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This paper is devoted to the Hamiltonian analysis of the unimodular gravity. We treat the unimodular
gravity as the general relativity action with the unimodular constraint imposed with the help of the
Lagrange multiplier. We perform the canonical analysis of the given theory and determine its constraint
structure.
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I. INTRODUCTION AND SUMMARY

Unimodular gravity is obtained from the Einstein-Hilbert
action in which the unimodular condition

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ĝμν

q
¼ 1 ð1Þ

is imposed from the beginning [1,2]. The resulting field
equations correspond to the traceless Einstein equations
and can be shown that they are equivalent to the full
Einstein equations with the cosmological constant term Λ,
where Λ enters as an integration constant.1 This fact that the
cosmological constant arises as an integration constant is
very attractive, and it is one of the motivations for the study
of the unimodular gravity; for a recent analysis, see [3–14].
The fact that the determinant of the metric is fixed has

clearly important consequences on the structure of the
given theory. First of all, it reduces the full group of
diffeomorphisms to invariance under the group of unim-
odular general coordinate transformations which are trans-
formations that leave the determinant of the metric
unchanged. Further, unimodular condition (1) could have
important consequences for the Hamiltonian formulation of
the given theory. Some aspects of the Hamiltonian treat-
ment of unimodular gravity were analyzed in [15,16].
Then, a very important contribution to this analysis was
presented in [17], where the condition (1) was fixed by
hand from the beginning. On the other hand, we mean that
it would be desirable to impose this condition using the
Lagrange multiplier term that is added to the gravity action.
In fact, a similar analysis was performed in [18] using a

very elegant formalism of geometrodynamics [19,20]
which is manifestly diffeomorphism invariant. However,
this elegant formulation can be achieved with the help of
introducing of the collection of the scalar fields, which, on
the other hand, makes the analysis more complicated. Our
goal is to perform the Hamiltonian analysis in a more
straightforward manner when we consider the general
relativity action where the constraint (1) is imposed with
the help of the Lagrange multiplier. Clearly, this expression
breaks the diffeomorphism invariance explicitly, and we
would like to analyze the consequence of the presence of
this term on the Hamiltonian structure of the given theory.2

It turns out that the given structure is rather interesting.
Explicitly, we consider the Lagrange multiplier as the
dynamical variable. Because of the fact that there is no
time derivative of the given multiplier, we find that its
conjugate momentum is the primary constraint of the
theory. We also find that the momentum conjugate to
the lapse N is not the first class constraint but together with
(1) forms the collection of the second class constraints.
Then, we find another set of constraints that implies that the
Lagrange multiplier corresponding to the unimodular con-
straint (1) has to depend on time only. Finally, we split the
Hamiltonian constraints into a collection of ∞3 − 1 con-
straints (in the terminology of [18]) and one constraint that
together with the momentum conjugate to the zero mode
part of the Lagrange multiplier forms the second class
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1It is important to stress that this is not exactly true in the

presence of matter. In general relativity, we find that the stress
energy tensor of matter is conserved when the Einstein equations
are valid since the left side of these equations corresponds to the
Einstein tensor that is covariantly constant. In the case of the
unimodular gravity, the left side of the equation of motion does
not correspond to the Einstein tensor, and, hence, the conserva-
tion of the stress energy tensor does not follow from Einstein
equations but has to be imposed.

2There is a natural question why the condition that the metric
tensor is symmetric should not be imposed to the action in the
similar way. Explicitly, we could consider metric gij as a general
tensor and impose the condition of its symmetry by the additional
term in the action λijðgij − gjiÞ with λij the corresponding
Lagrange multiplier. In principle, this can be done, and it can
be shown that the presence of this constraint induces another
constraint that together with the original one are the second class
constraints. With the help of these constraints, we can determine
the Dirac bracket between gij and πkl, and we find that it takes
the form fgij; πklgD ¼ 1

