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A grand unified field Mμν is constructed from Maxwell’s field tensor and an appropriately modified
flow field, both nonminimally coupled to gravity, to analyze the dynamics of hot charged fluids in curved
background space-time. With a suitable 3þ 1 decomposition, this new formalism of the hot fluid is then
applied to investigate the vortical dynamics of the system. Finally, the equilibrium state for plasma with
nonminimal coupling through Ricci scalar R to gravity is investigated to derive a double Beltrami equation
in curved space-time.
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I. INTRODUCTION

By generalizing the standard minimum coupling pre-
scription, pμ → mUμ þ qAμ, invoked to incorporate the
electromagnetic field in charged particle dynamics, an
analogous theory to describe the dynamics of a hot charged
fluid was developed in [1]. The “hot-fluid” version of the
prescription (Aμ is the electromagnetic four potential),

pμ → mGUμ þ qAμ ¼ Pμ; ð1Þ

combines the kinematic (the mass m, the four momentum
pμ, and the four velocity Uμ) and the statistical (the
thermodynamic enthalpy G) attributes of the fluid element.
The centerpiece of the formalism was the construction of an
antisymmetric, hybrid field tensor,

qMμν ¼ ∇μPν −∇νPμ ¼ qFμν þmSμν; ð2Þ

which is a weighted sum of the electromagnetic field tensor
Fμν and the composite ( kinematic-statistical) fluid tensor
Sμν ¼ ∇μGUν −∇νGUμ; the weighting factors are the
electric charge q and the inertial “charge” m. In analogy
with electromagnetism, one may associate with Sμν appro-
priately defined equivalents of the electric and magnetic
fields [1,2]. The entire dynamics of the hot fluid is
contained in the succinct equation (T is the temperature
of the fluid)

qUμMμν ¼ mn∇νG −∇νp
n

¼ T∇νσ; ð3Þ

where the right-hand side is the thermodynamic force
expressed in terms of the fluid entropy σ using the standard
thermodynamic relation between entropy with enthalpy (p
is the pressure). It was further shown that the 3-vector part
of Eq. (3), after appropriate manipulation, is reducible to
the conventional 3D vortex dynamics except that the

standard fluid voriticity (and the conserved helicity) is
replaced by the hybrid magnetofluid vorticity (magneto-
fluid helicity). This is a far-reaching consequence because
both the methodology and results of the highly investigated
nonrelativistic vortex dynamics could, then, be transported
to shed light on the much more complicated hot relativ-
istic fluid.
In light of the preceding discussion, Eq. (3) should be

taken as a defining equation for the four-dimensional (4D)
vortex dynamics.
A very fundamental result of the standard “ideal” vortex

dynamics is that it implies a topological invariant, the
helicity (the hybrid helicity); i.e., such a dynamics forbids
creation or destruction of vorticity (the vorticity could not
be created from a state of no vorticity). However, the
constraint can be broken by including nonideal behavior; in
the standard 3D nonrelativistic system, the ideal behavior
corresponds to the right-hand side being a perfect gradient,
T∇νσ ¼ ∇νσ̄, which will require an equation of state of the
type σ ¼ σðTÞ. It must be, however, emphasized that the
thermodynamics of the fluid is its intrinsic property and is
not dictated by whether the equations of motion can be cast
in a “canonical” vortex dynamics form.
The 4D vortex dynamics, though very similar to 3D

vortex dynamics, differs from it in one fundamental way:
the special and general relativistic effects, through the
distortion of space-time, could break the topological
invariant even in ideal dynamics (σ ¼ σðTÞ). These effects
introduce sources and sinks for the relevant generalized
helicity (often much more complicated than the 3D fluid
helicity) so that the creation and destruction of the
generalized vorticity becomes possible in ideal dynamics.
Thus, the relativistic mechanics opens up a new vista and

a new mode of analysis. We first try to construct the most
general form of 4D vortex dynamics [embodied in Eq. (3)]
by manipulating the dynamics so that an appropriately
generalized Pμν (and thus MμνÞ can be constructed to
satisfy an equation of the type
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qUμMμν ¼ QT∇νσ; ð4Þ

where Q could be a function of space-time geometry. As
usual, the components Mij ¼ ϵijkXk will define the new
generalized vorticity (generalized magnetic field) X. And
for homogenous thermodynamics (∇νσ ¼ 0), with or
without an equation of state, the generalized helicity
H ¼ h~X ·∇×−1 ~Xi will be conserved. Here, (∇×−1 ~X) is
the inverse curl of vortical field ~X.
Then, the next step is to investigate relativistic mecha-

