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We revisit the calculation of matter quantum effects on the graviton self-energy on a flat Minkowski
background, with the aim to acquire a deeper understanding of the mechanism that renders the graviton
massless. To this end, we derive a low-energy theorem which directly relates the radiative corrections of the
cosmological constant to those of the graviton mass to all orders in perturbation theory. As an illustrative
example, we consider an Abelian Higgs model with minimal coupling to gravity and show explicitly how a
suitable renormalization of the cosmological constant leads to the vanishing of the graviton mass at the one-
loop level. In the same Abelian Higgs model, we also calculate the matter quantum corrections to the
Newtonian potential and present analytical formulas in terms of modified Bessel and Struve functions of
the particle masses in the loop. We show that the correction to the Newtonian potential exhibits an
exponential fall-off dependence on the distance r, once the nonrelativistic limit with respect to the nonzero
loop mass is carefully considered. For massless scalars, fermions, and gauge bosons in the loops, we
recover the well-known results presented in the literature.
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I. INTRODUCTION

Symmetries play an instrumental role in quantum field
theory to ensure that massless particles at the classical level
remain massless against quantum loop effects. For instance,
massless vector bosons in Yang-Mills theories stay mass-
less, as a consequence of the gauge symmetry of the
effective action. This fact can be understood more easily
within the gauge-invariant framework of the background
field method [1,2], in which a nonzero mass for the
background Yang-Mills vector boson is forbidden to all
orders in perturbation theory. Likewise, massless fermions
can be protected from receiving a nonzero mass due to
chiral symmetry [3]. Scalar particles can also stay massless
to all orders, as a result of symmetries. For example,
massless scalar particles could result from the spontaneous
breakdown of a global Goldstone symmetry [4]. Other
potential symmetries leading to massless scalar particles
are supersymmetry [5,6] or classical scaling (conformal)
symmetries [7,8]. Such symmetries have been extensively
discussed within the context of a related problem in
the Standard Model (SM), the so-called gauge-hierarchy
problem [9–11].
The aim of the present paper is to shed light on the

mechanism that protects the spin-2 graviton from receiving
a nonzero mass beyond the tree level. In this context, we
should mention that matter contributions to the graviton
self-energy have already been studied in the past to a
great extent [12–16]. However, in our opinion, the actual

mechanism that lies behind the masslessness of the graviton
has not yet been adequately elucidated. In particular, a
radiatively generated graviton mass will affect the scatter-
ing of two scalar fields beyond the tree level. Such
calculations are relevant to the study of the quantum
corrected Newtonian potential and may be in conflict with
well-established observations. It is therefore important to
state here that the gauge or diffeomorphisms invariance of
the effective action, even within the linearized framework
of perturbative quantum gravity (PQG), is not sufficient
by itself to guarantee that the graviton remains massless
against quantum loop corrections. Specifically, the cosmo-
logical constant term is invariant under diffeomorphisms
and contains a mass term for the graviton. At the tree level,
this problem is resolved (see, e.g. [17]) after imposing the
equations of motion with respect to the background
graviton field, with the aid of which a would-be graviton
mass can be removed. Beyond the tree approximation,
however, the masslessness of the graviton is not an obvious
property, as this problem becomes strongly interrelated
with the renormalization of the cosmological constant Λ.
In quantum field theory, the pole position of a particle

propagator encodes all the information about the mass of
the particle. As wewill show in this paper, the cosmological
constant Λ plays an important role, as it receives radiative
corrections independently of the graviton propagator. These
corrections are divergent and must be renormalized, or
otherwise naturally suppressed, to give the small value of Λ
that we observe in the present epoch [18,19]. Upon suitable
renormalization of the cosmological constant Λ to a flat
(Minkowski) background metric, the generated counter-
term (CT) δΛ enters the graviton self-energy explicitly
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within our linearized framework of PQG. We find that the
masslessness property of the graviton is protected by a shift
symmetry which is present in any diffeomorphisms invari-
ant theory described by a flat background metric. The
absence of the graviton mass will be explicitly demon-
strated at the one-loop level in PQGwithin the context of an
Abelian Higgs model.
Given that the framework of PQG is nonrenormalizable

[20–23], we follow the general lore and treat general
relativity (GR) as an effective field theory [24] with a
characteristic ultraviolet (UV) scale equal to the Planck
mass MP. Much work has been done within this effective
field-theoretic framework, including PQG corrections to
the Newtonian and Coulomb potentials, as well as one-loop
calculations of graviton-mediated scatterings between mat-
ter fields in the nonrelativistic limit [24–33]. Taking into
account the contributions from the graviton and from
massless fields of different spin, the established analytic
result for the Newtonian potential VðrÞ, between two
masses m1 and m2 being at distance r apart, may be cast
into the form [26,30,34,35]

VðrÞ ¼ −
Gm1m2

r

�
1þ 3

Gðm1 þm2Þ
rc2

þ 41ℏG
10πc3r2

þ
�
9

4
N0 þ 3N1

2
þ 12N1

�
ℏG

45πc3r2
þOðℏ2Þ

�
;

ð1:1Þ

where G ¼ ℏc=M2
P is Newton’s constant and Ns is the

number of fields with spin s ¼ 0 (scalar), 1
2
(Weyl fermion),

1 (vector boson) in units of ℏ. Note that the first two terms
in (1.1) correspond to the classical and quantum graviton
contributions to the Newtonian potential VðrÞ, respectively.
The leading radiative corrections to VðrÞ come from the so-
called nonanalytic parts of the amplitude, which diverge in
the infrared (IR) limit of vanishing three-momenta for the
external gravitationally scattered fields. Using a similar
approach, we compute the general matter loop corrections
to the graviton propagator, as well as the modifications to
the Newtonian potential VðrÞ. The matter contributions to
VðrÞ at the one-loop level affect only the graviton self-
energy in a generic 2 → 2 scattering process. Thus, we
shall show that the contributions of massive matter fields
to the resummed graviton self-energies become relevant
in the nonrelativistic limit and therefore contribute to the
Newtonian potential.
The layout of the paper is as follows. After this

introductory section, Sec. II presents a gauged Abelian
Higgs model with minimal coupling to gravity. This model
serves as an illustrative example, which will help us to
define our theoretical PQG framework that can include
scalars, fermions and spin-1 fields. Based on this frame-
work, we discuss the properties of the corresponding
diffeomorphically invariant path integral for the gauged

Abelian Higgs model. Given that the model has no
gravitational anomalies [36], we derive the master Ward
identity (WI) associated with the invariance of the path
integral under diffeomorphisms.
In Sec. III, we study the minimization conditions

pertinent to the one-loop effective action, where the
renormalization of the cosmological constant Λ plays a
key role to the renormalization of the graviton tadpole
graphs. To further illuminate this deep connection, we
derive a low-energy theorem that involves graviton corre-
lation functions to all orders in perturbation theory. This
graviton low-energy theorem (GLET) may also be utilized
to obtain a nonperturbative relation between the tadpole
contributions and the graviton self-energy at zero external
momentum.
In Sec. IV, we calculate the matter contributions to the

graviton self-energy for the gauged Abelian Higgs model
with minimal coupling to gravity. To deal with UV
infinities, we adopt the method of dimensional regulariza-
tion [37]. We then proceed to renormalize the massive
matter-field contributions to the graviton self-energy, after
properly including the cosmological constant CT δΛ, as
well as higher-dimensional Planck-suppressed operators of
the Riemann tensor. We thus show that the graviton field
acquires no mass at the one-loop level. We explicitly
demonstrate how this result persists to all orders, as a
consequence of the GLET and the WI due to invariance of
the path integral under diffeomorphisms.
In Sec. V, we first review the tree-level calculation for the

gravitationally mediated scattering process between two
scalar fields, where the classical part of the Newtonian
potential VðrÞ is recovered. We then incorporate the self-
energy contributions to the graviton propagator, which is
used to determine the matter quantum corrections to the
Newtonian potential. Our analytic results are expressed
in terms of modified Bessel and Struve functions of the
particle masses in the loop. In the massless limit of the loop
masses, we reproduce the analytic result given in (1.1),
for particles with spin s ¼ 0, 1

2
, 1. In the same section, we

comment on the independence of VðrÞ on the gravitational
gauge-fixing parameters, as well as on gauge-fixing
parameters due to gauge bosons in the loop. Section VI
summarizes our conclusions. Finally, relevant Feynman
rules and other technical details that were useful in our
computations have been presented in the Appendix.

II. THEORETICAL FRAMEWORK OF
QUANTUM GRAVITY

In this section, we first outline our theoretical framework
within the context of an Abelian Higgs model with minimal
coupling to gravity, by making use of the background field
method. We then write down the generating functional for
this model and discuss its invariance under transformations
of diffeomorphism. From the latter, we derive a master WI
for diffeomorpshims, which gives rise to an important WI
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that relates the graviton self-energy to the graviton tadpole
graphs to all orders in perturbation theory.
To begin with, we write down the action S of an Abelian

Higgs model minimally coupled to gravity as a sum of two
terms:

S ¼ SG þ SM ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Λþ 1

κ2
Rþ LM

�
; ð2:1Þ

where SG is the Hilbert–Einstein action of gravity with a
cosmological constant Λ and SM ≡ R

d4x
ffiffiffiffiffiffi−gp

LM is the
part of the action that only contains the matter Lagrangian
LM. In addition, we denote with gμν the global metric of
the space and g≡ det gμν, while our convention for the
Minkowski metric ημν is ημν ¼ diagð1;−1;−1;−1Þ. In
(2.1), R is the Ricci scalar and κ a gravitational coupling
constant, which is related to Newton’s constant G by
κ2 ¼ 16πG.
The matter action SM describes a gauged Abelian Higgs

model based on the gauge group Uð1ÞY , which realizes
spontaneous symmetry breaking. In detail, the matter
action SM is given by

SM ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
gμρgνσFμνFρσ þ gμνð∇μϕÞ†∇νϕ

− λ

�
ϕ†ϕ −

μ2

2λ

�
2
�
þ Sf; ð2:2Þ

where Sf is the fermionic sector of the model, Fμν ≡∂μAν − ∂νAμ is the field strength tensor associated with the
gauge field Aμ, and ϕ ¼ 1ffiffi

2
p ðvþHþ iGÞ is a complex

scalar field with hypercharge Yϕ ¼ 1. Moreover, ∇μ is the
covariant derivative with respect to both the gauge group
and the group of diffeomorphisms. Thus, for the scalar
field ϕ, the covariant derivative is simply given by
∇μϕ ¼ ∂μϕ − ieAμϕ. Here, we follow the standard pro-
cedure of general covariantization, namely by first writing
down the matter Lagrangian LM in flat space and then
making the substitution ημν → gμν and ∂μ → ∇μ. In (2.2),
we have also included an overall factor

ffiffiffiffiffiffi−gp
, so as to get a

fully frame-independent action.
Adopting the background field method (BFM), we

decompose the fields into background and quantum fields
as follows:

H ¼ H̄ þHQ; G ¼ Ḡþ GQ; Aμ ¼ Āμ þ AQ
μ ;

ð2:3Þ

where an overbar denotes a background field, while
a superscript Q denotes a quantum field. The Higgs
mechanism will generate a mass mA to the gauge field
in the broken phase, given by mA ¼ ev, as well as a
mass for the Higgs field itself determined through the
relation m2

H ¼ 2λv2.

