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We discuss the problem of defining a preferred vacuum state at a given time for a quantized scalar field in
Friedmann, Lemaître, Robertson, Walker space-time. Among the infinitely many homogeneous, isotropic
vacua available in the theory, we show that there exists at most one for which every Fourier mode makes a
vanishing contribution to the adiabatically renormalized energy-momentum tensor at any given instant.
For massive fields such a state exists in the most commonly used backgrounds in cosmology and, within the
adiabatic regularization scheme, provides a natural candidate for the “ground state” at that instant of time.
The extension to the massless and the conformally coupled case are also discussed.
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I. INTRODUCTION

Perhaps the most important lesson we have learned from
quantum field theory in arbitrarily curved space-times is the
absence of a preferred vacuum state [1–4]. Interesting
phenomena such as particle creation in an expanding
universe [5,6], the Hawking effect in black hole back-
grounds [7], and the Unruh effect in Minkowski space-time
[8] rely on this fact. In highly symmetric space-times like
Minkowski or de Sitter space, the underlying isometries are
a powerful tool to single out preferred vacua. One proceeds
by requiring two conditions: (i) The vacuum must be
invariant under the full group of symmetries of the back-
ground metric; (ii) The vacuum must be ultraviolet (UV)
regular, namely the short-distance or large-frequency
structure of the state must approach the behavior found
in flat space at an appropriate rate. The adiabatic regularity
condition in homogeneous space-times or the Hadamard
condition in more generic backgrounds are concrete ways
of implementing the second requirement [3,4]. UV regu-
larity, among other things, guarantees that composite
operators such as the energy-momentum tensor can be
satisfactorily renormalized in the Hilbert space of physical
states. In Minkowski and de Sitter space-times these two
requirements are indeed strong enough to uniquely single
out a vacuum state, the so-called Minkowski and Bunch-
Davies vacuum, respectively.
However, for less symmetric backgrounds one finds

infinitely many such states. In particular, this is the case for
the Friedmann, Lemaître, Robertson, Walker (FLRW)
space-times with line element ds2 ¼ aðηÞ2ð−dη2 þ d~x2Þ
in the conformal time η. Although they are not maximally

symmetric, these space-times carry three space translations
and three rotations, significantly simplifying the analysis.
Because of the central importance of these space-times in
cosmology, repeated attempts have been made to select
preferred vacua for test quantum fields using these sim-
plifications. However, to our knowledge, a satisfactory
solution has not emerged. Perhaps the simplest idea, that
appears compelling at first, is to try to define the instanta-
neous vacuum as the ground state of the Hamiltonian
operator at that instant of time. However, as shown in [9],
this strategy faces two key difficulties. First, to define the
Hamiltonian, one has to make a choice of canonical
variables and this freedom introduces an ambiguity in
the choice of states. Second, even after making a specific
choice, the resulting state fails to have the desired UV
regularity, except in very specific situations.
The goal of this paper is to propose an alternate strategy

which is motivated by the same physical considerations but
which is free of the two limitations. Specifically, we avoid
the ambiguities associated with the choice of canonical
variables by working only with space-time fields and, from
the start, we restrict ourselves to states that are UV regular.
In essence, the key idea is to select the instantaneous
vacuum j0i at η ¼ η0 by demanding that the expectation
value of the stress-energy tensor T̂abð~x; η0Þ in j0i should
vanish: h0jT̂abð~x; η0Þj0i ¼ 0.
Because it is constructed directly from space-time fields,

without reference to canonically conjugate variables, the
energy-momentum tensor is free of the ambiguities appear-
ing in the Hamiltonian. Furthermore, the expectation value
h0jT̂abð~x; η0Þj0i has fundamental physical significance
because it is the vehicle through which matter fields source
gravity in the semiclassical approximation, and its con-
servation law provides rich information already in the test
field approximation. However, the formal expression of this
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vacuum expectation value (VEV) is UV divergent and
requires renormalization even in a noninteracting theory.
(This is the generalization of the Minkowskian normal
ordering procedure to curved space-times.) In this paper we
will use the adiabatic renormalization [5,6,10] which is
particularly transparent for computations in homogeneous
space-times. This scheme takes advantage of the transla-
tional symmetry of the background and renormalizes the
energy-momentum tensor by subtracting suitable counter-
terms using Fourier modes. More precisely, the stress-
energy tensor T̂abð~x; ηÞ is a composite operator. By
expanding each field operator ϕ̂ð~x; ηÞ in its (formal)
expression in terms of its Fourier modes, one can express
the expectation value of T̂abð~x; ηÞ as an integral in the
momentum space:

h0jT̂abð~x; η0Þj0i ¼
Z

d3kTabð~k; η0Þ: ð1:1Þ

As explained in Sec. II, the renormalized expression is

given by subtracting the appropriate counterterm Cabð~k; ηÞ
for each ~k:

h0jT̂abð~x;η0Þj0iren ¼
Z

d3k½Tabð~k;ηÞ−Cabð~k;ηÞ�: ð1:2Þ

We show that, whenever it is possible to find a homo-

geneous and isotropic state that satisfies Tabð~k; η0Þ ¼
Cabð~k; η0Þ for every ~k, that state is unique and UV regular.
In particular, in this state h0jT̂abð~x; η0Þj0iren ¼ 0. Note

however that, because Tabð~k; η0Þ − Cabð~k; η0Þ is not nec-

essarily positive, our requirement that it vanish for each ~k is
stronger than simply asking h0jT̂abð~x; η0Þj0iren ¼ 0: We are
excluding the possibility of a cancellation between con-

tributions from different ~k-modes.
The resulting state is tailored to the time η0 because,

generically, h0jT̂abð~x; ηÞj0iren will be nonzero at any other
time η. For this reason we will call it the preferred
instantaneous vacuum, and denote it by j0η0i, where η0
is the instant to which it refers. Renormalization of the
energy-momentum tensor can then be understood as “a
time-dependent normal ordering” with respect to the
η-family of preferred instantaneous vacua. Furthermore,
the expectation value h0η0 jT̂abð~x; η1Þj0η0iren at another time
η1 > η0 can be interpreted as the energy-momentum trans-
ferred to the scalar field by the dynamical background
geometry. These features serve to bring out the physical
meaning of our instantaneous vacuum. Note, however, that
the notion depends on our choice of adiabatic renormal-
ization because of the mode by mode subtraction involved.
One can imagine using a variation of this strategy tailored
to another renormalization scheme and the resulting strat-
egy may well yield a different notion of an instantaneous

vacuum. However, one does need renormalization to speak
of composite operators such as energy and momentum
density and it is nontrivial that there exists a scheme which
enables one to select instantaneous vacua in a large number
of physically important cosmological situations.
The approach presented here has some similarities with a

part of the analysis carried out in [11]. In that paper, among
many other interesting results, adiabatic renormalization
was used to obtain a preferred definition of particles at a
given time, and the resulting definition was applied to
discuss the creation of particles by the expansion of the
universe. In the present paper we discuss states that make
the VEVof the full renormalized energy-momentum tensor
vanish. No particle interpretation of the field theory is
required here.
We will conclude this introduction with a couple of

