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We analyze the consequences of the recently found generalization of the Christodoulou-Ruffini black
hole mass decomposition for Einstein-Born-Infeld black holes [characterized by the parameters ðQ;M; bÞ,
where M ¼ MðMirr; Q; bÞ, b scale field, Q charge,Mirr “irreducible mass,” physically meaning the energy
of a black hole when its charge is null] and their interactions. We show in this context that their description
is largely simplified and can basically be split into two families depending upon the parameter bjQj.
If bjQj ≤ 1=2, then black holes could have even zero irreducible masses and they always exhibit single
nondegenerated horizons. If bjQj > 1=2, then an associated black hole must have a minimum irreducible
mass (related to its minimum energy) and has two horizons up to a transitional irreducible mass. For larger
irreducible masses, single horizon structures raise again. By assuming that black holes emit thermal
uncharged scalar particles, we further show in light of the black hole mass decomposition that one
satisfying bjQj > 1=2 takes an infinite amount of time to reach the zero temperature, settling down exactly
at its minimum energy. Finally, we argue that depending on the fundamental parameter b, the radiation
(electromagnetic and gravitational) coming from Einstein-Born-Infeld black holes could differ significantly
from Einstein-Maxwell ones. Hence, it could be used to assess such a parameter.
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I. INTRODUCTION

Although solving Einstein equations for a classical
charged black hole (BH) (Reissner-Nordström one) is a
relatively simple task [1], such an approach does not make
evident the relationship between its two parameters, namely
its mass (M) and charge (Q). Intuitively, this relation must
exist since electromagnetic energies have their origin in
charges, and it can be found in a variety of ways. An
interesting notably physical manner was put forward by
Christodoulou [2] and Christodoulou and Ruffini [3], by
introducing the concept of BH reversible transformations
[2]. Such transformations are the only ones that could bring
back the BH parameters to their original values after any
transformation processed by a test particle with parameters
m and q (where M ≫ m and Q ≫ q). Another known
approach was due to Bardeen et al. [4], which takes
advantage of the spacetime symmetries.
It has been recently shown [5], in the context of

spherically symmetric spacetimes, that reversible trans-
formations are fully equivalent to the constancy of the event
horizon upon such changes for any nonlinear theory of
the electromagnetism LðFÞ that leads to asymptotically flat
solutions. Due to the generality of the analysis, such a
constant must be 2Mirr, where Mirr is the irreducible BH

mass given by the total mass energy of the system in the
uncharged case, namely when Q ¼ 0. Due to this fact,Mirr

must be always positive. The aforementioned equivalence
allows us to exchange the problem of solving nonlinear
differential equations for nonlinear theories by the problem
of solving algebraic equations. This procedure works only
for the cases where event horizons are present. We recall
that after the seminal work of Bekenstein [6], it is known
that the entropy of a black hole is equivalent to its Mirr.
Nevertheless, it is more appealing to our reasoning to make
use of the original concept of irreducible mass, Mirr.
The aim of this work is to elaborate on the consequences

of the mass-energy decomposition for nonlinear BHs and
their interactions. In order to do it, we use the specific
nonlinear theory of electromagnetism due to Born and
Infeld (BI) [7]. Such a theory has regained interest due to its
analogous emergence as an effective theory to string theory
[8]. It was constructed with the purpose of remedying the
singular behavior in terms of energy of a pointlike charged
particle. The theory introduces a parameter b identified
with the absolute upper limit of the electric field of a system
when just electric aspects are present. Born and Infeld fixed
this parameter by imposing that in the Minkowski space-
time the associated electromagnetic energy coming from a
pointlike electron equals its rest mass (unitarian viewpoint
[7]). Nevertheless, the dualistic viewpoint [7] could equally
well have been assumed and the parameter b should be
determined by a theory relying on it, such as quantum
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mechanics [7]. Actually, the BI theory has been applied to
the description of the hydrogen atom, both the nonrelativ-
istic and relativistic one [9,10], and their numerical analy-
ses show that b must be much larger than the value initially
proposed by BI. Notwithstanding, a definite value has not
been obtained.
Rasheed [8] has analyzed mathematically the validity of

the zeroth and first laws of black hole mechanics and
concluded that they do hold for any nonlinear Lagrangian
of the electromagnetism. Although Rasheed concluded that
the black hole mass formula for such a case does not keep
the same simple functional form as for the Maxwellian
Lagrangian, a further scrutiny of the consequences of this
fact was not performed. Following our results in Ref. [5],
we instead shall analyze in this work some consequences of
the black hole mass formula in the case of Einstein-Born-
Infeld black holes, and their interactions. Since such a
relation establishes a constraint for the parameters of the
theory, physically based on conservation laws, the descrip-
tion is expected to be greatly simplified, as it will turn out to
be exactly the case. To the best of our knowledge, this has
not been done before.
The article is organized as follows. In the next section,

