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In realistic situations, black hole spacetimes do not admit a global timelike Killing vector field. However,
it is possible to describe the horizon in a quasilocal setting by introducing the notion of a quasilocal
boundary with certain properties which mimic the properties of a black hole inner boundary. Isolated
horizons and Killing horizons are examples of such a kind. In this paper, we construct such a boundary of
spacetime which is null and admits a conformal Killing vector field. Furthermore we construct the space
of solutions (in general relativity) which admits such quasilocal conformal Killing boundaries. We also
establish a form of the first law for these quasilocal horizons.
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I. INTRODUCTION

A black hole is described as a region of spacetime where
the gravitational attraction is high enough to prevent
even light from escaping to infinity. In asymptotically flat
spacetimes, the impossibility of light escaping to future null
infinity forms the appropriate characterization of a black
hole. In other words, this region lies outside the causal past
of the future null infinity Iþ. The boundary of such a region
is called the event horizon H [1,2]. To be more precise,
consider a strongly asymptotically predictable spacetime
(M; gab). The spacetime is said to contain a black hole if
M is not contained in J−ðIþÞ. The black hole region is
denoted by B ¼M − J−ðIþÞ and the event horizon is the
boundary of B [alternatively it may also be defined as
the future boundary of past or future null infinity:
H ¼ ∂½J−ðIþÞ�]. The definition of event horizon thus
requires that we are able to construct the future null infinity
Iþ. This implies that the entire future of the spacetime
needs to be known beforehand to ensure the existence of an
event horizon. Indeed, the condition of strong asymptotic
predictability of spacetime signifies that we have a com-
plete knowledge of the future evolution. From the above
consideration, it is clear that H is a global concept and
it becomes difficult to proceed much further using this
definition. However, the notions simplify for stationary
spacetimes which are expected states of black holes in
equilibrium. In equilibrium, these spacetimes admit Killing
symmetries and thus exhibit a variety of interesting
features. Indeed, the strong rigidity theorem implies that
the event horizon of a stationary black hole is a Killing

horizon [3]. However not all Killing horizons are event
horizons. Killing horizons only require a timelike Killing
vector field in the neighborhood of the horizon whereas
construction of a stationary event horizon requires a global
timelike Killing vector field.
The identification of the event horizon of a stationary

black hole as a Killing horizon was useful to prove the laws
of mechanics for event horizons [4]. It was shown that in
general relativity, the surface gravity κH of a stationary
black hole must be a constant over the event horizon.
The first law of black hole mechanics refers to stationary
spacetimes admitting an event horizon and small perturba-
tions about them. This law states that the differences
in mass M, area A and angular momentum J from two
nearby stationary black hole solutions are related through
δM ¼ κHδA=8π þΩHδJ. One gets additional terms like
charge if matter fields are present. Hawking’s proof that due
to quantum particle creation, black holes radiate to infinity,
particles of all species at a temperature κH=2π, implied that
laws of black hole mechanics are the laws of thermody-
namics of black holes [5]. Moreover, the entropy of the
black holes must be proportional to its area [6,7].
However, it was realized very soon that this identifica-

tion of entropy to area leads to new difficulties. Classical
general relativity gives rise to an infinite number of degrees
of freedom but it is not clear if the laws of thermodynamics
can arise out of a statistical mechanical treatment of this
classical information (see [8]). One must find ways to
extract quantum degrees of freedom of general relativity.
The framework of a Killing horizon was broadened to
understand the origin of entropy and black hole thermo-
dynamics [9–15]. It turned out that the framework of
isolated horizons (IHs) was more suited to address these
questions from the perspective of loop quantum gravity
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[16–22]. It is argued that the effective quantum degrees of
freedom which capture the thermodynamic information of
black holes are localized, more precisely, reside on the
horizon. Isolated horizons are suited to this description
since they capture only the local information; isolated
horizons are local descriptions of horizons and unlike event
horizons, do not require the global history of spacetime
[23–31]. It arises that the effective field theory induced
on an IH is a Chern-Simons theory whose quantization
and counting of states is consistent with the results of
Bekenstein and Hawking. Moreover, since IHs replaced the
global notion of event horizons with a local description, the
requirement of a knowledge of full spacetime history as
well as the asymptotics is avoided (see [32,33] for a first
order description of theories with topological terms). The
underlying spacetime therefore might not admit a global
Killing vector at all in the isolated framework. While this
has been a significant development in the understanding
of black hole mechanics, generalizations to dynamically
evolving horizons has also been reported [34–36]. These
dynamical horizons are closely related to the notion of
trapping horizons developed earlier [37,38]. Using the
boundary conditions for dynamical horizons it was shown
that a flux balance law, relating the change of area of the
dynamical horizon to the flux of the matter energy, exists,
reproducing an integrated version of a first law [34–36].
Moreover, it has also been shown that if the horizon is
slowly evolving, a form of the first law arises [39–41]. The
construction of a phase space for these horizons has also
been carried out in the metric variables.
Another class of horizons that has been of interest are

conformal Killing horizons (CKHs). Though not a trapping
horizon it essentially captures a dynamical situation.
The notion of the CKH and its properties was developed
in [42–46]. These are null hypersurfaces whose null geo-
desics are orbits of a conformal Killing field. If ξa is a
vector field which satisfies £ξgab ¼ 2fgab, and is null, it
generates a CKH for the metric gab. It has been shown that
an analogue of the zeroth law holds for a conformal Killing
horizon as well. More precisely, since ξa generates a null
surface, it is geodesic and one can define an acceleration
through ξb∇bξ

a ¼ κξξ
a. Then, the quantity ðκξ − 2fÞ,

which essentially is a combination of the acceleration of
the conformal Killing vector and the conformal factor, can
be shown to be Lie dragged along the horizon and can
therefore be interpreted as a temperature. An analogue of
the first law is therefore expected to hold in this case as well
but has not been established in the literature. In this paper,
we address the question if a form of the first law can be
established at all for a CKH. As we discuss below, if such a
law exists, it may lead to some important clues for a
dynamically evolving horizon.
The plan of the paper is as follows. We start by

developing the geometry of a quasilocal conformal
Killing horizon. We assume that a spacetime region M

has a null boundary Δ which however may have nonzero
expansion (θ ¼ −2ρ ≠ 0). In other words we take the null
generators of Δ to be only shear free. We observe that these
conditions are enough to ensure that the null generators la