conceptual remarks. An important tenet of quantum field
theory in curved backgrounds is that the renormalization
procedure can only make use of the local properties
of the space-time geometry, namely curvature tensors
and its derivatives at a point [3]. But our condition
h0η0 jT̂abð~x; η0Þj0η0iren ¼ 0 is global in space because it is
required to hold for all ~x. However, because we require the
states to be spatially homogeneous, satisfaction of this
condition at one ~x implies that it holds for all ~x at η ¼ η0.
Thus, while states are “global notions,” in our strategy the
spatial aspect of this global character is ensured by asking
that the state j0η0i be spatially homogeneous.
The second point concerns the existence of the preferred

instantaneous vacuum. General arguments indicate that it
cannot exist for arbitrary values of the massm and coupling
to the curvature ξ. For instance, it is well known that for a
conformally coupled scalar field (m ¼ 0 and ξ ¼ 1

6
) the

trace of the renormalized energy-momentum tensor is
nonzero and independent of the quantum state of the field.
This is the well-known trace anomaly [12,13]. As one
would expect, our strategy fails to select a state in these
cases (see Sec. IV). Thus, the strategy succeeds in selecting
a preferred state in generic physically interesting situations,
neatly bypassing the special cases in which conceptual
obstacles are already known to exist.
The plan of the paper is the following. We work in a

spatially flat FLRW space-time (although we do not
envisage significant difficulties in extending the analysis
to other homogeneous space-times). In Sec. II we summa-
rize the expression for the renormalized energy-momentum
tensor. In Sec. III we analyze the minimally coupled,
massive scalar field and provide a criterion for the existence
of the preferred instantaneous vacuum. We check that the
criterion is met in the space-times commonly considered
in cosmology, including radiation-dominated, matter-
dominated, FLRW space-times (except very near the big
bang singularity), in de Sitter space, and of course,
Minkowski space. In Sec. IV we consider the massless,
minimally coupled case and show that the preferred
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vacuum does not exist. However, the problem is similar to
the one encountered in de Sitter space in the massless limit
of the Bunch-Davies vacuum [14] and one can work around
it in the same fashion [15]. In Sec. V the conformally
coupled case is discussed, and it is shown that it is not
possible to find a state with zero expectation value of the
energy-momentum tensor, unless aðηÞ is very special (e.g.
constant). Section VI provides a summary, a discussion of
an interpretation of the instantaneous vacuum in the frame-
work of semiclassical gravity, and some final comments.
Our conventions: signature is −þþþ; curvature

tensors are defined as Rabc
dvd ¼ 2∇½a∇b�vc; Rac ¼ Rabc

b;
R ¼ gacRac, and c ¼ ℏ ¼ 1.

II. QFT IN K ¼ 0 FLRW BACKGROUNDS
AND RENORMALIZED VEV OF THE

ENERGY-MOMENTUM TENSOR

In this section we summarize the expression for the
renormalized VEV of the energy-momentum tensor in
adiabatic regularization in spatially flat FLRW. For
more details see [1,2,4]. Consider a noninteracting,
real scalar field satisfying the Klein-Gordon equation
ð□−m2−ξRÞϕ̂ð~x;ηÞ¼ 0, where R ¼ 6a00=a3 is the scalar
curvature of the FLRW metric ds2 ¼ aðηÞ2ð−dη2 þ d~x2Þ,
and prime denotes the derivative with respect to conformal
time η. We analyze here the minimally coupled case ξ ¼ 0
and m ≠ 0, leaving the massless minimally coupled case
and conformally coupled case (ξ ¼ 1=6) for Secs. IVand V,
respectively.
The underlying homogeneity can be used to Fourier

expand the field operator and represent it as

ϕ̂ð~x;ηÞ¼ 1

ð2πÞ3
Z

d3k½Â~kφ~kðηÞþ Â†
−~k
φ̄−~kðηÞ�ei

~k·~x; ð2:1Þ

where “bar” denotes complex conjugation. The basis
functions φ~kðηÞ are solutions of the wave equation

φ00
~k
ðηÞ þ 2

a0

a
φ0
~k
ðηÞ þ ðk2 þm2a2Þφ~kðηÞ ¼ 0; ð2:2Þ

and if they are chosen to satisfy the normalization con-
ditions φ~kφ̄

0
~k
− φ0

~k
φ̄~k ¼ ia−2 and φ~kφ

0
−~k

− φ0
~k
φ−~k ¼ 0 at

some instant of time, then the time-independent operators
Â~k and Â†

~k
satisfy the algebra of creation and annihilation

operators: ½Â~k;Â
†
~k0
�¼ð2πÞ3δ3ð~k−~k0Þ, ½Â~k;Â~k0 �¼½Â†

~k
;Â†

~k0
�¼0.

One then defines the vacuum j0i as the state annihilated by
all Â~k, and generates the Fock space by repeatedly acting on
it with creation operators.
The vacuum defined in this way is tailored to the

definition of the operators Â~k. In turn, these operators
are uniquely determined by the specification of a

complete set of mode functions φ~kðηÞ for all ~k: Eq. (2.1)

and the normalization condition imply Â~k ¼
−i

R
d3x½ϕ̂ð~x; ηÞ∂η

↔
φ̄~kðηÞe−i

~k·~x�. Therefore, a complete fam-
ily of normalized solutions φ~kðηÞ to Eq. (2.2) determines a
vacuum. But the correspondence is not one to one. The
sets fφ~kðηÞg and fφ~kðηÞeiθ~kg that only differ by a time-
independent phase factor determine the same vacuum.1

The resulting vacua are all translational invariant, but we
can impose an additional condition on the mode functions
φ~kðηÞ to ensure that they are also rotationally symmetric.
This is achieved by demanding that mode functions depend

only on the norm of the wave vector k ¼ j~kj, rather than on
its three independent components. As is well known, the
rotational invariance can be demonstrated by writing down
the associated two-point function,

h0jϕ̂ð~x1; η1Þϕ̂ð~x2; η2Þj0i

¼
Z

d3k
ð2πÞ3 φkðη1Þφ̄kðη2Þei~k·ð~x1−~x2Þ; ð2:3Þ

which by inspection displays invariance under these
symmetries.
To summarize, in FLRW there is a one-to-one corre-

spondence between equivalence classes of families of
solutions fφkðηÞg which differ by time-independent phase
factors eiθ~k and translationally and rotationally invariant
vacuum states.
The classical expression for the energy-momentum

tensor of a minimally coupled scalar field is

Tab ¼ ∇aϕ∇bϕ −
1

2
gabgcd∇cϕ∇dϕ −

1

2
m2gabϕ2: ð2:4Þ

In the quantum theory, the expectation value of the operator
T̂ab in a homogeneous and isotropic vacuum state takes the
perfect fluid form

h0jT̂abj0i ¼ gabhp̂i þ ðhp̂i þ hρ̂iÞuaub; ð2:5Þ

where ua is the unit vector normal to the homogeneous and
isotropic hypersurfaces. In terms of the modes φkðηÞ
defining the vacuum, the formal expressions of the expect-
ation values of energy density and pressure are

hρ̂i ≔ 1

ð2πÞ3
Z

d3kρ½φk�

¼ 1

ð2πÞ3
Z

d3k
1

2a2
ðjφ0

kj2 þ w2jφkj2Þ; ð2:6Þ

1As explained in Sec. V. B of [16], there is a 1-1 correspon-
dence between these equivalence classes of basis and complex
structures J on the space S of real, classical solutions to the field
equations, which are compatible with the natural symplectic
structure Ω on S in the sense that ðS;Ω; JÞ is a Kähler space.
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hp̂i ≔ 1

