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We derive the effect of the Schrödinger-Newton equation, which can be considered as a nonrelativistic
limit of classical gravity, for a composite quantum system in the regime of high energies. Such meson-
antimeson systems exhibit very unique properties, e.g., distinct masses due to strong and electroweak
interactions. This raises an immediate question: what does one mean by mass in gravity for a state that is a
superposition of mass eigenstates due to strong and electroweak interactions? We find conceptually
different physical scenarios due to lacking of a clear physical guiding principle to explain which mass is the
relevant one and due to the fact that it is not clear how the flavor wave function relates to the spatial wave
function. There seems to be no principal contradiction. However, a nonlinear extension of the Schrödinger
equation in this manner strongly depends on the relation between the flavor wave function and spatial wave
function and its particular shape. In opposition to the continuous spontaneous localization collapse models
we find a change in the oscillating behavior and not in the damping of the flavor oscillation.
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I. INTRODUCTION

The search for a theory that consistently combines
quantum theory and gravitation is certainly one of the
bigger challenges of contemporary theoretical physics.
While most physicists believe that—whatever the correct
quantum theory of gravity is—in the low-energy limit
gravity can be described by a perturbative quantum field
theory, in full analogy to the low-energy limit of quantum
electrodynamics, there is no experimental evidence, to date,
that rules out a theory in which gravity remains unquan-
tized, even at the fundamental level. This idea has been
raised by many before [1–4], and a behavior of gravity at
the quantum level that is different from what one would
expect by a naive perturbative quantization of the gravi-
tational field is also discussed as a possible solution of the
quantum measurement problem [5–12]. In the context of
nonrelativistic quantum mechanics, the problem is basi-
cally condensed to the question of how quantum matter
sources the gravitational field.
One hypothesis that has been brought into the debate

[4,13–15] is that the gravitational interaction for non-
relativistic quantum matter is described by a nonlinear
extension of the Schrödinger equation, the Schrödinger-
Newton equation

iℏ∂tψðt; rÞ

¼
�
−
ℏ2

2m
∇2 −Gm2

Z
d3r0

jψðt; r0Þj2
jr − r0j

�
ψðt; rÞ; ð1Þ

originally proposed as a model for the localization of
macroscopic quantum objects [5,10]. The intuition behind
such an equation is that the absolute value squared of the

wave function corresponds to a mass density sourcing a
Newtonian gravitational potential [16]. The equation can
also be shown to follow naturally as the nonrelativistic
limit of a semiclassical theory of gravity, i.e., a theory in
which the gravitational field stays classical even at the
fundamental level and quantum matter is coupled by the
semiclassical Einstein equations

Rμν þ
1

2
gμνR ¼ 8πG

c4
hΨ∣T̂μν∣Ψi; ð2Þ

where T̂μν is the energy-momentum operator and the
expectation value is taken in some quantum state [15].
One particularly charming aspect of the Schrödinger-
Newton equation is that it most likely can be experimen-
tally tested in the foreseeable future, e.g., with large
molecules [18,19] or with crystalline nanospheres [20,21].
In this paper we want to consider neutral meson-

antimeson systems that are typically produced at accel-
erator facilities. In particular we focus for the sake of
simplicity on the neutral K-meson system, also dubbed
kaons; however, all considerations hold for all nonrelativ-
istic meson systems. These massive systems, that can also
be produced even in entangled pairs, have been shown to be
a unique laboratory for precision measurements of particle
properties and fundamental principles in particle physics
(e.g., discrete symmetries) as well as for testing funda-
mental principles in quantum physics such as superposition
and entanglement (for an overview see, e.g., Ref. [22]). For
example, a violation of Bell’s inequality that is only due to
the breaking of a discrete symmetry resulting in a tiny
difference between matter and antimatter properties has
been discovered [23]. Or due to the existence of two
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distinct measurement procedures, a special feature of
kaons, the very working of a quantum eraser [24,25] or
Heisenberg’s principle [26] can in a novel way be dem-
onstrated. Proposals for how to test decoherence effects
have been developed [27,28] and put to experimental tests
[29–31]. Models testing for Lorentz-symmetry violations
or assuming intrinsic violations of the CPT symmetry
induced by quantum gravity [32] have been put to test for
K-mesons [29,33]. Recently, also the prediction of collapse
models was computed [34,35].
Despite the fact that these meson systems are elementary

particle systems, for which one would expect that they must
be theoretically treated with the tools of relativistic quan-
tum field theories, the formalism of nonrelativistic quantum
mechanics turns out to provide good predictions for almost
all interesting effects in these systems.
At first sight neutral kaons, composite systems of a quark

and an antiquark, seem not to be good candidates to test for
gravitational effects since the mass is very low, approx-
imately half of a proton mass; however, the unique proper-
ties of these meson-antimeson systems—as witnessed by
the above literature—make it an interesting case to see
whether conceptual contradictions can be derived. Let us
here quote the famous Feynman lectures [36], where
Feynman writes after introducing K-mesons:

“If there is any place where we have a chance to test the
main principles of quantum mechanics in the purest
way—does the superposition of amplitudes work or
doesn’t it?—this is it.”