2
ðδki δlj þ δliδ

k
jÞ. On the other hand, it is

common practice to use the given Dirac bracket as the definition
of the Poisson bracket between the symmetric tensors gij and πij

from the beginning, and we will proceed in the same way as well.
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constraints. This is a subtle difference with respect to the
case of general relativity that possesses 4∞3 first class
constraints. On the other hand, the presence of the global
constraint that relates the dynamical gravity fields and
embedding fields was mentioned in [18], and we mean that
our result has close overlap with the conclusion derived
there.
As the next step, we perform the Hamiltonian analysis

of the unimodular theory proposed in [17]. Now, due to the
fact that the given theory is manifestly covariant, the
analysis is more straightforward than in the previous case,
and we derive the 4∞3 first class constraints. On the other
hand, the structure of the Hamiltonian constraint is different
from the Hamiltonian constraint of general relativity since
now it contains the term corresponding to the momentum
conjugate to the time component of the vector field F μ.
Now, due to the fact that the Hamiltonian does not depend
on this field explicitly, we find that this momentum is
constantly on shell, and, hence, its constant value can be
considered as an effective cosmological constant.
Let us outline the results derived in the given paper.

The main goal was to understand the meaning of the
unimodular constraint from the Hamiltonian point of view
in order to identify the number of physical degrees of
freedom of the theory. For that reason, we were very careful
and explicit in order to distinguish between the first class
constraints, second class constraints, global, and local ones.
We found that the constraint structure is almost the same as
in the case of general relativity, and we can expect that the
number of physical degrees of freedom is the same.
However, there is a subtle difference due to the existence
of the global constraint that could have significant impact on
solutions of the given theory. This is similar situation as in
case of global Hamiltonian constraint that exists in the
projectable version of Hořava-Lifshitz gravity [21]. We hope
to return to the analysis of the given constraint in the future.
This paper is organized as follows. In Sec. II, we perform

the Hamiltonian analysis of the unimodular theory with
constraint (1) included in the action using the Lagrange
multiplier. Then in Sec. III, we perform the Hamiltonian
analysis of the formulation of unimodular gravity proposed
in [17].

II. HAMILTONIAN ANALYSIS OF
UNIMODULAR GRAVITY

In this section, we perform the Hamiltonian analysis of
the unimodular gravity where the condition (1) is imposed
using the Lagrange multiplier term included in the action.
Explicitly, we consider the action

S ¼ 1

16πG

Z
d4xð

ffiffiffiffiffiffi
−ĝ

p ð4ÞR½ĝ� − Λð
ffiffiffiffiffiffi
−ĝ

p
− 1ÞÞ; ð2Þ

where ð4ÞR is a four-dimensional curvature and where ΛðxÞ
is the Lagrange multiplier.

To proceed to the canonical formulation, we use the
well-known 3þ 1 formalism, which is the fundamental
ingredient of the Hamiltonian formalism of any theory
of gravity.3 We consider the (3þ 1)-dimensional manifold
M with the coordinates xμ, μ ¼ 0;…; 3, and where
xμ ¼ ðt;xÞ, x ¼ ðx1; x2; x3Þ. We presume that this space-
time is endowed with the metric ĝμνðxρÞ with signature
ð−;þ;þ;þÞ. Suppose that M can be foliated by a family
of spacelike surfaces Σ defined by t ¼ x0. Let gij; i;
j ¼ 1; 2; 3 denote the metric on Σ with inverse gij so that
gijgjk ¼ δki . We further introduce the operator ∇i that is a
covariant derivative defined with the metric gij. We also

define the lapse function N ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
−ĝ00

p
and the shift

function Ni ¼ −ĝ0i=ĝ00. In terms of these variables, we
write the components of the metric ĝμν as

ĝ00 ¼ −N2 þ NigijNj; ĝ0i ¼ Ni; ĝij ¼ gij;