ð2πÞ3
Z

d3kp½φk�

¼ 1

ð2πÞ3
Z

d3k
1

2a2

�
jφ0

kj2 −
1

3
ðw2 þ 2m2Þjφkj2

�
;

ð2:7Þ

where the time-dependent frequency wðηÞ is given as
usual by

wðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2aðηÞ2

q
: ð2:8Þ

The VEV of the trace of the energy-momentum tensor is
hT̂i ¼ 3hp̂i − hρ̂i. These expressions for the components
of hT̂abi are only formal because they diverge in the k → ∞
limit as k4, regardless of the form of aðηÞ. Regularization
and renormalization are required to extract the finite,
physically relevant result. As mentioned in the
Introduction, in this paper we use the adiabatic renormal-
ization method developed by Parker and Fulling in [5,6,10].
More recent accounts can be found in [2,4] and a succinct
summary, most closely related to our present discussion, is
given in Sec. IV of [16]. This method removes the UV
divergences by subtracting the adiabatic counterterms

mode by mode, under the ~k-integral:

hρ̂iren ¼
1

ð2πÞ3
Z

d3kðρ½φk� − Cρðη; k; mÞÞ; ð2:9Þ

and,

hp̂iren ¼
1

ð2πÞ3
Z

d3kðp½φk� − Cpðη; k; mÞÞ: ð2:10Þ

Here Cρðη; k; mÞ and Cpðη; k; mÞ are the rather long
expressions (A1) and (A2), given in the Appendix (see
also [17]). They are independent of the state in which the
expectation values are evaluated, and therefore independent
of the choice of modes φk. They are functions of k,
constructed entirely from the scale factor aðηÞ and its four
first time derivatives at time η. Therefore, to renormalize the
stress energy tensor using adiabatic renormalization, aðηÞ
has to be a C4 function.2

As is well known [1–4], in order to have a physically
satisfactory quantum field theory one needs to impose
restrictions on the allowed quantum states. These are the
regularity conditions mentioned in Sec. I. In the adiabatic
approach one restricts physical states to be of 4th adiabatic
order. This requirement is implemented by demanding

asymptotic conditions on the family of solutions φkðηÞ
defining the vacuum, in the limit w → ∞. One requires the
modes φkðηÞ to approach Minkowski positive frequency
solutions (e−iwη=

ffiffiffiffiffiffi
2w

p
) at the appropriate rate, specified by

the following behavior in the k → ∞ limit:

jφkðηÞj ¼ jφð4Þ
k ðηÞjð1þOðw−ð4þϵÞÞÞ and

j∂ηφkðηÞj ¼ j∂ηφ
ð4Þ
k ðηÞjð1þOðw−ð4þϵÞÞÞ; ð2:11Þ

with ϵ a strictly positive real number and

φð4Þ
k ðηÞ ¼ 1

aðηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Wð4Þ

k ðηÞ
q e−i

R
η Wð4Þ

k ðη0Þdη0 ; ð2:12Þ

where Wð4Þ
k ðηÞ ¼ W0 þW2 þW4, with

W0 ¼ w;

W2 ¼
3aw02 − 4w2a00 − 2aww00

8aw3
;

W4 ¼
1

128a3w7
ð−297a3w04 þ 32w4a02a00 þ 80aw3a0w0a00

þ 152a2w2w02a00 − 32aw4a002 þ 396a3ww02w00

− 48a2w3a00w00 − 52a3w2w002 − 32aw4a0a000

− 80a2w3w0a000 − 80a3w2w0w000 þ 16a2w4a000

þ 8a3w3w000Þ: ð2:13Þ

If conditions (2.11) are satisfied at some time η0, the wave
equation (2.2) guarantees they are satisfied for all η. For
further details about the adiabatic expansion see [2,4].
Mode functions φkðηÞ satisfying requirements (2.11) are
called 4th adiabatic order modes, and the vacuum j0η0i they
define is a quantum state of 4th adiabatic order. (Elements
of the Hilbert space obtained by acting repeatedly by a
finite but arbitrarily large number of creation operators
provides a dense subspace of states all of which are of 4th
adiabatic order.) Note that (2.11) imposes only asymptotic
restrictions. Therefore there are infinitely many choices of
modes fφkg of 4th adiabatic order and hence of vacua j0i
of 4th adiabatic order.
Remark.—In spatially compact space-times, Hilbert

spaces constructed from different adiabatic vacua are
unitarily equivalent. In this sense, the adiabatic condition
selects a unique Hilbert space and the associated repre-
sentation of the quantum theory. This is not the case if
space is noncompact. In that situation inequivalent repre-
sentations appear, even if states are adiabatic up to all
orders (the same happens for Hadamard states [3]). But this
mathematical inequivalence is considered to be physically
spurious, since the resulting theories are physically indis-
tinguishable when measurements are restricted to a finite
region of space. (See, e.g. Sec. 2.3.2 of [18].)

2The stress energy tensor is a composite operator of dimension
4. More generally, to regularize and renormalize an operator
product of dimension n one needs adiabatic regularity of order n
which requires aðηÞ to be Cn.
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III. PREFERRED INSTANTANEOUS VACUUM
FOR MASSIVE, MINIMALLY COUPLED

SCALAR FIELDS

Let us start only with the (spatial) translational invari-
ance of the background geometry to perform Fourier
transform and incorporate the rotational invariance in a
second step. Then, as described in Sec. II, there is a one-to-
one correspondence between equivalence classes of fam-
ilies of normalized solutions to Eq. (2.2), fφ~kðηÞg, that
differ only by a time-independent phase factor, and Fock
vacua j0i. Since Eq. (2.2) is a second-order ordinary
differential equation, the modes φ~kðηÞ are uniquely deter-
mined by their initial data fφ~kðη0Þ;φ0

~k
ðη0Þg ∈ C2 at any

given time η0. Once the normalization condition and the
irrelevant phase factor are taken into account, two inde-

pendent real parameters for each ~k are sufficient to
unambiguously determine solutions φ~kðηÞ. They can be
conveniently chosen as Ω~kðη0Þ and V~kðη0Þ ∈ R satisfying
Ω−~kðη0Þ ¼ Ω~kðη0Þ and V−~kðη0Þ ¼ V~kðη0Þ. In terms of these
parameters we can set3