are conformal Killing vectors on Δ. Now, since these null
surfaces are not expansion free, they may be growing; in
fact £l2ϵ ¼ θ2ϵ and hence, are good candidates for growing
horizons. The situation in some sense mimics what one
has at null infinity in an asymptotically flat spacetime.
However, we are more interested in an inner horizon. The
physical situation for these horizons can be visualized as
follows. Suppose matter falls in through a horizon as a
result of which it grows (supposing that matter satisfies
standard energy conditions) and hence has a nonzero
positive expansion. When this matter flux stops to fall in
through the horizon, by the Raychaudhuri equation, an
initially positively expanding horizon will slow down its
expansion and after some time reach the state of equilib-
rium. This equilibrium state has zero expansion and its
geometrical setup has been developed through the isolated
horizon formulation. We are interested in constructing the
space of solutions for only those dynamically evolving
horizons which can be generated by a conformal Killing
vector field. By construction, the CKHs admit a limit to the
IH formulation.We suppose that thematter flux acrossΔ is a
real scalar field (φ) satisfying the condition £lφ ¼ −2ρφ on
the horizon. The geometrical conditions ensure that a form
of zeroth law exists. In the next section, we show that the
action for general relativity admits awell-defined variational
principle in the presence of the conformal Killing horizon
boundary and proceed to construct the symplectic structure.
An interesting outcome is the construction of the phase
space, identification of a boundary symplectic structure and
the existence of a first law. Further, it arises that gravity and
matter together give a well-defined phase space provided a
balance condition holds. This balance condition turns out to
be nothing but Einstein’s equation contracted with the null
generators la (say). We thus get a quasilocal analogue of a
conformal Killing horizon.

II. GEOMETRICAL SETTING AND
BOUNDARY CONDITIONS

In this section, we introduce the minimal set of boundary
conditions which are suitable for a quasilocal conformal
Killing horizon. We assume that all fields under consid-
eration are smooth. Let M be a 4-manifold equipped with
a metric gab of signature ð−;þ;þ;þÞ. Consider a null
hypersurface Δ of M with la being its future directed null
normal. Given this null normal la, one can introduce
another future directed null vector field na which is
transverse to Δ. Further, one has a set of complex null
vector fields ðm; m̄Þ which are tangential to Δ. This null
tetrad ðl; n;m; m̄Þ constitutes the Newman-Penrose basis.
The vector fields satisfy the condition that l:n ¼ −1 ¼
−m:m̄, while all other scalar products vanish. Let qab be the
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degenerate metric on the hypersurface. The expansion θl of
the null normal is given by qab∇alb. In terms of the
Newman-Penrose coefficients, θl ¼ −2ρ (see Appendix A
and [47] for details). The acceleration of la follows from the
expression la∇alb ¼ ðϵþ ϵ̄Þlb and is given by κl ≔ ϵþ ϵ̄.
To avoid cumbersome notation, we will do away with the
subscripts ðlÞ from now on if no confusion arises. It would
be useful to define an equivalence class of null normals ½la�
such that two null normals l and l0 will be said to belong to
the same equivalence class if l0 ¼ cl where c is a constant
on Δ.

A. Quasilocal conformal horizon

Definition—A null hypersurface Δ of M will be called
a quasilocal conformal horizon if the following condi-
tions hold:
(1) Δ is topologically S2 × R and null.
(2) The shear σ of l vanishes on Δ for any null normal l.
(3) All equations of motion hold at Δ and the stress-

energy tensor Tab on Δ is such that −Ta
blb is future

directed and causal.
(4) If φ is a matter field then it must satisfy £lφ ¼ −2ρφ

on Δ for all null normals l.
(5) The quantity ½2ρþ ϵþ ϵ̄� is Lie dragged for any

null-normal l.
Some comments on the boundary conditions are in order.

The first condition imposes restrictions on the topology of
the hypersurface. It is natural to motivate this condition
from Hawking’s theorem on the topology of black holes in
asymptotically flat stationary spacetimes or its extension
[3,48]. But, we are also interested in spacetimes which are
aymptotically nonflat or that are nonstationary, for which
these theorems may not hold true. However it is not
unnatural to argue that since black hole horizons forming
out of gravitational collapse have spherical topologies, such
conditionsmight exist. This condition is also assumed in the
isolated horizon formalism. For these isolated hypersurfa-
ces, the expansion θ of the null normal la vanishes (which is
not true in our case). It is possible that cross sections of such
quasilocal horizonsmay admit other topologies. For the time
being, we would not include such generalities and only
retain the condition that the cross sections of the hyper-
surfaces are spherical.
The second boundary condition on the shear is a

simplification. Shear measures the amount of gravitational
flux flowing across the surface, and we put the gravity flux
to be vanishing. This boundary condition on the shear σ of
null-normal la has several consequences. First, since la is
hypersurface orthogonal, the Frobenius theorem implies
that ρ is real and κ ¼ 0. Second, the Ricci identity can be
written as

Dσ − δκ ¼ σðρþ ρ̄þ 3ϵ − ϵ̄Þ − κðτ − π̄ þ ᾱþ 3βÞ þΨ0;

ð1Þ

where D ¼ la∇a, δ ¼ ma∇a, Ψ0 is one of the Weyl scalars
and the other quantities are the Newman-Penrose scalars

(see [47] for details). If σ¼Δ0, it implies Ψ0¼Δ0. Next, since
la is null normal to Δ, it is twist free and a geodetic vector
field. The implications of la being twist free has already
been shown above. The acceleration of la follows from the
expression la∇a lb ¼ ðϵþ ϵ̄Þlb and is given by κl ≔ ϵþ ϵ̄.
The acceleration of the null normal varies over the
equivalence class ½cl� where c is a constant on Δ. It is
only natural that the acceleration varies in the class since in
the absence of the knowledge of asymptotics, the accel-
eration cannot be fixed.
Further, it can be seen that the null normal la is such that