The fermionic part Sf in (2.2) of the matter action may
contain left- and right-handed chiral fermions. For sim-
plicity, we assume one Dirac fermion ψ with hypercharge
quantum number Yψ ¼ 1, with vectorlike couplings to the
Uð1ÞY gauge bosons. This simple setup is also free of chiral
anomalies [38,39]. In curved spacetime, spinors have
nontrivial transformation properties under the group of
diffeomorphisms, which is usually accounted for by the
spin connection. Hence, with the inclusion of the Dirac
fermion field ψ ¼ ψQ, the fermionic part of the action Sf
reads

Sf ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ð∇μψ̄

QÞieμaγaψQ −
1

2
ψ̄Qieμaγað∇μψ

QÞ

−mψ ψ̄
QψQ

�
; ð2:4Þ

where the covariant derivative acting on ψ is given by

∇μψ
Q ¼ ∂μψ

Q − ωab
μ σabψ

Q − ieAQ
μ ψQ: ð2:5Þ

In the above, σab ¼ 1
4
½γa; γb� are the Lorentz-group gen-

erators in the spinorial representation, ωab
μ is the spin

connection, which is determined by means of the vielbeins
eaμ as follows:

ωab
μ ¼ −gνλeaλð∂μebν − ebσΓσ

μνÞ: ð2:6Þ

Note that the vielbein fields eaμ are defined through the
relations

gμν ≡ eaμebνηab; eaμe
μ
b ¼ δab; eaμeνa ¼ δμν ; ð2:7Þ

where the Latin indices a, b etc. refer to the tangent space
of the curved spacetime which is locally flat.
To quantize gravity within the BFM framework, we

decompose the metric gμν as

gμν ¼ ημν þ κðh̄μν þ hQμνÞ ¼ ḡμν þ κhQμν; ð2:8Þ

where hQμν is the quantum fluctuation of the metric, h̄μν is
the background field and ḡμν ¼ ημν þ κh̄μν. In the absence
of a classical gravitational field h̄μν, we have ḡμν ¼ ημν and
the curved space reduces to a Minkowski flat space in this
case. In this paper, we will consider a flat background to
carry out perturbative calculations within the framework of
linearized quantum gravity.
To eliminate the degeneracy in the field space due to the

symmetry of diffeomorphisms, we use the gauge fixing
condition

Ga ¼ ð−ḡÞ14½ḡαβð∇̄αh
Q
βμ − σ∇̄μh

Q
αβÞ�ēμa ¼ ωa; ð2:9Þ

where ωaðxÞ is an arbitrary function and ēμa is the back-
ground vielbein field. Employing the Faddeev-Popov

MATTER QUANTUM CORRECTIONS TO THE GRAVITON … PHYSICAL REVIEW D 91, 064047 (2015)

064047-3



gauge fixing procedure, we introduce the gauge-fixing
action

SGF;Diff ¼ −
1

2ξD

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
ḡμν½ḡαβð∇̄αh

Q
βμ − σ∇̄μh

Q
αβÞ�

× ½ḡδγð∇̄δh
Q
γν − σ∇̄νh

Q
δγÞ�; ð2:10Þ

which in turn induces the ghost action

SGh;Diff ¼ −
Z

d4x
ffiffiffiffiffiffi
−ḡ

p
η̄μðḡαβ∇̄α∇̄βημ þ ḡαβR̄μαηβ

þ ð1 − 2σÞḡαβ∇̄μ∇̄αηβÞ; ð2:11Þ

where ημ and η̄ν are the ghost vector fields associated with
the graviton field hμν.
In addition to the diffeomorphisms group, we must also

gauge-fix the Uð1ÞY gauge group. To this end, we consider
the gauge fixing term

SGF;Uð1Þ ¼ −
1

2ξG

Z
d4x

ffiffiffiffiffiffi
−g

p ½gμν∇μA
Q
ν

þ eξGGQðvþHQÞ�2; ð2:12Þ
which has the property of preserving general covariance
while breaking the invariance of the gauge group. It also
preserves the Higgs-boson low-energy theorem (HLET)
[40–44] in its canonical form [45]. The gauge-fixing action
SGF;Uð1Þ also induces a Faddeev-Popov ghost action, which
is given by

SGh;Uð1Þ ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p
c̄

�
gμν∇μ∇ν

þ e2

2
ξG½ðvþHQÞ2 − ðGQÞ2�

�
c ð2:13Þ

where c; c̄ are the Uð1ÞY Faddeev-Popov ghosts. Note that
the scalar ghosts c; c̄ and their vector counterparts ημ; η̄ν are
all anticommuting negative norm fields.

A. The diffeomorphically invariant path integral

To quantize the Abelian Higgs model with minimal
coupling to gravity, we introduce the generating functional

Z½h̄μν; H̄; Ḡ; Āμ; J
μν
h ; Jψ ; J̄ψ ; JH; JG; J

μ
A�

¼ N
Z

DΦ exp

�
iS½h̄μν; hQμν;H;G;ψ ; ψ̄ ;Aμ�

þ
Z

d4x
ffiffiffiffiffiffi
−ḡ

p ðJμνh hQμν þ J̄ψψQ þ ψ̄QJψ þ JHHQ

þ JGGQ þ JμAA
Q
μ Þ
�
; ð2:14Þ

where N is an unphysical overall normalization constant
and

DΦ≡DhQμνDAQ
μ DHQDGQDψ̄QDψQ ð2:15Þ

is a shorthand notation for the integral measure. Under
infinitesimal diffeomorphisms, xμ → x0μ ¼ xμ þ κϵμðxÞ
with ϵμðxÞ ≪ 1, the action S of the theory remains invariant
provided the fields transform as follows:

g0μν ¼ gμν þ κðgαν∂μϵα þ gαμ∂νϵα þ ϵα∂αgμνÞ; ð2:16aÞ

H0 ¼ Hþ κϵα∂αH; ð2:16bÞ

G0 ¼ Gþ κϵα∂αG; ð2:16cÞ

ψ 0Q ¼ ψQ þ κϵα∂αψ
Q; ð2:16dÞ

ψ̄ 0Q ¼ ψ̄Q þ κϵα∂αψ̄
Q; ð2:16eÞ

A0
μ ¼ Aμ þ κϵα∂αAμ þ κð∂μϵ

αÞAα: ð2:16fÞ

There is now a degree of arbitrariness in the way the
transformations are attributed separately for the back-
ground and quantum fields, within the context of the
BFM. We choose to distribute the metric transformation as

h̄0μν ¼ h̄μν þ ∂μϵν þ ∂νϵμ þ κðh̄αν∂μϵα þ h̄αμ∂νϵα þ ϵα∂αh̄μνÞ;
ð2:17aÞ

h0Qμν ¼ hQμν þ κðhQαν∂μϵ
α þ hQαμ∂νϵ

α þ ϵα∂αhQμνÞ: ð2:17bÞ

Similarly, we distribute the transformations of the H, G
and Aμ fields as

H̄0 ¼ H̄ þ κϵα∂αH̄; H0Q ¼ HQ þ κϵα∂αHQ;

ð2:18aÞ

Ḡ0 ¼ Ḡþ κϵα∂αḠ; G0Q ¼ GQ þ κϵα∂αGQ ð2:18bÞ

Ā0
μ ¼ Āμ þ κϵα∂αĀμ þ κð∂μϵ

αÞĀα;

A0Q
μ ¼ AQ

μ þ κϵα∂αA
Q
μ þ κð∂μϵ

αÞAQ
α : ð2:18cÞ

It is now crucial to check whether the symmetry trans-
formations in (2.16) for the action S of the theory leave the
integral measureDΦ invariant as well. For this purpose, we
need to calculate the Jacobian determinant associated with
the transformations of diffeomorphism, i.e.

J½ϵ�≡ det

�
δΦ0

iðxÞ
δΦjðyÞ

�
ð2:19Þ

whereΦi ∈ fhQμν; HQ;GQ;ψQ; ψ̄Q; AQ
μ g. Using the fact that

detðI þ AÞ ¼ 1þ TrðAÞ þOðA2Þ ð2:20Þ
for small A, we obtain that
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det

�
δH0QðxÞ
δHQðyÞ

�
¼ 1 −

1

2
κδð0Þ

Z
d4x∂μϵ

μðxÞ; ð2:21aÞ

det

�
δψ 0QðxÞ
δψQðyÞ

�
¼ 1 −

1

2
κδð0Þ

Z
d4x∂μϵ

μðxÞ; ð2:21bÞ

det

�
δA0Q

μ ðxÞ
δAQ

ν ðyÞ

�
¼ 1 − κδð0Þ

Z
d4x∂μϵ

μðxÞ; ð2:21cÞ

det

�
δh0QμνðxÞ
δhQρσðyÞ

�
¼ 1: ð2:21dÞ

Consequently, for scalars, fermions and spin-1 fields, there
seems to be a deviation from 1. However, one may observe
that the integral appearing in the measure’s transformation
actually vanishes, Z

d4x∂μϵ
μ ¼ 0; ð2:22Þ

since fields (as well as gauge transformed fields) are taken
to vanish sufficiently rapidly at the boundaries, i.e.,
ϵðxÞ → 0, as x → �∞.

B. Master Ward identity for diffeomorphisms

Given the diffeomorphisms invariance of the generating
functional Z, we may now derive a master WI associated
with this symmetry. To this end, we require that the part of
Z containing the source terms remains invariant under the
infinitesimal diffeomorphisms (2.16). To accomplish this,
the sources need to transform as tensors of the relevant rank
as follows:

J0μνh ¼ Jμνh þ κðϵα∂αJ
μν
h − Jναh ∂μϵα − Jμαh ∂νϵαÞ; ð2:23aÞ

J0H ¼ JH þ κϵα∂αJH; ð2:23bÞ

J0G ¼ JG þ κϵα∂αJG; ð2:23cÞ

J0ψ ¼ Jψ þ κϵα∂αJψ ; ð2:23dÞ

J̄0ψ ¼ J̄ψ þ κϵα∂αJ̄ψ ; ð2:23eÞ

J0μA ¼ JμA þ κðϵα∂αJ
μ
A − ϵα∂μJαAÞ: ð2:23fÞ

Under these transformations, along with the diffeomor-
phisms (2.16) and (2.17), the generating functional Z
remains invariant. Therefore, writing X0 ¼ X þ δX for
X ∈ fh̄μν; H̄; Ḡ; Āμ; J

μν
h ; Jψ ; J̄ψ ; JH; JG; J

μ
Ag, we obtain

the identity Z
d4x

X
X

δZ
δX

δX ¼ 0: ð2:24Þ

Defining the generating functional of connected Green’s
functions W by

Z½h̄μν; H̄; Ḡ; Āμ; J
μν
h ; Jψ ; J̄ψ ; JH; JG; J

μ
A�

¼ expðiW½h̄μν; H̄; Ḡ; Āμ; J
μν
h ; Jψ ; J̄ψ ; JH; JG; J

μ
A�Þ;
ð2:25Þ

we obtain Z
d4x

X
X

δW
δX

δX ¼ 0: ð2:26Þ

Next, we define the one particle irreducible (1PI) effective
action Γ by means of a Legendre transform of W:

Γ½h̄μν;ψ ; ψ̄ ; H̄; Ḡ; Āμ; hμν; H;G; Aμ�
¼ W½h̄μν; H̄; Ḡ; Āμ; J

μν
h ; Jψ ; J̄ψ ; JH; JG; J

μ
A�

−
Z

d4x
ffiffiffiffiffiffi
−ḡ

p ðJμνh hμν þ J̄ψψ þ ψ̄Jψ

þ JHH þ JGGþ JμAAμÞ; ð2:27Þ

where

hμν ≡ δW
δJμνh

; ψ ≡ δW
δJ̄ψ

; ψ̄ ≡ δW
δJψ

;

H ≡ δW
δJH

; G≡ δW
δJG

; Aμ ≡ δW
δJμA

: ð2:28Þ

To have an invariant effective action, we must require
that the source terms remain invariant. As a consequence,
the Legendre transform variables transform like their
quantum field counterparts, i.e. according to the trans-
formations (2.16) with the identification XQ → X for
X ∈ fhμν;ψ ; ψ̄ ; H;G; Aμg. This allows us to write

Γ½h̄0μν;ψ 0; ψ̄ 0; H̄0; Ḡ0; Ā0
μ; h0μν; H0; G0; A0

μ�
¼ Γ½h̄μν;ψ ; ψ̄ ; H̄; Ḡ; Āμ; hμν; H;G; Aμ�: ð2:29Þ

For vanishing arguments of the quantum fields hμν, H, G,
Aμ, we have

Γ̄½h̄0μν;ψ 0; ψ̄ 0; H̄0; Ḡ0; Ā0
μ� ¼ Γ̄½h̄μν;ψ ; ψ̄ ; H̄; Ḡ; Āμ�; ð2:30Þ

which is a statement of invariance for the background field
effective action defined by

Γ̄½h̄μν;ψ ; ψ̄ ; H̄; Ḡ; Āμ�≡ Γ½h̄μν;ψ ; ψ̄ ; H̄; Ḡ; Āμ; 0; 0; 0; 0�:
ð2:31Þ

An immediate consequence of this invariance is the master
Ward identity
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�
δαμ∂ν þ κ

�
h̄αν∂μ þ ∂μh̄αν þ

1

2
∂αh̄μν

��
δΓ̄

δh̄μνðxÞ

þ κð∂αĀμ − ∂μĀα − Āα∂μÞ
δΓ̄
δĀμ

þ κ∂αH̄
δΓ̄
δH̄

þ κ∂αḠ
δΓ̄
δḠ

þ δΓ̄
δψ

κ∂αψ þ κ∂αψ̄
δΓ̄
δψ̄

¼ 0; ð2:32Þ

where α is a free index. By appropriate differentiation of
(2.32) with respect to the fields of the theory, this
master WI can be used to deduce further WIs and
relations between correlation functions of the back-
ground fields.
Since we are interested here only in graviton correlation

functions, we may take the matter field arguments of the
effective action to zero. This yields a simpler version of the
master WI:�

δαμ∂ν þ κ

�
h̄αν∂μ þ ∂μh̄αν þ

1

2
∂αh̄μν

��
δΓ̄

δh̄μνðxÞ
¼ 0:

ð2:33Þ
Differentiating functionally with respect to h̄ρσðyÞ and
converting the result into the momentum space, we obtain
the Ward identity

pμΠμν;ρσðpÞ þ κ

2
ðηνρpμT

σμ
h þ ηνσpμT

ρμ
h − pνTρσ

h Þ ¼ 0;

ð2:34Þ
where pμ is the graviton momentum, Πμν;ρσðpÞ is the
1PI graviton self-energy, and Tμν

h is the 1-point correla-
tion function for the graviton tadpoles. Figure 1 gives a
graphical representation of the Ward identity (2.34), where
the zigzag lines indicate gravitons.
We conclude this section by commenting on the

appearance of the terms depending on the graviton
tadpoles Tμν

h in the Ward identity (2.34). In fact, their
appearance is where Yang-Mills theory and PQG explic-
itly differ, as tadpole graphs for Yang-Mills fields vanish
identically due to Lorentz covariance. On the other hand,
previous studies in PQG mostly focused on massless
particle contributions to the graviton self-energy [13–16],
for which the tadpole contributions were unimportant,
since these contributions vanish identically in the context
of DR. Thus, the self-energy becomes transverse in this
case, as a consequence of the WI (2.34), with Tμν

h ¼ 0. In
the massive case, however, the tadpole graphs do not
vanish in DR, thus signifying the presence of longitudinal

modes in the graviton self-energy. In the next two
sections, we will explicitly demonstrate how these longi-
tudinal modes disappear after minimization of the effec-
tive action and renormalization of the cosmological
constant.