The superposition of these two different mass eigenstates
due to weak interaction exhibiting oscillations of the
eigenstates of the strong interaction has been proven by
now at many accelerator facilities. Moreover, since 1964
the unexpected breaking of the CP symmetry (C… charge
conjugation, P… parity), a tiny difference between matter
and antimatter properties, was discovered.
Taking the point of view that the Schrödinger-Newton

equation correctly describes the coupling of quantum
matter to gravity—keeping in mind that as a mere hypoth-
esis it could be experimentally falsified at any time—one
may immediately ask:

Do both eigenstates of the mass Hamiltonian couple
independently to the gravitational field? Or is only the
rest mass of the neutral K-meson the one relevant for
any gravitational effect?

In this contribution we analyze in detail which options
to include a Schrödinger-Newton interaction in the neutral
K-meson system are conceptually possible—if any—and
which effects they may have on the flavor oscillations. We
will briefly review the properties of the neutral kaon system
in the second section. There we raise the important question
of how the spatial wave function should be treated in the

case of neutral mesons. We then discuss different ways
to implement the features of the neutral kaon into the
Schrödinger-Newton equation in the third section, account-
ing for the dependence on the right description of the spatial
wave function. In the fourth section we compare these
results to the previously obtained results for the continuous
spontaneous localization (CSL) collapse model. Finally, we
discuss the results and draw our conclusions.

II. THE NEUTRAL KAON SYSTEM

Via strong interactions one has to distinguish between
two different eigenstates labeled by the strangeness number
S, the kaon state ∣K0i (S ¼ 1) and the antikaon ∣K̄0i
(S ¼ −1). Neutral kaons decay via the weak interaction
leading to the following non-Hermitian Hamiltonian

H ¼
 
hK0jHðjΔSj¼0ÞjK0i hK̄0jHðjΔSj¼2ÞjK0i
hK0jHðjΔSj¼2ÞjK̄0i hK̄0jHðjΔSj¼0ÞjK̄0i

!

¼ M −
i
2
Γ ð3Þ

where both the mass matrix M and decay matrix Γ are
chosen to be Hermitian. HðjΔSj¼0Þ describes the processes
which conserve the strangeness number S and HðjΔSj¼2Þ
describes those which differ by two. The states diagonal-
izing this Hamiltonian are denoted as mass eigenstates,
namely the short- and long-lived states ∣KSi and ∣KLi. If we
assume CPT conservation (T… time reversal), the two
diagonal elements of M have to be equal and have to
correspond to the rest mass mK. Analogously, the two
diagonal elements of Γ have to be equal and to correspond
to the total decay width Γ of K0, K̄0.
The complex eigenvalues of the Hamiltonian H are

derived to

λS=L ¼ mS=L −
i
2
ΓS=L

¼ mK −
i
2
Γ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M12 −

i
2
Γ12

��
M�

12 −
i
2
Γ�
12

�s
ð4Þ

and consequently the mass difference Δm≔mL −mS and
the decay width difference ΔΓ≔ ΓL − ΓS are given by

Δm ¼ 2Re

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M12 −

i
2
Γ12

��
M�

12 −
i
2
Γ�
12

�s )

ΔΓ ¼ −4Im

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M12 −

i
2
Γ12

��
M�

12 −
i
2
Γ�
12

�s )
: ð5Þ

The mass difference Δm and the two decay widths ΓS, ΓL
have been measured for all neutral meson systems [37];
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however, only for neutral K-mesons the two decay widths
differ greatly.
Thus, the time evolution of the mass-Hamilton eigen-

states is given by [38]

∣KSðtÞi ¼ e−imSte−
ΓS
2
t∣KSðt ¼ 0Þi

∣KLðtÞi ¼ e−imLte−
ΓL
2
t∣KLðt ¼ 0Þi; ð6Þ

preserving their identity in time. The mass eigenstates
states are connected via the following basis transformation

∣KSi ¼
ð1þ εÞ∣K0i − ð1 − εÞ∣K̄0iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ jεj2Þ
p

∣KLi ¼
ð1þ εÞ∣K0i þ ð1 − εÞ∣K̄0iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ jεj2Þ
p ð7Þ

where ε is the CP violating parameter that equals in a
conventional phase choice to

ε ¼ ðM12 − i
2
Γ12Þ − ðM�

12 − i
2
Γ�
12Þ

ðM12 − i
2
Γ12Þ þ ðM�

12 − i
2
Γ�
12Þ

: ð8Þ

To understand the difference between the dynamical
parameters Δm, ΔΓ and the CP violating parameter ε let
us introduce two complex numbers X, Y by

X2 ¼ M�
12 − i

2
Γ�
12

M12 − i
2
Γ12

;
Y
X
¼ M12 −

i
2
Γ12: ð9Þ

With that we find (up to nonphysical sign changes)