ĝ00 ¼ −
1

N2
; ĝ0i ¼ Ni

N2
; ĝij ¼ gij −

NiNj

N2
: ð3Þ

Then, the standard canonical analysis leads to the bare
Hamiltonian in the form

H ¼
Z

d3xðNHT þ NiHi þ Ωð ffiffiffi
g

p
N − 1Þ

þ vNπN þ viπi þ vΩpΩÞ; ð4Þ

where

HT ¼ 16πGffiffiffi
g

p πijGijklπ
kl −

ffiffiffi
g

p
16πG

R; Hi ¼ −2gik∇jπ
jk;

ð5Þ

where

Gijkl ¼
1

2
ðgikgjl þ gilgjkÞ −

1

2
gijgkl; ð6Þ

and where R is a three-dimensional curvature. Further, πij

are momenta conjugate to gij with a nonzero Poisson
bracket

fgijðxÞ; πklðyÞg ¼ 1

2
ðδki δlj þ δliδ

k
jÞδðx − yÞ: ð7Þ

Finally, πN ≈ 0, πi ≈ 0, pΩ ≈ 0 are primary constraints
where πN , πi, pΩ are momenta conjugate to N, Ni, and Ω,
respectively, with nonzero Poisson brackets

3For a recent review, see [22].
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fNðxÞ; πNðyÞg ¼ δðx − yÞ;
fNiðxÞ; πjðyÞg ¼ δijδðx − yÞ;
fΩðxÞ; pΩðyÞg ¼ δðx − yÞ: ð8Þ

It is also useful to introduce the smeared form of the
constraints HT;Hi,

TTðXÞ ¼
Z

d3xXHT; TSðXiÞ ¼
Z

d3xXiHi; ð9Þ

where X, Xi are functions on Σ. For further purposes, we
also introduce the well-known Poisson brackets

fTTðXÞ;TTðYÞg ¼ TSððX∂iY − Y∂iXÞgijÞ;
fTSðXÞ;TTðYÞg ¼ TTðXi∂iYÞ;

fTSðXiÞ;TSðYjÞg ¼ TSðXj∂jYi − Yj∂jXiÞ: ð10Þ

Now we proceed to the analysis of the preservation of the
primary constraints. Explicitly, from (4) we find

∂tπN ¼ fπN;Hg ¼ −HT −
ffiffiffi
g

p
Ω≡ −H0

T ≈ 0;

∂tpΩ ¼ fpΩ; Hg ¼ −ðN ffiffiffi
g

p
− 1Þ≡ −Γ ≈ 0;

∂tπi ¼ fπi; Hg ¼ −Hi ≈ 0: ð11Þ

Then the total Hamiltonian with all constraints included has
the form

HT ¼
Z

d3xðNHT þ vTH0
T þ ðvΓ þΩÞΓ

þ NiHi þ vΩpΩ þ vNπNÞ; ð12Þ

where Ni can now be considered as Lagrange multipliers
corresponding to the constraintsHi. On the other hand, we
still keepN as a dynamical variable while vT and vΩ are the
Lagrange multipliers corresponding to the constraints H0

T
and Γ, respectively.
Now we proceed to the analysis of the stability of all

constraints. Using (12), we find

∂tpΩ ¼ fpΩ; HTg ¼ −Γ − vT
ffiffiffi
g

p
≈ −vT

ffiffiffi
g

p ð13Þ

that implies vT ¼ 0. In case of the constraint πN ≈ 0, we
have

∂tπN ¼ fπN;HTg ¼ −HT − ðvΓ þ ΩÞ ffiffiffi
g

p

¼ −H0
T − vΓ

ffiffiffi
g

p ¼ 0 ð14Þ

that again implies that vΓ ¼ 0. Let us now consider the time
evolution of the constraint Γ,

∂tΓ ¼ fΓ; HTg ¼ ≡ − 8πGN2πijgij

þ ∂iNiN
ffiffiffi
g

p þ vN
ffiffiffi
g

p ¼ 0 ð15Þ

that can be considered as the equation for the Lagrange
multiplier vN. In the case of the constraint H0