∇ðalbÞ ¼Δ −2ρmðam̄bÞ; ð2Þ

which implies that la is a conformal Killing vector on Δ.
Moreover, the Raychaudhuri equation implies that
Rablalb ≠ 0 and hence −Ra

blb can have components which
are tangential as well as transverse to Δ.
The third boundary condition only implies that the field

equations of gravity be satisfied and that the matter fields be
such that their energy momentum tensor satisfies some
mild energy conditions. The fourth and the fifth boundary
conditions are somewhat ad hoc but they can be motivated.
Let us first look at the fourth boundary condition. We have
kept open the possibility that matter fields may cross
the horizon and that the horizon may grow. The matter
field is taken to be a massless scalar field φ which behaves
in a certain way which mimics its conformal nature. The
fifth condition is motivated by the fact that surface gravity
remains invariant under conformal transformations [44,45].
It can be shown that the quantity that is constant for these
horizons is ð2ρþ ϵþ ϵ̄Þ. A conformal transformation of
the metric amounts to a conformal transformation of the
two-metric on Δ. Under a conformal transformation gab →
Ω2gab and one needs a new covariant derivative operator
which annihilates the conformally transformed metric.
Under such a conformal transformation la→ la;la→Ω2la;
na→Ω−2na, na→na;ma→Ω−1ma;ma→Ωma. The new
derivative operator is such that it transforms as

∇alb →Ω2∇albþ2Ω∂aΩlb
−Ω2½lcδca∂b logΩþ lcδcb∂a logΩ−gabgcdlc∂d logΩ�:

ð3Þ

If one defines a one-form ωa¼Δ − nb∇a lb, it transforms

under the conformal transformation as

~ωa¼Δ ωa þ 2∂a logΩ − ∂a logΩ − nalc∂c logΩ: ð4Þ
It follows that the Newman-Penrose scalars transform in the
following way:
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gðϵþ ϵ̄Þ¼Δ ðϵþ ϵ̄Þ þ 2£l logΩ ð5Þ

~ρ¼Δ ρ − £l logΩ ð6Þ

~σ¼Δ σ; ð7Þ

where ρ ¼ −mam̄b∇alb and σ ¼ −m̄am̄b∇alb. Thus it
follows that 2ρþ ϵþ ϵ̄ remains invariant under a con-
formal transformation.
At this point, it would be useful to recall the boundary

conditions of a weakly isolated horizon and note the
important differences. A weakly isolated horizon is a null
hypersurface which satisfies the first and the third boundary
conditions given here and that the expansion of the null
normal la be zero. On such a surface, there exists a one-
form ωa which is also assumed to be Lie dragged by the
vector field la. Thus, instead of the condition on shear,
for a weakly isolated horizon, the expansion of the null-
normal la is taken to be vanishing, θ ¼ 0 ¼ 2ρ. By the
Raychaudhuri equation, the boundary conditions imply that
the shear is zero and that no matter field crosses the horizon
(hence the name isolated). However, here, we impose only
the condition that the shear vanishes and keep the pos-
sibility that matter fields may fall through the surface (but
no gravitational flux) and that the hypersurface may grow
along the affine parameter. As we shall show, removing our
last condition does not restrict one to define a well defined
phase space, but is essential to get a first law. It is an

analogue of the condition £lðϵþ ϵ̄Þ¼Δ0 assumed in the case
of a weakly isolated horizon. It may be useful to note that
the fifth boundary condition, as given above, can be recast
in a form which is an analogue of that for a weakly isolated

horizon by setting £l ~ω ¼ 0, where ~ωa¼Δωa þ ∂a logΩ −
nalc∂c logΩ and the conformal factor is set such
that £l logΩ ¼ ρ.

III. ACTION PRINCIPLE AND THE CLASSICAL
PHASE SPACE

We are interested in constructing the space of solutions
of general relativity, and we use the first order formalism
in terms of tetrads and connections. This formalism is
naturally adapted to the nature of the problem in the sense
that the boundary conditions are easier to implement.
Moreover it has the advantage that the construction of
the covariant phase space becomes simpler. For the first
order theory, we take the fields on the manifold to be
(eaI; AaI

J;φ), where eaI is the cotetrad, AaI
J is the gravi-

tational connection and φ is the scalar field. The Palatini
action in first order gravity with a scalar field is given by

SGþM ¼−
1

16πG

Z
M
ðΣIJ ∧FIJÞ−

1

2

Z
M
dφ∧⋆dφ; ð8Þ

where ΣIJ ¼ 1
2
ϵIJKLeK ∧ eL, AIJ is a Lorentz SOð3; 1Þ

connection and FIJ is a curvature two-form corresponding
to the connection given by FIJ ¼ dAIJ þ AIK ∧ AK

J. The
action might have to be supplemented with boundary terms
to make the variation well defined.

A. Variation of the action

For the variational principle, we consider the spacetime
to be bounded by a null surface Δ, two Cauchy surfaces
Mþ and M− which extend to the asymptotic infinity. The
boundary conditions on the fields are the following. At
the asymptotic infinity, the fields satisfy appropriate boun-
dary conditions. The fields on the hypersurfaces Mþ and
M− are fixed so that their variations vanish. On the surface
Δ, we fix a set of an internal null tetrad ðlI; nI; mI; m̄IÞ such
that the flat connection annihilates them. The fields on the
manifold ðeaI; AaI

J;φÞ, must satisfy the following con-
ditions. First, on Δ, the configurations of the tetrads be
such that la ¼ eaI l

I are the null vectors which satisfy the
boundary conditions for quasilocal conformal horizon.
Second, the possible connections also satisfy the boundary
conditions and are such that ð2ρþ ϵþ ϵ̄Þ is constant.
Third, we consider all those configurations of scalar field
which, on Δ, satisfy £lφ ¼ −2ρφ.
Wenowcheck that thevariational principle iswell defined

if the boundary conditions on the fields, as given above,
hold. However, we need some expressions for tetrads and
connections onΔ, details of which are given in AppendixA.
On the conformal horizon, the ΣIJ is given by

ΣIJ
←
¼Δ 2l½InJ�2ϵþ 2n ∧ ðiml½Im̄J� − im̄l½ImJ�Þ; ð9Þ

and the connection is given by

AaIJ ¼Δ 2½ðϵþ ϵ̄Þna − ðᾱþ βÞm̄a − ðαþ β̄Þma�l½InJ�
þ 2ð−κ̄na þ ρ̄m̄aÞm½InJ� þ 2ð−κna þ ρmaÞm̄½InJ�
þ 2ðπna þ −μm̄a − λmaÞm½IlJ�
þ 2ðπ̄na − μ̄ma − λ̄m̄aÞm̄½IlJ�
þ 2½−ðϵ − ϵ̄Þna þ ðα − β̄Þma þ ðβ − ᾱÞm̄a�m½Im̄J�:

ð10Þ

The Lagrangian four-form for the fields (eaI; AaI
J;φ) is

given in the following way:

LGþM ¼ −
1

16πG
ðΣIJ ∧ FIJÞ −

1

2
dφ ∧ ⋆dφ: ð11Þ

The first variation of the action leads to equations of motion
and boundary terms. The equations of motion consist of
the following equations. First, variation of the action with
respect to the connection implies that the curvature FIJ is
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related to the Riemann tensor Rcd, through the relation
Fab

IJ ¼ Rab
cdeIceJd. Second, variation with respect to the

tetrads lead to the Einstein equations and third, the first
variation of the matter field gives the equation of motion
of the matter field. On shell, the first variation is given by
the following boundary terms:

δLGþM ≔ dΘðδÞ ¼ −
1

16πG
dðΣIJ ∧ δAIJÞ − dðδφ⋆dφÞ;

ð12Þ
which are to be evaluated on the boundaries M−, Mþ,
asymptotic infinity and Δ. However, since fields are set
fixed on the initial and the final hypersurfaces, they vanish.
The boundary conditions at infinity are assumed to be
appropriately chosen and they can be suitably taken care of.
The only terms which are of relevance for this case are the
terms on the internal boundary. On the internal boundaryΔ,
the boundary terms give (see Appendix B for details)

16πGδLGþM ¼ −δ
�
R11

ρ
n

�
∧ 2ϵ − δð2ρn ∧ 2ϵÞ

þ 8πGδ

�
T11

ρ
n

�
∧ 2ϵ: ð13Þ

Since Einstein’s equations give R11 ¼ 8πGT11, the first and
the third term cancel and only ð2ρn ∧ 2ϵÞ remains. Thus, if
one adds the term 16πGS0 ¼ −

R
Δ ð2ρn ∧ 2ϵÞ to the action,

it is well defined for the set of boundary conditions on Δ.
As we shall see below, since this is a boundary term, it does
not contribute to the symplectic structure.

B. Covariant phase space and the symplectic structure

For a general Lagrangian, the on-shell variation gives
δL ¼ dΘðδÞ where Θ is called the symplectic potential. It
is a three-form in spacetime and a zero-form in phase
space. Given the symplectic potential, one can construct the
symplectic structure Ωðδ1; δ2Þ on the space of solutions.
One first constructs the symplectic current Jðδ1; δ2Þ ¼
δ1Θðδ2Þ − δ2Θðδ1Þ, which, by definition, is closed on shell.
The symplectic structure is then defined to be

Ωðδ1; δ2Þ ¼
Z
M
Jðδ1; δ2Þ; ð14Þ

whereM is a spacelike hypersurface. It follows that dJ ¼ 0
provided the equations of motion and linearized equations
of motion hold. This implies that when integrated over a
closed region of spacetime bounded by Mþ∪M−∪Δ
(where Δ is the inner boundary considered),Z

Mþ
J −

Z
M−

J þ
Z
Δ
J ¼ 0; ð15Þ

where Mþ;M− are the initial and the final spacelike slices,
respectively. If the third term vanishes then the bulk

symplectic structure is independent of the choice of hyper-
surface. However, if it does not vanish but turns out to
be exact,

R
Δ J ¼ R

Δ dj, then the hypersurface independent
symplectic structure is given by

Ωðδ1; δ2Þ ¼
Z
M
J −

Z
SΔ

j; ð16Þ

where SΔ is the 2-surface at the intersection of the hyper-
surface M with the boundary Δ. The quantity jðδ1; δ2Þ is
called the boundary symplectic current and the symplectic
structure is also independent of the choice of hypersurface.
Our strategy shall be to construct the symplectic struc-

ture for the action given in Eq. (8). Let us first look at
the Lagrangian for gravity. The symplectic potential in this
case is given by 16πGΘðδÞ ¼ −ΣIJ ∧ δAIJ. The symplectic
current is therefore given by

JGðδ1; δ2Þ ¼ −
1

8πG
δ½1ΣIJ ∧ δ2�AIJ: ð17Þ

The above expression Eq. (17), when pulled back and
restricted to the surface Δ, gives

δ½1ΣIJ ∧ δ2�AIJ 
¼Δ − 2δ½12ϵ ∧ δ2�fðϵþ ϵ̄Þn

−ðαþ β̄Þm − ðᾱþ βÞm̄g
þ 2δ½1ðn ∧ imÞ ∧ δ2�ðρ̄ m̄Þ
− 2δ½1ðn ∧ im̄Þ ∧ δ2�ðρmÞ: ð18Þ

It can be shown that the symplectic current pulled back on
Δ for the gravity sector is given by (see the Appendix for
details)1

JG ðδ1; δ2Þ¼
Δ −

1

4πG

�
dðδ½12ϵδ2� log ρÞ

þ δ½12ϵ ∧ δ2�

��
Φ00

ρ

�
n

��
ð19Þ

The first term in the above expression is exact but not the
others. Therefore the phase is well defined for our boundary

conditions σ ¼Δ 0 provided that, if either Φ00 ¼ 0, there is no
matter flux across the horizon or ifΦ00=ρ gets canceled by a
contribution from the matter degrees of freedom through
Einstein’s equation. We deal with a more general case. We
show that the contribution of the scalar field is such that the
symplectic current on Δ is again exact.
The symplectic current for the real scalar field is given by

JMðδ1; δ2Þ ¼ 2δ½1φδ2�⋆dφ. The symplectic current on the
hypersurface Δ can be obtained as

1The entire construction and whatever follows go through for
negative ρ with the replacement jρj in place of ρ in the argument
of log.
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JM ðδ1; δ2Þ ¼ 2δ½1φδ2�ðDφn ∧ im ∧ m̄Þ; ð20Þ

where D ¼ la∇a. The boundary condition on the scalar
field implies Dφ ¼ −2ρφ and hence, we get that

JM ðδ1; δ2Þ ¼ 4δ½1φδ2�ð−φρn ∧ im ∧ m̄Þ ð21Þ

¼ −dfδ½1φ2δ2�2ϵg þ δ½1
DφDφ

ρ
n ∧ δ2�2ϵ

¼ −dfδ½1φ2δ2�2ϵg þ δ½12ϵδ2�

�
T11

ρ
n

�
: ð22Þ

The combined expression is then given by

JMþG 
ðδ1; δ2Þ¼Δ −

1

4πG
fdðδ½12ϵδ2� log ρÞg − dfδ½1φ2δ2�2ϵg:

ð23Þ
It follows that the hypersurface independent symplectic
structure is given by

Ωðδ1;δ2Þ ¼
Z
M

JMþGðδ1;δ2Þ−
Z
SΔ

j

¼−
1

8πG

Z
M
δ½1ΣIJ ∧ δ2�AIJþ 2

Z
M
δ½1φδ2�ð⋆dφÞ

þ 1

4πG

Z
SΔ

fδ½12ϵδ2� logρgþ
Z
SΔ

δ½1φ2δ2�2ϵ:

ð24Þ
In the next section, we shall use this expression to derive the
first law of mechanics for the conformal Killing horizon.

