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We propose the modified form of the conventional holographic conserved charges which provides us the
frame-independent expressions for charges. This form is also shown to be independent of the holographic
renormalization scheme. We show the frame and scheme independence through the matching of our
holographic expression to the covariant bulk expression of conserved charges. As an explicit example, we
consider five-dimensional Anti-de Sitter Kerr black holes and show that our form of holographic conserved
charges gives us the identical expressions in the rotating and nonrotating frames.
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I. INTRODUCTION

The holographic principle in modern physics has been
introduced as the fundamental property of quantum gravity,
which was speculated on the basis of the area nature of the
black hole entropy. After its concrete realization in the form
of theAnti-de Sitter (AdS)/CFT correspondence, it becomes
one of main research arena and has been studied in various
contexts. Especially, the AdS/CFT correspondence has been
used as a modern toolkit of strong coupling phenomena for
the dual field theory. In this context holography has many
interesting applications and implications even at the level of
a classical theory of gravity, since the classical computation
in gravity has the dual interpretation for quantum phenom-
ena in the field theory side. Conversely, it also provides new
approaches to the classical theory of gravity through the
perspective from the dual field theory. One such application
is the introduction of the holographic approach to conserved
charges in the classical theory of gravity which have been
explored in the huge number of literatures.
Holographic conserved charges in the asymptotic AdS

space [1] are introduced along with the construction of
boundary stress tensor in gravity by using the Brown-York
formalism [2],which is now regarded as one of theAdS/CFT
dictionary. Despite their successful applications to various
cases, holographic charges need to be compared and/or
matched to traditional bulk charges since their equivalence is
not warranted a priori. In Einstein gravity with negative
cosmological constant, the equivalence between the holo-
graphic and traditional bulk conserved charges of black
holes is shown in Refs. [3–5]. Interestingly, it was observed
that holographic conserved charges of black holes might be
different from those by the covariant phase space method
when the conformal anomaly of the dual field theory does

not vanish. In particular, it has been noticed that the results
from the conventional expression of holographic charges
depends on the frames at the asymptotic AdS space in odd
dimensions, while the charges in covariant phase space
method remain invariant. When the metric for the asymp-
totic AdS space in odd dimensions is taken in the standard
nonrotating form, the Casimir energy is given just by
constant. On the other hand, the Casimir energy becomes
dependent on the rotational parameters when the metric is
taken in the rotating frame [4,6,7]. Furthermore, the conven-
tional expression for holographic charges depends on the
counterterm subtraction scheme [8,9].
Since it was shown that conserved charges by the

covariant phase space method should be completely con-
sistent with the first law of black hole thermodynamics
[10], the difference between holographic and covariant
phase space charges means that conserved charges by the
holographic method require the modification of the first law
of black hole thermodynamics, albeit the minimal modifi-
cation of the first law is shown to be sufficient for harmless
physical interpretation of holographic results [4]. Still it
would be nice if there is a construction of holographic
charges in such a way that they are identical with the bulk
ones and thus satisfy the standard form of the first law of
black hole thermodynamics.
In this paper we would like to revisit the construction of

the conventional holographic conserved charges and show
how it can be modified to give identical results with the
bulk constructions. Our approach is based on the recent
works [11–15] which can be regarded as the generalization
of the traditional Abbott-Deser-Tekin (ADT) formalism
[16–19] to the holographic setup. It turns out that our
construction is rather general and completely consistent
with the bulk covariant expression of conserved charges
under a very mild assumption. As a result, whenever the
boundary stress tensor is well defined and there is a
continuous parameter in the black hole solution, our
expression of holographic charges gives finite, frame and
scheme independent results and is completely consistent
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with the standard form of the first law of black hole
thermodynamics.

II. MODIFIED HOLOGRAPHIC CONSERVED
CHARGES

Let us start from the brief summary of holographic
renormalization in this section. See [20] for a review. In
terms of the boundary values ðγ;ψÞ of the bulk metric and
matter fields Ψ≡ ðg;ψÞ, the on-shell renormalized action
is given by (see the Ref. [15] for our convention)

Ionr ½γ;ψ � ¼ I½g;ψ �on-shell þ IGH½γ� þ Ict½γ;ψ �;
where the Gibbons-Hawking and counterterms IGB; Ict are
defined on a hypersurface. The on-shell condition renders
the renormalized action Ionr to be the functional of the
boundary value ðγ;ψÞ at the boundary B. The generic
variation of the on-shell renormalized action is taken in the
form of