T , we find

∂tH0
T ¼ fH0

T; HTg ¼
Z

d3xðfH0
T; NH0

Tg

þ ffiffiffi
g

p
vΩ ≈

ffiffiffi
g

p
vΩ ¼ 0; ð16Þ

where in the first step we used (10). Then, (16) implies
vΩ ¼ 0. Finally, we consider the time evolution of the
constraint Hi. Because of the fact that Ω and N are
dynamical variables, it is natural to extend the constraint
Hi with the appropriate combination of the primary
constraints pΩ and πN so that

~Hi ¼ Hi þ pΩ∂iΩþ πN∂iN; TSðNiÞ ¼
Z

d3xNi ~Hi:

ð17Þ

Now the time evolution of the smeared form of the
constraint TSðMiÞ is equal to

∂tTSðMiÞ ¼ fTSðMiÞ; HTg ≈
�
TSðMiÞ;

Z
d3xNH0

T

�

− fTSðMiÞ;Ωg ≈Mi∂iΩ ¼ 0; ð18Þ

where we again used (10). Since the equation above has to
be valid for allMi, we see that it corresponds to some form
of the constraint on Ω. In order to explicitly identify the
nature of the given constraint, we splitΩ into the zero mode
part and the remaining part as follows:

Ωðx; tÞ ¼ Ω0ðtÞ þ Ω̄ðx; tÞ;

ΩðtÞ ¼ 1R
d3x

ffiffiffi
g

p
Z

d3x
ffiffiffi
g

p
Ωðx; tÞ; ð19Þ

where by definition,
R
d3x

ffiffiffi
g

p Ω̄ðx; tÞ ¼ 0. Then, Eq. (18)
implies

Ω̄ðx; tÞ ¼ KðtÞ; ð20Þ

where from the definition of Ω̄, we obtain

Z
d3x

ffiffiffi
g

p
Ω̄ðx; tÞ ¼ KðtÞ

Z
d3x

ffiffiffi
g

p ¼ 0; ð21Þ

and, hence, we find KðtÞ ¼ 0. In other words, we have
following constraint,

Ω̄ðx; tÞ ¼ 0; ð22Þ
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while the zero mode Ω0ðtÞ is still nonspecified. It is useful
to perform the similar separation of the zero mode part of
pΩ as well,

pΩðx; tÞ ¼
ffiffiffi
g

p
R
d3x

ffiffiffi
g

p PΩðtÞ þ p̄Ωðx; tÞ;

pΩðtÞ ¼
Z

d3xpΩðx; tÞ;Z
d3xp̄Ωðx; tÞ ¼ 0: ð23Þ

Note that we included the factor
ffiffi
g

pR
d3x

ffiffi
g

p in front of pΩ in

order to have the canonical Poisson bracket

fΩ0; PΩg ¼ 1 ð24Þ

and also in order to ensure that pΩ transforms as the density
since PΩ is scalar. Then, by definition we also find

fΩ̄ðxÞ; PΩg ¼ 0; fp̄Ω;Ω0g ¼ 0: ð25Þ

It turns out that it is useful to perform the similar separation
in the case of the constraint HT ,

HT ¼
ffiffiffi
g

p
R
d3x

ffiffiffi
g

p H0 þ H̄T;

H0 ¼
Z

d3xHT;Z
d3xH̄T ¼ 0 ð26Þ

and also in case of the Lagrange multiplier vN,

vN ¼ vN0 þ v̄N;

vN0 ¼ 1R
d3x

ffiffiffi
g

p
Z

d3x
ffiffiffi
g

p
vN;

Z
d3x

ffiffiffi
g

p
v̄N ¼ 0: ð27Þ

Note that the Poisson brackets between H̄T still have the
form as (10). Explicitly, let us define the smeared form of
this constraint,