C. Hamiltonian evolution and the first law

Given the symplectic structure,we can proceed to study the
evolution of the system. We assume that there exists a vector
which gives the time evolution on the spacetime. Given this
vector field, one can define a corresponding vector field on
the phase space which can be interpreted as the infinitesimal
generator of time evolution in the covariant phase space. The
Hamiltonian Hl generating the time evolution is obtained as
δ ~Hl ¼ Ωðδ; δlÞ, for all vector fields δ on the phase space.
Using the Einstein equations, we get that

Ωðδ;δlÞ¼−
1

16πG

Z
SΔ

½ðl:AIJÞδΣIJ−ðl:ΣIJÞ∧δAIJ�

þ
Z
SΔ

δφðl ·⋆dφÞþ 1

8πG

Z
SΔ

ðδ2ϵδl logρ−δl
2ϵδlogρÞ

þ
Z
SΔ

1

2
ðδφ2δl

2ϵ−δlφ
2δ2ϵÞ: ð25Þ

We now need to impose a few conditions on the fields to
make a well-defined Hamiltonian. These conditions are to

be imposed since the action of δl on some phase-space
fields is not like £l. This is because ρ; ϵþ ϵ̄ and φ all cannot
be free data on Δ. First, we note the following equalities:

£l

�
1

4πG
log ρ − 1

8πG
logφ − φ2

�
¼ 1

4πG
ð2ρþ ϵþ ϵ̄Þ

ð26Þ

£l

�
2ϵ

φ

�
¼ 0: ð27Þ

We assume that δl acts on ð2ρþ ϵþ ϵ̄Þ and ð2ϵφÞ like £l.
This can also be argued in the following fashion. Since
δl£lð2ρþ ϵþ ϵ̄Þ ¼ 0 it immediately implies that £lδlð2ρþ
ϵþ ϵ̄Þ ¼ 0. Hence, choosing δlð2ρþ ϵþ ϵ̄Þ ¼ 0 at the
initial cross section implies that it remains zero throughout
Δ. Furthermore if we set δlð 1

4πG log ρ − 1
8πG logφ − φ2Þ ¼ 0

at the initial cross section, it remains zero everywhere on Δ
and so,

δlρ

ρ
− 8πGφδlφ − δlφ

2φ
¼ 0: ð28Þ

Another condition can be derived from the equation above:

δl

�
2ϵ

φ

�
¼ 1

φ
δl

2ϵ − 2ϵ
1

φ2
δlφ ¼ 0: ð29Þ

The variations δl satisfy the following differential equa-
tions, which can be checked to be consistent with each
other:

£lδlφ ¼ −2δlρφ − 2ρδlφ ð30Þ

£lδl2ϵ ¼ −2δlρ2ϵ − 2ρδl
2ϵ: ð31Þ

Putting condition (28) into (30), we get

δlφ ¼ Cðθ;ϕÞ exp
�
−
Z
ð16πGφ2 þ 3Þρdv

�
; ð32Þ

where Cðθ;ϕÞ is a constant of integration. If we choose
this constant Cðθ;ϕÞ ¼ 0, it immediately implies that
δlφ ¼ 0 ¼ δl

2ϵ. With the choice of δl only the bulk
symplectic structure survives and one gets from Eq. (25)2

δHl ¼ −
1

8πG

Z
SΔ

ð2ρþ ϵþ ϵ̄Þδ2ϵ

þ 1

8πG

Z
SΔ

2ϵð−δρ − 8πGδφDφÞ þ δE∞; ð33Þ

2We assume that the contribution from the boundary at
asymptotic infinity is a total variation δE∞.
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where we have redefined our Hamiltonian Hl ¼ ~HlþR
SΔ
ρ2ϵ. This redefinition is possible since the definition

of the Hamiltonian is ambiguous up to a total variation.
Further, as expected Ωðδl; δlÞ ¼ 0. Next we define,
El
Δ ¼ E∞ −Hl, as the horizon energy. It is clear from

above that for ρ → 0 (i.e. in the isolated horizon limit) it
matches with the definition in [34,35] if asymptotics are flat
and E∞ ¼ EADM. It therefore follows that

−δEl
Δ ¼ −

1

8πG

Z
SΔ

ð2ρþ ϵþ ϵ̄Þδ2ϵ

þ 1

8πG

Z
SΔ

2ϵð−δρ − 8πGδφDφÞ: ð34Þ

To recover the more familiar form of first law known for
a dynamical situation, we assume there is a vector field ~δ on
phase space which acts only on the fields on Δ (and not in
the bulk) such that its action on the boundary variables is to
evolve the boundary fields along the affine parameter v (it
may be interpreted to be a time evolution, like £). Now
demanding that ~δ be Hamiltonian would give an integra-
bility condition which also ensures that δl is Hamiltonian.
So one can calculate Ωð~δ; δlÞ ≔ ~δHl which can be written
in the following form3:

_El
Δ ¼

1

8πG
ð2ρþ ϵþ ϵ̄Þ _Aþ 1

8πG

Z
SΔ

½2ϵð_ρþ 8πG _φDφÞ�;

ð35Þ
where dots imply changes in the variables produced by the
action of ~δ. Note that if ~δ ¼ £l, then ~δφDφ gives the
expression Tablalb. Equation (35) is the form of evolution
for the conformal Killing horizons. The first term in the
above expression is the usual TdS term while the second
term is a flux term which takes into account the nonzero
matter flux across Δ.