nisms that, in combination with inhomogeneous thermo-
dynamics, will create sources and sinks for H and X.
Finding the origin of seed vorticity (of the magnetic field,
for instance), which could be amplified in an ideal dynamo-
like mechanism, is one of the most fascinating problems of
theoretical astrophysics and cosmology, and several recent
papers have advanced the effort by making the special
relativistic model of Refs. [1,3,4] generally covariant [5–7],
i.e., by including gravity.
The general relativistic formulation in Ref. [5] was

attempted within the framework of minimal coupling to
gravity in the spherically symmetric and static space-time.
Later, the work was extended to a rotating black hole using
the ψ-N (pseudo-Newtonian formalism) framework [7].
In this paper, we further generalize the recent work by
including nonminimal coupling between gravity and
plasma in a general background space-time.
Since our investigation facilitates a generalization to

fðRÞ gravity (not just Einstein’s general relativity) [8–12],
we begin our analysis with an action functional for fðRÞ
gravity with a perfect fluid and Maxwell’s fields non-
minimally coupled to gravity to derive the equation of
motion for a new hybrid magnetofluid. Also, the vortical
dynamics of the magnetofluid is explored by deriving the
generalized Faraday’s law from dual tensor M�μν, and its
static spherically symmetric limits are explored with their
possible astrophysical applications. Finally, source-free
plasma equilibrium states in curved background space-
time are investigated. In this paper, the calculation for the
generalized equation of motion of a new hybrid magneto-
fluid in curved background space-time is presented in the
first section. Next, the Arnowitt-Deser-Misner (ADM)
formalism of electrodynamics [13–16] is applied to this
new formulation of magnetofluids. Equations obtained
after 3þ 1 decomposition are later cast into the vorticity
evolution equation. Two limiting cases of the equation are
shown later. Finally, the source-free vorticity equation for
the limiting cases with fmðRÞ ¼ R is used to derive the
equilibrium state of the system.

II. PLASMA DYNAMICS

The dynamics of an ideal plasma in curved background
space-time can be investigated with the extremization of the
action functional in the convention G ¼ c ¼ 1,

S ¼ Sg þ Spfg þ SM þ SNM;

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
fgðRÞ − ð1þ λfmðRÞÞρðn; ~σÞ

−
1

16π
ðgμαgνβ þRμναβÞFμνFαβ

�
; ð5Þ

where Sg, Spfg, SM, and SNM represent the corresponding
action functionals for pure gravity, a perfect fluid, and
Maxwell’s field minimally as well as nonminimally
coupled to gravity. Since our analysis does not change
in the context of modified gravity, we include, for general-
ity, the functions of Ricci scalar fgðRÞ and fmðRÞ in the
above action for pure gravity and coupling to matter,
respectively. Here, gμν, g, Fμν, R, and Rμναβ represent
the metric tensor, the determinant of the metric tensor, the
Maxwell field tensor, the Ricci scalar, and the Riemann
tensor, respectively. The quantity ρðn; ~σÞ, the energy
density, is a function of the number density, n, and entropy
density, ~σ, of the plasma. Also, λ is a phenomenological
parameter that represents the coupling strength of the
plasma to its background geometry; thus, it can be treated
as a coupling constant with a dimension of length2 (see
Ref. [12] for a detailed discussion). The nonminimal three-
parameter tensor Rμναβ introduced in Ref. [9] has the form

Rμναβ ¼ q1Rgμναβ þ q2Rμναβ þ q3Rμναβ;

where two auxiliary tensors

Rμναβ ¼ 1

2
ðRμαgνβ − Rμβgνα þ Rνβgμα − RναgμβÞ

and

gμναβ ¼ 1

2
ðgμαgνβ − gναgμβÞ

are introduced. The parameters q1, q2, and q3 are used to
describe nonminimal linear coupling of the electromagnetic
tensor Fμν to the curvature. In general, these parameters are
arbitrary and hence have to be chosen to satisfy some
desired phenomenological or other constraints. For exam-
ple, the Lagrangian with q1 ¼ q2 ¼ 0 and q3 ¼ −λ1 has
been used by Prasanna for phenomenological study of the
nonminimal modifications of the electrodynamics [17–19].
Other suitable constraints for q1, q2, and q3 have been
chosen to befit the desired phenomenological or other
results. Such a nonminimal coupling of the electromagnetic
field to gravity, with dimensional coupling constants q1, q2,
and q3 as a natural choice of action, has been discussed by
Balakin [9] and Horndeski [20]. Here, we keep all q1, q2,
and q3 without any constraint for the purpose of complete-
ness and generality. One can choose a more generalized
form of coupling of the electromagnetic field to gravity
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through nonlinear Riemann curvature, but we limit our
analysis to the above action functional for simplicity.
Now, the extremization of the above action functional,