T̄TðNÞ¼
Z

d3xNðxÞH̄TðxÞ¼
Z

d3xN̄ðxÞH̄TðxÞ; ð28Þ

where we performed the separation N ¼ N0 þ N̄,R
d3xN̄

ffiffiffi
g

p ¼ 0. Then we have

fT̄TðNÞ; T̄ðMÞg ¼ fTTðN̄Þ;TTðM̄Þg

¼
Z

d3xððN̄∂iM̄ − ∂iN̄ M̄ÞgijHjÞ; ð29Þ

and, hence, the right side vanishes on the constraint surface
Hi ≈ 0. With the help of the separation (26) and (27), we
find the total Hamiltonian in the form

HT ¼
Z

d3x

�
NHT þ v̄NH̄T þ vN0

Z
d3x

ffiffiffi
g

p
Φþ Ni ~Hi

þ ðvΓ þΩ0ÞΓþ vΩPΩ þ vNπN

�
; ð30Þ

where

Φ≡ 1R
d3x

ffiffiffi
g

p H0 þ Ω0 ≈ 0; ð31Þ

and where now we do not consider the canonically
conjugate pairs Λ̄ ≈ 0; p̄Ω ≈ 0 which are the second class
constraints that decouple from the theory. Before we
proceed further, we should also modify the constraint
H̄T and ~Hi in such a way that they Poisson commute
with Γ and Φ. In fact, let us consider the following
modification of the constraint H̄T ,

H̄0
T ¼ H̄T þ 1

32πGg
gijπijπN: ð32Þ

Now it is easy to see that

fH̄0
TðxÞ;ΓðyÞg ¼ 0: ð33Þ

Further, we have to ensure that the H̄0
T Poisson commutes

with the constraint Φ. Clearly, we have fH̄T; H0g ≈ 0,
while

�
T̄TðNÞ; 1R

d3x
ffiffiffi
g

p
�

¼ 8πG

�
1R

d3x
ffiffiffi
g

p
�

2
Z

d3xN̄πijgij;

ð34Þ

so that in order to cancel this contribution, we extend the
constraint H̄0

T so that it has the form

H̄00
T ¼ H̄0

T þ 8πG

�
1R

d3x
ffiffiffi
g

p
�

2

πijgijPΩ; ð35Þ

where by definition
R
d3xπijgij ¼ 0. In the similar way, we

modify the diffeomorphism constraint ~Hi so that it Poisson
commutes with Γ (note that it has a vanishing Poisson
bracket with Φ on the constraint surface automatically)
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H̄i ¼ ~Hi þ ∂i

�
πNffiffiffi
g

p
�
; ð36Þ

so that

fTSðNiÞ;ΓðyÞg ¼ −Nk∂kΓ − ∂iNiΓ ≈ 0: ð37Þ

In summary, we have following total Hamiltonian,

HT ¼
Z

d3x

�
NHT þ v̄NH̄00

T þ vN0

Z
d3x

ffiffiffi
g

p
Φþ NiH̄i

þ ðvΓ þΩ0ÞΓþ vΩPΩ þ vNπN

�
; ð38Þ

and check the stability of all constraints,

∂tπN ¼ fπN;HTg ¼ −HT −Ω0

ffiffiffi
g

p
− vΓ

ffiffiffi
g

p
≈ −vΓ

ffiffiffi
g

p ¼ 0;

ð39Þ

which implies vΓ ¼ 0. For PΩ, we obtain

∂tPΩ ¼ fPΩ; HTg ¼ −Γ − vN0

Z
d3x

ffiffiffi
g

p ¼ 0; ð40Þ

which determines vN0 to be equal to zero. In case of the
constraint Γ, we find

∂tΓ ¼ fΓ; HTg ¼ vN ¼ 0 ð41Þ

and, hence, vN ¼ 0. Finally, in the case of the constraint Φ,
we obtain

∂tΦ ¼ fΦ; HTg ¼ vΩ ¼ 0; ð42Þ

and we again find vΩ ¼ 0. Now we should proceed to the
analysis of the time evolution of the constraints H̄i, H̄00

T .
However, these constraints Poisson commute with the
second class constraints by construction, and the Poisson
brackets among themselves vanish on the constraint surface
according to (10) and (29).
In summary, we found that PΩ ≈ 0; πN ≈ 0;Γ ≈ 0;Φ ≈ 0

are the second class constraints. Solving these constraints,
we eliminate N; πN;Ω0; PΩ as functions of dynamical
variables. Then, the remaining constraints H̄00

T; H̄i form
the set of 4∞3 − 1 first class constraints with agreement
with [18].