the mathematical approach for reversible transformations is
briefly elaborated and the mass decomposition for LðFÞ
theories in the spherically symmetric case is exhibited. In
Sec. III, we revisit some aspects of the Einstein-Born-Infeld
black hole solution and exhibit the black hole mass
decomposition for this theory. In Sec. IV, we analyze some
properties of the above-mentioned mass decomposition and
show that when b is finite, there are always intrinsic
nonclassical islands of black hole solutions where each
member has a single, nondegenerated horizon. Section V is
devoted to the study of the consequences of assuming that
Einstein-Born-Infeld black holes evaporate within the
framework of the mass decomposition. In Sec. VI we
analyze the radiation emitted by two interacting Einstein-
Born-Infeld black holes and show by means of a toy model
that in principle there are alternative ways to infer the
constant b even from astrophysical scenarios. Section VII
closes the paper with an analysis of the main points raised.
Units are such that c ¼ G ¼ 1 and the signature of the

spacetime is −2.

II. BLACK HOLE MASS DECOMPOSITION
FOR ANY NONLINEAR THEORY

In the context of spherically symmetric solutions to
general relativity minimally coupled to nonlinear
Lagrangians of the electromagnetism, it can be shown that
the general solution to the metric is [11]

ds2 ¼ eνðrÞdt2 − e−νðrÞdr2 − r2ðdθ2 þ sin2θdφ2Þ; ð1Þ

where [5]

eνðrÞ ¼ 1 −
2M
r

þ 8π

r

Z
∞

r
r02T0

0ðr0Þdr0

¼ 1 −
2M
r

þ 2QA0

r
−
2N
r

; ð2Þ

Er≐−
∂A0

∂r ; Tμ
ν¼

4LFFμβFνβ−Lδμν
4π

;
∂N
∂r ≐−Lr2:

ð3Þ
We are assuming that the Lagrangian describing the
electromagnetic interactions is L ¼ LðFÞ, F ≐ FμνFμν,
where Fμν is the electromagnetic field tensor [1,12].
Besides, LF was defined as the derivative of LðFÞ with
respect to the invariant F and Tμ

ν is the energy-momentum
tensor of the matter fields [1,12], here the electromagnetic
fields described by LðFÞ. In the above expressions, Er is the
radial component of the electric field and A0 is its
associated potential. In the expressions for A0 and N , it
has been chosen a gauge where they are null at infinity. We
stress that for obtaining A0ðrÞ and N ðrÞ from given ErðrÞ
and LðFÞ, it is tacit one has to integrate from an arbitrary r
to infinity, since we are interested in black hole solutions
[13]. The radial electric field satisfies the equation

LFErr2 ¼ −
Q
4

or
∂L
∂Er

¼ Q
r2
: ð4Þ

In a spherically symmetric spacetime, infinitesimal
reversible transformations are defined by

δM ¼ δQA0ðrþÞ; ð5Þ

where rþ is the outermost horizon from a given black hole
theory, defined as the largest zero of Eq. (3). For a general
transformation, one has the formal replacement “¼→≥” in
the above equation.
The customary approach for obtaining the mass formula

(energy decomposition) would be integrating Eq. (5), given
the outer horizon in terms of the parameters coming from
the electromagnetic theory under interest and the space-
time. In general, it turns out to be impossible to work
analytically for LðFÞ theories in such a case. Since one
knows that there is a correlation between black holes and
thermodynamics [4,14], one would suspect that Eq. (5)
(thermodynamics) is somehow inside the equations of
general relativity (or vice versa). It can be shown easily
that this is indeed the case, provided that the outer horizon
keeps constant under reversible transformations [5]. Since
it is so, it follows that the outer horizon must be identified
with its associated Schwarzschild horizon (where Q ¼ 0),
and it will be denoted by rþ ¼ 2Mirr.
For the nonlinear theories where the electric potential A0

is independent of the parameter M, it follows from the
above reasoning and Eq. (3) that
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M ¼ Mirr þQA0jr¼2Mirr
−N jr¼2Mirr

¼ Mirr þ 4π

Z
∞

2Mirr

r02T0
0ðr0Þdr0: ð6Þ

The above equation is the way of decomposing the total
energy in terms of intrinsic (Mirr) and extractable quantities
(M −Mirr). It can be shown with ease [5] that it implies the
so-called generalized first law of black hole mechanics for
nonlinear electrodynamics [8], thus superseding it. Notice
from the above equation that one could not associate all
Mirr (given M and T0

0) with the outer horizon. The reason
for this is simple: Eq. (6) was defined by eνð2MirrÞ ¼ 0,
which encompasses also Mirr related to the inner horizon.
Nevertheless, it is uncomplicated to single out the set of
Mirr corresponding to the outer horizon. One knows that the
condition that leads to the degeneracy of the horizons is the
common solution to eνð2MirrÞ ¼ 0 and deν=drjr¼2Mirr

¼ 0.
These requirements and Eq. (6) imply that the horizons of
black holes are degenerated at the critical points of M as a
function ofMirr. Hence, since outer horizons are larger than
inner ones, it follows that the set of irreducible masses
relevant in our analysis is the one that always gives
dM=dMirr ≥ 0. In the mass decomposition approach the
region inside the outer horizon is not of physical relevance.