III. MINIMIZATION CONDITIONS AND
COSMOLOGICAL CONSTANT

RENORMALIZATION

In this section, we discuss the minimization of the
effective action Γ, in the presence of background graviton
fields, and elucidate its connection with the renormalization
of the cosmological constant Λ. We also derive a low-
energy theorem that relates graviton tadpoles with the
graviton self-energy at zero external momentum. As we
will see, this theorem plays a central role to ensure the
masslessness of gravitons.
In the context of the BFM, the minimization of the

effective action with respect to the background fields
translates into the generic condition:

δΓ
δX

				
X¼0

¼ 0; ð3:1Þ

for X ∈ fhμν;ψ ; ψ̄ ; H;G; Aμg. Specifically, we require
that the vacuum expectation value (VEV) v of the
Higgs boson be translation and Lorentz invariant, i.e.,
∂μv ¼ 0. If we define Γ ¼ Γð0Þ þ Γðn≥1Þ, where Γðn≥1Þ
represents the quantum corrections, we obtain the follow-
ing equations:

δΓ
δH

¼ fH̄ðH̄; Ḡ; Āμ; v0; μ20; λ0; e0Þ − λ0v0

�
v20 −

μ20
λ0

�

þ δΓðn≥1Þ

δH
¼ 0; ð3:2Þ

δΓ
δG

¼ fḠðH̄; Ḡ; Āμ; v0; μ20; λ0; e0Þ þ
δΓðn≥1Þ

δG
¼ 0; ð3:3Þ

δΓ
δψ

¼ δΓðn≥1Þ

δψ
¼ 0; ð3:4Þ

δΓ
δψ̄

¼ δΓðn≥1Þ

δψ̄
¼ 0; ð3:5Þ

δΓ
δAμ

¼ fμ
Ā
ðH̄; Ḡ; Āμ; v0; μ20; λ0; e0Þ þ

δΓðn≥1Þ

δAμ
¼ 0; ð3:6Þ

FIG. 1. Diagrammatic representation of the Ward identity (2.34), where the zigzag lines denote gravitons.
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δΓ
δhμν

¼ 1

2
ḡμν

�
1

κ
R̄þ κðΛ0 þ ΛH

0 Þ
�
−
1

κ
R̄μν −

κ

2
T̄μν

þ δΓðn≥1Þ

δhμν
¼ 0; ð3:7Þ

where

fH̄ðH̄; Ḡ; Āμ; v0;μ20; λ0; e0Þ ¼ ḡμν∂μ∂νH̄þ e20Ā
μĀμðv0 þ H̄Þ

−λ0
�
v0ð2v0H̄ þ H̄2 þ Ḡ2Þ þ H̄

�
ðv0 þ H̄Þ2 þ Ḡ2 −

μ20
λ0

��
;

ð3:8Þ

fḠðH̄; Ḡ; Āμ; v0;μ20; λ0; e0Þ

¼ ḡμν∂μ∂νḠþ e20Ā
μĀμḠþ λ0

2
Ḡ

�
ðv0 þ H̄Þ2 þ Ḡ2 −

μ20
λ0

�
;

ð3:9Þ

fμ
Ā
ðH̄;Ḡ; Āμ;v0;μ20;λ0;e0Þ
¼ ḡμρḡνσð∂ν∂σĀρ−∂ρ∂σĀνÞ−e0ððv0þ H̄Þ∂μḠ− Ḡ∂μH̄Þ

þe20Ā
μððv0 þ H̄Þ2 þ Ḡ2Þ; ð3:10Þ

ΛH
0 ¼ −

λ0
4

�
v20 −

μ20
λ0

�
2

ð3:11Þ

and ēμa represents the background vielbein field. Here, a
bar on a field (other than ψ̄) represents a background
field and a subscript 0 indicates a bare (unrenormalized)

kinematic parameter, such as the bare coupling constant
e0 and the bare Higgs VEV v0. In the BFM, the
background fields are not free but obey their respective
equations of motion with some specified boundary
conditions. Thus, we assume that all the background
fields satisfy these constraints without determining their
analytical form. Finally, in the present model under study,
only the Higgs boson and the graviton can have nonzero
tadpole contributions.
Let us now turn our attention to discussing quantum

loop effects on the cosmological constant Λ. Observe that
the generating functional Z defined in (2.14) is well
specified, except of an overall normalization constant N.
In theories in which gravitons are treated as classical
background fields, such a constant N seems to be equiv-
alent to renormalization of Λ. However, in theories of
quantum gravity, the cosmological constant is accompanied
by a factor

ffiffiffiffiffiffi−gp
, which prevents the factorization of Λ from

the path integral. To deal with this problem, we treat the
cosmological term

ffiffiffiffiffiffi−gp
Λ as an interaction in the action

and renormalize Λ, by renormalizing the effective action
Γ½0� by means of a gauge-invariant CT δΛ. This can be done
by first writing Λ0 ¼ Λþ δΛ and then imposing the
condition

Γ½0� ¼ Λ0 þ ΛH
0 þ Γðn≥1Þ½0� ¼ Λ: ð3:12Þ

Assuming a flat Minkowski background after renormaliza-
tion, we set Λ ¼ 0, such that ημν remains a solution of the
background equations of motion. Notice that ΛH

0 is renor-
malized only through the Higgs VEV v0 and the quartic
coupling constant λ0 [cf. (3.11)]. At the one-loop level, the
contribution Γð1Þ½0� to the cosmological constant may
graphically be represented as

(3.13)

Writing ΛH
0 ¼ ΛH þ δΛH, it is not difficult to see that δΛH ¼ 0 at the one-loop level. Therefore, the renormalization

condition (3.12) simplifies to

δΛþ Γð1Þ½0� ¼ 0: ð3:14Þ
In the DR scheme, the individual graphs contributing to Γð1Þ½0� can be calculated explicitly. In this way, we obtain

(3.15)
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(3.16)

¼ 3i
2ð4πÞ2

�
m2

A

2
A0ðm2

AÞ −
m4

A

12

�
þ i
2ð4πÞ2

�
ξGm2

A

2
A0ðξGm2

AÞ þ
ξ2Gm

4
A

4

�
; ð3:17Þ

(3.18)

(3.19)

(3.20)

Here, A0ðm2Þ is the tadpole loop integral defined in d ¼ 4 − 2ϵ as

A0ðm2Þ≡ ð2πμÞ4−d
Z

ddk
iπ2

1

k2 −m2
¼ m2

�
1

ϵ̄
þ 1 − ln

�
m2

μ2

��
; ð3:21Þ

where 1=ϵ̄ ¼ 1=ϵ − γE þ ln 4π, with γE being the Euler-Mascheroni constant and μ the ’t Hooft mass renormalization scale.
We note that the sum

(3.22)

is independent of the Uð1ÞY gauge fixing parameter ξG. Thus, at the one-loop level, the cosmological constant CT δΛ is
found to be

δΛ ¼ 2

ð4πÞ2
�
m2

ψ

2
A0ðm2

ψ Þ þ
m4

ψ

4

�
−

1

2ð4πÞ2
�
m2

H

2
A0ðm2

HÞ þ
m4

H

4

�
−

3

2ð4πÞ2
�
m2

A

2
A0ðm2

AÞ −
m4

A

12

�
: ð3:23Þ

The fact that δΛ is independent of ξG and the diffeomorphism-fixing parameters ξD and σ reflects the gauge invariance of
the effective action at its minimum [46] and provides a consistency check for the correctness of our analytic results.
Let us now analyze the minimization conditions (3.2) and (3.7) related to the Higgs and the graviton tadpoles,

respectively. For the Higgs tadpole condition, we have
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(3.24)

Expressing the bare Higgs VEV v0 as v0 ¼ vþ δv, (3.2) reads

−2λv2δvþ TH ¼ 0 ð3:25Þ
at the one-loop level, from which we deduce the Higgs VEV CT

δv ¼ TH

2λv2
: ð3:26Þ

To deal with the graviton tadpole condition (3.7), we first define

(3.27)

As done with the Higgs field, we allow for the quantum graviton field hμν to develop a VEV, by replacing hμν → hμν þ δhμν.
In this way, the one-loop minimization condition for the graviton field becomes

Z
d4y

�
δ2S

δhμνðxÞδhρσðyÞ
				
gμν¼ημν

δhρσðyÞ
�
þ κ

2
ημνδΛþ Tμν

h ¼ 0: ð3:28Þ

From this last equation, we easily see that the second functional derivative with respect to the quantum graviton field is the
inverse graviton propagator in the flat space, i.e.

δ2S
δhμνðxÞδhρσðyÞ

				
gμν¼ημν

¼ Δ−1μνρσðx − yÞ: ð3:29Þ

By virtue of the latter, (3.28) may be recast into the formZ
d4y½Δ−1μνρσðx − yÞδhρσðyÞ� þ

κ

2
ημνδΛþ Tμν

h ðxÞ ¼ 0: ð3:30Þ

Solving equation (3.30) for δhρσ yields

δhρσðxÞ ¼ −
Z

d4yΔμνρσðx − yÞ
�
Tρσ
h ðyÞ þ κ

2
ηρσδΛ

�
: ð3:31Þ

It is now instructive to calculate the one-loop graviton tadpole Tμν
h resulting from our Abelian Higgs model. With the aid

of the Feynman rules given in the Appendix, the individual contributions to Tμν
h are given by
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(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

Interestingly enough, we observe that the sum

(3.37)

is independent of the gauge fixing parameter ξG, implying
that the graviton tadpoles form a gauge-invariant set of
graphs. This is in stark contrast with the Higgs tadpole and
its VEV CT δv, which are known to be both gauge-
dependent quantities (e.g., see [45]).
Our effort to gain a better understanding of the gauge-

fixing parameter independence of Tμν
h led us to observe the

following relation:

Tμν
h þ κ

2
ημνδΛ ¼ 0: ð3:38Þ

Remarkably, (3.38) holds separately for each of the quantum
fields circulating in the loop. Hence, at the one-loop level,
tadpole graphs are directly linked with the gauge-invariant
renormalization CT δΛ of the cosmological constant, so Tμν

h
is a gauge-invariant quantity as well. Moreover, graviton
tadpole graphs cancel against the CT δΛ in the one-loop
effective action, which implies that there is no VEV
renormalization for the graviton field, i.e. δhμν ¼ 0.
It is important to stress here that our approach to

renormalizing the graviton field differs significantly

from the one outlined, e.g., in [12], where a cosmo-
logical constant was introduced in an ad hoc manner, in
order to cancel the graviton tadpole effects. In our case,
such a cancellation is a result of an explicit computa-
tion, without the need to impose an additional con-
straint. In the next subsection, we will show that the
relation (3.38) leading to the nonrenormalization of the
graviton VEV, with δhμν¼0, is not an one-loop coinci-
dence, but a result that holds to all orders in perturba-
tion for a gravitational theory renormalized to a
Minkowski flat background.

