlm ¼ −P2ðλÞΘlm; ð4:23Þ

with

P2ðλÞ ¼ lðlþ 1Þsin2θðλÞ −m2: ð4:24Þ
This leads to WKB solutions of the type

ΘlmðλÞ ¼ Cþ
ei
R

PðλÞdλffiffiffiffiffiffiffiffiffiffi
PðλÞp þ C−

e−i
R

PðλÞdλffiffiffiffiffiffiffiffiffiffi
PðλÞp ; ð4:25Þ

for appropriate choices of the constants C� determined by
regularity conditions at λ ¼ −∞ (corresponding to θ ¼ 0)
and λ ¼ þ∞ (corresponding to θ ¼ π). When evaluating
ΘlmðλÞ and d

dλΘlmðλÞ ¼ sin θ d
dθΘlm at θ ¼ π=2 (i.e., λ ¼ 0)

one finds the following WKB estimates����Ylm

�
π

2
; 0

�����2 ≈ 1

π2
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − w2
p δevenl−m; ð4:26Þ

and ����∂θYlm

�
π

2
; 0

�����2 ≈ L2

π2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
δoddl−m: ð4:27Þ

Here δevenl−m (δoddl−m) is equal to 1 when l −m is even (odd)
and to 0 otherwise. The above estimates are not a priori
uniformly valid in the full range −l ≤ m ≤ l because our
WKB analysis requires L2 −m2 ≫ 1. However, they can
correctly evaluate the asymptotic values of the integrals
that we shall be interested in below (which have only a
relatively small contribution from the neighborhoods of the
boundary points w ¼ �1). We have checked the estimates
(4.26) and (4.27) by using the explicit expressions of
Ylmðπ2 ; 0Þ and ∂θYlmðπ2 ; 0Þ given in Eqs. (32) and (33) of
[21]. A consequence of Eqs. (4.26) and (4.27) is that

X
m

4π

2lþ 1

����Ylm

�
π

2
; 0

�����2f
�
m
L

�
≈
1

π

Z
1

−1

dwffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p fðwÞ;

X
m

4π

2lþ 1

j∂θYlmðπ2 ; 0Þj2
L2

g

�
m
L

�
≈
1

π

Z
1

−1
dw

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
gðwÞ:

ð4:28Þ
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As an example of the application of these asymptotic
estimates we have computed the analytic expression of the
L → ∞ limit of the first-order self-force redshift quantity
hkk. Starting from Eqs. (29) and (30) of Ref. [11] one finds

that Bhkk ≡ liml→∞ðhðevenÞkk;lm þ hðoddÞkk;lmÞ is given by

Bhkk ¼
2yð1 − 3yÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2y
p 1

π

Z
1

−1

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − w2Þð1 − k2w2Þ

p
¼ 2yð1 − 3yÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2y
p 2

π
EllipticKðkÞ; ð4:29Þ

where

k2 ¼ y
1 − 2y

; ð4:30Þ

and where EllipticKðkÞ denotes the complete elliptic
integral of the first kind (with w≡ sin α):

EllipticKðkÞ ¼
Z

π=2

0

dαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2α

p : ð4:31Þ

This result agrees with the subtraction term obtained by the
usual self-force Hadamard-type analysis [4,17], i.e., the
term denoted ~D0 ¼ ð1 − 3yÞD0 in [11,12]. [Note that there
is a misprint in the last term of Eq. (56) in [12]; the
coefficient of u7 should read þ4409649=524288].
When applying the above WKB asymptotic estimates

[for both the radial functions X�ðrÞ and the angular
functions Ylm and ∂θYlm] to the l → ∞ limit of the quantity
δ�l ðyÞ, (4.21), we obtain the following analytic expression
for the OðL0Þ subtraction term BðyÞ