δIonr ½γ;ψ � ¼ 1

16 πG

Z
B
ddx

ffiffiffiffiffiffi
−γ

p ½Tij
Bδγij þ Πψδψ �: ð1Þ

In order to introduce the boundary ADT current in the
renormalized boundary action, let us recall that the boun-
dary diffeomorphism results in the identity of the form

∇ið2Tij
Bζ

B
j Þ ¼ Tij

B£ζBγij þ Πψ£ζBψ ; ð2Þ

where £ζB denotes the Lie derivative on the boundary and
Tij
B does the modified boundary stress tensor defined by

Tij
B ≡ Tij

B þ 1

2
Zij

B ; Tij
B ≡ 1ffiffiffiffiffiffi−γp δIonr

δγij
:

The above boundary identity can be regarded as the analog
of the bulk Noether identity, of which elementary deriva-
tion is given in [15]. Note that theZ-tensor does not need to
be a symmetric one and is given in terms of Πψ ’s.
Let us introduce the boundary conserved current as

J i
BðξBÞ≡ −δTij

Bξ
B
j −

1

2
γklδγklT

ij
Bξ

B
j − Tij

Bδγjkξ
k
B

þ 1

2
ξiBðTkl

B δγkl þ ΠψδψÞ; ð3Þ

where δ denotes a linearization with respect to the boundary
fields, including the variations of Killing vectors. This
current can be written in the form of

ffiffiffiffiffiffi
−γ

p
J i

BðξBÞ ¼ −δð ffiffiffiffiffiffi
−γ

p
Tij
Bξ

B
j Þ þ

ffiffiffiffiffiffi
−γ

p
Ti
Bjδξ

j
B

þ 1

2

ffiffiffiffiffiffi
−γ

p
ξiBðTkl

B δγkl þ ΠψδψÞ: ð4Þ

One may note that the first term corresponds to the
linearized form of the conserved currents in conventional

holographic charges. For a boundary Killing vector ξB, the
conservation of the first term is the simple result of the
identity given in Eq. (2). Interestingly, this identity also
leads to the conservation of the sum of the second and
third terms as shown in the Appendix. After taking the
linearization of the boundary fields along the black hole
parameters and integrating the linearized form along the
one-parameter path ds, the holographic charges are intro-
duced by

QBðξBÞ≡ 1

8πG

Z
ds

Z
dd−1xi

ffiffiffiffiffiffi
−γ

p
J i

B: ð5Þ

We would like to emphasize that our choice of the
conserved boundary currents is motivated by the bulk off-
shell extension of the conventional ADT formalism and its
form in Eq. (3) is already written down in Ref. [15]. Our
boundary current in Eq. (4) is a generalization in the case of
boundary Killing vectors varying under a generic variation.
It turns out that this generalization of conserved currents
leads to the frame-independent expression of conserved
charges, which is also free from the ambiguity in the
counterterm subtraction. This advantage becomes manifest
by showing the equivalence of the boundary currents to the
bulk ADT potential expressions for charges, which is given
in the following section.

III. SCHEME AND FRAME INDEPENDENCE

In this section we argue that our boundary construction
of currents leads to the scheme independent results by
showing their equivalence with covariant bulk expression
for the ADT potential of conserved charges. To this
purpose, we explain how to construct the off-shell ADT
potential even when a bulk Killing vector is varied under a
generic variation.
In the bulk, there is an off-shell identity known as the

Noether identity which can be written in the form of

EΨ£ζΨ≡ Eμν£ζgμν þ Eψ£ζψ ¼ −2∇μðEμνζνÞ;

Eμν ≡ Eμν − 1

2
Zμν; ð6Þ

where EΨ denotes the Euler-Lagrange expression for the
field Ψ and Zμν tensor is given in terms of matter Euler-
Lagrange expressions, Eψ . For a Killing vector ξ which
may be unpreserved under a generic variation, one can
introduce the off-shell ADT current, just like in the non-
varying case [15] as

J μ
ADTðξ; δΨÞ ¼ δEμνξν þ

1

2
gαβδgαβEμνξν þ Eμνδgνρξρ

þ 1

2
ξμEΨδΨ; ð7Þ

which can be rewritten as
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ffiffiffiffiffiffi
−g

p
J μ

ADTðξ; δΨÞ ¼ δð ffiffiffiffiffiffi
−g

p
EμνξνÞ −

ffiffiffiffiffiffi
−g

p
Eμ

νδξ
ν

þ 1

2

ffiffiffiffiffiffi
−g

p
ξμEΨδΨ: ð8Þ

This expression may be regarded a slight generalization of
the nonvarying Killing vector case [11,15]. Note that this
current takes the same structure as the boundary conserved
current in the previous section. The off-shell conservation
of this current J μ

ADT allows us to write this current in terms
of the potential as J μ

ADT ¼ ∇νQ
μν
ADT at the off-shell level.