A. The graviton low-energy theorem

Here we will explicitly demonstrate how the relation
(3.38) holds true to all orders in perturbation. As we will
see, this nonperturbative relation is a direct consequence of
a graviton low-energy theorem.
Given the conceptual similarity of the GLETwith the so-

called Higgs-boson low-energy theorem [40–45], we begin
our demonstration by briefly reminding the reader of the
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latter. The HLET may be stated by the following defining
equation:

∂
∂vΓ ¼ δΓ

δH̄ð0Þ ; ð3:39Þ

where H̄ð0Þ denotes a zero-momentum background Higgs
field. This result may be derived from a global shift
symmetry that exists between the Higgs VEV v and the
background Higgs field H̄ of the form

v0 ¼ vþ s; H̄0 ¼ H̄ − s; ð3:40Þ
for some infinitesimal constant s, provided a compatible
gauge-fixing condition is chosen [45]. Taking a functional
derivative with respect to H̄, invoking momentum con-
servation and writing Γ ¼ Γð0Þ þ Γðn≥1Þ, where Γðn≥1Þ
represents the part of the action containing one- and
higher-order quantum loop effects, we obtain

∂
∂v

�
δΓðn≥1Þ

δH̄ð0Þ
�

¼ δ2Γðn≥1Þ

δH̄ð0ÞδH̄ð0Þ : ð3:41Þ

Therefore, one consequence of the HLET relevant to our
discussion here is the relation of the Higgs-boson tadpole to
quantum effects on the Higgs-boson mass.
We may now try to extend the basic idea of HLET to

theories of quantum gravity. As discussed in Sec. II, the
full spacetime metric gμν may be decomposed in the BFM
framework of quantum gravity as follows:

gμν ¼ ημν þ κðh̄μν þ hμνÞ; ð3:42Þ

where ḡμν¼ημνþκh̄μν is the background metric [cf. (2.8)].
In close analogy to HLET, it is not difficult to observe that
there is a similar symmetry for the effective action Γ of the
complete matter-gravity theory. In particular, the effective
action Γ remains invariant under the shift transformations:

η0μν ¼ ημν þ sμν; h̄0μν ¼ h̄μν −
1

κ
sμν; ð3:43Þ

where sμν is an arbitrary tensor. Since the generating
functional (2.14) remains invariant under the shift sym-
metry (3.43), we can derive the shift Ward identity:

∂Z
∂ημν −

1

κ

Z
d4x

δZ

δh̄μνðxÞ
¼ 0; ð3:44Þ

which implies

∂W
∂ημν −

1

κ

Z
d4x

δW

δh̄μνðxÞ
¼ 0; ð3:45Þ

by virtue of (2.25). With the aid of (2.27), we may translate
the last result into the shift WI for the effective action:

∂Γ
∂ημν −

1

κ

Z
d4x

δΓ
δh̄μνðxÞ

¼ 0; ð3:46Þ

or equivalently in momentum space:

κ
∂

∂ημν Γ ¼ δΓ
δh̄μνð0Þ

: ð3:47Þ

Equation (3.47) is the defining equation for the GLET,
where h̄μνð0Þ is a zero-momentum graviton field. Now, if
we consider the counterterm in the effective action,

ΔS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
δΛ; ð3:48Þ

in order to cancel Γðn≥1Þ½0�, we obtain the relation (3.38):

Tμν
h þ κ

2
ημνδΛ ¼ 0;

which holds true to all orders in perturbation theory. Hence,
the one-loop relation (3.38) is a consequence of the GLET.
In addition to relating the graviton tadpole to the

cosmological constant, the GLET can also relate the
graviton tadpole to the graviton self-energy at zero external
momentum:

κ
∂

∂ημν
�
δΓðn≥1Þ

δh̄ρσð0Þ
�

¼ δ2Γðn≥1Þ

δh̄μνð0Þδh̄ρσð0Þ
: ð3:49Þ

Since graviton tadpoles vanish identically for massless
fields in the loop in the DR scheme, the graviton self-
energy at zero external momentum will vanish as well, by
means of (3.49). Consequently, the GLET (3.47) can also
guarantee the masslessness of the graviton field in DR, if all
particles in the quantum loops are massless. As we will see
in the next section, however, this is not in general true, if
massive particles occur in the graviton self-energy. In this
case, both the GLET (3.47) and the diffeomorphism WI
(2.34) will be needed to render the graviton massless to
all orders in perturbation, assuming a flat Minkowski
background.

IV. MATTER CONTRIBUTIONS TO THE
GRAVITON SELF-ENERGY

In this section, we will first demonstrate explicitly how
upon renormalization, the graviton self-energy obeys the
property of transversality entailing in a massless graviton
field. Subsequently, we will compute the matter contribu-
tions to the graviton self-energy tensor resulting from
massive scalar, pseudoscalar, fermion, and vector-boson
particles in the loops.
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A. Transversality of the graviton self-energy

The graviton self-energy transition h̄μνðpÞ → h̄ρσðpÞ,
which we denote as Πμν;ρσðpÞ, receives two renormaliza-
tions: (i) from the bare cosmological constant Λ0 which
induces a CT proportional to δΛ for the graviton mass in the
effective action [cf. (3.48)]; (ii) from the Ricci scalar R and
the higher-dimensional operators R2 and RμνRμν. The latter
contributions (ii), which we denote as ΔΠμν;ρσðpÞ, are
transverse in the minimal subtraction scheme (MS) of
renormalization and they have therefore no effect on the
graviton mass.
Taking into account the two contributions mentioned

above, the renormalized graviton self-energy Πμν;ρσ
R ðpÞ

may then be written down as follows:

Πμν;ρσ
R ðpÞ ¼ Πμν;ρσðpÞ − κ2

4
PμνρσδΛþ ΔΠμν;ρσðpÞ; ð4:1Þ

where we have defined the tensor

Pμνρσ ≡ ημρηνσ þ ημρηνσ − ημνηρσ; ð4:2Þ

for brevity. Employing the identity (3.38) deduced from the
GLET, we may readily obtain the relation

κ

2
PμνρσδΛ ¼ −ηνρTσμ

h − ηνσTρμ
h þ ημνTρσ

h : ð4:3Þ

Substituting this last expression back in (4.1) gives

Πμν;ρσ
R ðpÞ ¼ Πμν;ρσðpÞ þ κ

2
ðηνρTσμ

h þ ηνσTρμ
h − ημνTρσ

h Þ
þ ΔΠμν;ρσðpÞ: ð4:4Þ

Based on the WI (2.34) of diffeomorphisms depicted
graphically in Fig. 1 and the fact that pμΔΠμν;ρσðpÞ ¼ 0,
it is not difficult to show that the renormalized graviton
self-energy is transverse, i.e.

pμΠ
μν;ρσ
R ðpÞ ¼ 0: ð4:5Þ

Hence, the longitudinal modes of the graviton self-energy
are successfully removed after renormalizing the cosmo-
logical constant. We shall use the transversality identity
(4.5) to check the consistency of our analytic results.
We may now decompose the renormalized graviton self-

energy tensor Πμν;ρσ
R ðpÞ in terms of independent rank-4

Lorentz tensors that depend on ημν and pμpν. More
explicitly, Πμν;ρσ

R ðpÞ may be expressed as follows:

Πμν;ρσ
R ðpÞ ¼ pμpνpρpσF1ðp2Þ þ ημνηρσF2ðp2Þ þ ðημρηνσ þ ηνρημσÞF3ðp2Þ

þ ðημνpρpσ þ ηρσpμpνÞF4ðp2Þ þ ðημρpνpσ þ ηνρpμpσ þ ημσpνpρ þ ηνσpμpρÞF5ðp2Þ; ð4:6Þ

where Fi (with i ¼ 1; 2;…; 5) is a set of form factors. Note
that the form factors Fi are not independent of each other,
as they have to satisfy the transversality condition (4.5),
which gives rise to following set of relations:

p2F1 þ F4 þ 2F5 ¼ 0;

F2 þ p2F4 ¼ 0;

F3 þ p2F5 ¼ 0: ð4:7Þ

Finally, it is important to remark here that the UV-infinite
contributions of ΔΠμν;ρσðpÞ to the form factors Fi satisfy
independently the three relations given in (4.7).

B. Massive scalar loops

First, we consider the Higgs-scalar effects on the
graviton self-energy, as described by the two diagrams
(a) and (b) in Fig. 2. These are given by the loop integrals

iΠμν;ρσ
2ðaÞ ðpÞ ¼

1

2

Z
ddk
ð2πÞd V

μν
HHhðk;−ðpþ kÞ; mHÞVρσ

HHhð−k; pþ k;mHÞ
�

i
k2 −m2

H

��
i

ðpþ kÞ2 −m2
H

�
; ð4:8Þ

iΠμν;ρσ
2ðbÞ ðpÞ ¼

1

2

Z
ddk
ð2πÞd V

μνρσ
HHhhðk;−k;mHÞ

�
i

k2 −m2
H

�
: ð4:9Þ

Note that the contribution of the would-be Goldstone boson G is obtained by replacing m2
H → ξGm2

A in the above two
expressions.

(a) (b)

FIG. 2. The Higgs contribution to the graviton self-energy.
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Without including the CTs contained in ΔΠμν;ρσðpÞ, the
Higgs contributions to the form factors are given by

F1ðp2Þ ¼ κ2

3600ð4πÞ2ðp2Þ2 ½ðα1 þ α4ÞB0ðp2; m2
H;m

2
HÞ

þ ðα2 þ α5ÞA0ðm2
HÞ þ ðα3 þ α6Þ�; ð4:10aÞ

F2ðp2Þ ¼ κ2

3600ð4πÞ2 ðα1B0ðp2; m2
H;m

2
HÞ

þ α2A0ðm2
HÞ þ α3Þ; ð4:10bÞ

F3ðp2Þ ¼ κ2

7200ð4πÞ2 ðα4B0ðp2; m2
H;m

2
HÞ

þ α5A0ðm2
HÞ þ α6Þ; ð4:10cÞ

F4ðp2Þ ¼ −
κ2

3600ð4πÞ2p2
ðα1B0ðp2; m2

H;m
2
HÞ

þ α2A0ðm2
HÞ þ α3Þ; ð4:10dÞ

F5ðp2Þ ¼ −
κ2

7200ð4πÞ2p2
ðα4B0ðp2; m2

H;m
2
HÞ

þ α5A0ðm2
HÞ þ α6Þ; ð4:10eÞ

where

α1 ¼ 15½8m4
H þ 16m2

Hp
2 þ 3ðp2Þ2�; ð4:11aÞ

α2 ¼ −30ð4m2
H þ 3p2Þ; ð4:11bÞ

α3 ¼ 120m4
H þ 220m2

Hp
2 − 42ðp2Þ2; ð4:11cÞ

α4 ¼ 15ðp2 − 4m2
HÞ2; ð4:11dÞ

α5 ¼ −30ð8m2
H þ p2Þ; ð4:11eÞ

α6 ¼ 16½15m4
H − 10m2

Hp
2 þ ðp2Þ2�: ð4:11fÞ

In addition, B0 is the one-loop scalar self-energy integral
defined in d ¼ 4 − 2ϵ as

B0ðp2; m2
1; m

2
2Þ≡ ð2πμÞ4−d

Z
ddk
iπ2

1

k2 −m2
1

1

ðkþ pÞ2 −m2
2

¼ 1

ϵ̄
þ 2 − ln

�
m1m2

μ2

�

þ 1

p2

�
ðm2

2 −m2
1Þ ln

�
m1

m2

�
þ λ1=2ðp2; m2

1; m
2
2Þcosh−1

�
m2

1 þm2
2 − p2

2m1m2

��
; ð4:12Þ

with λðx; y; zÞ≡ ðx − y − zÞ2 − 4yz. For p2 ¼ 0 and
m1 ¼ m2 ¼ m, the loop function B0ð0; m2; m2Þ is related
to the tadpole loop integral A0ðm2Þ as follows:

A0ðm2Þ ¼ m2ð1þ B0ð0; m2; m2ÞÞ: ð4:13Þ

We may now calculate the CTs described by
ΔΠμν;ρσðpÞ in the MS scheme of renormalization [47].
For the Higgs and Goldstone effects, these CTs may
be represented by the following set of diffeomorphism
invariant operators:

ΔSH ¼ −
Z

d4x
ffiffiffiffiffiffi−gp

2ð4πÞ2ϵ̄
�
m2

H

6
Rþ 1

120
R2 þ 1

60
RμνRμν

�
;

ð4:14Þ

ΔSG ¼ −
Z

d4x
ffiffiffiffiffiffi−gp

2ð4πÞ2ϵ̄
�
ξGm2

A

6
Rþ 1

120
R2 þ 1

60
RμνRμν

�
:

ð4:15Þ

We note that the CTs in ΔSH agree with [12], after making
the obvious replacement: 1=ϵ → 1=ϵ̄. The inclusion of the
CTs given by ΔSH and ΔSG has the effect of removing
simply the 1=ϵ̄ poles that occur through the loop integrals
A0 and B0 in the form factors F1;2;…;5 listed in (4.10).
Finally, observe that the five form factors F1;2;…;5 satisfy
the transversality relations given in (4.7).