III. BORN-INFELD LAGRANGIAN

The Born-Infeld Lagrangian LBI can be written as
(compatible with our previous definitions)

LBI ¼ b2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

2b2

r �
; ð7Þ

where b is the fundamental parameter of the theory and
counts for the maximum electric field exhibited by an
electrically charged and at rest particle in flat spacetime [7].
This parameter naturally defines a scale to the Born-Infeld
theory.
Putting Eq. (7) into Eqs. (3) and (3) and performing the

integral from a given arbitrary radial coordinate r up to
infinity, one gets (see for instance Ref. [13])

eνðrÞ ¼ 1 −
2M
r

−
2

3
b2y2 þ 2Q2

3
ffiffiffiffiffiffijβjp

r
F
�
xðrÞ; 1ffiffiffi

2
p
�
; ð8Þ

where we have defined

xðrÞ≐ arccos

�
r2− jβj
r2þjβj

�
; y2 ≐

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4þ β2

q
− r2; ð9Þ

β2 ≐ Q2

b2
; F

�
xðrÞ; 1ffiffiffi

2
p
�
¼ 2

Z
∞

rffiffiffi
jβj

p
duffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u4

p ; ð10Þ

where F ½xðrÞ; 1= ffiffiffi
2

p � is the elliptic function of first
kind [15].
The modulus of the radial electric field and its scalar

potential in this case, as given by the first term of Eqs. (3)
and (4), are

ErðrÞ ¼
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 þ β2
p ; A0ðrÞ ¼

Q

2
ffiffiffiffiffiffijβjp F

�
xðrÞ; 1ffiffiffi

2
p
�
:

ð11Þ
As it is clear from Eq. (11), the electric field of a pointlike
charged particle is always finite, as well as its associated
scalar potential and they are positive monotonically
decreasing functions of the radial coordinate. Hence, from
Eq. (5), it implies that the necessary and sufficient
condition for extracting energy from an Einstein-Born-
Infeld black hole is to use test particles with an opposite
charge to the hole.

IV. ANALYSIS OF THE EINSTEIN-BORN-INFELD
MASS FORMULA

The metric given by Eqs. (8), (9) and (10) has been
studied in detail in Ref. [13]. It has been pointed out there
that the dimensionless quantities ~M ≐ bM, α ≐ Q=M and
u ≐ r=M are convenient to scrutinize the properties of such
a metric. Nevertheless, apparently some interesting proper-
ties of Eq. (8) have not been stressed. Under the above
definitions, Eq. (8) may be written as

eνðuÞ ¼ 1 −
2

u
þ 2

3
~M2u2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

~M2u4

s !

þ 2α2

3u

ffiffiffiffiffiffi
~M
jαj

s
F
�
arccos

�
~Mu2 − jαj
~Mu2 þ jαj

�
;
1ffiffiffi
2

p
�
: ð12Þ

The horizons are obtained as the zeros of the above
equation. As a result, one can verify that Eq. (12) has
no minimum, and hence it is a monotonic function iff

b <
9M2

jQj3F 2½π; 1ffiffi
2

p � ≈
0.654M2

jQj3 ; ð13Þ

which can also be cast as

M > M0; M0 ≐
ffiffiffiffiffiffiffiffiffiffiffi
bjQj3

p
3

F
�
π;

1ffiffiffi
2

p
�
: ð14Þ

As the limit of u going to zero in Eq. (12) shows us,
Eq. (13) also guarantees that the associated spacetime will
always exhibit just one horizon (not degenerated). The
above inequality has no classical counterpart, since it can
be formally obtained by taking the limit of b going to
infinity. Equation (13) sets a fundamental inequality
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concerning the parameters Q, b and M. Whenever it is not
verified, it does automatically imply the existence of a
minimum. A simple analysis shows us that such a require-
ment can be cast as

uþ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ~M2α2 − 1

p
2 ~M

;
d
du

ðeνÞju¼uþ ¼ 0; ð15Þ

which is just the consequence of imposing that eνðuþÞ ≤ 0,
uþ being the critical point of eν, thus guaranteeing the
existence of an outer horizon. Just as a reference, in the
limit when ~M goes to infinity, the above condition reduces
to jαj ≤ 1, as it is well known from the Reissner-Nordström
solution for assuring the existence of horizons. As the
above inequality suggests, the term ð4b2Q2 − 1Þ plays a
fundamental role into the horizon description. We shall see
that this is also the case in the approach related to the
energy decomposition. Specialized to the Born-Infeld
Lagrangian, Eq. (7), the total mass [see Eq. (6)] of an
Einstein-Born-Infeld black hole can be decomposed as

M ¼ Mirr −
8

3
b2M3

irr

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

16M4
irr

s
− 1

!