For the bulk Killing vector ξ, one can see that the
symplectic current [10,21,22] defined for a generic diffeo-
morphism parameter ζ by ωð£ζΨ; δΨÞ≡ £ζΘμðδΨ;ΨÞ−
δΘμð£ζΨ;ΨÞ, reduces to

ωð£ξΨ; δΨÞ ¼ −Θμð£δξΨ;ΨÞ; ð9Þ

where ΘμðδΨÞ is the surface term for a generic variation of
the bulk Lagrangian L given by δð ffiffiffiffiffiffi−gp

LÞ ¼ ffiffiffiffiffiffi−gp
EΨδΨþ

∂μΘμðδΨÞ. Through relations among the ADT current,
symplectic current and the off-shell Noether current for a
diffeomorphism variation J μ

ζ ≡ 2
ffiffiffiffiffiffi−gp

Eμνζν þ ζμ
ffiffiffiffiffiffi−gp

L−
Θμ, the final off-shell expression of the ADT potential, up
to the irrelevant total derivative term, turns out to be

2
ffiffiffiffiffiffi
−g

p
Qμν

ADTðξ; δΨ;ΨÞ ¼ δKμνðξ;ΨÞ − Kμνðδξ;ΨÞ
− 2ξ½μΘν�ðδΨ;ΨÞ: ð10Þ

This final expression can be regarded as a slight generali-
zation of covariant phase space results [10,22], which has
already been obtained in Einstein gravity in [23].
The matching between the boundary current J i

B and the
bulk ADT potential Qμν

ADT goes in the same way just as in
the case of δξμ ¼ 0 and δξiB ¼ 0, as follows. Let us take the
Fefferman-Graham coordinates for the asymptotic AdS
space as ds2 ¼ dη2 þ γijdxidxj. Adding the Gibbons-
Hawking and counterterms in holographic renormalization
gives us the additional surface terms modifying the bulk
surface term Θμ as

~ΘηðδΨÞ ¼ ΘηðδΨÞ þ δð2 ffiffiffiffiffiffi
−γ

p
LGHÞ þ δð ffiffiffiffiffiffi

−γ
p

LctÞ
¼ ffiffiffiffiffiffi

−γ
p ðTij

Bδγij þ ΠψδψÞ; ð11Þ

where the second line equality comes from Eq. (1). The
holographic renormalization condition and ~Θ-expression
tells us that ~Θη ∼Oð1Þ in the radial expansion.
Correspondingly, the modified on-shell Noether current
~Jη for a diffeomorphism parameter ζ becomes

~Jη ¼ ∂i
~KηiðζÞ ¼ ζη

ffiffiffiffiffiffi
−γ

p
Lon
r − ~Θηð£ζΨÞ; ð12Þ

where we have used the on-shell condition on the bulk
background fields. Just as in the case of δξμ ¼ 0 [4,15], the

asymptotic behavior of general diffeomorphism parameter
ζ is given by ζη ∼Oðe−dηÞ and ζi ∼Oð1Þ, in order to
preserve the asymptotic gauge choice and the renormalized
action. This asymptotic behavior in the diffeomorphism
parameter ζ allows us to discard the first term on the right-
hand side of Eq. (12) when we approach the boundary. In
the following we keep only the relevant boundary values of
parameters such that a bulk Killing vector ξi is replaced by
its boundary value ξiB. For the diffeomorphism variation
£ζΨ, the modified surface term ~Θη becomes

~Θηð£ζΨÞ ¼ ffiffiffiffiffiffi
−γ

p ð2Tij
B∇iζj þ Πψ£ζψÞ ¼ ∂ið2 ffiffiffiffiffiffi

−γ
p

Tij
BζjÞ;

where we have used the identity given in Eq. (2). By
using this result, one can see that the Noether potential
~Kηi, up to the irrelevant total derivative term, is given
by ~Kηi ¼ −2 ffiffiffiffiffiffi−γp

Tij
Bζj.