Δm ¼ 2RefYg
ΔΓ ¼ −4ImfYg

ε ¼ 1 − X2

1þ X2
: ð10Þ

Obviously the values Δm, ΔΓ are independent of ε in the
sense that the value of X does not influence the value of
these dynamical parameters; however, the time evolution
does depend on all three parameters as we show explicitly
in the following.
The probabilities of finding a K0 or a K̄0 after a certain

time t if a state jK0i was produced at time t ¼ 0 is
consequently given by

PðK0t; jK0jÞ ¼ jhK0jK0ðtÞij2

¼ 1

4
ðe−ΓSt þ e−ΓLt þ 2 cosðΔmtÞ · e−ΓtÞ

ð11Þ

PðK̄0t; jK0jÞ ¼ jhK̄0jK0ðtÞij2

¼ j1 − εj2
4j1þ εj2 ðe

−ΓSt þ e−ΓLt

− 2 cosðΔmtÞ · e−ΓtÞ: ð12Þ

Taking the difference we derive the time-dependent
asymmetry

PðK0t; jK0jÞ − PðK̄0t; jK0jÞ
PðK0t; jK0jÞ þ PðK̄0t; jK0jÞ ¼

2Refεg
1þjεj2 þ

cosðΔmtÞ
coshðΔΓ

2
tÞ

1þ 2Refεg
1þjεj2

cosðΔmtÞ
coshðΔΓ

2
tÞ
; ð13Þ

where for short times the oscillation is visible whereas in
the long time limit the CP violation can be measured. In
summary one observes a damped oscillation due to Δm and
the decay constants where the mass mK does not enter and
for the huge time regime the difference of both probabilities

reveals the tiny CP violation, namely 2Refεg
1þjεj2 ≈ 10−3.

Let us remark on the nonrelativistic treatment of
K-mesons as composite systems. Ordinarily, nonrelativistic
systems have excitation energies that are small compared to
the component masses. For meson systems, however, these
energies are comparable to the quark masses of these
models. The complexity of QCD forces one to resort to
approximate models, so called bag models (see, e.g., the
review article [39]). These bag models divide space into
two regions, the interior of the bag in which the quarks have
very small (current) masses and feel only weak forces and
the exterior in which the quarks are not allowed to
propagate having a different (lower) vacuum energy. In
the above presented phenomenology, mesons are treated as
a single entity, in very good agreement to all current
experiments. Relativistic effects—such as the speed of
the mesons—do not alter the physics in the flavor space;
thus, we do not consider any particular relativistic effects in
the following treatment.
Certainly, we can be interested in the kinematics of

the neutral meson system; then the relevant Hamiltonian
would be

Hkin ¼ minertc2 −
ℏ2

2minert
∇2: ð14Þ

The inertial mass minert could be considered as that of the
composite K-meson, i.e., mK , or one may assume that
each mass-energy eigenstate KS=L exhibits a different
kinetic/spatial wave function due to its different decaying
property, namely mS=L. Note that mS=L alone—contrary
to the difference Δm—has also contributions of mK; see
Eq. (4). Differently stated, considering the spatial wave
function of mesons:
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Do we have to consider only one unique wave function
or do we have to handle it as a two-state system?

We will differentiate between those two scenarios in the
following.
Before we proceed let us comment on the validity

of a nonrelativistic treatment of the K-meson via the
Schrödinger equation. The first point to mention is that
we are interested in space-dependent probabilities meas-
uring the strangeness content, i.e., probabilities that a
neutral kaon, having propagated a certain macroscopic
distance, decays semileptonically or is forced by a matter
block to reveal over the subsequent reaction the strangeness
property. Flavor oscillation, i.e., the probabilities of observ-
ing a particle or antiparticle state at a certain position/time,
is the phenomenon one is interested in. This distance is
usually converted into a proper time (via τ ≈ x

v). Here the
relativistic effects matter but of course in a trivial way.
Given the Hamiltonian above, the Schrödinger equation is
the appropriate nonrelativistic limit of either the Klein-
Gordon equation or Dirac equation keeping the rest mass
energy. There have been numerous approaches to how the
spatial wave function of a strangeness state—that has to be
a coherent state composed of a short-lived and long-lived
state—has to be treated in an unambiguous way [40–43]
(and for the neutrino oscillations, see, e.g., [44]). The main
disagreement is whether the energies and/or momenta of
the two different mass eigenstates remain unchanged.
However, the final probabilities, i.e., Eq. (11), are—within
good approximations—always the same, that are also those
well tested in various experiments. The authors of [40]
apply a different view by defining the probabilities as
position measurements with averages over times. In sum-
mary, the key observation is that experiments are only
sensitive to the mass difference and not sum of mass or
energy; thus, experiments are not restricted to favor one
approach over the other one and only conceptual arguments
apply. Modifications of the standard quantum approach
such as the here discussed Schrödinger-Newton equation or
collapse models [34,35], however, require an explicit
modeling of the relation between the spatial wave function
and the flavor space and, therefore, offer a unique labo-
ratory to enlighten the subtle interplay arising from particle-
antiparticle mixing.