IV. DISCUSSIONS

In this paper, we have developed the geometrical setup
for a quasilocal description of a conformal Killing horizon.
Further, we have also shown that one can understand these
horizons to have a zeroth law (as was also discussed in
[43]) and a first law. This development of a notion of
quasilocal conformal horizon should be taken in the same
spirit as the development of the notion of an isolated
horizon from Killing horizons. A conformal Killing hori-
zon is one which has a conformal Killing vector in the
neighborhood of the horizon. In contrast, a quasilocal
conformal horizon only requires the existence of a null
hypersurface generating vector which is shear free on the

null hypersurface. The number of solutions of Einstein’s
equation for gravity and matter that admits a conformal
Killing horizon may be small (examples of such kind have
been constructed by [44]). However the solutions admitting
a quasilocal conformal horizon may be large. We do not
comment on the nature of solutions that admit a quasilocal
conformal horizon, we think that a significant amount of
insights may be obtained by numerical simulations and
therefore fall in the regime of numerical relativity. The most
useful application of these geometrical structures are in the
dynamical evolution of black holes. Indeed, as matter falls
in through the horizon and the black hole horizon grows,
the expansion is nonzero. In such cases, it is important to
understand if in this dynamical situation one can prove the
existence of laws for black hole mechanics in some form.
We have taken a real scalar field as the matter field in

question. The flux balance law is seen to be successfully
implemented if it satisfies a condition £lφ¼Δ − 2ρφ. This
assumption is motivated through the fact that la is a
conformal Killing vector on Δ. Taking other matter fields
will therefore be an immediate extension of our work.
Further, from the outset we have ignored any spacelike
axial conformal Killing vector on SΔ. So a generalization to
the rotational case seems to be another plausible extension.
Since the case of an isolated horizon appears as a special
case ρ → 0, the consistency of our analysis can actually be
checked by taking the isolated horizon limit. In fact we
perform this consistency check and find that the final
expressions and the first law do give back the results
obtained for an isolated horizon.
We should mention at this point that our construction

does not capture the most general dynamical situation, as
constructed in [34,37]. The horizons discussed in these
references are spacelike boundaries foliated by partially
trapped two surfaces which may not be shear free. Further,
an integrated version of the first law has been demonstrated
to exist which captures the dynamics of growing black hole
horizons in full generality. However in these constructions,
which use metric variables, the existence of a well-defined
phase space has not been established and consequently the
first law does not follow directly from the symplectic
structure. In our case we have assumed that there is no
gravitational flux (shear is zero) but that only matter flows
across the null boundary Δ. In this simplified geometry, we
have demonstrated that a space of solutions of Einstein’s
equations exists which admit the boundary conditions of
CKHs and that a differential version of the first law of black
hole mechanics can be obtained. Also, we have used the first
order formalism for the construction of this symplectic
structure. We do not know if one may get a well-defined
symplectic structure for the boundary conditions discussed in
[34,37]. Even if one is able to construct a phase space, it is not
possible to obtain a differential version of the first law since
there is no analogue of the zeroth law for such boundaries, but
an integrated version of the first law is expected to hold.

3If the stress tensor satisfies the dominant energy condition
then ð2ρþ ϵþ ϵ̄Þ is a constant on Δ [44].
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Given a form of the first law, it is obvious to compare it
with the first law of thermodynamics. However, since the
horizon is growing, it describes a nonequilibrium situation
and hence may differ considerably from equilibrium
thermodynamics, where one studies the transition from
one equilibrium state to a nearby equilibrium state. One
should keep in mind that thermodynamics arises out of
microscopic dynamics of the underlying degrees of free-
dom and have universal validity (that is independent of the
underlying dynamics of a particular system). For a general
dynamical spacetime (when the gravitational degrees of
freedom are excited), there is no time translation symmetry
and hence no definition of entropy may be possible. Also in
nonequilibrium cases, a system may not get enough time to
relax back to the equilibrium state and hence no canonical
definition of temperature exists. But, in the present scenario,
though the horizon makes a transition between two states
which are far from equilibrium, because there exists a
conformal Killing vector, this leads to a definite identifica-
tion of temperature and a first law and possibly entropy. One
may then enquire if dynamically growing horizons are
attributed some entropy that can arise from some counting
of microstates. The boundary symplectic structure has a
natural interpretation of being the symplectic structure of a
field theory residing on the boundary. In the case of an
isolated horizon it turns out to be an SUð2Þ or aUð1ÞChern-
Simons theory. A quantization of the boundary theory
therefore provides a microscopic description of the entropy
of the isolated horizon. Since we explicitly construct the
boundary symplectic structure it will be interesting to see if it
does coincide with any known topological field theory. A
complete answer to such questions shall have important
implications for thermodynamics as well as black hole
physics.
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APPENDIX A: THE CONNECTION IN TERMS OF
NEWMAN-PENROSE COEFFICIENTS

Fix a set a internal null vectors ðlI; nI; mI; m̄IÞ on Δ such

that ∂aðlI; nI; mI; m̄IÞ¼Δ0. Given any tetrad eIa, the null tetrad
ðla; na; ma; m̄aÞ can be expanded as la ¼ eIa lI . The expres-
sion for ΣIJ can now be readily calculated and is given as

ΣIJ ¼ 2l½InJ�2ϵþ 2n ∧ ðiml½Im̄J� − im̄l½ImJ�Þ
− 2il ∧ nm½Im̄J� − 2l ∧ ðimn½Im̄J� − im̄n½ImJ�Þ:

ðA1Þ

This is the full expression for ΣIJ where nothing has been
assumed regarding the nature of the boundary Δ. If Δ is a
null surface and la is the null normal, we get that

ΣIJ
←
¼Δ 2l½InJ�2ϵþ 2n ∧ ðiml½Im̄J� − im̄l½ImJ�Þ: ðA2Þ

The covariant derivative is defined to be compatible with
the tetrad i.e. ∇b eIa ¼ 0. The covariant derivatives on the
null tetrads can be written in terms of the Newman-Penrose
coefficients and are given by the following:

∇alb ¼ −ðϵþ ϵ̄Þnalbþ κ̄nambþ κnam̄b

− ðγþ γ̄Þlalbþ τ̄lambþ τlam̄b

þ ½ðᾱþ βÞm̄alb − ρ̄m̄amb − σm̄am̄bþ ðαþ β̄Þmalb

− ρmam̄b − σ̄mamb� ðA3Þ

∇anb ¼ ðϵþ ϵ̄Þnanb − πnamb − π̄nam̄b þ ðγ þ γ̄Þlanb
− νlamb − ν̄lam̄b − ½ðᾱþ βÞm̄anb − μm̄amb