As a result, the on-shell relation between the ADT and
Noether potentials for a Killing vector ξB is given by

ffiffiffiffiffiffi
−g

p
Qηi

ADTjη→∞ ¼ ffiffiffiffiffiffi
−γ

p
J i

B: ð13Þ

This shows us the scheme independence of the holographic
charges since their currents are identified with covariant
bulk ADT potentials which are regardless of the counter-
terms. We would like to emphasize that the above potential-
current relation holds up to the total derivative terms which
are irrelevant in the charge computation. Moreover this
equality guarantees the Smarr relation since the relation
was shown to hold in bulk formalisms [13,23].
Since we have presented formal arguments, it would be

illuminating to show the frame and scheme independence
of mass and angular momentum of five-dimensional AdS
Kerr black holes as an explicit example, which is done in
the following section.

IV. FIVE-DIMENSIONAL EXAMPLE

As a specific example, let us focus on the pure Einstein
gravity on five dimensions. In the following we will set the
radius of the asymptotic AdS space as unity, L ¼ 1. AdS
Kerr black hole solutions in Boyer-Lindquist coordinates
[24] are given by

ds2 ¼ −
Δr

ρ2
ðdt − aΔϕdϕ − bΔψdψÞ2 þ

ρ2

Δr
dr2 þ ρ2

Δθ
dθ2

þ Δθsin2θ
ρ2

�
adt −

r2 þ a2

1 − a2
dϕ

�
2

þ Δθcos2θ
ρ2

�
bdt −

r2 þ b2

1 − b2
dψ

�
2

þ 1þ 1=r2

ρ2
ðabdt − bðr2 þ a2ÞΔϕdϕ

− aðr2 þ b2ÞΔψdψÞ2; ð14Þ
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where ρ2 ≡ r2 þ a2cos2θ þ b2sin2θ,

Δr ≡ ðr2 þ a2Þðr2 þ b2Þ
�
1þ 1

r2

�
− 2m;

Δθ ≡ 1 − a2cos2θ − b2sin2θ; Δϕ ≡ sin2θ
1 − a2

;

Δψ ≡ cos2θ
1 − b2

:

In order to use the holographic method, it is useful to take
the radial expansion of the metric in Fefferman-Graham
coordinates as

ds2¼ dη2þ γijdxidxj; γij¼
X
n¼0

e−2ðn−1ÞηγðnÞij ; ð15Þ

where the nonvanishing components of background metric
γð0Þ are given by

γð0Þtt ¼ −1; γð0Þtϕ ¼ aΔϕ; γð0Þtψ ¼ bΔψ ;

γð0Þθθ ¼ 1

Δθ
; γð0Þϕϕ ¼ Δϕ; γð0Þψψ ¼ Δψ :

In the computation of conserved charges, it turns out that
the expansion up to the second order is sufficient. The
nonvanishing components of the first order γð1Þ are given by

γð1Þtt ¼−
1

2
ða2þb2þΔθÞ; γð1Þtϕ ¼ aΔϕ

2
ða2−b2−ΔθÞ;

γð1Þtψ ¼ bΔψ

2
ðb2−a2−ΔθÞ;

γð1Þθθ ¼ð2−a2−b2−3ΔθÞ
2Δθ

; γð1Þϕϕ ¼
Δϕ

2
ða2−b2−ΔθÞ;

γð1Þψψ ¼Δψ

2
ðb2−a2−ΔθÞ;

and those of the second order γð2Þ are

γð2Þtt ¼ 3m −
1

8
ða2 − b2Þ2 − 1

4
ð2 − a2 − b2ÞΔθ þ

3

8
Δ2

θ;

γð2Þtϕ ¼ aΔϕ

�
−3mþ 1

8
ða2 − b2Þ2 − 1

4
ða2 − b2ÞΔθ þ

1

8
Δ2

θ

�
;

γð2Þtψ ¼ bΔψ

�
−3mþ 1

8
ða2 − b2Þ2 − 1

4
ðb2 − a2ÞΔθ þ

1

8
Δ2

θ

�
;

γð2Þθθ ¼ 1

Δθ

�
mþ ð2 − a2 − b2Þ2

8
−
3Δθ

4
ð2 − a2 − b2Þ þ 9Δ2

θ

8

�
;