III. SCHRÖDINGER-NEWTON EQUATION FOR
THE NEUTRAL KAON

The Schrödinger-Newton equation is based on the
assumption that the wave function sources a gravitational
field as if the total mass of the particle would be smeared
with the spatial probability density jψ j2. If the Schrödinger-
Newton equation is applied to the kaon system this raises
two questions:

(i) Which is the right mass that acts as the source of the
gravitational field?

(ii) How can one describe the spatial wave function of
the neutral kaon?

And particularly, does this lead to any inconsistencies or
unexpected effects that could render the Schrödinger-
Newton equation an ill-defined model for describing these
systems, or on the contrary lead to observable effects?
Due to Newton the mass entering into the kinetic term of

the Hamiltonian is the inertial mass. In the famous experi-
ment with neutrons the authors of Ref. [45] demonstrated
that nonrelativistic quantum matter can couple to the
gravitational field in the following way:

iℏ∂tψðt; rÞ ¼
�
−

ℏ2

2minert
∇2 þmpassive

grav Φgrav

�
ψðt; rÞ:

ð15Þ
Here Φgrav is the gravitational potential, and mpassive

grav is the
passive gravitational mass, i.e., the coupling of matter to the
gravitational field. If the weak equivalence principle holds,
these two masses must be equal: mpassive

grav ¼ minert. Let
us remark here that so far in all situations that have been
put to test by experiments, Φgrav belongs to an external
gravitational field.
In the framework of the Schrödinger-Newton equation,

however, Φgrav yields the gravitational self-interaction.
With the assumptions underlying the Schrödinger-
Newton equation the gravitational potential satisfies the
Poisson equation

∇2Φgrav ¼ 4πGmactive
grav jψðt; rÞj2: ð16Þ

The mass entering here as the source of the gravitational
field is referred to as the active gravitational mass. Implying
conservation of momentum, one can show that mactive

grav ¼
mpassive

grav . For classical gravity, this follows simply from
Newton’s third law, while in the quantum case it can be
shown by considering the conserved momentum of a two-
particle state, described by the two-particle Schrödinger-
Newton equation given in [5,14].
Interestingly, Eq. (16) can be shown to follow from

the semiclassical Einstein equations (2) as derived in
Refs. [13,15]. The mass density on the right-hand side is
then given by the expectation value of the nonrelativistic
limit of the energy-momentum operator,

mactive
grav jψ j2 ¼ 1

c2
hψ ∣T̂00∣ψi: ð17Þ

Following this logic, from a quantum field theoretical point
of view the mass mactive

grav would be the one appearing in the
mass term of the field Lagrangian (after renormalization).
But the kaon is a composite system and its mass is mainly
binding energy of quarks.
Usually, one assumes that all three masses, inertial as

well as active and passive gravitational mass, correspond to
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mK ¼ ð497.614� 0.024Þ MeVc−2, the measurable invari-
ant mass of the neutral kaon. Whereas the flavor eigenstates
jK0i; jK̄0i have equal mass (assuming CPT symmetry)
with the value mK , the long-lived and short-lived eigen-
states jKSi, jKLi of the strong and weak interaction
Hamiltonian manifest a small mass difference Δm ¼
ð3.483� 0.006Þ MeVc−2 that is at another energy scale,
as discussed in the previous section.

So, does this mass difference Δm show up in
the Schrödinger-Newton equation? If so, for which of
the three masses does it show up, and what would be the
consequences?

As indicated in the previous section, similar conceptual
questions arise concerning the spatial wave function ψðrÞ
of the nonrelativistic neutral kaon. Again, one could simply
consider a Schrödinger equation with one unique spatial
wave function that evolves with the invariant mass, mK ,
in the kinetic term. But since the states ∣KSi and ∣KLi
diagonalize the Hamiltonian, there should in principle be
different wave functions ψSðrÞ and ψLðrÞ evolving with the
masses mS and mL, respectively. Because of the difference
in the free spreading of the wave function due to the
mass difference one would then expect additional flavor
oscillations in space.
Therefore, we will in the following distinguish two

scenarios and discuss their implications.
Scenario 1: Unique spatial wave function.—Let us first

assume that we can treat ∣KSi and ∣KLi as if they would mix
only in flavor space, while they are described by one unique
spatial wave function. The total wave function is then

ψ flavor ⊗ ψ space

¼ ðαðtÞψS;flavor þ βðtÞψL;flavorÞ ⊗ ψ space; ð18Þ
where ψ space denotes the spatial wave function and ψ flavor

the flavor part. ψS;flavor and ψL;flavor denote a short-lived
and long-lived kaon, respectively. ψ space satisfies the
Schrödinger-Newton equation for the mass minert ¼
mpassive

grav ¼ mK . The time-dependent coefficients α and β
represent the decomposition of the current kaon state in the
basis f∣KSi; ∣KLig. They are time dependent due to the
flavor oscillations, i.e.,