III. UNIMODULAR GRAVITY IN
HENNEAUX-TEITELBOIM FORM

In this section, we consider the Henneaux-Teitelboim
formulation of unimodular gravity that is based on the
existence of the space-time vector density F μ. In this case,
the action has the form [17]

S ¼ 1

16πG

Z
d4x½

ffiffiffiffiffiffi
−ĝ

p
ðð4ÞR − 2ΛÞ þ 2Λ∂μF μ�; ð43Þ

where Λðx; tÞ is the space-time-dependent Lagrange multi-
plier. Our goal is to perform the canonical analysis of the
given theory. First, we find the following collection of
primary constraints,

πN ≈ 0; πi ≈ 0; Γ≡ pF
t −

1

8πG
Λ ≈ 0;

pF
i ≈ 0; pΛ ≈ 0; ð44Þ

where pF
t , pF

i are momenta conjugate to F t, F i, respec-
tively, with the following canonical Poisson brackets,

fF tðxÞ; pF
t ðyÞg ¼ δðx − yÞ;

fF iðxÞ; pF
j ðyÞg ¼ δjiδðx − yÞ: ð45Þ

Then, we again find that the bare Hamiltonian with primary
constraints included has the form

H ¼
Z

d3x

�
NðHT þ pF

t
ffiffiffi
g

p Þ þ NiHi −
1

8πG
Λ∂iF i

þvNπN þ viπi þ vΛpΛ þ uipi
F þ uΓΓ

�
; ð46Þ

where using the constraint Γ, we replaced 1
8πG

ffiffiffi
g

p
Λ with

pF
t

ffiffiffi
g

p
. Now the requirement of the preservation of the

primary constraints implies the following secondary con-
straints,

∂tπN ¼ fπN;HTg ¼ −ðHT þ pF
t

ffiffiffi
g

p Þ≡ −H0
T ≈ 0;

∂tπi ¼ fπi; HTg ¼ −Hi ≈ 0;

∂tΓ ¼ fΓ; HTg ¼ −
vΛ
8πG

¼ 0;

∂tp
F
i ¼ fpF

i ; HTg ¼ 1

8πG
∂iΛ;

∂tpΛ ¼ fpΛ; HTg ¼ 1

8πG
∂iF i þ 1

8πG
uΓ ¼ 0: ð47Þ

The third and fifth equation determine the Lagrange
multipliers vΛ and uΓ. As in the previous section, we find
that the fourth equation implies that Λ̄ðt;xÞ ¼ 0 while the
zero mode part Λ0 is not determined. In other words, we
have the second class constraints Λ̄ ¼ 0, pΛ̄ ¼ 0, so we will
not consider these modes anywhere and restrict ourselves to
the case of the zero mode of Λ. We also modifyHi in order
to take into account the transformation rule for Λ,

H0
i ¼ Hi þ pΛ∂iΛ; ð48Þ

so that the total Hamiltonian has the form
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HT ¼
Z

d3xðNH0
T þ NiH0

i þ vΛpΛ þ uΓΓÞ; ð49Þ

where we also used integration by parts that eliminates
the term Λ∂iF i. Finally, we see that pΛ and Γ are the
second class constraints so that we can eliminate pΛ and
Λ from the theory. As a result, we find the theory with
4∞3 the first class constraints H0

T;H
0
i for the dynamical

variables gij; πij; p
F
t ;F t. Note that the Hamiltonian does

not depend on F t explicitly, and, hence, we see that pF
t is

constantly on shell. In other words pF
t plays the role of

the cosmological constant, which, however, is not
included into the theory by hand but it arises as a
consequence of the dynamics of the unimodular theory
in Henneaux-Teitelboim formulation.
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