φ~kðη0Þ ¼
1

aðη0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ω~kðη0Þ

q ;

φ0
~k
ðη0Þ ¼

�
−iΩ~kðη0Þ þ

V~kðη0Þ
2

−
a0ðη0Þ
aðη0Þ

�
φ~kðη0Þ: ð3:1Þ

Therefore, a set of such real numbersΩ~kðη0Þ and V~kðη0Þ for
every ~k is in one-to-one correspondence with the set of
homogeneous Fock vacua. We will take advantage of this
correspondence to find the desired preferred instantaneous
vacuum j0η0i at time η0. As described in Sec. I, the strategy
is to look for states j0η0i satisfying three requirements:

(1) The symmetry requirement.—j0η0i shares the sym-
metries of the background metric, namely (spatial)
translational and rotational invariance. As discussed
in Sec. II, this is guaranteed if the solutions φ~kðηÞ
depend only on the norm k of the wave vector ~k. This
is the case if and only if Ω~kðη0Þ ¼ Ωkðη0Þ and

V~kðη0Þ ¼ Vkðη0Þ for all ~k.
(2) The regularity requirement.—j0η0i is a quantum

state of 4th adiabatic order. This will be the case
if and only if φkðη0Þ and φ0

kðη0Þ satisfy (2.11)–
(2.13). This, in turn, is guaranteed if and only if
Ωkðη0Þ and Vkðη0Þ satisfy the following asymptotic
conditions as w → ∞:

Ωkðη0Þ ¼ Wð4Þ
k ðη0Þ þOðw−ð4þϵÞÞ;

Vkðη0Þ ¼
∂ηW

ð4Þ
k

Wð4Þ
k

����
η0

þOðw−ð4þϵÞÞ;

where Wð4Þ
k ðηÞ is defined by (2.13) and ϵ > 0.

(3) The “instantaneous vacuum” requirement.—For
each ~k we require ρ½φkðη0Þ� − Cρðη; k; mÞ ¼ 0 and
p½φkðη0Þ� − Cpðη; k; mÞ ¼ 0 so that the renormal-
ized expectation value h0η0 jT̂abðη0Þj0η0iren of the
stress tensor vanishes identically, mode by mode.

At first these requirements appear to impose an overcon-
strained set of conditions on Ωkðη0Þ and Vkðη0Þ. Therefore,
there is no a priori guarantee that a solution would exist.
We now investigate existence and uniqueness.
The third condition requires ρ½φkðη0Þ� ¼ Cρðη0; k; mÞ

and p½φkðη0Þ� ¼ Cpðη0; k; mÞ for all ~k, where ρ½φk� and
p½φk� were defined in Eqs. (2.6) and (2.7), and φkðη0Þ is
given by (3.1). This is a quadratic system of algebraic
equations for Ωkðη0Þ and Vkðη0Þ. The solutions are

Ωkðη0Þ ¼ −
2w2ðη0Þ þm2a2ðη0Þ

6a4ðη0ÞðCpðη0; k; mÞ − Cρðη0; k; mÞÞ ; ð3:2Þ

Vð�Þ
k ðη0Þ ¼ 2

a0ðη0Þ
aðη0Þ

∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−w2ðη0Þ þ 4a4ðη0ÞCρðη0; k; mÞΩkðη0Þ −Ω2

kðη0Þ
q

: ð3:3Þ

Additionally, Ωkðη0Þ must be positive and both Ωkðη0Þ and
Vkðη0Þ must be finite and real for the initial data (3.1) to
define normalized solutions. These requirements translate
to the following conditions:

∞ > Ωkðη0Þ > 0; ð3:4Þ

∞ > rkðηÞ ≔ −w2ðη0Þ þ 4a4ðη0ÞCρðη0; k; mÞΩkðη0Þ
−Ω2

kðη0Þ ≥ 0: ð3:5Þ

If they are satisfied, then Ωkðη0Þ and Vð�Þ
k ðη0Þ define

vacuum states satisfying conditions (i) and (iii) in our list.
But would the resulting vacua meet the regularity

condition (ii), i.e., are they states of 4th adiabatic order?
Note that the only remaining freedom is the choice of sign3This parametrization for initial data was already used in [11].
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in (3.3). If ðΩkðη0Þ; rkðη0ÞÞ satisfy (3.4) and (3.5), a
detailed examination shows that the vacuum state con-

structed from Ωkðη0Þ and VðþÞ
k ðη0Þ is of 4th adiabatic order

in an expanding universe (a0ðηÞ ≥ 0), while Ωkðη0Þ and

Vð−Þ
k ðη0Þ provide the satisfactory solution in the contracting

case. Therefore if the solution j0η0i exists, then it is unique.
To summarize, Eqs. (3.4) and (3.5) provide the necessary

and sufficient conditions for the existence of a Fock
vacuum satisfying our three requirements. Assuming exist-
ence of such an Ωkðη0Þ, using the expression (2.3) of the
two-point function, the resulting state j0η0i can be shown to
be regular both in the infrared limit k → 0 as well as in the
UV limit k → ∞ at η ¼ η0. Results of [19,20] then
guarantee that the state remains well defined at any other
time.
We will conclude this section with a few comments on

j0η0i. First, what is the level of restriction imposed by
conditions (3.4) and (3.5)? Does the desired instantaneous
vacuum exist in the FLRW solutions that are most
commonly used in cosmology, or only for very specific
forms of the scale factor aðηÞ? As a first exercise it is
interesting to examine the situation in Minkowski space-
time, in which aðηÞ is a constant. In that case the adiabatic
subtraction terms become Cρðη0;k;mÞ¼wðη0Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

p

and Cρðη0; k; mÞ ¼ k2=ð3wðη0ÞÞ, and Eqs. (3.2) and (3.3)
give Ωkðη0Þ ¼ wðη0Þ and Vkðη0Þ ¼ 0. Thus the solution
exists and defines precisely the standard Minkowski
vacuum, just as one would hope.
For time-dependent scale factors aðηÞ we have checked

numerically that the necessary and sufficient conditions
(3.4) and (3.5) are satisfied in the following cosmological
space-times: (i) a radiation dominated FLRW universe in
which the scale factor has the form aðηÞ ¼ a0η; (ii) a matter
dominated FLRW universe, for which aðηÞ ¼ a0η2; and de
Sitter space-time with aðηÞ ¼ −1=ðHηÞ and H constant.
A number of numerical simulations were carried out.
Except at and very near the big bang, we found no values