C. Massive fermion loops

Quantum loops due to a Dirac fermion ψ contribute also
to the graviton self-energy by the two diagrams (a) and (b)
shown in Fig. 3. These two diagrams may be calculated by

iΠμν;ρσ
3ðaÞ ðpÞ ¼ −

Z
ddk
ð2πÞd Tr

�
Vμν
ψ̄ψhðk;−ðpþ kÞ; mψÞ

�
iðkþmÞ
k2 −m2

ψ

�
Vρσ
ψ̄ψhð−k; pþ k;mψÞ

�
iðpþ kþmÞ
ðpþ kÞ2 −m2

ψ

��
; ð4:16Þ
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iΠμν;ρσ
3ðbÞ ðpÞ ¼ −

Z
ddk
ð2πÞd Tr

�
Vμνρσ
ψ̄ψhhðk;−k;mHÞ

×

�
iðkþmÞ
k2 −m2

ψ

��
: ð4:17Þ

Upon including only the cosmological constant CT δΛ,
we arrive at the following analytic expressions for the form
factors:

F1ðp2Þ ¼ κ2

1800ð4πÞ2ðp2Þ2 ½ðα1 þ α4ÞB0ðp2; m2
H;m

2
HÞ

þ ðα2 þ α5ÞA0ðm2
HÞ þ ðα3 þ α6Þ�; ð4:18aÞ

F2ðp2Þ ¼ κ2

1800ð4πÞ2 ðα1B0ðp2; m2
ψ ; m2

ψÞ

þ α2A0ðm2
ψÞ þ α3Þ; ð4:18bÞ

F3ðp2Þ ¼ κ2

3600ð4πÞ2 ðα4B0ðp2; m2
ψ ; m2

ψ Þ

þ α5A0ðm2
ψ Þ þ α6Þ; ð4:18cÞ

F4ðp2Þ ¼ −
κ2

1800ð4πÞ2p2
ðα1B0ðp2; m2

ψ ; m2
ψÞ

þ α2A0ðm2
ψÞ þ α3Þ; ð4:18dÞ

F5ðp2Þ ¼ −
κ2

3600ð4πÞ2p2
ðα4B0ðp2; m2

ψ ; m2
ψÞ

þ α5A0ðm2
ψÞ þ α6Þ; ð4:18eÞ

with

α1 ¼ −15ðp2 − 4m2
ψÞ2; ð4:19aÞ

α2 ¼ 30ð8m2
ψ þ p2Þ; ð4:19bÞ

α3 ¼ −16½15m4
ψ − 10m2

ψp2 þ ðp2Þ2�; ð4:19cÞ

α4 ¼ −15½32m4
ψ þ 4m2

ψp2 − 3ðp2Þ2�; ð4:19dÞ

α5 ¼ −30ð3p2 − 16m2
ψÞ; ð4:19eÞ

α6 ¼ −480m4
ψ þ 20m2

ψp2 þ 18ðp2Þ2: ð4:19fÞ

The UV poles proportional to 1=ϵ̄ that enter the form
factors F1;2;…;5 through the loop integrals A0 and B0 may
be renormalized after taking into consideration the CT
effective action

ΔSψ ¼
Z

d4x
ffiffiffiffiffiffi−gp

ð4πÞ2ϵ̄
�
m2

ψ

6
R −

1

60
R2 þ 1

20
RμνRμν

�
:

ð4:20Þ

This last result is in agreement with [48]. As with the
scalar case, it is not difficult to check that the form factors
F1;2;…;5 exhibited in (4.18) satisfy the transversality rela-
tions in (4.7).

D. Massive gauge and ghost loops

Finally, we consider quantum loop effects of a massive
gauge boson Aμ and their respective ghost fields c and
c̄ on the graviton self-energy. As displayed in Fig. 4, four
diagrams (a), (b), (c), and (d) contribute. In the Feynman-’t
Hooft gauge ξG ¼ 1, these four diagrams may respectively
be evaluated by the following integrals:

(a) (b)

FIG. 3. The fermion contribution to the graviton self-energy.

(a) (b)

(c) (d)

FIG. 4. Gauge- and ghost-field contributions to the graviton
self-energy.
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iΠμν;ρσ
4ðaÞ ðpÞ ¼

1

2

Z
ddk
ð2πÞd V

μν;λ;δ
AAh ðk;−ðpþ kÞ; mAÞ

× Vρσ;α;β
AAh ð−k; pþ k;mAÞ

×

�
iηαλ

k2 −m2
A

��
iηβγ

ðpþ kÞ2 −m2
A

�
; ð4:21Þ

iΠμν;ρσ
4ðbÞ ðpÞ ¼

1

2

Z
ddk
ð2πÞd V

μν;ρσ;λ;δ
AAhh ðk;−k;m2

AÞ
�

iηλδ
k2 −m2

A

�
;

ð4:22Þ

iΠμν;ρσ
4ðcÞ ðpÞ ¼ −

Z
ddk
ð2πÞd V

μν
c̄ch

× ðk;−ðpþ kÞ; mAÞVρσ
c̄chð−k; pþ k;mAÞ

×

�
i

k2 −m2
A

��
i

ðpþ kÞ2 −m2
A

�
; ð4:23Þ

iΠμν;ρσ
4ðdÞ ðpÞ ¼ −

Z
ddk
ð2πÞd V

μνρσ
HHhhðk;−k;mAÞ

�
i

k2 −m2
A

�
:

ð4:24Þ

As done before, we proceed by including only the CT δΛ
of the cosmological constant. Then, the form factors are
given by

F1ðp2Þ ¼ κ2

1800ð4πÞ2ðp2Þ2
× ½ðα1 þ α4ÞB0ðp2; m2

A;m
2
AÞ

þ ðα2 þ α5ÞA0ðm2
HÞ þ ðα3 þ α6Þ�; ð4:25aÞ

F2ðp2Þ ¼ κ2

1800ð4πÞ2 ðα1B0ðp2; m2
A;m

2
AÞ

þ α2A0ðm2
AÞ þ α3Þ; ð4:25bÞ

F3ðp2Þ ¼ κ2

3600ð4πÞ2 ðα4B0ðp2; m2
A;m

2
AÞ

þ α5A0ðm2
AÞ þ α6Þ; ð4:25cÞ

F4ðp2Þ ¼ −
κ2

1800ð4πÞ2p2
ðα1B0ðp2; m2

A;m
2
AÞ

þ α2A0ðm2
AÞ þ α3Þ; ð4:25dÞ

F5ðp2Þ ¼ −
κ2

3600ð4πÞ2p2
ðα4B0ðp2; m2

A;m
2
AÞ

þ α5A0ðm2
AÞ þ α6Þ; ð4:25eÞ

with

α1 ¼ 30ð4m4
A − 12m2

Ap
2 − ðp2Þ2Þ; ð4:26aÞ

α2 ¼ 60ðp2 − 2m2
AÞ; ð4:26bÞ

α3 ¼ 120m4 − 530m2p2 þ 13ðp2Þ2; ð4:26cÞ

α4 ¼ 30½8m4
A þ 16m2

Ap
2 þ 3ðp2Þ2�; ð4:26dÞ

α5 ¼ −60ð4m2
A þ 3p2Þ; ð4:26eÞ

α6 ¼ 240m4
A þ 590m2

Ap
2 − 99ðp2Þ2: ð4:26fÞ

The form factors become UV finite, after considering the
CT effective action

ΔSA ¼ −
Z

d4x
ffiffiffiffiffiffi−gp

ð4πÞ2ϵ̄
�
m2

A

3
R −

1

30
R2 þ 1

10
RμνRμν

�
:

ð4:27Þ

Our result in (4.27) agrees with [14] in the limit mA → 0.
As with the scalar and fermion cases, gauge and ghost
field contributions to the form factors F1;2;…;5 satisfy the
transversality relations stated in (4.7).

E. Summary of results

Even though our calculations pertain to the gauged
Abelian Higgs model, the results we presented here for
the graviton self-energy have a general applicability. At
the one-loop order, only the kinetic part of the matter
Lagrangian contributes, whereas the part associated with
matter interactions only enters at two loops. Thus, at the
one-loop level, we only need to know the matter field
content of the theory in terms of scalar, fermionic, and
gauge degrees of freedom. As a consequence, the total
renormalized graviton self-energy tensor in a given theory
may be summarized as follows:

Πμν;ρσ
R ðpÞ ¼

XN0

i¼1

Πμν;ρσ
0 ðp;m0;iÞ þ

XN1
2

i¼1

Πμν;ρσ
1
2

ðp;m1
2
;iÞ

þ
XN1

i¼1

Πμν;ρσ
1 ðp;m1;iÞ; ð4:28Þ

where Πμν;ρσ
0 ðp;mÞ, Πμν;ρσ

1
2

ðp;mÞ, and Πμν;ρσ
1 ðp;mÞ denote

the scalar, fermion, and gauge- and ghost-field contribu-
tions to the graviton self-energy with a generic mass m,
respectively. Correspondingly, N0, N1

2
, and N1 denote the

number of scalars, fermions, and gauge bosons. As the total
self-energy is the sum of individual contributions which
satisfy the transversality condition (4.5), it is evident that
the graviton remains massless at the one-loop level. Beyond
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the 1 loop, the validity of the GLET (3.47) and the
diffeomorphism WI (2.34) play a central role to preserve
the property of masslessness of the graviton field to all
orders in perturbation theory.

V. MATTER QUANTUM CORRECTIONS
TO THE NEWTONIAN POTENTIAL

Having computed the matter effects on the graviton self-
energy, we can now proceed to study the one-loop quantum
corrections to the Newtonian potential VðrÞ. As we will see
in this section, the radiatively corrected Newtonian poten-
tial can be derived from the S-matrix element describing
the elastic scattering of two massive particles φ1 and φ2 in
the nonrelativistic limit. We will use these results to
determine the long and short range limits of VðrÞ and
comment on their relevance. In the massless limit of loop
particles, the known results for VðrÞ stated in the intro-
duction are reproduced.
For definiteness, we consider the scattering process

φ1ðp1Þφ2ðp2Þ → φ1ðk1Þφ2ðk2Þ, where φ1 and φ2 are two
different gauge-singlet scalars. The action describing the
interaction of φ1;2 with gravity is given by

Sφ ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðgμν∂μφ1∂νφ1 −m2
1φ

2
1

þ gμν∂μφ2∂νφ2 −m2
2φ

2
2Þ; ð5:1Þ

where m1 and m2 are the masses of the fields φ1 and φ2,
respectively. We shall use this action to derive the Feynman
rules for the interactions of φ1 and φ2 to the graviton field
hμν. The analytical expressions for the relevant vertices are
given in the Appendix.