αðtÞ ¼ α0e−iΔmt; βðtÞ ¼ β0e−iΔmt: ð19Þ

If the active gravitational mass does not depend on the
flavor part, the equation can be separated and the spatial
wave function will simply satisfy the Schrödinger-Newton
equation for the kaon mass mK , independent of its
composition of ∣KSi and ∣KLi.
If, on the other hand, mactive

grav does depend on the
flavor part, the most naive ansatz would be mactive

grav ¼
jαðtÞj2mS þ jβðtÞj2mL. The active gravitational mass is

then time dependent, and slightly different from the inertial
and passive gravitational mass mK , and only the time-
averaged momentum is conserved. One then obtains the
Schrödinger-Newton equation

iℏ∂tψ spaceðt; rÞ

¼
�
HkinðmKÞ − GmKmSjαðtÞj2

Z
d3r0

jψ spaceðt; r0Þj2
jr − r0j

− GmKmLjβðtÞj2
Z

d3r0
jψ spaceðt; r0Þj2

jr − r0j
�
ψ spaceðt; rÞ:

ð20Þ

Since the mass difference Δm ¼ mL −mS is small, the
effect is only a tiny modification of the already unmeas-
urable gravitational self-interaction.
Scenario 2: Different spatial wave functions.—Now let

us consider the case assuming that ∣KSi and ∣KLi have
different wave functions also in space. Therefore, the total
wave function is given by

ψ flavor ⊗ ψ space ¼ αðtÞψS;flavor ⊗ ψS;space

þβðtÞψL;flavor ⊗ ψL;space: ð21Þ

Each of the spatial wave functions will contribute to the
total gravitational potential, and both wave functions will
see this same gravitational potential. Therefore, we get the
following two Schrödinger-Newton equations:

iℏ∂tψSðt; rÞ

¼
�
HkinðmSÞ − Gm2

SjαðtÞj2
Z

d3r0
jψSðt; r0Þj2
jr − r0j

− GmSmLjβðtÞj2
Z

d3r0
jψLðt; r0Þj2
jr − r0j

�
ψSðt; rÞ ð22aÞ

iℏ∂tψLðt; rÞ

¼
�
HkinðmLÞ −GmSmLjαðtÞj2

Z
d3r0

jψSðt; r0Þj2
jr − r0j

− Gm2
LjβðtÞj2

Z
d3r0

jψLðt; r0Þj2
jr − r0j

�
ψLðt; rÞ; ð22bÞ

where we write ψS;L for the spatial wave functions of the
short- and long-lived contributions, respectively.
As discussed in the previous section, both scenarios

are compatible with what has been experimentally tested so
far, although there seems to be a slight preference for this
latter scenario in the literature. Note that this second
scenario, where KS and KL evolve with different spatial
wave functions, is also the only one that is compatible with
a derivation of the Schrödinger-Newton equation from a
doublet-state formalism; cf. the Appendix.
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A. Resulting wave-function dynamics

In experimental situations, the kaon is usually not well
localized. Therefore, the wave function is usually assumed
to be a plane wave, in very good agreement with the
experiment. However, to determine the effect of the
Schrödinger-Newton equation, the localization of the wave
function must be taken into account. We will therefore
model it by a spherically symmetric Gaussian:

ψfðt; r;m; aÞ

¼ ðπa2Þ−3=4
�
1þ iℏt

ma2

�
−3=2

exp

�
−

r2

2a2ð1þ iℏt
ma2Þ

�
:

ð23Þ

This is the solution of the free Schrödinger equation, where
the width, a, will be assumed to be large. In general, the
Schrödinger-Newton dynamics disturb the Gaussian shape
of the wave function. Since the gravitational interaction
is very weak due to the large value of a and the small mass
m, we will approximate the wave function appearing as the
mass density in the gravitational potential by the free
solution (23). The approximated gravitational potential is
then Φgrav ¼ −Gmactive

grav fðt; r;m; aÞ with

fðt; r;m; aÞ ¼
Z

d3r0
jψfðt; r0;m; aÞj2

jr − r0j

¼ 1

r
erf

�
r
a

�
1þ ℏ2t2

m2a4

�−1=2�
: ð24Þ

The function f could now be expanded in terms of the
mass, yielding

fðt; r;m; aÞ ¼ 2amffiffiffi
π

p
ℏt

þOðm3Þ; ð25Þ

or in terms of time, yielding

fðt; r;m; aÞ

¼ erfðr=aÞ
r

−
ℏ2ffiffiffi
π

p
m2a5

exp

�
−
r2

a2

�
t2 þOðt4Þ: ð26Þ

Here, however, we choose an expansion around a ¼ ∞,
which is justified in all usual experimental situations—
which is why one usually assumes plane-wave solutions.
This approximation yields

fðt; r;m; aÞ ¼ 2ffiffiffi
π

p
a

�
1 −

r2

3a2
þ r4

10a4

�

−
ℏ2t2ffiffiffi
π

p
m2a5

þOða−7Þ; ð27Þ

which is time independent up to order a−5.