of m, H, k and η at which conditions (3.4) and (3.5) are not
satisfied. We include three illustrative plots (Figs. 1–3) of
the behavior of ΩkðηÞ and rkðηÞ [defined in (3.5)], one for
each of these space-times, and for m ¼ H ¼ 10−5 in the
natural Planck units with c ¼ GN ¼ ℏ ¼ 1. These plots
show that both functions remain finite and positive for
all plotted range of k and η, as it is required by (3.4) and
(3.5). Their qualitative behavior can be understood as
follows. ΩkðηÞ behaves like ΩkðηÞ ∼ kþ ½ðtermswith two
derivatives of aÞ=kþ higher adiabatic order terms� for
large values of k compared to the mass or the curvature.
Therefore, except for very small values of k, we have
ΩkðηÞ ∼ k. The three plots exhibit this η-independence and
linear growth in k ofΩkðηÞ. Next, consider rkðηÞ. It behaves
like rkðηÞ ∼ a0=aþOðk−2Þ. For values of k that are large
compared to the mass or the curvature, the term a0=a
dominates and the plots are approximately k-independent.
But for small k, there is k-dependence. Furthermore since
a0=a ∼ η−2 in all three cases considered, there is a strong
growth when approaching η ¼ 0. This growth may seem to
be “abrupt” in the first three figures. But that is an artifact of
the very large scale used in the vertical axis showing values
of rkðηÞ. In Fig. 4, which zooms in at small values of rkðηÞ,
one sees that the growth is gradual, following the 1=η2

behavior.
Our simulations showed that larger values of the η and k,

and other choices of m and H, did not alter the final
conclusions: The state j0ηi continued to exist. However,
since the search was done numerically, it could not be
exhaustive. If one is interested in using the instantaneous
vacuum in a specific situation, one has to use the values of
η0 andm (andH) of interest and verify that conditions (3.4)
and (3.5) are satisfied.
For those space-times for which the group of isometries

is larger than the Euclidian group (homogeneity and
isotropy), one would not expect the preferred instanta-
neous vacuum to automatically agree with states singled
out by the full symmetry group. This is because j0η0i is

FIG. 1 (color online). FLRW space-time sourced by radiation: The left panel shows the behavior of ΩkðηÞ, defined in Eq. (3.2) as a
function of η and k and the right panel, the behavior of rkðηÞ defined in Eq. (3.5). Here we have setm ¼ 10−5 in the natural Planck units.
In this model the scale factor has the form aðηÞ ¼ a0η whence the singularity occurs at η ¼ 0. For the range of parameters considered,
both functions remain finite and positive except very near the big bang, satisfying the necessary and sufficient condition (3.4) and (3.5)
of the existence of the instantaneous vacuum at time η.
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constructed using the preferred cosmological foliation: the
Euclidean group is tied to this foliation, and the local
geometry used in our construction—the scale factor and
its first four time derivatives—also refers to this foliation.
It is not required to be invariant under any additional

symmetries. For instance, in de Sitter space-time the
cosmological foliation is not preserved by the full isom-
etry group and our instantaneous vacuum does not agree
with the Bunch-Davies vacuum which is invariant under
the full de Sitter group.

FIG. 2 (color online). FLRW space-time sourced by nonrelativistic matter: As in Fig 1, the left panel shows the behavior of ΩkðηÞ
[defined in (3.2)] and the right panel, the behavior of rkðηÞ defined in (3.5). The mass parameter is againm ¼ 10−5 in the natural Planck
units. Again, except very near the big bang singularity (η ¼ 0), both functions remain finite and positive. Thus for the range of η; k
shown, the existence of the instantaneous vacuum j0η0i is ensured.

FIG. 3 (color online). De Sitter space-time: Again, the left panel shows the behavior ofΩkðηÞ and the right panel, the behavior of rkðηÞ.
In this plot we have set m ¼ H ¼ 10−5 in the natural Planck units. Now, η ¼ 0 corresponds to future infinity which is not part of space-
time. For the values of η; k considered, the functions remain finite and positive, ensuring the existence of the instantaneous vacuum j0η0i.

FIG. 4 (color online). Growth of rkðηÞ in de Sitter (left) and radiation filled FLRW (right) space-times: This figure zooms in on the
region in which rkðηÞ starts growing as one approaches η ¼ 0. The growth goes as a0=a ∼ 1=η2. Behavior is similar for the matter-filled
FLRW universe.
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It is not difficult to show that although j0η0i has
vanishing expectation value for the energy-momentum
tensor at time η0, it is not an eigenstate of the operator
T̂ab or the energy operator

R
d3xa3ρ̂ at that time, unless

aðηÞ is very special. On the other hand, it is also not
difficult to see that if jn~ki is an eigenstate of the number

operator Nðη0Þ
~k

¼ ðAðη0Þ
~k

Þ†Aðη0Þ
~k

with eigenvalue n~k, where

Aðη0Þ
~k

are the annihilation operators associated with j0η0i,
then the total energy in the state jnki at time η0 is given by
aðη0Þ3ð2πÞ−3ðρ½φkðη0Þ� − Cρðη0; k; mÞÞ × n~k. Therefore,
ðρ½φkðη0Þ� − Cρðη0; k; mÞÞ can be interpreted as the average
energy density at η0 per quantum (of Nðη0Þ

~k
) in a comoving

volume in position as well as momentum space.

IV. MINIMALLY COUPLED MASSLESS
SCALAR FIELD

The massless limit requires special attention because of
the potential infrared divergences. In the adiabatic
approach, a renormalization energy scale μ > 0 needs to
be specified for massless fields to handle these divergences
[21]. The introduction of this scale does not add further
ambiguity to the renormalization procedure. This is
because different choices of the scale μ translate to the

addition of a term proportional to the geometric tensorHð1Þ
ab

[defined in expression (A5) in the Appendix)] to the
renormalized energy-momentum tensor, and the ambiguity
of adding such a term is already present in the axiomatic
renormalization approach [3]. For massless fields this is in
fact all the freedom one has in the choice of renormalization

scheme, since Hð1Þ
ab is the only conserved, geometric tensor

with the same dimensions as Tab available in FLRW.
Therefore, one can think of the choice of the scale μ as
encoding all the freedom in the choice of the renormaliza-
tion scheme.
As in the massive case, the preferred instantaneous

vacuum at time η0 is characterized by two real parameters
Ωkðη0Þ and Vkðη0Þ that solve the equations

ρ½φkðη0Þ� ¼ Cðm¼0Þ
ρ ðη0; k; μÞ;

p½φkðη0Þ� ¼ Cðm¼0Þ
p ðη0; k; μÞ;

ð4:1Þ

where ρ½φkðη0Þ� and p½φkðη0Þ� are given by (2.6) and (2.7)
with m ¼ 0. The massless subtraction terms

Cðm¼0Þ
ρ ðη0; k; μÞ and Cðm¼0Þ

p ðη0; k; μÞ are given by expres-
sions (A3) and (A4) with ξ ¼ 0. Solutions to these
equations are