A. Tree-level Newtonian potential

It is instructive to briefly review how the classical
Newtonian potential can be inferred from the tree-level
S-matrix element of a given process φ1ðp1Þφ2ðp2Þ →
φ1ðk1Þφ2ðk2Þ. As illustrated in Fig. 5, such a process
proceeds at tree level via the exchange of a single graviton
in the t channel. The momentum space amplitude Mtree is
given by

iMtree ¼ iVμν
φ1φ1h

ðp1;−k1ÞΔ0;μν;ρσðqÞVρσ
φ2φ2h

ðp2;−k2Þ
ð5:2Þ

where qμ¼ðp1−k1Þμ¼ðp2−k2Þμ is the four-momentum
of the graviton, Vμν

φ1φ1h
and Vρσ

φ2φ2h
are the tree-level vertex

functions for the φ1φ1h and φ2φ2h vertices, respectively,
and Δ0;μν;ρσðqÞ is the tree-level graviton propagator.
Let us briefly discuss the gauge independence of the tree-

level graph. The graviton propagator depends on the gauge
fixing parameters ξD and σ. However, as a consequence of
the Ward identity of diffeomorphisms, the vertex functions
Vμν
φ1φ1h

ðp1;−k1Þ and Vμν
φ2φ2h

ðp2;−k2Þ satisfy

ðp1 − k1ÞμVμν
φ1φ1h

ðp1;−k1Þ ¼ 0;

ðp2 − k2ÞμVμν
φ2φ2h

ðp2;−k2Þ ¼ 0; ð5:3Þ

when the scalar fields are taken to be on shell. As all
dependence on the gauge-fixing parameters ξD and σ is
carried by terms proportional to the longitudinal four-
momentum qμ (see the Appendix for an expression for the
graviton propagator), all ξD- and σ-dependent terms vanish
thanks to (5.3), thus yielding a gauge-invariant result under
the group of diffeomorphisms. In fact, this is equivalent to
replacing the graviton propagator with the propagator in the
gauge ξD ¼ 1

2
, σ ¼ 1 (known as the harmonic or de Donder

gauge):

Δ0;μν;ρσðqÞ →
Pμνρσ

q2 þ iϵ
: ð5:4Þ

The nonrelativistic limit of the amplitude Mtree is
obtained by expanding in the three-momenta of the external
fields and considering only terms that diverge in the IR
limit of vanishing three-momenta. These terms have been
called nonanalytic terms in [30]. Expanding the tree-level
vertex functions, Vφ1φ1h and Vφ2φ2h, about the three-
momenta of the external particles, we obtain the leading
terms of the expansion:

Vμν
φ1φ1h

¼ iκm2
1δ

μ
0δ

ν
0; Vμν

φ2φ2h
¼ iκm2

2δ
μ
0δ

ν
0: ð5:5Þ

Employing the elementary identities given in (5.3), the tree-
level amplitude Mtree in (5.2) takes on the simple form in
the nonrelativistic limit:

Mtree ¼ −
κ2m2

1m
2
2

j~qj2 ð5:6Þ

where j~qj ¼ j~p1 − ~k1j is the three-momentum of the
exchange graviton.
To derive the Newtonian potential from the scattering

amplitude Mtree, we use the relation [30]FIG. 5. The tree-level scattering diagram.
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Vð~rÞ ¼ 1

2m1

1

2m2

Z
d3q
ð2πÞ3 e

i~q·~rMtreeð~qÞ: ð5:7Þ

Note that the factors 1=2m1 and 1=2m2 result from the
normalization of single particle states. Using the definition
κ2 ¼ 16πG and the well-known result for the integralZ

d3q
ð2πÞ3 e

i~q·~r 1

j~qj2 ¼
1

4πr
; ð5:8Þ

we obtain the scattering potential

VðrÞ ¼ −
Gm1m2

r
; ð5:9Þ

which is the classical Newtonian potential. Notice that VðrÞ
has been obtained by pure quantum field-theoretic means,
and is manifestly gauge invariant and process independent,
i.e. the same result would have been obtained, if we had
considered fermions or vector bosons, instead of scalars, as
external particles.

B. Matter quantum corrections

We shall now compute the one-loop matter quantum
corrections to the scattering process φ1φ2 → φ1φ2, shown
in Fig. 5. Given that φ1 and φ2 are gauge singlets, only self-
energy effects contribute to this process, as illustrated in
Fig. 6. If these scalar fields were charged under a Uð1Þ
gauge group, one must also include vertex and box
contributions. The case of an elastic scattering with charged
scalars was studied in [29], while the scattering process
with external charged fermions underUð1Þwas analyzed in
[32]. However, we note that quantum effects on the
Newtonian potential do not depend on the specific nature
of the external scattered particles, i.e. the quantum effects
are process independent.
We should remark here that the use of a one-loop

resummed graviton propagator proves necessary. A con-
ventional perturbative expansion in terms of graviton self-
energies produces corrections to the potential which are
linear in the separation, i.e. ∝ r, when the loop mass is

nonzero. This contribution diverges as r → ∞. We shall
show that only a calculation of the potential based on the
resummed graviton propagator gives the correct asymptotic
behavior.

1. The amplitude and its nonrelativistic limit

The one-loop transition amplitude shown in Fig. 6 is
given by

iM1-loop ¼ iVμν
φ1φ1h

ðp1;−k1ÞΔμν;ρσðqÞVρσ
φ2φ2h

ðp2;−k2Þ;
ð5:10Þ

where Δμν;ρσðqÞ is the resummed graviton propagator.
To achieve this resummation at one-loop order, we must
resum the Dyson series of the one-loop graviton self-energy
graphs. Specifically, the resummed graviton propagator
Δμν;ρσðqÞ is defined by the equation

ðΔ−1μν;αβ
0 ðqÞ þ Πμν;αβ

R ðqÞÞΔαβ;ρσðqÞ ¼
1

2
ðδρμδσν þ δσμδ

ρ
νÞ:

ð5:11Þ
Here, Δ−1μν;ρσ

0 ðqÞ is the tree-level inverse propagator and
Πμνρσ

R ðqÞ is the renormalized graviton self-energy which
has been calculated explicitly in Sec. IV.
In order to invert the relation (5.11), we first write the

resummed graviton propagator in terms of its possible form
factors:

Δμν;ρσðqÞ ¼ qμqνqρqσΔ1ðq2Þ þ ημνηρσΔ2ðq2Þ þ ðημρηνσ þ ηνρημσÞΔ3ðq2Þ
þ ðημνqρqσ þ ηρσqμqνÞΔ4ðp2Þ þ ðημρqνqσ þ ηνρqμqσ þ ημσqνqρ þ ηνσqμqρÞΔ5ðq2Þ: ð5:12Þ

Employing the method of orthogonal projectors, we
find

Δ1ðq2Þ ¼
4

3ðq2Þ2ðq2 − 4F3ðq2ÞÞ
−

4

3ðq2Þ2ðq2 þ 3F2ðq2Þ þ 2F3ðq2ÞÞ
; ð5:13Þ

Δ2ðq2Þ ¼ −
2

3ðq2 − 4F3ðq2ÞÞ
−

1

3ðq2 þ 3F2ðq2Þ þ 2F3ðq2ÞÞ
; ð5:14Þ

Δ3ðq2Þ ¼
1

ðq2 − 4F3ðq2ÞÞ
; ð5:15Þ

FIG. 6. The class of diagrams corresponding to matter effects.
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Δ4ðq2Þ ¼
2

3q2ðq2 − 4F3ðq2ÞÞ
−

2

3q2ðq2 þ 3F2ðq2Þ þ 2F3ðq2ÞÞ
; ð5:16Þ

Δ5ðq2Þ ¼
1

ðq2Þ2 −
1

q2ðq2 − 4F3ðq2ÞÞ
; ð5:17Þ

where F2, F3 are the graviton self-energy form factors
defined in (4.6).
Let us now discuss the gauge dependence of this

amplitude. Writing out the full Dyson series for the
resummed propagator, we obtain

Δμν;ρσ ¼ Δ0μν;ρσ − Δ0μν;αβΠ
αβ;γδ
R Δ0γδ;ρσ

þ Δ0μν;αβΠ
αβ;γδ
R Δ0γδ;λκΠ

λκ;ϵζ
R Δ0ϵζ;ρσ þ � � � :

ð5:18Þ
Given that the tree-level propagators must contract with
either the tree-level vertex functions Vμν

φ1φ1h
or Vμν

φ2φ2h
,

where the scalars are on shell, or the renormalized graviton
self-energy Πμν;ρσ

R , any term in the propagator which
explicitly depends on components of the longitudinal
four-momenta qμ will vanish due to the identities (5.3)
and (4.5). As a consequence, the one-loop transition
amplitude M1-loop becomes independent of the gauge-
fixing parameters ξD and σ of the diffeomorphisms. Like
the tree-level case, we can use the harmonic gauge for the
graviton propagator [cf. (5.4)] to simplify the calculation.
In the nonrelativistic limit, the one-loop amplitude

becomes

M1-loop ¼ −κ2m2
1m

2
2

�
4

3

�
1

j~qj2 þ 4F3ð−j~qj2Þ
�

þ 1

3

�
1

3F2ð−j~qj2Þ þ 2F3ð−j~qj2Þ − j~qj2
��

:

ð5:19Þ

This amplitude diverges as j~qj → 0, since both the form
factors F2 and F3 vanish in this limit, thanks to (4.7). This
singularity of the transition amplitudeM1-loop as j~qj → 0 is
a simple manifestation of the masslessness of the graviton
field. When going to the nonrelativistic limit, the presence
of a particle with mass m in the loop requires special care,
as m is another dimensionful parameter entering the
calculation of the amplitude. In this case, one needs to
proceed carefully and compare the size of j~qj to m, rather
than simply taking the IR limit j~qj ≪ 1. In fact, one has to
distinguish between three possible cases for a loop particle
with mass m: j~qj ≫ m, j~qj ∼m, and j~qj ≪ m. In the
calculation that follows, we first compute the potential
in the general case, before translating the aforementioned
three limits into position space.

2. Computation of the scattering potential

Our aim is now to compute the Newtonian potential
from the one-loop transition amplitude. As before, we may
define the Newtonian potential in close analogy to (5.7),
which may be represented by the one-dimensional integral
of the Fourier transform:

VðrÞ ¼ −
i

ð2πÞ2
Z

∞

−∞
dq

�
q
r
eiqrcM1-loopðqÞ

�
; ð5:20Þ

where q≡ j~qj and cM1-loop ≡ 1
2m1

1
2m2

M1-loop. The above
expression (5.20) includes the tree-level contribution to the
potential, as well as the one-loop matter quantum correc-
tions, through the resummed graviton propagator.
In order to perform the integration, we analytically

continue q to a complex variable and integrate over a
closed contour in the complex plane which includes the
integral of interest (5.20). Given that the value of the closed
contour integral depends upon the residue of the poles
within the contour, we begin by identifying the poles of the
integrand. Explicitly, we find that there are three real poles
for the resummed graviton propagator: the standard one at
q ¼ 0 and two others that occur in the Planck mass range
at q ¼ �q0, where q0 ∼MP. The latter poles signify the
breakdown of perturbative quantum gravity and therefore
we call them Landau poles.
An analytic expression for the square q20 of the Landau

poles may be determined by searching for nonzero roots of
the denominators in (5.19). Assuming the loop masses are
small compared to 1=κ2 ¼ M2

P, we may expand the root in
powers of κ2 and its inverse. It can then be shown that the
Landau pole diverges as κ2 → 0 and that the pole is a
simple pole. Thus, the leading term in the expansion is the
term proportional to 1=κ2. Hence, we obtain the approxi-
mate analytic expression for q20:

q20 ¼
1920π2

κ2β

�
W

�
1920π2 expð−γ=βÞ

κ2μ2β

��
−1
; ð5:21Þ

with β ¼ N0 þ 3N1
2
þ 14N1 and γ ¼ 2

15
ð23N0 þ 59N1

2
þ

142N1Þ, where Ns is the number of fields of spin s ¼ 0
(scalar), 1

2
(Weyl fermion), 1 (vector boson) and WðzÞ is

the Lambert W-function defined by the inverse relation:
z ¼ WðzÞeWðzÞ.
One may wonder whether there are other complex poles,

in addition to the three real poles mentioned above. To
address this question, we use the argument principle, which
states that, for some complex function fðzÞ, it holds

1

2πi

I
γ

f0ðzÞ
fðzÞ dz ¼ N − P; ð5:22Þ

where N is the number of roots of fðzÞ, P is the number of
poles of fðzÞ, and γ is a closed contour which contains the
entire complex plane while excluding the branch cuts of the
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function. The integrand qe−qrM̂1-loopðqÞ may be split into
two parts f1ðqÞ and f2ðqÞ:

f1ðqÞ ¼ −
κ2m1m2

3

�
qe−qr

−q2 þ 4F3ðq2Þ
�
;

f2ðqÞ ¼ −
κ2m1m2

12

�
qe−qr

3F2ðq2Þ þ 2F3ðq2Þ þ q2

�
; ð5:23Þ

as there are two terms in (5.19). We now observe that, for
every matter field in the loop with mass m, there are two
branch cuts in the complex plane for f1ðqÞ and f2ðqÞ. The
first branch cut is along the positive imaginary interval
½2mi;þi∞Þ, while the second one is along the negative
imaginary interval ½−2mi;−i∞Þ. Taking these two branch
cuts into account, we may determine N − P for both
functions independently, using the contour γ depicted in
Fig. 7. In both cases, we obtain

N − P ¼ −3: ð5:24Þ

Since the form factors F2ðq2Þ, F3ðq2Þ do not diverge
for finite values of q, f1ðqÞ and f2ðqÞ have no roots.
This gives P ¼ 3 for both functions. Substituting the
expression for the Landau poles (5.21) into the denom-
inator of each function, we obtain zero in both cases
when the loop masses are small compared to MP.
Therefore, both functions diverge at the same points:
the real pole at q ¼ 0 and the two Landau poles
q2 ¼ q20. Consequently, the resummed graviton propa-
gator and so M̂1-loopðqÞ has no other complex poles that
we need to worry about.