Scenario 1: Unique spatial wave function.—In the case
of Eq. (20) we have

iℏ∂tψ ¼ HkinðmKÞψ
−GmKðjαj2mS þ jβj2mLÞfðt; r;mK; aÞψ : ð28Þ

If we then write mS ¼ m, mL ¼ mþ Δm and use the
expansion (27) we get

iℏ∂tψ ¼ HkinðmKÞψ

−
2GmKffiffiffi

π
p

a
ðmK þ jβðtÞj2ΔmÞψ : ð29Þ

This is time dependent only through the coefficient β. We
also used (4) to replace m by mK in the approximation.
Scenario 2: Different spatial wave function.—If we

assume two different wave functions, as in Eqs. 22, we
can write them as

iℏ∂tψS ¼ HkinðmSÞψS

−Gm2
SjαðtÞj2fðt; r;mS; aÞψS

−GmSmLjβðtÞj2fðt; r;mL; aÞψS ð30aÞ

iℏ∂tψL ¼ HkinðmLÞψS

− GmSmLjαðtÞj2fðt; r;mS; aÞψL

− Gm2
LjβðtÞj2fðt; r;mL; aÞψL: ð30bÞ

If we then again write mS ¼ m, mL ¼ mþ Δm and use the
expansion (27) we get

iℏ∂tψS ¼ HkinðmÞψS

−
2Gm2ffiffiffi

π
p

a

�
1þ

�
1

m
þ ℏ2t2

m3a4

�
jβðtÞj2Δm

�
ψS

ð31aÞ

iℏ∂tψL ¼ HkinðmLÞψL

−
2Gm2

Lffiffiffi
π

p
a

�
1þ

�
1

m
þ ℏ2t2

m3a4

�
jβðtÞj2Δm

�
ψL:

ð31bÞ

B. Gravity-induced energy shift

Above we obtained the nonlinear Schrödinger equation
which describes the dynamics of the kaon system in the
presence of gravity, and therefore an approximation of the
space-dependent Hamiltonian. The Hamiltonian that gov-
erns the flavor oscillations is modified by the energy shift
due to the gravitational interaction. In order to calculate this
energy shift, we must consider the expectation value of the
Hamiltonian. This expectation value is proportional to
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hψfjfðt; r;m; aÞjψfi ¼
ffiffiffiffiffiffiffiffi
2

πa2

r �
1þ ℏ2t2

m2a4

�−1=2
; ð32Þ

where we approximated the wave function by the solution
of the free Schrödinger equation, as previously explained.
For the mass mþ Δm we can expand this and obtain up to
first order in Δm:

hψfjfðt; r;mþ Δm; aÞjψfi

¼ hψfjfðt; r;m; aÞjψfi þ ℏ2t2

m3a4

�
1þ ℏ2t2

m2a4

�−3=2
Δm:

ð33Þ

Scenario 1: Unique spatial wave function.—From
Eq. (28) we get the energy shift

ΔE ¼ −GmKðjαj2mS þ jβj2mLÞ
× hψfjfðt; r;mK; aÞjψfi

¼ −
ffiffiffi
2

π

r
GmK

a
ðmþ jβj2ΔmÞ þOða−6Þ: ð34Þ

Both states ∣KSi and ∣KLi obtain a constant energy shift,
but these only yield a constant phase shift. The contribution
proportional to Δm, however, adds to the flavor oscillations
(11). It acts like a shift of the mass difference:

Δm → ð1 − ΔSNÞΔm ð35Þ

with

ΔSN ¼
ffiffiffi
2

π

r
GmK

c2a
: ð36Þ

Scenario 2: Different spatial wave function.—From
Eqs. (30) one obtains

ΔES ¼ −
ffiffiffi
2

π

r
Gm
a

½mþ jβj2Δm� þOða−4Þ ð37aÞ

ΔEL ¼ −
ffiffiffi
2

π

r
Gm
a

½mþ ð1þ jβj2ÞΔm� þOða−4Þ; ð37bÞ

where higher order terms in 1=a have been omitted. The
shift in Δm therefore is twice the one before:

Δm → ð1 − 2 · ΔSNÞΔm; ð38Þ

where we assume that m ≈mK . Inserting the kaon mass,
one finds that a large effect is only expected if the wave
function becomes close to or narrower than about 10−54 m,
far below the Planck length. This result does not change for
other meson types.

Hence, we conclude that, although the effect is unob-
servably small for the kaon, the resulting effect depends on
the treatment of the spatial wave function, either by a
unique wave function or by different wave functions for the
different mass eigenstates. Let us also remark here that the
effect does depend on the particular shape of the spatial
wave function about which not much is known from the
experiments. Thus, dedicated experiments to study the
spatial wave function of mesons would help to understand
the right treatment for possible nonlinear modifications of
the Schrödinger equation.
In addition to the energy shift, the Schrödinger-Newton

equation of course also leads to the usual localization of
the wave function as it has been described in [18], which
is a very small effect due to the weakness of the gravita-
tional self-interaction in the situation at hand (large wave
function, small masses).