Ωkðη0Þ ¼ −
k2

3aðη0Þ4ðCðm¼0Þ
p ðη0; k; μÞ − Cðm¼0Þ

ρ ðη0; k; μÞÞ
; ð4:2Þ

Vð�Þ
k ðη0Þ ¼ 2

a0ðη0Þ
aðη0Þ

∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−k2 þ 4aðη0Þ4Cðm¼0Þ

ρ ðη0; k; μÞΩkðη0Þ −Ω2
kðη0Þ

q
: ð4:3Þ

Therefore, the preferred instantaneous state exists when-
ever Ωkðη0Þ is positive and the radicand of (4.3) is non-
negative:

∞ > Ωkðη0Þ > 0; ð4:4Þ

−k2 þ 4aðη0Þ4Cðm¼0Þ
ρ ðη0; k; μÞΩkðη0Þ −Ω2

kðη0Þ ≥ 0:

ð4:5Þ

As in the massive case, ðΩkðη0Þ; VðþÞ
k ðη0ÞÞ provide a 4th

adiabatic order vacuum for a0ðη0Þ ≥ 0 and ðΩkðη0Þ and

Vð−Þ
k ðη0Þ, for a0ðη0Þ ≤ 0. One can check that the above

conditions (4.4) and (4.5) are indeed satisfied in the most
common FLRW background used in cosmology. In the
constant aðηÞ limit the resulting state agrees with the
Minkowski vacuum.
However, the vacuum state we have just found is not

satisfactory: the two-point function diverges in the infrared
limit, k → 0, whence the state fails to satisfy our regularity

requirement. The situation is similar to the well-known
problem of the massless limit of the Bunch-Davies vacuum
in de Sitter space [14], and the solution is the same as in that
case [15]. It suffices to change the zero mode, φk¼0, to
bypass the problem. For the massless Bunch-Davies
vacuum, the resulting quantum state is no longer exactly
de Sitter invariant. However, the deviation from de Sitter
invariance appears in a single mode with k ¼ 0. As a
consequence, this state is considered to be physically
interesting and is widely used in the context of inflation.
In our case, the result of modifying the prescription (4.2)
and (4.3) for k ¼ 0 yields a state in which energy
momentum at η0 fails to vanish, but only due to the
contributions of modes with arbitrarily small k.

V. CONFORMALLY COUPLED MASSLESS
SCALAR FIELD

In this section we discuss the subtleties that arise in
the conformally coupled case, with m ¼ 0 and ξ ¼ 1=6.
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The classical expression for the energy-momentum tensor
takes the form

Tab ¼
2

3
∇aϕ∇bϕ −

1

6
gabgcd∇cϕ∇dϕ −

1

3
ϕ∇a∇bϕ

þ 1

12
gab□ϕþ 1

6

�
Rab −

1

4
Rgab

�
ϕ2; ð5:1Þ

where Rab is the Ricci tensor and R its trace. This tensor is
manifestly traceless, gabTab ¼ 0. This vanishing trace is the
source of the issue that we now describe.
At the quantum level, the adiabatically renormalized

VEV of T̂ab in a homogeneous and isotropic state takes
again the perfect fluid form (2.5), with

hρiren ¼
1

ð2πÞ3
Z

d3kðρ½φk� − CðcnfÞ
ρ ðη; kÞÞ; ð5:2Þ

hpiren ≔
1

ð2πÞ3
Z

d3kðp½φk� − CðcnfÞ
p ðη; kÞÞ; ð5:3Þ

where ρ½φk� ¼ 1
2a2 ðjφ0

k þ a0
a φkj2 þ k2jφkj2Þ and p½φk� ¼

1=3ρ½φk�. The adiabatic subtraction terms for conformal

coupling, CðcnfÞ
ρ ðη; kÞ and CðcnfÞ

p ðη; kÞ, can be found in the
Appendix [expressions (A3) and (A4) with ξ ¼ 1=6]. The
renormalized VEV of the trace is given by

hTiren ¼ 3hpiren − hρiren
¼ −

1

ð2πÞ3
Z

d3kð3CðcnfÞ
p ðη; kÞ − CðcnfÞ

ρ ðη; kÞÞ

¼ 1

180ð4πÞ2
�
□Rþ RabRab −

1

3
R2

�
: ð5:4Þ

Notice that, as a consequence of the vanishing classical
trace, this VEV is independent of the mode functions φk,
i.e., independent of the vacuum in which the expectation
value is evaluated: hTiren arises entirely from renormaliza-
tion subtractions. This is the well-known trace or conformal
anomaly [12,13] (see also [1]). As a consequence, there is
obviously no state for which the renormalized VEV of the
energy-momentum tensor is zero. Therefore, the preferred
instantaneous vacuum does not exist for a massless,
conformally coupled scalar field in spatially flat FLRW
space-time, unless aðηÞ is very special, e.g. constant. Note
also that this result is not a peculiarity of the adiabatic
approach; it extends to any other regularization scheme.
This is because the value of the trace anomaly is nonzero in
all renormalization procedures satisfying Wald’s axioms
[3]. Only the coefficient multiplying □R in (5.4) changes
from one scheme to the other.
In the absence of a state which makes the VEV of all

components of the energy-momentum tensor equal zero,
one could ask if there exist homogeneous and isotropic

vacuum states for which one of the two independent
components, the energy density or the pressure, has zero
VEVat a given time. The answer is also in the negative: for
a generic aðηÞ, there is no vacuum of 4th adiabatic order
with zero energy density or zero pressure at a given time for
the conformally coupled scalar field.

VI. DISCUSSION

The problem of selecting preferred vacua for quantized
fields in cosmological space-times is interesting not only
because of its conceptual importance, but also because the
issue is directly relevant to the computation of primordial
cosmic perturbations in the early universe. In these com-
putations one needs to specify the quantum state for
perturbations at some “initial” time η0. In the inflationary
scenario one uses the fact that the background is close to de
Sitter space-time, and selects a vacuum by extending the
Bunch-Davies vacuum state to quasi–de Sitter space-times
(see e.g. [22]).4 In loop quantum cosmology [23], matter-
dominated bounces [24] and ekpyrotic cosmologies [25],
“initial conditions” are specified in a phase which is far
removed from the slow-roll, de Sitter-like expansion. Can
one still single out a preferred initial state at such initial
instants? In the cosmological literature it is common to
choose “Minkowski-like” initial data for modes to select
the desired vacuum, namely φkðη0Þ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wðη0Þ

p
and

φ0
kðη0Þ ¼ −iwðη0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wðη0Þ

p
. Although the resulting state

is homogeneous and isotropic by construction, from a
physical perspective, it is not satisfactory because it is fails
UV regularity: it is neither adiabatic nor Hadamard. In
particular, there is no known systematic procedure to
renormalize the expectation value of the energy-momentum
tensor in such states. In addition, even if one computes the
difference in energy density between two states defined
using these initial data at two different times, η0 and η1, one
finds a divergent result for generic aðηÞ. Another avenue
pursued in the early literature was to try to select a state that
would be the ground state of the instantaneous Hamiltonian
operator. At first this strategy seems attractive from a
conceptual standpoint. Indeed, it leads to the standard
vacuum state in Minkowski space-time. But, as explained
in Sec. I, in curved space-times it faces two difficulties:
dependence on the choice of canonical variables used in the
definition of the Hamiltonian and failure to be ultraviolet
regular [9].
By contrast, the instantaneous vacuum introduced in this

paper is free of these limitations. First, by construction,
it is regular to 4th adiabatic order. Therefore its ultraviolet
behavior is such that the expectation value of the
stress-energy operator to be well defined. Second, the