i.e., varying it with respect to the metric gμν, will result in
the modified Einstein equation with the total stress-energy
tensor Tμν

total for the perfect fluid and Maxwell’s field in
curved space-time,

FgðRÞRμν −
1

2
fgðRÞgμν − ð∇μ∇ν − gμν□ÞFgðRÞ ¼ 8πTμν

total;

ð6Þ

where Fg ¼ f0gðRÞ (differentiation with respect to R) and
Tμν
total is the total stress-energy tensor computed from

Tμν ¼ ð2= ffiffiffiffiffiffi−gp ÞðδS=δgμνÞ. It is straightforward to show
that Einstein’s equation for general relativity is recovered
by setting fgðRÞ ¼ R and FgðRÞ ¼ 1, and the divergence of
the modified Einstein equation (6) produces the equation of
motion of the plasma in curved background space-time
since the vanishing divergence of the left-hand side will not
contribute to the equation of motion for the plasma.
The stress-energy tensor for perfect fluid and Maxwell’s

field can be computed from Tμν ¼ ð2= ffiffiffiffiffiffi−gp ÞðδS=δgμνÞwith
the corresponding action functional. Varying the action
functional Spfg, we obtain the stress tensor for perfect fluid
coupled to gravity [8,21–23]

Tμν
pfg ¼ ð1þ λfmðRÞÞTμν

pf þ 2λρFmðRÞRμν

− 2λð∇μ∇ν − gμν□ÞρFmðRÞ; ð7Þ

where Tμν
pf is the stress-energy tensor for noncoupled perfect

fluid (See Appendix A for details): Tμν
pf ¼ ðpþ ρÞUμUνþ

pgμν with Uμ ¼ dxμ=dτ being the 4-velocity of the plasma
particles, and FmðRÞ ¼ f0mðRÞ. The quantity pþ ρ ¼ h
is known to be the enthalpy density of the plasma, which
can be expressed by introducing an auxiliary function
G ¼ h=mnwithm and n being themass and number density,
respectively.
Using the identity ∇μð∇μ∇ν − gμν□Þρ ¼ Rμν∇μρ, the

expression for the divergence of the stress tensor reduces to
[8,10,11,21–24]

∇μT
μν
pfg ¼ ð1þ λfmðRÞÞ∇μT

μν
pf þ λFðTμν

pf þ gμνρÞ∇μR:

ð8Þ

On the other hand, the variation of the action functional
SM gives the usual electromagnetic stress tensor

Tμν
M ¼ 1

4π

�
FνβFμ

β −
1

4
FμνFμν

�
; ð9Þ

and, with the Bianchi identity, the divergence of Tμν
M takes

the following form:

4π∇μT
μν
M ¼ −Fν

β∇αFβα: ð10Þ

Next, owing to the linear nature of nonminimal action,
we can assume the total nonminimal stress-energy tensor
to be [9]

Tμν
NM ¼ q1T

μν
1 þ q2T

μν
2 þ q3T

μν
3 :

Varying the action for nonminimal coupling, we obtain the
following set of three stress-energy tensors:

Tμν
1 ¼ 1

4π

�
−
1

2
ð∇μ∇ν − gμν□ÞFαβFαβ þ RFμβFν

β

�
; ð11Þ

Tμν
2 ¼ 1

4π
gμαgνβ

�
1

2
gαβð∇γ∇θðFγσFθ

σÞ − RγσFγθFθ
σÞ

þ FγσðRγβFασ þ RγαFβσÞ þ
1

2
▫ðFβσFα

σÞ

−
1

2
∇γ½∇αðFβσFγσÞ þ∇βðFασFγσÞ� þ RγσFγαFσβ

�
;

ð12Þ

Tμν
3 ¼ 1

4π

�
gμαgνβ

�
−
1

4
gαβRγθσρFγθFσρ

þ 3

4
FσρðFα

θRβθσρ þ Fβ
θRαθσρÞ

þ 1

2
∇γ∇θ½Fα

γFβ
θ þ Fβ

γFα
θ�
��

: ð13Þ

The calculation of the divergences of the above three
stress tensors requires electrodynamic equations corre-
sponding to the total action functional, i.e., adding an
interaction or source term in the action. Therefore, we take
the variation of the action functional with the source term
with respect to the field variable Aμ and obtain [9]