IV. COMPARISON TO THE CSL
COLLAPSE MODEL

Collapse models [17] predict the spontaneous collapse of
the wave function, in order to avoid the emergence of
macroscopic superpositions. In their mass-dependent for-
mulation, they claim that the collapse of any system’s wave
function depends on its mass. Recently, the most popular
collapse model, the mass-proportional CSL model was
applied to the meson-antimeson systems [35]. Here, the
crucial point was again to connect the spatial with the
flavor wave function part. The authors chose the sum of
the kinetic contribution of the short- and long-lived compo-
nents. After a cumbersome computation solving the sto-
chastic nonlinear differential equation they found the
following probability

PðK0t; jK0jÞ ¼ 1

4

�
e−ΓSt þ e−ΓLt

þ 2 cosðΔmtÞe−Γt e
− γΔm2

16π3=2r3
C
m2
0

t|fflfflfflfflfflffl{zfflfflfflfflfflffl}
effect due to CSLmodel

�
ð39Þ

where the collapse rate γ and the coherence length rC are
parameters of the collapsemodel andm0 is a referencemass.
Thus, in opposition to the solution of the Schrödinger-
Newton equation, the mass-dependent collapse effect leads
to a damping proportional toΔm2 and has, consequently, to
be compared to decoherence effects.

V. SUMMARY AND CONCLUSIONS

The aim of this contribution was to investigate how
Newtonian self-gravitation can be included in the standard
framework to handle flavor oscillations of neutral meson
systems. Provided that such a hypothetical nonlinear
modification of the quantum dynamics due to gravity
would be correct, it is not straightforwardly physically
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intuitive which mass is the relevant one for the different
terms in the Hamiltonian. Moreover, for any nonlinear
extension of the Schrödinger evolution, as in the case of the
Schrödinger-Newton equation or spatial collapse models,
one has to assume a certain relation between the spatial and
flavor wave functions. We have considered two possible
scenarios, a separable and entangled ansatz, and derived the
effect of the Schrödinger-Newton equation under certain
assumptions. Although the effect turns out to be unobserv-
ably small, we find that there is a conceptually different
result for the two scenarios, namely a shift in energy which
is twice the one for the scenario of a unique wave function
of the two mass-energy eigenstates. The correct treatment
of the spatial wave function in the quantum mechanical
description of nonrelativistic elementary particle systems
therefore is a crucial question, which deserves further
consideration, independently of the question if the kind
of self-gravitation discussed in this paper actually exists.
Let us remark that the non-Hermitian part of the

Hamiltonian was not considered or affected by the
Schrödinger-Newton equation. This is consistent with
the results in Ref. [46] where the authors showed that
the non-Hermitian part can be removed by changing the
Schrödinger equation into a Lindblad equation by extend-
ing the Hilbert space. Also the CP violation in mixing was
not affected by self-gravitation since it does not enter in the
eigenvalues of the considered Hamiltonian. It is not clear
what happens with direct CP violating effects, i.e., where
the violation occurs on the amplitude level.
Let us also mention that neutrinos exhibit a similar

oscillation feature in flavor space; hence, the same con-
ceptual problems apply to this case, although the relevant
masses are even smaller.
Our current understanding of the nonrelativistic limit

of particle physics, as well as the foundations of the
Schrödinger-Newton equation (provided it is correct), is
not sufficient to derive the Schrödinger-Newton effects
unambiguously. In particular, there is no definite answer for
which are the relevant masses and how to treat the spatial
wave function. However, none of the possibilities we
discussed leads to any conceptional contradictions between
the Schrödinger-Newton equation and the treatment of
kaons as a nonrelativistic quantum system. In all consid-
ered cases the effects within our assumptions were found to
be irrelevant in practical situations; therefore, no contra-
dictions to already performed or envisaged experiments in
elementary particle physics seem to exist.
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APPENDIX: DERIVATION OF THE
SCHRÖDINGER-NEWTON EQUATION FROM

A DOUBLET-STATE FORMALISM

In [15] the Schrödinger-Newton equation has been
derived from semiclassical gravity for a scalar field. In
the nonrelativistic limit, one ends up with the gravitational
interaction Hamiltonian

Ĥint ¼ −G
Z

d3rd3r0
hΨ∣ϱ̂ðr0Þ∣Ψi

jr − r0j ϱ̂ðrÞ; ðA1Þ

where ϱ̂ ¼ mψ̂†ψ̂ is the mass-density operator for only
one kind of particles. This, together with the kinetic energy
operator

T̂ ¼
Z

d3rψ̂†ðrÞ
�
−
ℏ2

2m
∇2

�
ψ̂ðrÞ; ðA2Þ

yields the Schrödinger-Newton equation in second quan-
tized formalism,

iℏ∂t∣Ψi ¼ ðT̂ þ ĤintÞ∣Ψi: ðA3Þ
The standard, first quantized Schrödinger-Newton equation
follows for the one-particle state