γð2Þϕϕ ¼ Δϕ

�
mð1þ 4a2ΔϕÞ þ

ða2 − b2Þ2
8

−
ða2 − b2ÞΔθ

4
þ Δ2

θ

8

�
;

γð2Þψψ ¼ Δψ

�
mð1þ 4b2ΔψÞ þ

ða2 − b2Þ2
8

−
ðb2 − a2ÞΔθ

4
þ Δ2

θ

8

�
;

γð2Þϕψ ¼ 4abmΔϕΔψ :

Now, it is straightforward to obtain the expression offfiffiffiffiffiffi−γp
J i

BðξBÞ by using Eq. (4). Since the first term in Eq. (4)
was already given in [4], let us focus on the second and
third terms. One may recall that the timelike Killing vector
in this metric is given by ξiT∂i ¼ ∂t − a∂ϕ − b∂ψ. After
some computations [25] with 0 ≤ θ < π

2
, 0 ≤ ϕ;ψ < 2π, it

turns out that

Z
d3xi

ffiffiffiffiffiffi
−γ

p �
Ti
Bjδξ

j
T þ

1

2
ξiTðTkl

B δγklþΠψδψÞ
�

¼−
π2ða2−b2Þð2−a2−b2Þ

6ð1−a2Þð1−b2Þ
�
aδa
1−a2

−
bδb
1−b2

�
; ð16Þ

which results in the linearized mass expression of AdS Kerr
black holes from the boundary current as

δM ¼ δQBðξTÞ

¼ π

2G

�
maδað5 − a2 − 3b2 − a2b2Þ

ð1 − a2Þ3ð1 − b2Þ2

þmbδbð5 − b2 − 3a2 − a2b2Þ
ð1 − a2Þ2ð1 − b2Þ3

þ δmð3 − a2 − b2 − a2b2Þ
2ð1 − a2Þ2ð1 − b2Þ2

�
:

One can check that the difference between our mass
expression of δM and the conventional one in [4] resides
only in the absence of the rotational parameter dependence of
Casimir energy part. The finite mass expression is given by

M ¼ 3π

32G
þ πmð3 − a2 − b2 − a2b2Þ

4Gð1 − a2Þ2ð1 − b2Þ2 ; ð17Þ
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where we have added the constant Casimir energy part as an
integration constant. For rotational Killing vectors ξμR1∂μ ¼
−∂ϕ and ξ

μ
R2∂μ ¼ −∂ψ , one can see that the additional terms,

i.e. second and third ones inEq. (4), vanish and so the angular
momentum expressions are identical with those given in [4],
which is also the case in the computation ofWald’s entropyof
black holes.
Now, let us check the frame independence for our

expression by considering different coordinates. In asymp-
totically canonical AdS coordinates, the metric of AdS Kerr
black holes can be taken in the form of [7]

ds2 ¼ − ð1þ y2Þdt2 þ dy2

1þ y2 − 2m
Δ2

θ̂
y2
þ y2dΩ̂2

3

þ 2m
Δ3

θ̂
y2

ðdt − asin2θ̂dϕ̂ − bcos2θ̂dψ̂Þ2 þ � � � ; ð18Þ

where

Δθ̂ ≡ 1 − a2sin2θ̂ − b2cos2θ̂;

dΩ̂2
3 ≡ dθ̂2 þ sin2θ̂dϕ̂þ cos2θ̂dψ̂ :

By using Fefferman-Graham coordinates, one can check
explicitly that mass and angular momentums in these
nonrotating coordinates are given by the same expressions
as in the rotating ones. (See also [7].)
For comparison, let us turn to the bulk covariant

expressions of ADT potentials. In Einstein gravity, the
Noether potential Kμν and the bulk surface term Θμ

can be taken respectively as Kμνðg; ζÞ ¼ 2∇½μζν� and
Θμðg;δgÞ¼2

ffiffiffiffiffiffi−gp
gα½μ∇β�δgαβ. The ADT potential,

Qμν
ADTðξT ;δa;δb;δmÞ for AdS Kerr black holes is com-

posed of three terms which correspond to the variations
of parameters a, b and m, respectively as Qμν

ADTðξT ; δmÞ,
Qμν

ADTðξT ; δaÞ and Qμν
ADTðξT ; δbÞ.