∇αHαβ ¼ −4πnqUβ; ð14Þ

where

Hαβ ¼ Fαβ þRμναβFμν ð15Þ

may be considered as a generalized Faraday tensor in
curved background space-time and nqUβ is the Lorentz
4-current associated with the charged fluid. Equations (14)
and (15) can be regarded as the constitutive relations of the
unified system to preserve Maxwell’s equations in curved
background space-time.
Invoking the fact the total stress-energy tensor should be

divergence free, i.e.,

∇μ½Tμν
pfg þ Tμν

M þ Tμν
NM� ¼ 0; ð16Þ

MAGNETOFLUID DYNAMICS IN CURVED SPACETIME PHYSICAL REVIEW D 91, 064055 (2015)

064055-3



with Tμν
NM ¼ q1T

μν
1 þ q2T

μν
2 þ q2T

μν
2 , and using Eqs. (10),

(15), and (16), we obtain the divergences of the three
constituents of the nonminimal stress energy tensor Tμν

NM:

4π∇μT
μν
1 ¼ −Fν

β∇αðRFαβÞ; ð17Þ
4π∇μT

μν
2 ¼ −Fν

β∇μðRμγFγ
β þ RγβFμγÞ; ð18Þ

4π∇μT
μν
3 ¼ −Fν

β∇μðRμβγθFγθÞ: ð19Þ

Substituting these expressions for divergence in Eq. (16),
we obtain

ð1þ λfmðRÞÞ∇μT
μν
pf

¼ ½qnFν
βUβ − λFmðRÞðTμν

pf þ gμνρÞ∇μR�: ð20Þ
It is interesting to note that the coupling between gravity

and electromagnetic field is now explicitly manifest in
Eq. (15) through thegeneralizedFaraday tensor and is implicit
in the equation of motion (20) for plasma in curved back-
ground space-time through the current since, unlike standard
electromagnetic field, Uβ is governed by a hybrid field Hαβ.
Until now, we mainly followed the standard approach to

derive the covariant equation of motion for the plasma in
curved background space-time from the action functional
(5). The main result is Eq. (20) that captures the non-
minimally gravity-coupled plasma dynamics. To advance
in our program of unifying the electromagnetic field with
an appropriately weighted flow field, we next derive a
generalized expression for the corresponding unified
magnetofluid.

A. Magnetofluid unification

Following the prescription presented in Ref. [1],
we substitute the expression for the stress tensor Tμν

pf ¼
ðpþ ρÞUμUν þ pgμν for the perfect fluid in Eq. (20) and
invoke the continuity equation ∇μðnUμÞ ¼ 0 to obtain.

ð1þ λfmðRÞ − λRFmðRÞÞmnUμ∇μðGUνÞ
þ ð1þ λfmðRÞ − λRFmðRÞÞ∇νp

þ λmnFmðRÞUμ∇μðRGUνÞ þ λFmðRÞ∇νðpRÞ
¼ qnFνβUβ − λFmðRÞρ∇νR: ð21Þ

In terms of the standard perfect fluid flow tensor
Sμν ¼ ∇μðGUνÞ −∇νðGUμÞ, and a new curvature-coupled
weighted antisymmetric flow field tensors Kμν ¼
∇μðRGUνÞ −∇νðRGUμÞ, we can manipulate Eq. (21) to
obtain (G ¼ h=mn)

ð1þ λfmðRÞÞ
�∇νp

n
−m∇νG

�
¼ qUμMνμ; ð22Þ

where the new grand vorticity tensor has the canonical
form ([1])

Mνμ ¼ Fνμ þm
q
Dνμ ð23Þ

with

Dνμ ¼ ð1þ λfmðRÞ − λRFmÞSνμ þ
m
q
λFmKνμ: ð24Þ

The new fluid tensor Dμν displays, explicitly, the coupling
of the flow field to gravity. Using the thermodynamic
identity