∣Ψi ¼
Z

d3rΨðt; rÞψ̂†ðrÞ∣0i; ðA4Þ

where Ψðt; rÞ is the spatial wave function.
Let us extend this to a doublet field, as in the case of the

neutral kaon. Hence, we consider the one-particle states

∣Ψi ¼
Z

d3r

�
Ψ1ðt; rÞψ̂1

†ðrÞ
Ψ2ðt; rÞψ̂2

†ðrÞ
�
∣0i; ðA5Þ

where the indices 1 and 2 denote a not yet specified
orthonormal basis in the space of the field operators. Note
that this in principle covers the case where both fields
evolve differently in space, as well as the case where both
have the same unique distribution in space. The latter case
is obtained by demanding Ψ1 ≡Ψ2. The normalization
condition hΨjΨi ¼ 1 requires jΨ1j2 þ jΨ2j2 ¼ 1.
We will not specify the form of the kinetic energy and

mass-density operators, yet, but make the general ansatz

T̂ ¼
Z

d3r

�
ψ̂1ðrÞ
ψ̂2ðrÞ

�†� T̂11 T̂12

T̂21 T̂22

��
ψ̂1ðrÞ
ψ̂2ðrÞ

�
ðA6Þ

ρ̂ðrÞ ¼
�
ψ̂1ðrÞ
ψ̂2ðrÞ

�†�M11 M12

M21 M22

��
ψ̂1ðrÞ
ψ̂2ðrÞ

�
; ðA7Þ
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where T̂ij are operators acting on the spatial wave function.
Applied to the state (A5) these yield

T̂∣Ψi ¼
Z

d3r

�
T̂11Ψ1ðt; rÞψ̂†

1 þ T̂21Ψ1ðt; rÞψ̂†
2

T̂12Ψ2ðt; rÞψ̂†
1 þ T̂22Ψ2ðt; rÞψ̂†

2

�
∣0i

ðA8Þ

ρ̂ðrÞ∣Ψi ¼
�
M11Ψ1ðt; rÞψ̂†

1 þM21Ψ1ðt; rÞψ̂†
2

M12Ψ2ðt; rÞψ̂†
1 þM22Ψ2ðt; rÞψ̂†

2

�
∣0i; ðA9Þ

and the expectation value of the mass-density operator is

hΨ∣ρ̂ðrÞ∣Ψit ¼ M11jΨ1ðt; rÞj2 þM22jΨ2ðt; rÞj2: ðA10Þ

By inserting these expressions into the second quantized
Schrödinger-Newton equation (A3), and multiplying with
h0∣ψ̂1;2 from the left, one obtains the following coupled
system of equations:

iℏ∂tΨ1ðt; rÞ ¼ T̂11Ψ1ðt; rÞ

−GM11

Z
d3r0

�
M11

jΨ1ðt; r0Þj2
jr − r0j þM22

jΨ2ðt; r0Þj2
jr − r0j

�
Ψ1ðt; rÞ ðA11aÞ

iℏ∂tΨ2ðt; rÞ ¼ T̂22Ψ2ðt; rÞ

−GM22

Z
d3r0

�
M11

jΨ1ðt; r0Þj2
jr − r0j þM22

jΨ2ðt; r0Þj2
jr − r0j

�
Ψ2ðt; rÞ ðA11bÞ

0 ¼ T̂21Ψ1ðt; rÞ

−GM21

Z
d3r0

�
M11

jΨ1ðt; r0Þj2
jr − r0j þM22

jΨ2ðt; r0Þj2
jr − r0j

�
Ψ1ðt; rÞ ðA11cÞ

0 ¼ T̂12Ψ2ðt; rÞ

−GM12

Z
d3r0

�
M11

jΨ1ðt; r0Þj2
jr − r0j þM22

jΨ2ðt; r0Þj2
jr − r0j

�
Ψ2ðt; rÞ: ðA11dÞ

In the case of free evolution, without gravity, the last two
equations require the off-diagonal terms of the kinetic
energy operator to vanish. The first two equations are
completely decoupled in this case. Therefore, at this point,
no restriction on the relation of the two wave functions
can be made. In particular, it is possible that Ψ1 ≡Ψ2,
which then implies T̂11 ¼ T̂22.
However, if the Schrödinger-Newton term is considered,

the off-diagonal elements of the kinetic energy operator

vanish if and only if the mass matrix is diagonal. The
self-gravitational interaction also leads to a coupling of
Eqs. (A11a) and (A11b). Having Ψ1 ≡Ψ2 then not only
requires T̂11 ¼ T̂22 but also M11 ¼ M22.
Hence, if there is a mass difference of the states, as for

the neutral kaon system, a doublet-state formalism is only
compatible with the Schrödinger-Newton equation if both
states evolve in with their respective masses, having
different wave functions Ψ1 ≠ Ψ2.
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