þ
ffiffiffiffiffiffiffiffiffiffiffi
bjQj3

p
3

F
�
arccos

�
4M2

irr − jβj
4M2

irr þ jβj
�
;
1ffiffiffi
2

p
�
: ð16Þ

From now on we shall assume that Eq. (16) is a valid
decomposition to the total energy of a Einstein-Born-Infeld
black hole. A simple analysis tells us that whenever

2bjQj > 1 ð17Þ

is valid for the parameter Q, given b, Eq. (16) does have a
minimum with respect to Mirr, associated with the critical
irreducible mass

Mc
irr ≡Mmin

irr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2Q2 − 1

p
4b

: ð18Þ

Note thatMc
irr is always related to the casewhere the horizons

are degenerated (extreme black holes), as we have pointed
out in Sec. II, and it is always smaller than its classical
counterpart, jQj=2 (where M ¼ jQj). From our previous
discussions, the relevant irreducible masses to the analysis
for reversible transformations for black holes areMirr ≥ Mc

irr.
Substituting the above critical irreducible mass into Eq. (16),
one has that its associated minimum total energy is

Mmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2Q2 − 1

p
6b

þ
ffiffiffiffiffiffiffiffiffiffiffi
bjQj3

p
3

F
�
x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2Q2 − 1

p
2b

�
;
1ffiffiffi
2

p
�
; ð19Þ

which is naturally positive and it can be verified to be
smaller than M0 defined by Eq. (14). For the case
2bjQj > 1, one can check that an immediate solution to
M ¼ M0 is Mirr ¼ 0 (not of relevance for us for the present
case). There also is a nontrivial solution that cannot be
expressed analytically in general, that we shall denote by
Mt

irr. This solution is very important since it will delimit the
transition from spacelike singularities to timelike ones with
respect to the radial coordinate. This signifies that the range
of irreducible masses that generalizes Reissner-Nordström
black holes (with two horizons) is Mmin

irr ≤ Mirr < Mt
irr. An

arbitrary black hole with Mirr ≥ Mt
irr shall present a sole

horizon and hence when test particles have crossed it, their
fate is unavoidably its associated singularity. Note that
Reissner-Nordström black holes are such that Mt

irr → ∞
and the existence of Mt

rr for Einstein-Born-Infeld black
holes is only due to the finiteness of b. Figure 1 exemplifies
the analysis from the previous sentences for a selected
value of the parameter bjQj for the case 2bjQj > 1.
We consider now the case where Eq. (17) is violated. In

this case, M, as given by Eq. (16), is a monotonic function
ofMirr. Since it is given by Eq. (14) whenMirr ¼ 0 and it is
monotonic, we conclude that Eq. (14) is always satisfied
and therefore the associated singularity is unavoidable for
test particles. Just for completeness, Fig. 2 compactifies the
above-mentioned properties for a selected value of the
parameter bjQj such that 2bjQj ≤ 1. Besides, in Fig. 3 we
depicted all the different classes associated with the
parameter bjQj, assuming in all cases it is fixed.

bM0

1 2 3 4 5
bMirr

1

2

3

4

5
bM

FIG. 1. Mass formula (thick plus dotted curves), Eq. (16), when
the parameter bjQj satisfies Eq. (17), chosen here as 2. The
dashed curve represents bM0, as given by Eq. (14). The dot-
dashed curve is the asymptote to M, Mirr . Besides, bM exhibits a
minimum at the critical point Mc

irrb ≈ 0.97 (where the horizons
become degenerated) and for Mc

irrb ≤ Mirrb < Mt
irrb ≈ 3.18, we

have the range of irreducible masses that generalize Reissner-
Nordström black holes. For Mirr ≥ Mt

irr, there is a sole horizon
(not degenerated), whose radial coordinate inside of it is always
spacelike. The irreducible masses associated with the outer
horizon are Mirr ≥ Mc

irr . The dotted curve is related to the inner
horizon solutions (for given configurations) and is not relevant to
the analyses concerning the black hole mass decomposition.
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An important general remark is here in order, especially
for astrophysical analyses. Assume that bjQj ¼ C1 and
M=jQj ¼ C2, where C1 and C2 are given constants. This
means that Mb ¼ C1C2 is also known. Assuming that 0 ≤
C1 < ∞ and from the fact that bM ≥ ðbMÞmin ≥ 0, we first
conclude that C2 cannot be any, but C2 ≥ ðbMÞmin=C1.
This means that jαj ≐ jQj=M ≤ C1=ðbMÞmin and this is the
condition that guarantees the presence of an outer horizon
in an Einstein-Born-Infeld black hole. In the classical case
for instance, where ðbMÞmin ¼ bjQj [see Eq. (19) in the
limit b → ∞], the previous inequality means jαj ≤ 1, as it is
already known. Finally, after one chooses arbitrarily
another parameter to be M or jQj or b, all the remaining
ones are automatically fixed, which could be assessed by

the aforesaid choice. It is not complicated to see that when
Mirr=jQj is given instead of M=jQj, a similar reasoning as
the above one also ensues.