∇νσ ¼ mn∇νG −∇νp
nT

; ð25Þ

we cast Eq. (22), governing the dynamics of a hot fluid
system in curved background space-time, into the canonical
4D vortex form

qUμMμν ¼ ð1þ λfmðRÞÞT∇νσ: ð26Þ

Here, it must be noted that invoked thermodynamic relation
is contingent upon an appropriately well-defined local
concept of temperature in curved space-time. The above
thermodynamic identity (25) can be derived from the first
law of thermodynamics expressed in the form of exact
differential dH¼mdG¼TdσþVdp¼Tdσþdp=n, with
H and V being the enthalpy and the volume of the fluid
element, respectively, which in turn can be cast into the
form m∇μG ¼ T∇μσ þ ð1=nÞ∇μp for a fluid element
moving along the worldline with 4-velocity Uμ [15].
Notice that, when λ ¼ 0, Mμν reduces to its minimally

coupled counterpart, the tensor Mμν defined in Refs. [1,5].
Equation (26) is the main result of this formalism; we

have just shown that a charged relativistic fluid, coupled
nonminimally to gravity, obeys a 4D vortex dynamics like
its gravity free, and minimally coupled to gravity, counter-
parts. The new grand vorticity tensor subsumes earlier
limiting cases in a transparent manner.
We will now apply the above covariant formulation to

spell out and investigate the more advanced vortical
structures contained in this system. To do calculations in
terms of familiar quantities, we will begin with a 3þ 1
decomposition.

III. 3þ 1 DYNAMICS OF
GRAVITOMAGNETOFLUID

The 3þ 1 decomposition of the 4D vortex dynamics will
help us, inter alia, to find 1) a generalized electric and
magnetic field from Mμν and 2) the energy and the
continuity equation rewritten in terms of generalized
electric and magnetic fields.
The approach chosen for the 3þ 1 splitting selects a

family of foliated fiducial 3D hypersurfaces (slices of
simultaneity) Σt labelled by a parameter t ¼ constant in
terms of a time function on the manifold. Furthermore, we
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let tμ be a timeline vector of which the integral curves
intersect each leaf Σt of the foliation precisely once and that
is normalized such that tμ∇μt ¼ 1. This tμ is the “evolution
vector field” along the orbits of which different points on
all Σt ≡ Σ can be identified. This allows us to write all
space-time fields in terms of t-dependent components
defined on the spatial manifold Σt. Lie derivatives of
the space-time field along tμ are identified with “time
derivatives” of the spatial fields since Lie derivatives reduce
to a partial time derivative for an adapted coordinate
system tμ ¼ ð1; 0; 0; 0Þ.
Moreover, since we are using the Lorentzian signature,

the vector field tμ is required to be future directed. Let us
decompose tμ into normal and tangential parts with respect
to Σt by defining the lapse function α and the shift vector βμ

as tμ¼αnμþβμwith βμnμ¼0, wherenμ is the future directed
unit normal vector field to the hypersurfaces Σt. More
precisely, the natural timelike covector nμ¼ð−α;0;0;0Þ ¼
−α∇μt is defined to obtain nμ ¼ ð1=α;−βμ=αÞ, which
satisfies the normalization condition nμnμ ¼ −1. Then,
the space-time metric gμν induces a spatial metric γμν by
the formula γμν ¼ gμν þ nμnν. Finally, the 3þ 1 decom-
position is usually carried out with the projection operator
γμν ¼ δμν þ nμnν, which satisfies the condition nμγμν ¼ 0.
Also, the acceleration is defined as aμ ¼ nν∇νnμ.
Now, with the above foliation of space-time, the space-

time metric takes the canonical form [15]

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð27Þ

and it immediately follows that, with respect to an Eulerian
observer, the Lorentz factor turns out to be

Γ ¼ ½α2 − γijðβiβj þ 2βivj þ vivjÞ�−1=2; ð28Þ

satisfying dτ ¼ dt=Γ, where vi is the ith component of
fluid velocity ~v ¼ d~x=dt. Then, the decomposition for the
4-velocity is [5]

Uμ ¼ αΓnμ þ Γγμνvν; ð29Þ

with nμUμ ¼ −αΓ.
Now, since our unified antisymmetric field tensorMμν is

constructed from the antisymmetric tensors Fμν and Dμν,
we apply the ADM formalism of electrodynamics pre-
sented in Refs. [13–16] to define the generalized electric
and magnetic field, respectively, as

ξμ ¼ nνMμν; Xμ ¼ 1

2
nρϵρμστMστ; ð30Þ

and thus express the unified field tensor

Mμν ¼ nμξν − nνξμ − ϵμνρσXρnσ: ð31Þ

We remind the reader that the generalized magnetic field
and the generalized vorticity are essentially synonymous.
Using the definition of the unified field tensor Mμν, the
expressions of the 3D generalized electric and magnetic
field turn out to be