Knowing the location of the three real poles, we may
construct a closed contour to compute the Fourier
transform (5.20), which is illustrated in Fig. 8. By
means of this contour, we may evaluate the potential as
follows:

VðrÞ ¼ VresðrÞ þ VbranchðrÞ; ð5:25Þ
where

VresðrÞ ¼
1

2πr

X
n

ResðqeiqrM̂1-loopðqÞ; qnÞ

−
i

ð2πÞ2r
X3
i¼1

lim
ϵi→0þ

Z
γϵi

dqðqeiqrM̂1-loopðqÞÞ;

ð5:26Þ

VbranchðrÞ

¼ −
1

2π2r
lim
ϵ→0þ

Z
∞

2m
dqqe−qrImðM̂1-loopðiqþ ϵÞÞ;

ð5:27Þ

and ResðqeiqrM̂1-loopðqÞ; qnÞ stands for the residue of a
given complex pole qn. The summation in the first term
of VresðrÞ is taken over all complex poles, qn, of
qeiqrM̂1-loopðqÞ. There are no contributions from the
γR1 and γR2 contours, as they vanish as the radius of the
contour R goes to infinity. We note that for a radius R
bigger than the size of the Landau pole q0, the
contributions γϵ1 and γϵ3 must be included.
Let us first analyze the residue at the physical pole q ¼ 0

for the resummed one-loop amplitude. This is given by

ResðqeiqrM̂1-loopðqÞ; 0Þ ¼ −α
κ2m1m2

4
; ð5:28Þ

where

FIG. 7. The contour used for the complex integral in (5.22) to
compute the number of poles and roots for a single loop mass m.
This contour covers the whole complex plane as R → ∞, while
excluding the two branch cuts indicated by the zigzag lines.

FIG. 8 (color online). The contour used to compute the Fourier
transform in (5.20). For a generic nonzero loop massm, there is a
branch cut that starts at 2mi and extends to i∞ as illustrated by
the zigzag line.
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α ¼ 1

4

�
4

3

�
1 − 4

Xn
i¼1

ai

�
−1

−
1

3

�
1þ 2

Xn
i¼1

ai þ 3
Xn
i¼1

bi

�
−1
�
; ð5:29Þ

with

ai ¼
∂F2;iðq2Þ

∂q2
				
q2¼0

; bi ¼
∂F3;iðq2Þ

∂q2
				
q2¼0

: ð5:30Þ

In the above, Fj;i is the jth form factor of the ith field and n
is the number of fields. The formulas for ai and bi derived
from (5.30) only hold if the form factors have nonzero loop
mass (or are analytic in q2). If all particle masses in the
loops vanish, we have ai ¼ bi ¼ 0, implying that α ¼ 1.
As for the residues of the Landau poles, we shall not

include them in the calculation, as these are related with the
potential UV completion of the theory of quantum gravity.
The simplest way to achieve this is to introduce a UV cutoff
just below the Landau pole q0 in the Fourier transform
(5.20). In this case, the contributions from the γR1 and γR2
contours will not vanish, but the cutoff integral will differ
by terms of Oðm=q0Þ in comparison to the other Oð1Þ
terms. Therefore, we may safely ignore these cutoff sup-
pressed contributions in favor of the other leading terms of
order one.
We may now compute VresðrÞ, using the result for the

residue in (5.28). Computing the remaining contour inte-
gral γϵ2 in (5.26) gives rise to the potential

VresðrÞ ¼ −α
Gm1m2

r
: ð5:31Þ

Evidently, this is a rescaled version of the Newtonian
potential. Specifically, for a scalar field of mass mH, we
have

aH ¼ ∂F2;Hðp2Þ
∂p2

				
p2¼0

¼ κ2m2
H

384π2

�
ln

�
m2

H

μ2

�
− 1

�
;

bH ¼ ∂F3;Hðp2Þ
∂p2

				
p2¼0

¼ −
κ2m2

H

768π2

�
ln

�
m2

H

μ2

�
− 1

�
:

ð5:32Þ

For a fermion of mass mψ , we obtain

aψ ¼ ∂F2;ψ ðp2Þ
∂p2

				
p2¼0

¼ κ2m2
ψ

192π2

�
ln

�
m2

ψ

μ2

�
− 1

�
;

bψ ¼ ∂F3;ψ ðp2Þ
∂p2

				
p2¼0

¼ −
κ2m2

ψ

384π2

�
ln

�
m2

ψ

μ2

�
− 1

�
: ð5:33Þ

Finally, for a massive gauge field of mass mA (without
ghosts), we find

aA ¼ ∂F2;Aðp2Þ
∂p2

				
p2¼0

¼ −
κ2m2

A

192π2

�
ln

�
m2

A

μ2

�
− 2

�
;

bA ¼ ∂F3;Aðp2Þ
∂p2

				
p2¼0

¼ κ2m2
A

384π2

�
ln

�
m2

A

μ2

�
− 2

�
: ð5:34Þ

Astronomical observations can only measure the
combination αG, rather than G alone, thus leading to
a renormalization of the Newtonian constant G. However,
we should note that the quantity α differs significantly
from 1 when the loop masses are comparable to the
Planck mass MP, which is a case that we will not be
considering here.

3. The branch cut contribution

Our next task is to compute the branch cut contribution
VbranchðrÞ. To deal with the complexity of the integrand,
we rewrite the one-loop corrected Newtonian potential as
follows:

VðrÞ ¼ −
Gm1m2

r
ðαþ ΔVðrÞÞ; ð5:35Þ

where the coefficient α given by (5.29) pertains to the
residue contributions and the dimensionless quantity
ΔVðrÞ refers to the part of the potential resulting from
the branch cut, i.e.

VbranchðrÞ ¼ −
Gm1m2

r
ΔVðrÞ: ð5:36Þ

We observe that the integral VbranchðrÞ can be computed
accurately by taking the first order term in a perturbative
expansion in κ2. To leading order in κ2, the contributions to
VbranchðrÞ from scalar (H), fermion (ψ) and gauge boson
(Aμ) loops may be calculated individually, such that ΔVðrÞ
is given by the sum:

ΔVðrÞ ¼ ΔVHðrÞ þ ΔVψðrÞ þ ΔVAðrÞ: ð5:37Þ

We will first present the calculation for the scalar loops
and then simply state the results of the fermion and gauge
fields. The branch cut effect due to a massive Higgs boson
H is given by the integral

ΔVHðrÞ ¼
G
60π

Z
∞

2m
dqe−qr

�
3 −

4m2
H

q2
þ 28m4

H

q4

�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 4m2

H

q
; ð5:38Þ

which is analytically calculable. Using the substitution
q ¼ 2mH cosh x, ΔVHðrÞ may be rewritten as
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ΔVHðrÞ ¼
Gm2

H

15π

Z
∞

0

dxe−2mr cosh xðcosh2x − 1Þ

×

�
3 − sech2xþ 7

4
sech4x

�
: ð5:39Þ

To proceed further, we first remind ourselves that the
modified Bessel functions of the second kind Kαðr̂Þ have
the integral representation

Kαðr̂Þ ¼
Z

∞

0

dxe−r̂ cosh x coshðαxÞ; ð5:40Þ

and so it is

K0ðr̂Þ ¼
Z

∞

0

dxe−r̂ cosh x: ð5:41Þ

Moreover, we can use the the hyperbolic trigonometric
identity cosh2x ¼ ð1þ cosh 2xÞ=2 to calculate the follow-
ing integral:Z

∞

0

dxe−r̂ cosh xcosh2x ¼ 1

2
ðK0ðr̂Þ þ K2ðr̂ÞÞ: ð5:42Þ

Apart from integrals containing cosh x, there are also
integrals involving sech x, defined as

InðrÞ ¼
Z

∞

0

dxe−r cosh xsechnx: ð5:43Þ

We may compute the functions InðrÞ recursively, by means
of integration by parts. The relevant integrals of interest are

I1ðrÞ¼
Z

∞

r
dxK0ðxÞ

¼−
1

2
πðrL−1ðrÞK0ðrÞþrL0ðrÞK1ðrÞ−1Þ; ð5:44Þ

I2ðrÞ ¼ rðK1ðrÞ − I1ðrÞÞ; ð5:45Þ

I3ðrÞ ¼
1

2
ðrK0ðrÞ − rI2ðrÞ þ I1ðrÞÞ; ð5:46Þ

I4ðrÞ ¼
2

3
I2ðrÞ þ

r
3
ðI1ðrÞ − I3ðrÞÞ; ð5:47Þ

where LαðrÞ is the modified Struve function which has the
integral representation

LαðrÞ ¼
21−αrαffiffiffi
π

p
Γðαþ 1

2
Þ
Z π

2

0

dx sinhðr cos xÞsin2αx; ð5:48Þ

for ReðαÞ > − 1
2
. The latter representation may be analyti-

cally continued to include other values of the index α of the
modified Struve function LαðrÞ.
We are now in a position to analytically compute the

branch cut term ΔVHðrÞ in terms of the modified Bessel
and Struve functions. Defining the dimensionless parameter
r̂H ¼ 2mHr, we obtain for the Higgs-scalar contribution:

ΔVHðrÞ ¼ −
Gm2

H

360π

�
1

2
πð7r̂2H − 45Þr̂2HðL−1ðr̂HÞK0ðr̂HÞ þ L0ðr̂HÞK1ðr̂HÞÞ −

7πr̂3H
2

þ 45πr̂H
2

ð5:49Þ

þ7r̂3HK1ðr̂HÞ − 7r̂2HK0ðr̂HÞ − 38r̂HK1ðr̂HÞ þ 60K0ðr̂HÞ − 36K2ðr̂HÞ
�
: ð5:50Þ

Similarly, for a Dirac fermion ψ , we define the dimensionless parameter r̂ψ ¼ 2mψr, in terms of which the branch-cut
contribution reads

ΔVψðrÞ ¼ −
Gm2

ψ

180π

�
1

2
πð7r̂2ψ − 15Þr̂2ψðL−1ðr̂ψ ÞK0ðr̂ψÞ þ L0ðr̂ψ ÞK1ðr̂ψ ÞÞ −

7πr̂3ψ
2

þ 15πr̂ψ
2

ð5:51Þ

þ7r̂3ψK1ðr̂ψÞ − 7r̂2ψK0ðr̂ψÞ − 8r̂ψK1ðr̂ψ Þ − 30K0ðr̂ψ Þ þ 24K2ðr̂ψÞ
�
: ð5:52Þ

Finally, the branch-cut contribution arising from a Uð1Þ gauge boson Aμ and its associate ghost field is given by

ΔVAðrÞ ¼ −
Gm2

A

360π
½πð7r̂2A þ 195Þr̂2AðL−1ðr̂AÞK0ðr̂AÞ þ L0ðr̂AÞK1ðr̂AÞÞ − 7πr̂3A − 195πr̂A ð5:53Þ

þ 14r̂3AK1ðr̂AÞ − 14r̂2AK0ðr̂AÞ þ 404r̂AK1ðr̂AÞ − 240K0ðr̂AÞ − 192K2ðr̂AÞ�; ð5:54Þ

with r̂A ¼ 2mAr. We have checked that our perturbative analytical expressions for the branch cut contributions are in
excellent agreement with numerical results derived by using the fully resummed graviton propagator to less than 1 part
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in 10−16. Plots of the different contributions to the potential
for different loop masses are given in Fig. 9. These plots
demonstrate the exponential decay of loop effects due to
particles with nonzero mass, as a function of distance r.
Using the above analytical results, it is not difficult to

verify that the loop-corrected potential exhibits the desir-
able property:

lim
r→∞

VðrÞ ¼ 0: ð5:55Þ

To see this explicitly, we use the large-r asymptotic
formulas for the modified Bessel and Struve functions:

KαðrÞ ∼
ffiffiffiffiffi
π

2r

r
e−r; LαðrÞ ∼

ffiffiffiffiffiffiffiffi
1

2πr

r
er −

21−αrα−1ffiffiffi
π

p
Γðαþ 1

2
Þ :

ð5:56Þ

In particular, for the scalar case, the branch-cut term
ΔVHðrÞ for r̂H ≫ 1 simplifies to

ΔVHðrÞ ¼ −
7Gm2

H

240
ffiffiffiffiffiffiffiffiffiffi
πmH

p
�
e−2mHrffiffiffi

r
p −

2

3
mH

ffiffiffi
r

p
e−2mHr

�
:

ð5:57Þ

For the fermion case, we have for r̂ψ ≫ 1,

ΔVψ ðrÞ¼
7Gm2

ψ

60
ffiffiffiffiffiffiffiffiffi
πmψ

p
�
e−2mψ rffiffiffi

r
p −

2

3
mψ

ffiffiffi
r

p
e−2mψ r

�
ð5:58Þ

and for the gauge boson case for r̂A ≫ 1,

ΔVAðrÞ ¼ −
7Gm2

A

120
ffiffiffiffiffiffiffiffiffi
πmA

p
�
e−2mArffiffiffi

r
p −

2

3
mA

ffiffiffi
r

p
e−2mAr

�
:

ð5:59Þ

In the opposite limit where r̂H;ψ ;A ≪ 1, we find respec-
tively for the scalar, Dirac fermion, and gauge-boson
contributions to ΔVðrÞ that

ΔVHðrÞ ¼
G

20πr2
þ Gm2

H

6π

�
lnðmHrÞ þ γE þ 1

3

�
þOðr̂Þ;

ð5:60Þ

ΔVψðrÞ ¼
G

15πr2
þ Gm2

ψ

3π

�
lnðmψrÞ þ γE −

2

3

�
þOðr̂Þ;

ð5:61Þ
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FIG. 9 (color online). Estimates of the branch-cut terms ΔVHðrÞ, ΔVψ ðrÞ, and ΔVAðrÞ resulting from scalar, fermion, and gauge
fields, as functions of the distance r, are shown in the upper left, upper right, and lower panels, respectively.
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ΔVAðrÞ ¼
4G

15πr2
−
2Gm2

A

3π

�
lnðmArÞ þ γE −

25

12

�
þOðr̂Þ:

ð5:62Þ

In the above small-r̂ expansion, the first term on the right-
hand side of the above equations represents the correction
to the potential assuming that the particle in the loop is
strictly massless. These leading terms are consistent with
the ones presented in the literature [26,30,34,35]. For
massive fields, however, the relevant subleading correction
to ΔVðrÞ is logarithmically enhanced in r, as long as
r ≪ 1=2m.