V. HAWKING RADIATION FROM
EINSTEIN-BORN-INFELD

BLACK HOLES

Subsequent to the work of Hawking on the semiclassical
quantization of scalar fields in some curved spacetimes
[16], it is widely accepted that black holes radiate ther-
mally, although this view has still some criticisms [17,18].
Motivated by the first law of black hole thermodynamics,
which is a direct consequence of the mass decomposition
expression given by Eq. (6) [5], and the results from the
aforesaid semiclassical quantization, we shall now study
the consequences of conjecturing that clothed black holes
should behave like blackbodies to observers at infinity (no
backreaction effects are considered here), radiating at
temperatures proportional to their surface gravity [16]. In
the spherically symmetric case, such a quantity is propor-
tional to deν=drjr¼rþ [14,19]. From Eq. (12) and preceding
definitions, one has

T ∝
1þ 8b2M2

irr − 2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16b2M4

irr þQ2
p

Mirr
: ð20Þ

We notice some particularities of the insertion of the
parameter b into the description of the electromagnetic
fields. As in the classical case, b → ∞, it is possible to
attain T ¼ 0, but now as far as

MðT¼0Þ
irr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2Q2 − 1

p
4b

: ð21Þ

Notice that Mc
irr ¼ MðT¼0Þ

irr . This is not surprising, since
from our previous comments, the condition for null temper-
ature of a black hole with charge Q occurs exactly at the
critical points of the energy with respect to its irreducible
mass. When Eq. (17) holds, one sees that the temperatures
of the associated clothed black holes must decrease with the
decrease of their irreducible masses until they eventually

reach zero, for Mirr ¼ MðT¼0Þ
irr . This would mean that black

holes where Eq. (17) is valid should radiate off finite

amounts of energy, namelyMðMirrÞ−MðMðT¼0Þ
irr Þ. Besides,

from the analyses of the energy decomposition, black holes
could never have negative temperatures. For the case
Eq. (17) does not hold, it is impossible to have T ¼ 0
and the temperature increases with the decrease of the
irreducible mass. Figure 4 compactifies the dependence
of the temperature upon the irreducible mass for selected
values of bjQj.
We elaborate now on the temperature evolution of

evaporating blackbodies. For an arbitrary black hole case
where 2bjQj > 1, as we know, the temperature decreases as

bM0

0.2 0.4 0.6 0.8 1.0
bMirr

0.2

0.4

0.6

0.8

1.0
bM

FIG. 2. Mass decomposition when the parameter bjQj does not
satisfy Eq. (17) and is chosen to be 0.4. The curves have the same
meaning as the ones in Fig. 1. From the solid curve we see thatM
is a monotonic function and always larger than M0. This means
that such a case characterizes a scenario where there is always a
sole event horizon and there is no classical analogue to it.

0.70

0.50

0.40

0.2 0.4 0.6 0.8 1.0
Mirr Q

0.8

0.9

1.0

1.1

1.2

M Q

FIG. 3. Mass formula for selected values of the parameter bjQj
(numbers on the curves) that encompasses all physically distinct
classes of black holes for the Born-Infeld Lagrangian. The dotted
curve represents the mass formula for the Maxwell Lagrangian.
The dot-dashed curve demarcates the transition from two horizon
solutions (as given by the thick curve) to a single one (as given
by the dashed curve), where its associated inner horizon is null.
The branches related to the inner horizons were removed.
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the irreducible mass of the system does so (see Fig. 4).
Hence, it would allow us to conceive a situation where just
the emission of uncharged scalar particles are present. For
this simplified case, the charge of a hole would remain
constant. Given that the black holes would behave like
blackbodies for observers located at infinity (where there is
a meaning to talk about the total energy of a black hole),
their energy loss could be estimated by Stefan’s law [20]

dM
dλ

¼ −M2
irrT

4; ð22Þ

where λ is proportional to the observer’s time receiving the
radiation. For the emission of uncharged scalar particles,
the above equation and Eq. (16) imply that

d ~Mirr

dλ
∝ −

�
1þ 8 ~M2

irr − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 ~M4

irr þ ~Q2

q �
3

~M2
irr

: ð23Þ

In the above equation, for an arbitrary quantity A, ~A ≐ bA.
We show now that for this case the temperature never
reaches the absolute zero. Since the irreducible mass can
decrease until Mmin