~ξ ¼ ~E −
m
q
ð1þ λfmðRÞ − λRFmðRÞÞ ~∇ðαGΓÞ

−
m
q
λFmðRÞ ~∇ðαGRΓÞ

−
m
q
ð1þ λfmðRÞÞ

�
2σ · ðGΓ~vÞ þ 2

3
θGΓ~v

�

−
m
qα

ð1þ λfmðRÞ − λRFmðRÞÞðLtðGΓ~vÞ − L~βðGΓ~vÞÞ

−
m
qα

λFmðRÞðLtðGRΓ~vÞ − L~βðGRΓ~vÞÞ; ð32Þ

~X ¼ ~Bþm
q
ð1þ λfmðRÞ − λRFmðRÞÞ ~∇ × ðGΓ~vÞ

þ λFmðRÞ
m
q
~∇ × ðRGΓ~vÞ; ð33Þ

where σ ¼ σνμ and θ are, respectively, the shear and
expansion of the congruence, defined as σαβ¼γμαγνβ∇ðμnνÞ−
1
3
θγμν and θ ¼ ∇μnμ. We have also used the relation
∇μnν ¼ −aνnμ þ σαβ þ 1

3
θγμν to derive Eq. (32).

Finally, the γβμ projection of the unified field equation of
motion (26) gives us the momentum evolution equation

αqΓ~ξþ qΓð~v × ~XÞ ¼ −ð1þ λfmðRÞÞT ~∇σ; ð34Þ
whereas the nμ projection gives the equation of energy
conservation

αqΓ~v · ~ξ ¼ Tð1þ λfmðRÞÞðLtσ − ~β · ~∇σÞ: ð35Þ

A. Vortical dynamics

Understanding the full extent of this formalism is,
perhaps, a very long-term project. We can, however, begin
to appreciate its rich content by exploring some aspects of
the new vortical dynamics. Sources responsible for mag-
netic field generation, in particular, the sources that are
gravity driven, can be derived by finding the generalized
vorticity evolution equation (which is really the generalized
Faraday law) by manipulating Eq. (34).
SinceMμν is an antisymmetric tensor, the divergence of

its dual is zero, i.e.,∇μM�μν ¼ 0. Taking the γβμ projection
of the preceding identity, we derive

Lt
~X ¼ L~β

~X − ~∇ × ðα~ξÞ − αθ ~X; ð36Þ
where L denotes the Lie derivatives with Lt ¼ ∂t along tμ

and L~β
~X ¼ ½~β; ~X�.
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It should be noted that, even in the absence of non-
minimal coupling to gravity (λ ¼ 0), minimal coupling to
gravity is always present. Equation (36), in conjunction
with Eq. (34), gives us the vorticity evolution equation of
the system

Lt
~X − ~∇ × ð~v × ~XÞ − L~β

~X þ αθ ~X

¼ ~∇ ×

�
T
qΓ

ð1þ λfmðRÞÞ ~∇σ

�
: ð37Þ

All terms on the left-hand side operate on the vorticity
3-vector ~X, while the right-hand side provides, just as in the
conventional picture, possible sources for vorticity gener-
ation. The left-hand side, however, has lot more structure
than the conventional 3D vortex dynamics; the first two
terms are like the standard Helmholtz, while αθ ~X and L~β

~X

are nontrivial gravity modifications. Thus, the gravity
coupling does, fundamentally, modify the projected 3D
vortex dynamics, in spite of the fact that the 4D vortex
equations had exactly the same form.
Until now, our analysis has been very general with the

assumption that the space-time structure satisfies the
modified Einstein equation (6) and it permits the 3þ 1
foliation adopted above. Further investigation is better done
after specifying the precise structure of space-time. Without
the knowledge of the structure of space-time, it may not be
possible, even, to specify conditions under which the
helicity, a topological invariant of the system, is conserved
[1,3,25]. Since it is beyond the scope of our current
endeavor to find the solutions of the modified Einstein
equation (6) to explore the vortical dynamics, we instead
briefly discuss the vortical dynamics in the context of a
couple of well-known space-time solutions to the original
Einstein equation.
First, for a minimal coupling (λ ¼ 0) and a spherically

symmetric and static space-time like the Schwarzchild
solution, the above vortical evolution equation (37) reduces