− λ̄m̄am̄b þ ðαþ β̄Þmanb − μ̄mam̄b − λmamb�
ðA4Þ

∇amb ¼ −π̄nalb þ κnanb − ðϵ − ϵ̄Þnamb − ν̄lalb þ τlanb

− ðγ − γ̄Þlamb þ ½λ̄m̄alb − σm̄anb þ ðβ − ᾱÞm̄amb

þ μ̄malb − ρmanb þ ðα − β̄Þmamb�: ðA5Þ

Next, once we have fixed a set of null internal vectors on
Δ, the connection can be expanded in terms of these
Newman-Penrose coefficients. Note that ∇a lI ¼ ∂alI þ
AJ
aI lJ. Therefore on Δ, we have ebI∇alb¼ΔAaI

JlJ and hence

AðlÞaI
JlJ¼Δ − ðϵþ ϵ̄ÞnalI þ κ̄namI þ κnam̄I − ðγ þ γ̄ÞlalI
þ τ̄lamI þ τlam̄I þ ½ðᾱþ βÞm̄alI − ρ̄m̄amI

− σm̄am̄I þ ðαþ β̄ÞmalI − ρmam̄I − σ̄mamI�
ðA6Þ

AðlÞaIJ¼Δ ½ðϵþ ϵ̄Þnaþðγþ γ̄Þla−ðᾱþβÞm̄a−ðαþ β̄Þma�2l½InJ�
þ½−κ̄na− τ̄laþ ρ̄m̄aþ σ̄ma�2m½InJ� þ½−κna−τla

þρmaþσm̄a�2m̄½InJ�; ðA7Þ
where the subscript l in AðlÞ indicates that only the vector
field la has been used to evaluate the connection. Similarly,
we can proceed for other vector fields na;ma and m̄a. The
resulting connections are given as follows:

AðnÞaIJ¼Δ ½−ðϵþ ϵ̄Þna−ðγþ γ̄ÞlaþðᾱþβÞm̄aþðαþ β̄Þma�2n½IlJ�
þðπnaþνla−μm̄a−λmaÞ2m½IlJ�
þðπ̄naþ ν̄la− μ̄ma− λ̄m̄aÞ2m̄½IlJ� ðA8Þ
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AðmÞaIJ¼Δ ð−π̄na − ν̄la þ λ̄m̄a þ μ̄maÞ2l½Im̄J� þ ðκna þ τla − σm̄a − ρmaÞ2n½Im̄J� þ ½−ðϵ − ϵ̄Þna − ðγ − γ̄Þla þ ðα − β̄Þma

þ ðβ − ᾱÞm̄a�2m½Im̄J�: ðA9Þ

The full connection is then given by

AaIJ¼Δ2½ðϵþ ϵ̄Þna þ ðγ þ γ̄Þla − ðᾱþ βÞm̄a − ðαþ β̄Þma�l½InJ� þ 2½−κ̄na − τ̄la þ ρ̄m̄a þ σ̄ma�m½InJ�
þ 2½−κna − τla þ ρma þ σm̄a�m̄½InJ� þ 2½πna þ νla − μm̄a − λma�m½IlJ� þ 2½π̄na þ ν̄la − μ̄ma − λ̄m̄a�m̄½IlJ�
þ 2½−ðϵ − ϵ̄Þna − ðγ − γ̄Þla þ ðα − β̄Þma þ ðβ − ᾱÞm̄a�m½Im̄J�: ðA10Þ

Note that as in the case of ΣIJ no boundary condition has been assumed in the above expression. In the main part of the
paper this expression for connection equation (10) shall be used but with the boundary conditions.
Further, we would be requiring the exterior derivatives on the null tetrads. We therefore give the expressions here:

dn ¼ ∇anbdxa ∧ dxb ¼ −πn ∧ m − π̄n ∧ m̄þ ðγ þ γ̄Þl ∧ n − νl ∧ m − ν̄l ∧ m̄

− ½ðᾱþ βÞm̄ ∧ n − μm̄ ∧ mþ ðαþ β̄Þm ∧ n − μ̄m ∧ m̄� ðA11Þ

dl ¼ ∇albdxa ∧ dxb ¼ −ðϵþ ϵ̄Þn ∧ lþ κ̄n ∧ mþ κn ∧ m̄þ τ̄l ∧ mþ τl ∧ m̄

þ ½ðᾱþ βÞm̄ ∧ l − ρ̄ m̄ ∧ mþ ðαþ β̄Þm ∧ l − ρm ∧ m̄� ðA12Þ

dm ¼ ∇ambdxa ∧ dxb ¼ −π̄n ∧ l − ðϵ − ϵ̄Þn ∧ mþ τl ∧ n − ðγ − γ̄Þl ∧ m

þ ½λ̄ m̄ ∧ l − σm̄ ∧ nþ ðβ − ᾱÞm̄ ∧ mþ μ̄m ∧ l − ρm ∧ n�: ðA13Þ

From the above expressions, it follows that for the area
two-form which is given by 2ϵ ¼ im ∧ m̄, we get that
d2ϵ ¼ 2ρn ∧ 2ϵ and £l2ϵ ¼ −2ρ2ϵ.