irr , after a convenient transient time
interval, the right-hand side of Eq. (23) can always be
expanded about Mmin

irr , leading to

d ~Mirr

dλ̄
¼ −

�
~Mirr −

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ~Q2 − 1

q �
3

; ð24Þ

where λ̄ is proportional to λ and other terms that are
constants and not important to our analysis. The above
equation has an analytic solution and when the limit of λ̄
going to infinity is taken, one obtains ~Mirrð∞Þ ¼ ~Mmin

irr .
This means an associated black hole never reaches the
absolute zero and tends asymptotically to have just one
horizon. Our analyses in light of the energy decomposition
give the same known mathematical results for the thermo-
dynamics for Reissner-Nordström black holes [20,21], but
in a simpler way.
For an arbitrary black hole satisfying 2bjQj ≤ 1, it seems

that a juncture shall arrive where its thermal energy will be
sufficient to create pairs that could even neutralize the hole.
This would happen since in this case the thermal energy of
a black hole would augment with the diminution of its
irreducible mass (see Fig 4). Hence its description would be
much more elaborated than the former one. Black holes
with 2bjQj ≤ 1 are expected to evaporate after finite
amounts of time, as corroborated by numerical analyses
from Eq. (23). We shall not pursue further into these issues
in this work.

VI. ENERGY LOSS OF INTERACTING
EINSTEIN-BORN-INFELD

BLACK HOLES

In this section we shall make use of the energy decom-
position given by Eq. (16) to find the imprint the parameter
b has on the energy radiated off by two interacting Einstein-
Born-Infeld black holes. For accomplishing such a goal, we
shall also utilize the second law of black hole mechanics
[1,4]. Such a theorem implies that the area of the resultant
black hole can never be smaller than the sum of the areas of
the initially (far away) interacting black holes [1,4]. For
simplifying the reasoning, we will assume that all the black
holes involved are spherically symmetric Einstein-Born-
Infeld ones. This problem can easily be solved for Einstein-
Maxwell black holes (Einstein theory minimally coupled to
the Maxwell Lagrangian), because their outer horizons are
analytical. For nonlinear black holes, in general just
numerical solutions are possible. In the mass decomposi-
tion approach, it is possible to carry out the analytical
investigations further. The key for this is that whenever the
mass formula is taken into account, the outer horizon must
be always proportional to its associated irreducible mass for
any theory.
Assume that the two initially interacting black holes have

irreducible massesMi1 andMi2, respectively, giving rise to
another (final) one of the same kind with irreducible mass
Mif. Concerning its final charge, if one assumes that just
radiation is allowed to leave the system (carried away by
neutral particles), it must be the sum of the charges of the
two initial black holes [1]. Since the irreducible masses are
proportional to the horizon areas, Hawking’s theorem (or
the second law of black hole mechanics) implies that

0.45
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FIG. 4. Einstein-Born-Infeld black hole temperature as a
function of the irreducible mass for selected values of the
parameter bjQj. The temperature goes to infinity as the irreduc-
ible mass tends to zero whenever 2bjQj ≤ 1 (thick curve).
Whenever 2bjQj > 1 (dashed curve), it decreases with the
decrease of the irreducible mass (keeping the charge constant),
always being null for a finite value of the latter. The temperature
experiences a transitional behavior for 2bjQj ¼ 1 (dot-dashed
curve), being null just when the irreducible mass of the system is
so [see Eq. (20)], albeit it cannot be seen directly from this plot.
Finally, bjQj → ∞ (dotted curve) corresponds to the Reissner-
Nordström case.
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M2
if ≥ M2

i1 þM2
i2: ð25Þ

Invoking the first law of black hole mechanics for an
isolated system [1], the final energy of the two interacting
black holes Mf can never be larger than M1 þM2. The
difference in the energy balance is due to the emission of
radiation (here gravitational and electromagnetic), hence,
Wrad ¼ M1 þM2 −Mf ≥ 0. By the cognizance of the
minimum final energy of the system, it is even possible
to obtain its maximum energy radiated off, a point we shall
not pursue here.
For fixing ideas, let us analyze first the classical case,

namely two Reissner-Nordström black holes interacting in
a way to lead to another Reissner-Nordström black hole.
We know that the total energy of each black hole can be
written as [3]