to the one presented in Ref. [5], i.e., Lt
~X − ~∇ × ð~v × ~XÞ ¼

~∇ × ððT=qΓÞ ~∇σÞ. Since the spherically symmetric and
static space-time can be foliated without the shift function
~β, and the foliation obeys the time translation symmetry
leading to a vanishing extrinsic curvature, the two new
terms on the left-hand side disappear. Thus, the structure is
precisely like the 3D vortex dynamics. The simplified
vortical evolution equation can be used to approximately
compute the weak field seed generation in the hot fluid
system in the accretion disk of the Schwarzchild black
hole [5].
Second, for a nonminimal coupling and a spherically

symmetric and static space-time, the above vortical evolution
equation (37) again reduces to the 3D-like vortex dynamics ,

i.e., Lt
~X − ~∇× ð~v× ~XÞ ¼ ~∇× ððT=qΓÞð1þ λfmðRÞÞ ~∇σÞ.

Again, spherical symmetry and nonrotating space-time

demand that the two terms on the left-hand side correspond-
ing to the shift function and the expansion factor disappear
and thus render the vortical evolution equation to be applied
for computing seed generation in massive astrophysical
objects, especially with fmðRÞ ¼ R. The equilibrium plasma
state in this space-time will be discussed a little later.
Finally, for fmðRÞ ¼ R and a stationary and axially

symmetric space-time such as the Kerr black hole, the
entire vortical evolution equation (37) with appropriate
modifications can be used to explore a number of astro-
physical applications including gamma ray bursts and seed
generation, which will be explored in the near future.
Therefore, the study of plasma dynamics in curved back-
ground space-time in light of the newly constructed grand
unified field tensor Mμν provides much new useful insight
that can be used to explore some astrophysical phenomena.

B. Equilibrium state

For fmðRÞ ¼ R, we can explore the source-free vorticity

evolution equation with nonzero λ, Lt
~X− ~∇×ð~v× ~XÞ¼0.

The trivial solution for this equation is ~X¼ ~Bþðmc=qÞ ~∇×
ðð1þλRÞGΓ~vÞ¼0. Using the general relativity modified

Ampere law ð ~∇ × α~BÞ ¼ ð4π=cÞðαqnΓ~vÞ, we obtain the
equation for the equilibrium state,

~∇ × ~∇ × ~B ¼ −
1

Qλ2L
~B − ~∇ lnðQÞ × ð~a × ~BÞ

− ~∇ × ð~a × ~BÞ − ~∇ lnðQÞ × ð ~∇ × ~BÞ; ð38Þ
where Q ¼ Gð1þ λRÞ, skin depth λ2L ¼ c2=ω2

p, plasma

frequency ω2
p ¼ 4πnq2=m, and acceleration ~a ¼ ~∇ ln α.

Without gravity terms, we see that Eq. (38) becomes the

familiar London equation, i.e., ~∇ × ~∇ × ~B ¼ −ð1=λ2LÞ~B.
However, with gravity entering the system with minimal
and nonminimal coupling, we observe that the equilibrium
state is more restrictive than the corresponding classical
system. Terms with α and λR on the right-hand side of the
above equation (38) show contributions from minimal and
nonminimal coupling, respectively. The acceleration ~a in
the equation stands for the gravitational force felt by plasma
as it goes from one hypersurface to the next. It is interesting
to notice the explicit appearance of the interaction between
Maxwell’s field and gravity through the equilibrium state
that was previously hidden in the definition of Lorentz
4-current nqUβ mentioned in Sec. II.
It must be emphasized that Eq. (38) is a grand gener-

alization of the London equation (the canonical vorticity
being zero) and, thus, acquires much more structure due to
gravity—a kind of generalized superconductivity in which
the grand vorticity is expelled from the interior. Such
states, belonging to the well-known category of relaxed

states obtained by satisfying the constraint ~∇ · ~B ¼ 0 and
by imposing appropriate boundary conditions that are
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dependent on the specific geometry of the system, may be
used to model the equilibria of plasmas coupled to strongly
gravitating sources. We could, for example, seek localized
solutions (~B ¼ 0 as r → ∞) for a black hole accretion disk,
an example that is discussed briefly in the context of
vorticity generation. A complete analysis of this equation
will depend on many aspects: spacetime geometry, temper-
ature profile, and, most importantly, a profile for plasma
frequency as the number density in the accretion disk is a
complicated function of distance that also varies in different
regions of the disk [26]. Our future work will explore a
complete analysis for the equilibrium state that will require
substantial numerical analysis.