APPENDIX B: VARIATION OF THE ACTION

Since the boundary symplectic structure turned out to
be exact, it is at once evident that the variation of the
action should be well defined with the boundary con-
ditions considered. However one may need to add an
additional boundary term in order to do it. As has been
pointed out such terms will not affect the symplectic
structure though. Therefore for completeness we consider
the variation of the action and find the necessary
boundary term needed to make the variation well defined.
We consider the action for gravity and a scalar field
without any boundary terms a priori. The expression for
Θ on Δ is calculated by imposing the boundary con-
ditions and the required boundary term is obtained. We
have

LMþG ¼ −
1

16πG
ðΣIJ ∧ FIJÞ −

1

2
dφ ∧ ⋆dφ: ðB1Þ

It follows that

dΘðδÞ ¼ −
1

16πG
dðΣIJ ∧ δAIJÞ − dðδφ⋆dφÞ: ðB2Þ

Consider the gravity terms first4:

ΣIJ∧δAIJ ¼Δ−22ϵ∧δ½ðϵþ ϵ̄Þn�þ2ðn∧ imÞ∧δðρm̄Þ

−2ðn∧ im̄Þ∧δðρmÞ

¼−22ϵ∧δ

��
Dρ

ρ
−ρ−

Φ00

ρ

�
n

�
þ2ðn∧ imÞ∧δðρm̄Þ−2ðn∧ im̄Þ∧δðρmÞ
¼d½22ϵδðlogρÞ�−4n∧ 2ϵδρ

þ22ϵ∧δ

��
ρþΦ00

ρ

�
n

�
þ4n∧2 ϵδρþ2ρn∧δ2ϵ

¼d½22ϵδðlogρÞ�þ22ϵ∧δ

�
R11

2ρ
n

�
þδð2ρn∧ 2ϵÞ: ðB3Þ

The matter term gives

4In our case it might not be possible to define a unique covariant
derivative on Δ. However, since in the calculations la∇a acts only
on functions, the ambiguity does not play a role.
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ðδφ⋆dφÞ ¼ −d
�
1

2
δφ22ϵ

�
þδðφdφÞ ∧ 2ϵ

¼ −d
�
1

2
δφ22ϵ

�
− 1

2
δ

�
T11

ρ
n

�
∧ 2ϵ: ðB4Þ

Adding everything up, one finds that

dΘðδÞ ¼ −
1

16πG
dðΣIJ ∧ δAIJÞ − dðδφ⋆dφÞ

¼ −
1

8πG
dδðρn ∧ 2ϵÞ: ðB5Þ

So one needs to add 1
8πG

R
Δ ðρn ∧ 2ϵÞ to the action to

make the variation well defined.

APPENDIX C: BOUNDARY SYMPLECTIC
STRUCTURE FOR GRAVITY

The symplectic current in first order gravity is therefore
given by

JGðδ1; δ2Þ ¼ −
1

8πG
δ½1ΣIJ ∧ δ2�AIJ: ðC1Þ

We need to pull back the above expression onto the
boundary and check to see if it is exact:

δ½1ΣIJ ∧ δ2�AIJ 
¼Δ − 2δ½12ϵ ∧ δ2�ððϵþ ϵ̄Þn − ðαþ β̄Þm

− ðᾱþ βÞm̄Þ þ 2δ½1ðn ∧ imÞ ∧ δ2�ðρ̄ m̄Þ
− 2δ½1ðn ∧ im̄Þ ∧ δ2�ðρmÞ: ðC2Þ

We consider the first term in the above expression.
By using the Ricci identity in terms of Newman-Penrose
coefficients

Dρ ¼ ρ2 þ ρðϵþ ϵ̄Þ þ Φ00 ðC3Þ

we find that the first term can be written in the following
form:

− 2δ½12ϵ ∧ δ2�ððϵþ ϵ̄ÞnÞ

¼ −2δ½12ϵ ∧ δ2�

��
Dρ

ρ
−
ρ2

ρ
−
Φ00

ρ

�
n

�
¼ dð2δ½12ϵδ2� log ρÞ − ð2δ½1d2ϵ ∧ δ2� log ρÞ

þ 2δ½12ϵ ∧ δ2�

��
ρ2

ρ
þ Φ00

ρ

�
n

�
: ðC4Þ

Since the first term in the above expression is already
exact, we leave it for the moment and check to see if there is
any simplification of the other terms when combined with
the rest of the third and fourth term in the symplectic
current:

− 2δ½1d2ϵ ∧ δ2� log ρ

¼ −4δ½1iρn ∧ m ∧ m̄δ2� log ρ

¼ −2δ½1ðn ∧ imÞ ∧ m̄δ2�ρ − 2ðn ∧ imÞ ∧ δ½1m̄δ2�ρ

þ 2δ½1ðn ∧ im̄Þ ∧ mδ2�ρþ 2ðn ∧ im̄Þ ∧ δ½1mδ2�ρ:

ðC5Þ

The third and the fourth term in the symplectic current
gives

2δ½1ðn ∧ imÞ ∧ δ2�ðρm̄Þ − 2δ½1ðn ∧ im̄Þ ∧ δ2�ðρmÞ
¼ 2δ½1ðn ∧ imÞ ∧ m̄δ2�ðρÞ þ 2ρδ½1ðn ∧ imÞ ∧ δ2�m̄

− 2δ½1ðn ∧ im̄Þ ∧ mδ2�ðρÞ − 2ρδ½1ðn ∧ im̄Þ ∧ δ2�m:

ðC6Þ

Adding the above two equations and then simplifying
gives

− 2δ½1d2ϵ ∧ δ2� log ρþ 2δ½1ðn ∧ imÞ ∧ δ2�ðρm̄Þ
− 2δ½1ðn ∧ im̄Þ ∧ δ2�ðρmÞ
¼ −2n ∧ δ½12ϵδ2�ρþ 2ρδ½1ðnÞ ∧ δ2�2ϵ

¼ −2δ½12ϵ ∧ δ2�ðρnÞ: ðC7Þ
So the boundary term becomes

dð2δ½12ϵδ2� log ρÞ þ 2δ½12ϵ ∧ δ2�

�
Φ00

ρ
n

�
: ðC8Þ

APPENDIX D: BULK SYMPLECTIC STRUCTURE

For any vector field ξ generating diffeomorphisms, the
corresponding phase space variation δξ acts in the bulklike
£ξ. It can then be shown that

JGðδ; δξÞ ¼ −
1

16πG
½ðξ:AIJÞδΣIJ − ðξ:ΣIJÞ ∧ δAIJ�

þ ðEquations of motionÞδeI: ðD1Þ
Similarly for the matter fields, we get that

JMðδ; δξÞ ¼ d½δφðξ:⋆dφÞ� − ½δdφðξ:⋆dφÞ� − ξ:dφδð⋆dφÞ:
ðD2Þ

The second and the third term in the last expression enter
Einstein’s equation. Therefore the full bulk symplectic
structure isZ
M
Jðδ; δξÞ ¼ −

1

16πG

Z
∂M
½ðξ:AIJÞδΣIJ − ðξ:ΣIJÞ ∧ δAIJ�

þ
Z
∂M

δφðξ:⋆dφÞ: ðD3Þ
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