For the bulk Killing vector ξT taken in the same form as
the boundary timelike Killing vector, the relevant compo-
nent of the Qμν

ADTðξT ; δmÞ term is given by

2
ffiffiffiffiffiffi
−g

p
Qηt

ADTðξT ; δmÞ

¼ −δm sin 2θ
ð1 − a2Þ2ð1 − b2Þ2 ½ða

2 þ b2 þ a2b2 − 3Þ

þ 2ða2 − b2Þ cos 2θ�:

The relevant component of the Qμν
ADTðξT ; δaÞ term is

given by

2
ffiffiffiffiffiffi
−g

p
Qηt

ADTðξT ;δaÞ

¼ −aδasin2θ
ð1−a2Þð1−b2Þ

�ðb2−a2Þ
8

þ2mð−5þ3b2þa2þa2b2Þ
ð1−a2Þ2ð1−b2Þ

þ
�
1

2
ð2−a2−b2−4e2ηÞþ2mð1−3ðb2−a2Þ−a2b2Þ

ð1−a2Þ2ð1−b2Þ
�
cos2θ

þ3

8
ðb2−a2Þcos4θ

�
;

where one may note that the potentially divergent term
proportional to e2η corresponds to the irrelevant total
derivative one. Qμν

ADTðξT ; δbÞ is given just by exchanging
ða; δaÞ by ðb; δbÞ in the above Qμν

ADTðξT ; δaÞ expression.
One may note that the varying Killing vector contribution
in Eq. (10) does not vanish and is given by

KηtðδξTÞ ¼
8ma cos θsin3θ

ð1 − a2Þ2ð1 − b2Þ δaþ 8mbcos3θ sin θ
ð1 − a2Þð1 − b2Þ2 δb:

Now, it is straightforward to check the matching between
the linearized mass expression of AdS Kerr black holes as

δMADT ¼ 1

16πG

Z
dθdϕdψ2

ffiffiffiffiffiffi
−g

p
Qηt

ADT ¼ δM: ð19Þ

It is also straightforward to obtain the ADT potentials for
rotational Killing vectors and check its equivalence with the
results from the boundary currents.

V. CONCLUSION

In this paper, we have proposed how to modify the
conventional expression of holographic conserved charges
in order to give the identical results with those from bulk
formalisms. Our construction of holographic charges is
based on the conserved boundary current, of which form is
motivated by the off-shell extension of the traditional ADT
formalism for bulk charges. This boundary current is
composed of two parts, one of which corresponds to the
conventional expression of holographic charges and the
other of which does to the additional terms compensating
the frame and scheme dependence of the first term. We
would like to emphasize that our modification of holo-
graphic charge expression does not mean the change of the
conventional AdS/CFT dictionary for boundary stress
tensor. Rather, our modification corresponds to another
prescription, in the gravity context, of holographic charge
construction from boundary stress tensor in such a way
that it does not depend on the frames for the asymptotic
AdS space. In the bulk side, we have extended our previous
covariant construction of quasilocal conserved charges
when Killing vectors are varied under a generic variation.
By showing the equivalence of the modified holographic
expression of conserved charges to the bulk covariant
expression, we have argued the consistency of our
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holographic expression with the standard form of the first
law of black hole thermodynamics and the Smarr relation.
Through the example, it is explicitly shown that the
boundary-bulk equivalence is satisfied up to the irrelevant
total derivative term. It is also shown that the additional
terms in the boundary current vanish in the case of the
angular momentum and black hole entropy computation,
while these remove the frame dependence in the mass
computation.
Since our boundary and bulk constructions of conserved

charges are based on a single formalismwhich depends only
on the Euler-Lagrange expression of the given Lagrangian,
our construction can be presented in the unified manner and
seems very natural. Furthermore, our bulk construction is
completely consistent with the well-known formalisms.
In all, various constructions are naturally connected and
their relationships are revealed in a unified way. It would be
very interesting to generalize our construction to the case of
more general asymptotic boundary space.
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APPENDIX: SOME FORMULAS

In order to verify the conservation of boundary
currents, let us start from the double variation of fields
and actions. When the diffeomorphism parameter ζ is

varied under a generic variation, the variation of any
quantity Fμν��� containing ζ is taken as δFμν���ðζ;ΨÞ≡
Fμν���ðζ þ δζ;Ψþ δΨÞ − Fμν���ðζ;ΨÞ. For instance, the
Killing conditions for the background field Ψ and the
varied field Ψþ δΨ are given respectively by £ξΨ ¼ 0

and £ξþδξðΨþ δΨÞ ¼ 0. When a diffeomorphism param-
eter is transformed under a variation such that δζμ ≠ 0,
one needs to modify the commutation of two generic
variations as