4Note, however, that from a mathematical physics perspective,
there is an infinite dimensional ambiguity in extending the notion
to the near de Sitter situations that feature in the slow-roll
scenario.
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construction refers only to four-dimensional fields; no
choice of canonically conjugate variables is necessary.
Furthermore, the input used in the construction is just
the local geometry, namely the scale factor and its first four
time derivatives. Finally, the construction can be carried out
to completion in the most widely used FLRW models. Yet,
the state j0η0i it selects has the same intuitive connotations
as the “ground state of the instantaneous Hamiltonian” that
was avidly sought in the older literature. In fact, it can be
regarded as an instantaneous ground state in a stronger
sense since not only do energy density and pressure vanish
in this state, but they do so mode by mode.
From the perspective of semiclassical gravity, states j0η0i

have an interesting property. We will now make a detour to
spell it out in some detail. Recall that in semiclassical
general relativity, the space-time metric is classical, the
matter fields are quantum, and the stress energy tensor in
the classical Einstein’s equation is replaced by the expect-
ation value of the stress-energy tensor operator. Let us
consider the following perturbative expansion. To the

zeroth order, we have a classical metric °gab coupled to
classical matter which, for simplicity, we will take to be a

Klein Gordon field °ϕ, satisfying

°
□

°ϕ−m2 °ϕ ¼ 0 and °Gab ¼ 8πGN
°Tab; ð6:1Þ

where, as the notation suggests, °□ and °Gab refer to
°gab and

°Tab is the stress-energy tensor of
°ϕ (on the space-time with

metric °gab). Next, we have a quantum field ϕ̂ð1Þ satisfying

°
□ϕ̂ð1Þ −m2ϕ̂ð1Þ ¼ 0 ð6:2Þ

which we regard as a first order perturbation. We are
interested in calculating the backreaction on the classical
metric due to this perturbation. So we can expand the
metric as

gab ¼ °gab þ gð1Þab þ gð2Þab þ � � �

and solve Einstein’s equations order by order. Since the
perturbation is order 1 and the stress energy is quadratic in
the field, as is usual in the analysis of backreaction, we will
seek a truncation which is consistent up to second order. In
this truncated expansion, the stress-energy tensor is to be

constructed using the matter field °ϕþ ϕ̂ð1Þ (and the metric
to the appropriate order). The right side of Einstein’s
equation will feature the expectation value of this operator
in a quantum state. In the final argument we will use the
instantaneous vacuum j0η0i but for now let us allow it to be
a general vacuum j0i that satisfies only the symmetry and
regularity conditions. Then, because h0j∇aϕ̂

ð1Þj0i ¼ 0, it
follows that the first order metric perturbation satisfies the
homogeneous equation:

Gð1Þ
ab ≡ °Θgð1Þab ¼ 0; ð6:3Þ

where °Θ is a second order differential operator constructed

from the zeroth order metric °gab.
5 Solutions to the homo-

geneous equation (6.3) represent tensor modes. Since we
are calculating only the backreaction on the metric created
by the scalar field, we are led to choose the solution

gð1Þab ¼ 0.
Nontrivial backreaction appears at second order, via the

second order Einstein’s equation. Since gð1Þab ¼ 0, this
equation reduces to

Gð2Þ
ab ≡ °Θgð2Þab ¼ h0jT̂abj0i; ð6:4Þ

where the right side features the renormalized stress-energy
tensor, which is quadratic in the first order perturbations.
We can now perform an initial value formulation of this
equation with η ¼ η0 as the initial instant. The resulting
scalar and the vector constraints are inhomogeneous elliptic

equations for the linearized 3-metric qð2Þab and extrinsic

curvature kð2Þab , with source terms

h0jT̂abj0i °na °nb and h0jT̂abj0i °na °qbc

where °n
a
is the unit normal to and °q

ab
the intrinsic metric

on the surface η ¼ η0, defined by °gab. Now, the main point
is that if we were to use j0η0i in place of a generic vacuum
j0i, then the source terms on the right sides of these
constraint equations vanish. Therefore the constraint equa-

tions on qð2Þab and kð2Þab become homogeneous at time η ¼ η0.
Therefore, their solutions provide initial data for transverse

traceless modes in gð2Þab . Again, because we are interested in
the backreaction only due to the scalar field ϕ̂ð1Þ, we are

led to choose the solution with qð2Þab ðη ¼ η0Þ ¼ 0 and

kð2Þab ðη ¼ η0Þ ¼ 0. This choice provides a natural way to
eliminate the freedom to add a solution of the homo-
geneous equation to solutions of (6.4), which is necessary,
in any case, to select the physically appropriate solution

5That the equation is homogeneous is at first surprising. Had
we worked in the classical theory, because ∇aϕ

ð1Þ ≠ 0, Tð1Þ
ab

would not be zero and would act as a source for first-order scalar
perturbations in the metric. Similarly, if the metric perturbations
were operators ĝð1Þab—as ϕ̂ð1Þ is—the right hand side would be the
operator T̂ð1Þ

ab which, unlike its expectation value in the state j0i, is
nonzero. By contrast, in the semiclassical framework, since the
metric is classical and the matter field is quantum, Einstein’s
equation necessarily involves expectation values, and the expect-
ation value h0jT̂ð1Þ

ab j0i vanishes. Thus, the fact that gð1Þab satisfies a
homogeneous equation is a peculiarity of (the perturbative
expansion in) semiclassical gravity. For a more general discus-
sion of unforeseen features, see Sec. VI.D of [16].

IVAN AGULLO, WILLIAM NELSON, AND ABHAY ASHTEKAR PHYSICAL REVIEW D 91, 064051 (2015)