BWKBðyÞ ¼
1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3y
1 − 2y

s
½ð4 − 9yÞEllipticEðkÞ − 2ð2 − 5yÞEllipticKðkÞ�: ð4:32Þ

Here EllipticEðkÞ denotes the complete elliptic integral of
the second kind

EllipticEðkÞ ¼
Z

π=2

0

dα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2α

p
: ð4:33Þ

The expansion in powers of y of BWKB reads, up to the
11 PN level

BWKBðyÞ ¼ −
1

2
yþ 1

4
y2 þ 63

128
y3 þ 995

1024
y4 þ 63223

32768
y5

þ 126849

32768
y6 þ 16567767

2097152
y7 þ 555080733

33554432
y8

þ 77104836855

2147483648
y9 þ 350273500199

4294967296
y10

þ 26812467118879

137438953472
y11 þOðy12Þ: ð4:34Þ

In our previous work [3] the subtraction term B was not
derived independently of our computation of δ�lm but was
obtained from the large l limit of the PN expanded version
of δ�lm. The algebraic-manipulation errors mentioned above
induced corresponding errors in our previous evaluation
of the PN expansion of B (as pointed out to us by Dolan
et al. [5]). More explicitly, the coefficients of y7 and y8 in
Eq. (4.30) in [3] were in error, and Eq. (4.34) gives instead
their correct values.

V. CONCLUDING REMARKS

The analytic computation of the post-Newtonian expan-
sion of the first-order self-force contribution to spin
precession has been raised here to the 10 and 10.5 post-
Newtonian level.

Our analysis has also corrected two terms (at the PN
levels 7 and 8) among our previous 8.5 PN-accurate
calculation of spin-orbit effects [3]. More precisely, we
have shown that Eq. (4.33) in [3] needs to be augmented by
the two terms in Eq. (3.1). Equivalently, Eq. (5.4) in [3]
needs to be augmented by the two terms in Eq. (3.2). These
missing terms were caused by algebraic errors in the
manipulation of large analytic expressions. Note that these
errors affected only a few terms among many contributions
(essentially only rational terms). The missing contributions
to the coefficients of y7 and y8 in δψðyÞ are numerically
equal to Δcψ7 ¼ 32.41537757 and Δcψ8 ¼ 47.86801827.
These values are rather small compared to the correspond-
ing typical values of the general PN coefficient cψn ∼
−0.12 × 3n (linked to the pole singularity of δψðyÞ at
y ¼ 1

3
, see Eq. (5.14) in [3]). The fractional modifications

brought to the coefficients gc6 and gc7 in Eqs. (6.36),
(6.37), and (6.38) are correspondingly small, δg6=g6 ≃
−0.02487821950 and δg7=g7 ≃ 0.0001739775786. As a
consequence, correcting these terms does not affect any
of the significant conclusions we reached in [3] which
were mainly aimed at describing strong field effects.
In particular, our fits Eqs. (5.11) and (6.39) did not make
any use of the y7 and y8 coefficients but only relied on
3PN information and on the strong field numerical data
of [2].
Finally, we have introduced here a new method for

analytically computing the subtraction terms of self-force
quantities. Instead of the traditionally used Hadamard-like
near-world-line singularity expansions, our new method is
based on a WKB analysis of both the radial and angular
equations satisfied by the metric, when considering them in
the limit l → ∞ with the ratiom=l fixed. We have shown in
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two examples (hkk and the spin precession) that our method
leads rather simply to closed form expressions for the
subtraction terms.
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APPENDIX: HIGHER PN TERMS IN g1SFS�

Combining the Oðy10.5Þ-accurate computation of δðyÞ
above with our recent Oðy10.5Þ-accurate computation of the
main effective one-body radial potential aðuÞ [15], we can
raise the PN expansion order of the effective gyromagnetic
ratio g1SFS� from theOðu7.5Þ level given in Eq. (6.37) of [3] to
theOðu9.5Þ level. We list below the final result, expressed in
the effective one-body radial variable u.