ðδδζ − δζδÞΨ ¼ δδζΨ; ðδδζ − δζδÞI½Ψ� ¼ δδζI½Ψ�:

For a boundary Killing vector ξB, one can see that

ðδξBδ − δδξBÞIonr ½ΨB�

¼ 1

16πG

Z
ddxδξB ½

ffiffiffiffiffiffi
−γ

p ðTij
Bδγij þ ΠψδψÞ�

¼ 1

16πG

Z
ddx∂i½ξiB

ffiffiffiffiffiffi
−γ

p ðTkl
B δγkl þ ΠψδψÞ�; ðA1Þ

where we have used δξBΨB ¼ 0 and thus δξBI
on
r ½ΨB� ¼ 0

in the first equality and δξB ¼ £ξB in the second equality.
The variation with respect to δξiB can be written as

δδξBI
on
r ½ΨB� ¼

1

16 πG

Z
ddx

ffiffiffiffiffiffi
−γ

p ð−2TB
ij∇iδξjB þ Πψ£ξBψÞ

¼ 1

16 πG

Z
ddx∂ið−2 ffiffiffiffiffiffi

−γ
p

Ti
Bjδξ

j
BÞ; ðA2Þ

where we have used the identity Eq. (2) in the second
equality. By identifying Eqs. (A1) and (A2), one can
finally see that

∇i

�
Ti
Bjδξ

j
B þ 1

2
ξiBðTkl

B δγkl þ ΠψδψÞ
�
¼ 0: ðA3Þ

[1] V. Balasubramanian and P. Kraus, A stress tensor for anti-de
Sitter gravity, Commun. Math. Phys. 208, 413 (1999).

[2] J. D. Brown and J. W. York, Jr., Quasilocal energy and
conserved charges derived from the gravitational action,
Phys. Rev. D 47, 1407 (1993).

[3] S. Hollands, A. Ishibashi, and D. Marolf, Comparison
between various notions of conserved charges in asymp-
totically AdS-spacetimes, Classical Quantum Gravity 22,
2881 (2005).

[4] I. Papadimitriou and K. Skenderis, Thermodynamics of
asymptotically locally AdS spacetimes, J. High Energy
Phys. 08 (2005) 004.

[5] S. Hollands, A. Ishibashi, and D. Marolf, Counter-term
charges generate bulk symmetries, Phys. Rev. D 72, 104025
(2005).

[6] A. M. Awad and C. V. Johnson, Holographic stress tensors
for Kerr-AdS black holes, Phys. Rev. D 61, 084025 (2000).

[7] G.W. Gibbons, M. J. Perry, and C. N. Pope, AdS/CFT
Casimir energy for rotating black holes, Phys. Rev. Lett.
95, 231601 (2005).

[8] S. de Haro, S. N. Solodukhin, and K. Skenderis, Holo-
graphic reconstruction of space-time and renormalization in
the AdS/CFT correspondence, Commun. Math. Phys. 217,
595 (2001).

HYUN et al. PHYSICAL REVIEW D 91, 064052 (2015)

064052-6

http://dx.doi.org/10.1007/s002200050764
http://dx.doi.org/10.1103/PhysRevD.47.1407
http://dx.doi.org/10.1088/0264-9381/22/14/004
http://dx.doi.org/10.1088/0264-9381/22/14/004
http://dx.doi.org/10.1088/1126-6708/2005/08/004
http://dx.doi.org/10.1088/1126-6708/2005/08/004
http://dx.doi.org/10.1103/PhysRevD.72.104025
http://dx.doi.org/10.1103/PhysRevD.72.104025
http://dx.doi.org/10.1103/PhysRevD.61.084025
http://dx.doi.org/10.1103/PhysRevLett.95.231601
http://dx.doi.org/10.1103/PhysRevLett.95.231601
http://dx.doi.org/10.1007/s002200100381
http://dx.doi.org/10.1007/s002200100381


[9] M. Bianchi, D. Z. Freedman, and K. Skenderis, Holographic
renormalization, Nucl. Phys. B631, 159 (2002).