VI. CONCLUSIONS

We have revisited the calculation of matter quantum
effects on the graviton self-energy, assuming a flat
Minkowski background metric. One of the central goals
of our study has been to obtain a deeper understanding of the
underlying mechanism that renders the graviton massless. To
this end, we have first considered a gauged Abelian Higgs
model, which has been quantized within the framework
of the background field method. After writing down the
respective diffeomorphically invariant path integral, we have
derived a master Ward identity for the path integral as a
consequence of its invariance under diffeomorphisms. This
Ward identity does not ensure by itself the transversality of
the graviton self-energy. The latter property of masslessness
of the graviton is only obtained upon imposing minimization
conditions to the effective action. In this respect, we have
found that the minimization of the effective action is strongly
related with the renormalization of the cosmological constant
Λ, and this relation can be enforced to all orders in
perturbation theory, by means of a graviton low-energy
theorem, which we derived in this paper.
In the context of the Abelian Higgs model mentioned

above, we have also calculated the matter quantum cor-
rections to the Newtonian potential. As we have not
considered graviton quantum loop effects in our study, it
is evident that matter contributions to the graviton self-
energy are independent of the gauge fixing parameters ξD
and σ of the diffeomorphisms. In our calculations, however,
the gauge dependence due to diffeomorphisms does for-
mally enter when considering the resummed graviton
propagator. Nevertheless, when calculating the S-matrix
amplitude for the scattering of two scalar fields, this
background gauge dependence is removed by virtue of
the Ward identity derived in Sec. II and the fact that the
gravitationally scattered particles are on their mass shell.
Hence, the analytic results we have presented in this article
are diffeomorphisms invariant. On the other hand, gauge-
boson loops have been calculated in the Feynman-’t Hooft
gauge ξG ¼ 1. Since S-matrix elements are independent of
the gauge-fixing parameter ξG, the graviton self-energy is
expected to be independent of ξG as well, especially

when considering the elastic gravitational scattering of
two gauge-singlet scalars. As a consequence, we expect
that the Newtonian potential VðrÞ will not depend on the
gauge-fixing parameter ξG.
Treating quantum gravity as an effective field theory,

we have presented analytical formulas for matter quantum
effects on the Newtonian potential VðrÞ, in terms of
modified Bessel and Struve functions which depend on
the particle masses in the loop. Thus, we have found that
the corrections to VðrÞ exhibit an exponential falloff
dependence on the distance r, once the nonrelativistic limit
with respect to the nonzero loop masses is properly taken
into account. In the massless limit of scalars, fermions, and
gauge bosons in the loops, we recover the well-known
results that have been presented in the literature.
Like the well-known Higgs-boson low-energy theorem

that holds in particle-physics models, such as the Standard
Model, the GLET is a very powerful theorem. As was
explicitly shown in this paper, both the GLET (3.47) and
the diffeomorphism WI (2.34) are required to forbid the
appearance of a mass for the graviton field, which might
be induced by quantum-loop effects. We have derived the
GLET for a flat geometry, where a global shift symmetry
between the background graviton field and the Minkowski
metric exists. Given the property of background independ-
ence of the background field method, we expect to be
able to extend this theorem to general curved background
metrics. However, such a generalization is beyond the
scope of the present paper. We hope to be able to report
progress on this issue in a forthcoming communication.
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APPENDIX: FEYNMAN RULES

In this appendix we list all relevant Feynman rules which
have been used in our calculations. We define all momenta
as outgoing from the vertex, obeying energy-momentum
conservation.

1. Graviton propagator

Since our computations pertain to gauge-invariant S-
matrix amplitudes, we employ the simplified form of the
graviton propagator in the harmonic gauge, which is given
by the right-hand side of (5.4). For this choice of gauge,
the diffeomorphisms gauge-fixing parameters ξD and σ take
on the values ξD ¼ 1, σ ¼ 1=2. For completeness, however,
we present the general expression for the tree-level graviton
propagator for arbitrary gauge parameters ξD and σ:
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(A1)

with Pμνρσ ¼ ημρηνσ þ ημρηνσ − ημνηρσ .

2. Graviton-Scalar-Scalar Vertex

The coupling for the scalar-scalar-graviton vertex HðpÞ-HðqÞ-hμνðlÞ reads

(A2)

3. Graviton-graviton-scalar-scalar vertex

The quartic coupling HðpÞ-HðqÞ-hμνðlÞ-hρσðkÞ is given by

(A3)

where

Iμνρσ ≡ 1

2
ðημρηνσ þ ημσηνρÞ: ðA4Þ

Note that the quartic coupling HðpÞ-HðqÞ-hμνðlÞ-hρσðkÞ only depends on the four-momenta p and q of the scalar particles.
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4. Graviton-fermion-fermion vertex

The fermion-fermion-graviton interaction ψ̄ðpÞ-ψðqÞ-hμνðlÞ is given by

(A5)

5. Graviton-graviton-fermion-fermion coupling

The fermion-fermion-graviton-graviton interaction ψ̄ðpÞ-ψðqÞ-hμνðlÞ-hρσðkÞ reads

(A6)

Like in the scalar case, the quartic coupling ψ̄ðpÞ-ψðqÞ-hμνðlÞ-hρσðkÞ only depends on the four-momenta p and q of the
fermion particles.

6. Graviton-gauge-gauge vertex

The interaction vertex involving two gauge bosons AρðpÞ and AσðqÞ and one graviton hμνðlÞ is given by

(A7)
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7. Graviton-graviton-gauge-gauge quartic coupling

The quartic coupling involving two gauge bosons AαðpÞ and AβðqÞ and two gravitons hμνðlÞ and hρσðkÞ is found to be

(A8)

where

Lμνρσαβðp; qÞ ¼ ηνρημσpβqα þ ημρηνσpβqα þ ηβνηρσpμqα − ηβσημρpνqα − ηβρημσpνqα þ ηβμηρσpνqα þ ημνηβσpρqα

−ηβνημσpρqα − ηβμηνσpρqα − ηβσpμηνρqα − ηβμpσηνρqα þ ημνηβρpσqα − ηβνημρpσqα − ηβρpμηνσqα

−pβημνηρσqα þ ηανηρσpβqμ þ ηβρηασpνqμ þ ηαρηβσpνqμ − ηανηβσpρqμ þ ηαβηνσpρqμ − ηασpβηνρqμ

−ηανηβρpσqμ þ ηαβηνρpσqμ − ηαρpβηνσqμ − ηαβpνηρσqμ þ ηαμηρσpβqν þ ηβρηασpμqν þ ηαρηβσpμqν

−ηαμηβσpρqν þ ηαβημσpρqν − ηασpβημρqν − ηαμηβρpσqν þ ηαβημρpσqν − ηαρpβημσqν − ηαβpμηρσqν

þημνηασpβqρ − ηασηβνpμqρ þ ηαβηνσpμqρ − ηασηβμpνqρ þ ηαβημσpνqρ þ ηβμηανpσqρ þ ηαμηβνpσqρ

−ηαβημνpσqρ − ηανpβημσqρ − ηαμpβηνσqρ þ ημνηαρpβqσ − ηαρηβνpμqσ þ ηαβηνρpμqσ − ηαρηβμpνqσ

þηαβημρpνqσ þ ηβμηανpρqσ þ ηαμηβνpρqσ − ηαβημνpρqσ − ηανpβημρqσ − ηαμpβηνρqσ; ðA9Þ

Kμνρσαβ ¼ ηαμηβρηνσ þ ηαβημνηρσ þ ηασηβνημρ þ ηανηβσημρ þ ηαρηβνημσ þ ηανηβρημσ þ ηασηβμηνρ þ ηαμηβσηνρ

þ ηαρηβμηνσ − ηαβησμηνρ − ηαβημρηνσ − ηανηβμηρσ − ηαμηβνηρσ − ηασηβρημν − ηαρηβσημν; ðA10Þ

Mμνρσαβðp; q; lÞ ¼ ηνρημσpβpα þ ημρηνσpβpα þ ηνρημσqβpα þ ημρηνσqβpα þ ηβνηρσpμpα þ ηβνηρσqμpα þ ηβνηρσlμpα

− ηβσημρpνpα − ηβρημσpνpα þ ηβμηρσpνpα þ ηβμηρσqνpα þ ηβμηρσlνpα þ ημνηβσpρpα − ηβνημσpρpα

− ηβμηνσpρpα − ηβσpμηνρpα − ηβμpσηνρpα þ ημνηβρpσpα − ηβνημρpσpα − ηβρpμηνσpα − pβημνηρσpα

− qβημνηρσpα − lβημνηρσpα þ ηανηρσpμpβ þ ηανηρσlμpβ þ ηαμηρσpνpβ þ ηαμηρσlνpβ − lαημνηρσpβ

þ ηανηρσqβpμ þ ηανηρσlβpμ − ηανηβσpρpμ − ηανηβσlρpμ − ηανηβρpσpμ − ηανηβρlσpμ þ ηαμηρσqβpν

þηαμηρσlβpν − ηαμηβσpρpν − ηαμηβσlρpν − ηαμηβρpσpν − ηαμηβρlσpν þ ημνηβσlαpρ − ηανηβσlμpρ

−ηαμηβσlνpρ þ ημνηβρlαpσ − ηανηβρlμpσ − ηαμηβρlνpσ þ ηβνηρσqμlα þ ηβμηρσqνlα þ ηνρημσqαqβ

þημρηνσqαqβ þ ημνηασqρlβ þ ημνηαρqσlβ þ ηβνηρσqαqμ þ ηανηρσqβqμ þ ηβνηρσqαlμ þ ηβνηρσlαlμ

þηανηρσqβlμ þ ηανηρσlβlμ þ ηβμηρσqαqν þ ηαμηρσqβqν − ηασqβημρqν − ηαρqβημσqν þ ηβμηρσqαlν

þηβμηρσlαlν þ ηαμηρσqβlν þ ηαμηρσlβlν þ ημνηασqβqρ − ηασηβνqμqρ − ηασηβνlμqρ − ηασηβμqνqρ

−ηασηβμlνqρ − ηανqβημσqρ − ηαμqβηνσqρ þ ημνηβσlαlρ þ ημνηασlβlρ − ηασηβνqμlρ − ηασηβνlμlρ

−ηανηβσlμlρ − ηασηβμqνlρ − ηασηβμlνlρ − ηαμηβσlνlρ − ηασqβqμηνρ − ηαμqβqσηνρ þ ημνηαρqβqσ

−ηαρηβνqμqσ − ηαρηβνlμqσ − ηαρηβμqνqσ − ηαρηβμlνqσ − ηανqβημρqσ þ ημνηβρlαlσ þ ημνηαρlβlσ

−ηαρηβνqμlσ − ηαρηβνlμlσ − ηανηβρlμlσ − ηαρηβμqνlσ − ηαρηβμlνlσ − ηαμηβρlνlσ − ηαρqβqμηνσ

−qαqβημνηρσ − lαqβημνηρσ − qαlβημνηρσ − 2lαlβημνηρσ: ðA11Þ
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