Ma ¼ Mia þ
Q2

a

4Mia
; ð26Þ

where we have defined Qa as the charge of the ath black
hole. It is easy to see that just M−

if ≤ Mif ≤ Mþ
if with

M�
if ¼

M1þM2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM1þM2Þ2 − ðQ1þQ2Þ2

p
2

ð27Þ

is in agreement with the above-mentioned positivity of
Wrad. Naturally, choices for Mif must satisfy simultane-
ously Eqs. (25) and (27). When nonlinear theories are
present, it is clear that in general the above range of final
irreducible masses will not agree with the classical
(Einstein-Maxwell black holes) case. It means that many
possible classical situations will not exist in the nonlinear
case and vice versa even in the simple case of symmetry
conserved binary interactions. This could possibly lead to
significant deviations for the amounts of radiation emitted
by some systems when they are treated classically or not.
In the Einstein-Born-Infeld theory, the physical interval

for Mif cannot be determined (numerically) unless the
fundamental parameter b is given. What is known [9] is that
b > b0 ≈ 10−9 cm−1, where b0 is the value for the scale
field determined by Born and Infeld using the unitarian
viewpoint [7].
Let us take a closer look at the Einstein-Born-Infeld

black holes when compared to their classical counterparts.
Assume just for simplicity that Mi1 ¼ Mi2 and Q1 ¼
Q2 ≡Q > 0. For this choice, Eq. (27) gives us
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=α2 − 1

p
≤ Mif=Q − 1=α ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=α2 − 1

p
, where α is

here defined as the charge-to-mass ratio of the initially
interacting black holes. Let us choose, just for simpleness,
Mif=Q ¼ 1=α. From the Einstein-Maxwell case, one can
check easily that for the above analysis WradðclasÞ=
Q ¼ ð1 − α2Þ=α. For the above choice of parameters,
one can show that Eq. (25) is just satisfied if

α ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð ffiffiffi

2
p

− 1Þ
q

≈ 0.91. Such cases are of theoretical

interest since they would evidence the departures of the
Born-Infeld theory from the Maxwell theory. For inves-
tigating smaller values of α, one should select different final
irreducible masses for the black holes.
Figure 5 compactifies the possibilities for the above

chosen Mif for α ¼ 0.95, due to miscellaneous values of
bQ. One sees in this case that nonlinear and linear black
holes may radiate off very different amounts of energy.
Besides, the energy released for interacting Born-Infeld
black holes is always larger than its Maxwellian counter-
part. Notice finally that Q ¼ αM, M being the mass of any
of the black holes when they are far apart, which would also
allow one to compare the energies radiated off by the black
holes during their process of interaction with the total initial
energy of the system.
Some simple estimates can be done here assessing

astrophysical scenarios where Fig. 5 could be of relevance.
As we stressed before, from the hydrogen atom one knows
that b ≫ b0 ≃ 10−9 cm−1 ≃ 1015 eletronstatic unit. We also
commented at the end of Sec. IV that with fixedMirr=jQj or
M=jQj and bjQj, one still has freedom to choose arbitrarily
another parameter, such asM, even having already taken into
account the mass formula. Let us choose, as it is reasonable
under the point of view of black hole interactions coming
from neutron stars,M ≃M⨀ ≃ 1.48 × 105 cm, whereM⨀
is the mass of the Sun. Let us focus our attention at a given
value of bjQj such that the associated radiated energy may
differ considerably from its classical counterpart. As a
simple inspection in Fig. 5 reveals, one could take as a

Wrad clas Q
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FIG. 5. Total radiation (gravitational plus electromagnetic)
Wrad=Q released in the process of coalescence of two identical
Einstein-Born-Infeld black holes with α ¼ 0.95 under the
assumption it leads to another one of the same type with the
same parameters as their classical counterparts. The thick curve
represents such a case. The dashed curve stands for the radiation
encountered in the Einstein-Maxwell theory, WradðclasÞ=Q. The
associated radiation tends to its classical counterpart when bQ
goes to infinity. The energy released in the case of nonlinear black
hole interaction is always larger than the one coming from its
classical counterpart, for a given charge Q.
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good example of this case bjQj ¼ 0.1, where the energy
radiated off by Born-Infeld black holes is around 30% more
thanMaxwellian ones with identical parameters. Besides, we
recall that we have already chosen α ¼ 0.95 for plotting
Fig. 5. From this case, we have bM0 ≃ 4 × 10−2 [see
Eq. (14)], which shows that jαj ¼ 0.95 is a perfectly good
candidate for the case 2bjQj ≤ 1, the one we are interested
in here. For this case we know that Q ¼ M=C2 ¼ 1.4 ×
105 cm ¼ 1.6 × 1020 C and finally b ¼ C1C2=M ¼
7.1 × 10−7 cm−1, which is about 1000 times larger than
b0 and hence in agreement with the bound given by the
hydrogen atom, the only remaining physical constraint.
Therefore, the above example suggests that the radiation
coming from coalescing astrophysical black holes could
be a good tool to access and discriminate their electrody-
namical properties.