[10] R. M. Wald, Black hole entropy is the Noether charge, Phys.
Rev. D 48, R3427 (1993).

[11] W. Kim, S. Kulkarni, and S. H. Yi, Quasilocal conserved
charges in a covariant theory of gravity, Phys. Rev. Lett.
111, 081101 (2013).

[12] W. Kim, S. Kulkarni, and S. H. Yi, Quasilocal conserved
charges in the presence of a gravitational Chern-Simons
term, Phys. Rev. D 88, 124004 (2013).

[13] S. Hyun, S. A. Park, and S. H. Yi, Quasi-local charges and
asymptotic symmetry generators, J. High Energy Phys. 06
(2014) 151.

[14] Y. Gim, W. Kim, and S. H. Yi, The first law of thermody-
namics in Lifshitz black holes revisited, J. High Energy
Phys. 07 (2014) 002.

[15] S. Hyun, J. Jeong, S. A. Park, and S. H. Yi, Quasi-local
conserved charges and holography, Phys. Rev. D 90,
104016 (2014).

[16] L. F. Abbott and S. Deser, Stability of gravity with a
cosmological constant, Nucl. Phys. B195, 76 (1982).

[17] L. F. Abbott and S. Deser, Charge definition in Nonabelian
gauge theories, Phys. Lett. B 116, 259 (1982).

[18] S. Deser and B. Tekin, Gravitational energy in quadratic
curvature gravities, Phys. Rev. Lett. 89, 101101 (2002).

[19] S. Deser and B. Tekin, Energy in generic higher curvature
gravity theories, Phys. Rev. D 67, 084009 (2003).

[20] K. Skenderis, Lecture notes on holographic renormalization,
Classical Quantum Gravity 19, 5849 (2002).

[21] J. Lee and R. M. Wald, Local symmetries and constraints, J.
Math. Phys. (N.Y.) 31, 725 (1990).

[22] V. Iyer and R. M. Wald, Some properties of Noether charge
and a proposal for dynamical black hole entropy, Phys. Rev.
D 50, 846 (1994).

[23] G. Barnich and G. Compere, Generalized Smarr relation for
Kerr AdS black holes from improved surface integrals,
Phys. Rev. D 71, 044016 (2005); 73, 029904(E) (2006).

[24] S. W. Hawking, C. J. Hunter, and M. Taylor, Rotation and
the AdS/CFT correspondence, Phys. Rev. D 59, 064005
(1999).

[25] We have computed these using xAct packages given in
[URL=http://www.xact.es].

FRAME-INDEPENDENT HOLOGRAPHIC CONSERVED CHARGES PHYSICAL REVIEW D 91, 064052 (2015)

064052-7

http://dx.doi.org/10.1016/S0550-3213(02)00179-7
http://dx.doi.org/10.1103/PhysRevD.48.R3427
http://dx.doi.org/10.1103/PhysRevD.48.R3427
http://dx.doi.org/10.1103/PhysRevLett.111.081101
http://dx.doi.org/10.1103/PhysRevLett.111.081101
http://dx.doi.org/10.1103/PhysRevD.88.124004
http://dx.doi.org/10.1007/JHEP06(2014)151
http://dx.doi.org/10.1007/JHEP06(2014)151
http://dx.doi.org/10.1007/JHEP07(2014)002
http://dx.doi.org/10.1007/JHEP07(2014)002
http://dx.doi.org/10.1103/PhysRevD.90.104016
http://dx.doi.org/10.1103/PhysRevD.90.104016
http://dx.doi.org/10.1016/0550-3213(82)90049-9
http://dx.doi.org/10.1016/0370-2693(82)90338-0
http://dx.doi.org/10.1103/PhysRevLett.89.101101
http://dx.doi.org/10.1103/PhysRevD.67.084009
http://dx.doi.org/10.1088/0264-9381/19/22/306
http://dx.doi.org/10.1063/1.528801
http://dx.doi.org/10.1063/1.528801
http://dx.doi.org/10.1103/PhysRevD.50.846
http://dx.doi.org/10.1103/PhysRevD.50.846
http://dx.doi.org/10.1103/PhysRevD.71.044016
http://dx.doi.org/10.1103/PhysRevD.73.029904
http://dx.doi.org/10.1103/PhysRevD.59.064005
http://dx.doi.org/10.1103/PhysRevD.59.064005
http://www.xact.es
http://www.xact.es
http://www.xact.es