g1SFS� ðuÞ¼−
3

4
u−

39

4
u2þ

�
41

32
π2−

7627

192

�
u3þ

�
−48γþ23663

2048
π2−

1456

15
lnð2Þ−1017

20
−24lnðuÞ

�
u4

þ
�
−
729

7
lnð3Þþ9832

35
γþ712905

4096
π2þ70696

105
lnð2Þ−161160813

89600
þ4916

35
lnðuÞ

�
u5−

93304

1575
πu11=2

þ
�
315657

280
lnð3Þþ480829

2835
γþ16790137

1048576
π4−

674904611

7077888
π2−

2954531

2835
lnð2Þ−18167439833

7257600
þ480829

5670
lnðuÞ

�
u6

þ4596019

12600
πu13=2þ

�
−
12227517

3080
lnð3Þ−1088ζð3Þ−1953125

3564
lnð5Þ−903605468

121275
γþ58208

105
γ2−

204902966117

335544320
π4

þ1167584

525
lnð2Þ2−7532631301

9175040
π2þ499904

225
lnð2Þγ−5587843424

779625
lnð2Þþ48146264595158227

625895424000

−
451802734

121275
lnðuÞþ58208

105
γ lnðuÞþ249952

225
lnð2ÞlnðuÞþ14552

105
lnðuÞ2

�
u7þ118299749

2182950
πu15=2

þ
�
−
52964727700527

3139136000
lnð3Þþ141648

35
ζð3Þþ366384765625

41513472
lnð5Þþ4204284206047

264864600
γ−

10974904

3675
γ2

−
1135089788764019

42949672960
π4−

20022888

1225
lnð2Þ2þ142155

49
γ lnð3Þþ142155

49
lnð2Þlnð3Þþ1241427590810221

369937612800
π2

−
164036944

11025
lnð2Þγþ90305230479881

3972969000
lnð2Þþ142155

98
lnð3Þ2þ1094977266529990589159

427173626880000

þ4189028005087

529729200
lnðuÞ−10974904

3675
γ lnðuÞ−82018472

11025
lnð2ÞlnðuÞþ142155

98
lnðuÞlnð3Þ−2743726

3675
lnðuÞ2

�
u8

þ
�
142517152

55125
lnð2Þπ−6965217870900563

762810048000
πþ213592544

165375
πγ−

1996192

4725
π3þ106796272

165375
π lnðuÞ

�
u17=2

þ
�
15312301495292259

69060992000
lnð3Þþ1294640

81
ζð3Þ−13759767578125

249080832
lnð5Þþ16569352454284793

202280878800
γ

−
4477353976

1403325
γ2−

691974898583334793

5497558138880
π4þ540743945464

9823275
lnð2Þ2−847418031

26950
γ lnð3Þ−847418031

26950
lnð2Þlnð3Þ

−
1368675122796890401

146495294668800
π2þ264895105264

9823275
lnð2Þγ−207604582525

402653184
π6−

3003559322617

1111968000
lnð7Þ

−
78318056677502249

7079830758000
lnð2Þ−847418031

53900
lnð3Þ2þ849725095980588589949507303

66987659472814080000
þ16550580788732153

404561757600
lnðuÞ

−
4477353976

1403325
γ lnðuÞþ132447552632

9823275
lnð2ÞlnðuÞ−847418031

53900
lnðuÞlnð3Þ−1119338494

1403325
lnðuÞ2

�
u9

þ
�
−
78150479

4410
lnð2Þπþ298035034972802327

11783531760000
π−

1137638861

154350
πγþ4065633

1372
π lnð3Þþ23679911

13230
π3

−
1137638861

308700
π lnðuÞ

�
u19=2þOlnðu10Þ: ðA1Þ
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Here the coefficients of u6 and u7 differ from the ones
given in Ref. [3] because of the corresponding change in
δψ . More precisely, the terms to be added to Eqs. ð6.36Þ1
and ð6.37Þ1 in [3] read

ΔcgS�6 ¼ Δcδψ7 ðA2Þ

and

ΔcgS�7 ¼ Δcδψ8 −
3

2
Δcδψ7 : ðA3Þ

Let us also point out a misprint in the expression of gln7
given in Eq. ð6.37Þ2 of [3]: the additional term

þ 249952

225
ln 2 ðA4Þ

was inadvertently omitted.
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