IV. CONCLUSION

As a next step to the unified theory of electromagnetic
fields and flow fields ([1,5]), we have constructed a
formalism describing the dynamics of hot charged relativ-
istic fluids, nonminimally coupled to gravity. It is shown
that, even with nonminimal coupling, the dynamics obeys
the 4D vortical structure, first exposed in Eq. (26) [1]. The
new vorticity tensor Mμν represents a grand synthesis of
fluid, electromagnetic, and modified gravity fields with the
nonminimal gravity coupling appearing, explicitly, in its
definition. The current formalism, when expressed in 3þ 1
decomposition incorporates shear and expansion of the
congruences. Consequently, the equations for the general-
ized electric and magnetic fields (generalized vorticity),
which are but the appropriate projections of tensor Mμν,
turn out to be considerably more involved than previous
studies.We have briefly discussed these evolution equations
for a couple of specified geometries. In the process, we
derived a relaxed-state equilibrium for a plasma coupled to
a strongly gravitating source. Gravity gives much more
structure to what would have been a London-like state.
The generally covariant formulation provides a basic

framework for investigating the charged fluid dynamics in
the presence of strongly gravitating sources when space-
time curvature might play a significant/dominant role. Our
basic equations could be used, for example, to extend the
scope and content of numerical simulations of the seed
magnetic field generation ([27,28]).
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APPENDIX: STRESS TENSOR
FOR PERFECT FLUID

The action for perfect fluid is [29,30]

Spfðgμν; n; ~σÞ ¼
Z

d4xð− ffiffiffiffiffiffi
−g

p
ρðn; ~σÞÞ; ðA1Þ

where entropy density ~σ ¼ ns and n and s are the number
density and entropy per particle, respectively. The variation
of the above action is

δS ¼ δð− ffiffiffiffiffiffi
−g

p
ρðn; ~σÞÞ

¼ −δð ffiffiffiffiffiffi
−g

p Þρðn; ~σÞ − ffiffiffiffiffiffi
−g

p �∂ρ
∂n δnþ ∂ρ

∂ ~σ δ ~σ
�

¼ −
1

2

ffiffiffiffiffiffi
−g

p
ρðn; ~σÞgμνδgμν

−
1

2

ffiffiffiffiffiffi
−g

p �∂ρ
∂n nþ ∂ρ

∂ ~σ ~σ

�
ðuμuν − gμνÞδgμν: ðA2Þ

Here, we have used the conservation laws, ∇μðnuμÞ ¼ 0

and ∇μð ~σuμÞ ¼ 0, with the 4-velocity uμ ¼ dxμ
ds . Now, we

can write the two following expressions for variations of n
and ~σ [10,31]:

δn ¼ 1

2
nðuμuν − gμνÞδgμν;

δ ~σ ¼ 1

2
~σðuμuν − gμνÞδgμν: ðA3Þ

Therefore, we can simplify Eq. (A2) using Eq. (A3) and get

δS ¼ −
�
1

2

ffiffiffiffiffiffi
−g

p �∂ρ
∂n nþ ∂ρ

∂ ~σ ~σ

�
uμuν

þ 1

2

ffiffiffiffiffiffi
−g

p �∂ρ
∂n nþ ∂ρ

∂ ~σ ~σ − ρ

�
gμν

�
δgμν: ðA4Þ

Now, using the definition Tμν ¼ 2ffiffiffiffi−gp δS
δgμν

, we obtain the

following expression:

Tμν ¼ −
�∂ρ
∂n nþ ∂ρ

∂ ~σ ~σ

�
uμuν þ

�∂ρ
∂n nþ ∂ρ

∂ ~σ ~σ − ρ

�
gμν:

ðA5Þ

After Legendre transformation [32], we define the pressure
p to be

p ¼ ∂ρ
∂n nþ ∂ρ

∂ ~σ ~σ − ρ: ðA6Þ

This finally gives us the expressions of the stress-energy
tensor for a perfect fluid,

Tμν ¼ −ðpþ ρÞuμuν þ pgμν;

Tμν ¼ ðpþ ρÞuμuν þ pgμν; ðA7Þ

where we have the 4-velocity uμ ¼ dxμ
dτ with ds2 ¼ −dτ2

and c ¼ 1. Alternate expression for the stress tensor can be
written by defining enthalpy density h ¼ pþ ρ as follows:

Tμν ¼ huμuν þ pgμν: ðA8Þ
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