VII. DISCUSSION

Foremost, it is clear that the approach of analyzing a
given black hole solution just from its metric and the one
from its metric and energy decomposition expression must
be consistent since both approaches use intrinsic properties
of the spacetime. Nevertheless, the latter approach is much
more restrictive than the former one. It must be stressed that
the energy decomposition (black hole thermodynamics) is
mandatory for the proper description of any (clothed) black
hole phenomenon, since it is in accord with conservation
laws. Such a constraint equation (energy decomposition) in
turn automatically evidences the physically relevant cases
in black hole physics, hence leading to a pellucid descrip-
tion of them.
The energy decomposition analysis within Einstein-Born-

Infeld black holes leads us to their split into two fundamental
families of black holes. Whenever 2bjQj ≤ 1, independent
of their irreducible masses, one is led to an associated black
hole whose singularity cannot be forestalled after test
particles cross its sole nondegenerated horizon. Besides,
the previous inequality naturally leads to an absolute upper
limit to the charge of approximately 108 cm ≈ 103M⨀≃
1023 C, given that b > 10−9 cm−1 [9]. Finally, we notice
that for this class of black holes, the extractable energy could
be up to 100%, since black holes with 2bjQj ≤ 1 could even
have Mirr ¼ 0. We stress that the previous conclusions are
strictly nonclassical consequences of the finiteness of b.
The second family of black holes is defined by those

satisfying 2bjQj > 1, whereMirr ≥ Mmin
irr [see Eqs. (18) and

(19)] for each black hole associated. It constitutes the
family that generalizes Einstein-Reissner-Nordström black
holes for irreducible masses smaller than transitional
values, the nontrivial solutions of M ¼ M0, and larger
than Mmin

irr (related to their minimum energies), whose
associated energies (masses) are always smaller than M0.
Above such transitional irreducible masses, again due to
the finiteness of b, nonclassical black holes with single

horizons also rise, all of them having masses larger than
M0. The total amount of energy that could be extracted
[M −Mirr, see Eq. (16)] in this case is always inferior to
half of the total energy of the hole (as it occurs for Reissner-
Nordström black holes, see [3]), here due to the self-
interactions present.
Black holes satisfying 2bjQj > 1 should radiate off

(suppose by emitting uncharged scalar particles) until
their temperatures reach T ¼ 0, taking for doing so an
infinite amount of time, settling down exactly at their
lowest energy state, as one would intuitively expect and
here as a direct consequence of the mass formula. Further
energy could be extracted from them (obviously by means
of other processes rather than the emission of uncharged
scalar particles) even when T ¼ 0, since they still have an
ergosphere. For the case 2bjQj ≤ 1, it is impossible to
have T ¼ 0 and they are expected to keep radiating, with a
much more complex dynamics, until their total evapora-
tion likely after a finite amount of time as measured by the
observer who receives the radiation. Whenever charged
scalar fields are taken into account, the phenomenon of
superradiance could also take place, rendering their
dynamics even more cumbersome. Superradiance is of
interest for charged nonlinear black holes, since it is
another energy extraction mechanism for them and would
couple to the nonlinearities of the electromagnetic field.
We let more precise analyses of this case to be done
elsewhere.
Concerning the issue of energies radiated off due to the

interaction of black holes, as we showed here with a toy
model, the changes imprinted by the Einstein-Born-Infeld
black holes with respect to their classical counterparts
may be significant, depending on α for a range of values of
the fundamental parameter bjQj. This could be important
for gravitational wave detectors calibrated based on
classical results. Besides, if it is possible to identify
sources of radiation, then measurements upon such a
quantity could give us information about electromagnetic
interactions. We analyzed the radiated energies due to
charged black hole interactions. This means that also
electromagnetic radiation is always present in such proc-
esses. Identifying and analyzing this part of the radiation
would give direct information about astrophysical elec-
trodynamical processes.
We further point out that all the above conclusions

remain valid even in the case where the systems present a
slow rotation (when the rotational parameter a ≐ J=M, J
being the total angular momentum of the system as seen by
distant observers, is much smaller than the outer horizon
area or the mass of the hole). This is the case since the
energy decomposition must be an even power of a, due to
invariance requirements. Thereby, the previous analyses are
in a sense stable against rotational perturbations.
Summing up, in this work we tried to emphasize the need

of also taking into account the mass decomposition of a
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charged black hole for talking about the physical aspects it
could display. Conceptually speaking this is of relevance
since it could give us acumen of where and how to search
experimentally for charged black holes and their inter-
actions. In this regard, it would be also of interest to
investigate the aspects of the electromagnetic radiation
coming from the coalescence of charged black holes;
because it could be much more easily observed, it would
give us direct information about electromagnetic phenom-
ena and of the coalescence process itself. It also seems
that quasi periodic oscillations could also shed a light on
the illation of black hole charges and the role played by
the nonlinearities of the electromagnetism in the astro-
physical scope, since they talk about phenomena that take
place in the innermost regions of black holes (see [22]

and references therein). We let this issue be elaborated
elsewhere.
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