064051-10



representing the backreaction only due to ϕ̂ð1Þ. In this

scheme, the pair qð2Þab ðηÞ; kð2Þab ðηÞ captures the leading order
modifications to the background geometry at time η,
because of the backreaction due to the quantum pertur-
bation ϕ̂ð1Þ. This correction vanishes identically at η ¼ η0.
In this precise sense, the state j0ηi has the property that
the backreaction on geometry vanishes at η ¼ η0. This is
interpretation of j0η0i within semiclassical gravity we
wanted to spell out. Under evolution, the data

qð2Þab ðηÞ; kð2Þab ðηÞ will be necessarily nonzero because
h0ηjT̂abj0ηi is nonzero for η ≠ η0. Thus, if the scalar field
ϕ̂ is in the state j0η0i, to second order in perturbation
theory there is a nontrivial backreaction on the geometry
at any time η ≠ η0.
Because the backreaction vanishes at η ¼ η0, the state

j0ηi can be thought of as the analog of the standard vacuum
in Minkowski space-time, albeit only at a given instant of
time. This preferred instantaneous vacuum has been used in
the study of cosmological perturbation in loop quantum
cosmology, where initial conditions are specified at or near
the bounce time [18,26]. We expect it will be also useful in
other scenarios to select initial conditions for cosmological
perturbations.
While j0ηi has several attractive features, as pointed out

in Sec. I, our construction has an important caveat. We will
conclude by reemphasizing this point. In quantum field
theory in curved space-times, a priori, there is freedom to
add certain local curvature terms to the expression of the
renormalized stress-energy tensor [3]. In any given renorm-
alization scheme one obtains a specific expression; the
freedom disappears. But different schemes can yield differ-
ent renormalized stress tensors. The defining property,
h0η0 jT̂abj0η0i ¼ 0, of our preferred instantaneous vacuum

j0ηi refers to the adiabatic scheme, where one carries out a
mode by mode subtraction. In the FLRW models, the
adiabatic scheme gives the same results as DeWitt-
Schwinger point-splitting regularization [27,28]. But
another scheme could well lead to a different preferred
instantaneous vacuum. This is the caveat. The nontrivial
feature of the construction is the existence of a consistent
scheme to select a preferred instantaneous state which
succeeds in bypassing the limitations of other procedures,
and which can be used in the most common cosmological
models. Moreover, the fundamental equation of semiclass-
ical gravity,Gab ¼ 8πGNhT̂abi, is meaningful only within a
specific renormalization scheme that is used to give mean-
ing to the right-hand side. Therefore, in any case, a choice
has to be made to analyze issues such as the backreaction.
Our construction uses a scheme that is well tailored for
FLRW space-times and therefore widely employed in the
cosmological literature.
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APPENDIX: ADIABATIC SUBTRACTION TERMS

In this Appendix we spell out the adiabatic subtraction
terms for the energy density and pressure first for the
massive, minimally coupled scalar field, and then for the
massless field (see also [17]):

Cρðη; k; mÞ ¼ w
2a4

þ ð2wa0 þ aw0Þ2
16a6w3

þ 1

256a7w7
ð−24aw2a0w02 − 120a2wa0w03 − 45a3w04 þ 64w4a02a00 þ 112aw3a0w0a00

þ 16a2w2w02a00 þ 16aw4a002 þ 16aw3a02w00 þ 112a2w2a0w0w00 þ 40a3ww02w00 þ 16a2w3a00w00 þ 4a3w2w002

− 32w4a0a000 − 16a2w3w0a000 − 16a2w3a0w000 − 8a3w2w0w000Þ; ðA1Þ

Cpðη;k;mÞ¼w2−m2a2

6a4w
þ 1

48a6w5
ð12w4a02þ12aw3a0w0 þ3m2a4w02þ9a2w2w02−4m2a3w2a00−8aw4a00

−2m2a4ww00−4a2w3w00 þ 1

768a7w9
½256w6a02a00−8w4ð10w2a002þa02ð9w02−6ww00Þ

þ2wa0ð−31w0a00 þ10wa000ÞÞþ8m2a4w2ð25w0a00−10ww0a000 þ2wð−5a00w00 þwa0000ÞÞ
þ8a2w3ð4m2wa02a00 þa0ð−45w03þ42ww0w00−6w2w000Þþ2wð28w02a00−7wa00w00−13ww0a000 þ2w2a0000ÞÞ
þm2a5ð−315w04þ420ww02w00−60w2w002−80w2w0w000 þ8w3w0000Þ
þa3w2ð−765w04þ960ww02w00 þ8ww0ð10m2a0a00−23ww000Þ−4w2ð16m2a002þ27w002þ8m2a0a000−4ww0000ÞÞ�;

ðA2Þ
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Cðm¼0Þ
ρ ðη; k; μ; ξÞ ¼ k

2a4
þ ð1 − 6ξÞ a02

4a6k
þ ð1 − 6ξÞ 1

ðk2 þ a2μ2Þ3=2
1

288a2
Hð1Þ

00

þ μ2

128a2ðk2 þ a2μ2Þ11=2 ½ð16k
6ð1 − 6ξÞ − 4k4μ2ð−43þ 252ξÞa2 þ 24k2μ4a4ð3 − 2ξÞ

þ 27μ6a04ð−7þ 32ξÞÞ þ 8aa02a00ðk2 þ μ2a2Þð12k4ð1 − 6ξÞ2 þ 6k2μ2a2ð7 − 68ξþ 144ξ2Þ
þ μ4a2ð37–264ξþ 432ξ2ÞÞ − 4a2a002ðk2 þ μ2a2Þ2ð4k2ð−1þ 6ξÞ þ μ2a2ð−5þ 24ξÞÞ
þ 8a2a0a000ðk2 þ μ2a2Þ2ð4k2ð−1þ 6ξÞ þ μ2a2ð−5þ 24ξÞÞ�; ðA3Þ

Cðm¼0Þ
p ðη; k;μ;ξÞ ¼ k

6a4
− ð1− 6ξÞ−3a

02þ 2aa00

12ka6
− ð1− 6ξÞ2 1

288a2ðk2þ a2μ2Þ3=2H
ð1Þ
xx

þ μ2

384a2ðk2 þ a2μ2Þ13=2 ½3a
04ð−16k8ð1− 6ξÞþ 4k6μ2a2ð−33þ 196ξÞþ 8k4μ4a4ð−83þ 502ξÞ

þ k2μ6a6ð−429þ 1024ξÞ− 72μ8a04ð−7þ 32ξÞÞþ 4aa02a00ðk2 þ μ2a2Þð16k6ð5− 66ξþ 216ξ2Þ
þ 4k4μ2a2ð59–972ξþ 3672ξ2Þþ 8k2μ4a4ð85–996ξþ 2376ξ2Þþ μ6a6ð755–5136ξþ 7776ξ2ÞÞ
− 8a2a0a000ðk2þ a2μ2Þ2ð4k4ð7–78ξþ 216ξ2Þþ 3k2μ2a2ð31–288ξþ 576ξ2Þþ μ4a4ð79–552ξþ 864ξ2ÞÞ
− 4a2ðk2þ μ2a2Þ2ða002ð8k4ð4–51ξþ 162ξ2Þþ 3k2μ2a2ð39–392ξþ 864ξ2Þþ 2μ4a4ð53–384ξþ 648ξ2ÞÞ
þ 2aa0000ðk2þ μ2a2Þð4k2ð−1þ 6ξÞþ μa2ð−5þ 24ξÞÞÞ�; ðA4Þ

where

Hð1Þ
ab ¼ 2gab□R − 2∇a∇bRþ 2RRab −

1

2
gabR2; ðA5Þ

and Hð1Þ
00 ¼ ηaηbHð1Þ

ab , H
ð1Þ
xx ¼ xaxbHð1Þ

ab are its time-time and x-x components, respectively.
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