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We revisit the calculation of matter quantum effects on the graviton self-energy on a flat Minkowski
background, with the aim to acquire a deeper understanding of the mechanism that renders the graviton
massless. To this end, we derive a low-energy theorem which directly relates the radiative corrections of the
cosmological constant to those of the graviton mass to all orders in perturbation theory. As an illustrative
example, we consider an Abelian Higgs model with minimal coupling to gravity and show explicitly how a
suitable renormalization of the cosmological constant leads to the vanishing of the graviton mass at the one-
loop level. In the same Abelian Higgs model, we also calculate the matter quantum corrections to the
Newtonian potential and present analytical formulas in terms of modified Bessel and Struve functions of
the particle masses in the loop. We show that the correction to the Newtonian potential exhibits an
exponential fall-off dependence on the distance r, once the nonrelativistic limit with respect to the nonzero
loop mass is carefully considered. For massless scalars, fermions, and gauge bosons in the loops, we
recover the well-known results presented in the literature.
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I. INTRODUCTION

Symmetries play an instrumental role in quantum field
theory to ensure that massless particles at the classical level
remain massless against quantum loop effects. For instance,
massless vector bosons in Yang-Mills theories stay mass-
less, as a consequence of the gauge symmetry of the
effective action. This fact can be understood more easily
within the gauge-invariant framework of the background
field method [1,2], in which a nonzero mass for the
background Yang-Mills vector boson is forbidden to all
orders in perturbation theory. Likewise, massless fermions
can be protected from receiving a nonzero mass due to
chiral symmetry [3]. Scalar particles can also stay massless
to all orders, as a result of symmetries. For example,
massless scalar particles could result from the spontaneous
breakdown of a global Goldstone symmetry [4]. Other
potential symmetries leading to massless scalar particles
are supersymmetry [5,6] or classical scaling (conformal)
symmetries [7,8]. Such symmetries have been extensively
discussed within the context of a related problem in
the Standard Model (SM), the so-called gauge-hierarchy
problem [9-11].

The aim of the present paper is to shed light on the
mechanism that protects the spin-2 graviton from receiving
a nonzero mass beyond the tree level. In this context, we
should mention that matter contributions to the graviton
self-energy have already been studied in the past to a
great extent [12—-16]. However, in our opinion, the actual
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mechanism that lies behind the masslessness of the graviton
has not yet been adequately elucidated. In particular, a
radiatively generated graviton mass will affect the scatter-
ing of two scalar fields beyond the tree level. Such
calculations are relevant to the study of the quantum
corrected Newtonian potential and may be in conflict with
well-established observations. It is therefore important to
state here that the gauge or diffeomorphisms invariance of
the effective action, even within the linearized framework
of perturbative quantum gravity (PQG), is not sufficient
by itself to guarantee that the graviton remains massless
against quantum loop corrections. Specifically, the cosmo-
logical constant term is invariant under diffeomorphisms
and contains a mass term for the graviton. At the tree level,
this problem is resolved (see, e.g. [17]) after imposing the
equations of motion with respect to the background
graviton field, with the aid of which a would-be graviton
mass can be removed. Beyond the tree approximation,
however, the masslessness of the graviton is not an obvious
property, as this problem becomes strongly interrelated
with the renormalization of the cosmological constant A.

In quantum field theory, the pole position of a particle
propagator encodes all the information about the mass of
the particle. As we will show in this paper, the cosmological
constant A plays an important role, as it receives radiative
corrections independently of the graviton propagator. These
corrections are divergent and must be renormalized, or
otherwise naturally suppressed, to give the small value of A
that we observe in the present epoch [18,19]. Upon suitable
renormalization of the cosmological constant A to a flat
(Minkowski) background metric, the generated counter-
term (CT) SA enters the graviton self-energy explicitly
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within our linearized framework of PQG. We find that the
masslessness property of the graviton is protected by a shift
symmetry which is present in any diffeomorphisms invari-
ant theory described by a flat background metric. The
absence of the graviton mass will be explicitly demon-
strated at the one-loop level in PQG within the context of an
Abelian Higgs model.

Given that the framework of PQG is nonrenormalizable
[20-23], we follow the general lore and treat general
relativity (GR) as an effective field theory [24] with a
characteristic ultraviolet (UV) scale equal to the Planck
mass Mp. Much work has been done within this effective
field-theoretic framework, including PQG corrections to
the Newtonian and Coulomb potentials, as well as one-loop
calculations of graviton-mediated scatterings between mat-
ter fields in the nonrelativistic limit [24-33]. Taking into
account the contributions from the graviton and from
massless fields of different spin, the established analytic
result for the Newtonian potential V(r), between two
masses m; and m, being at distance r apart, may be cast
into the form [26,30,34,35]
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where G = hc/Ml% is Newton’s constant and N, is the
number of fields with spin s = 0 (scalar), % (Weyl fermion),
1 (vector boson) in units of 4. Note that the first two terms
in (1.1) correspond to the classical and quantum graviton
contributions to the Newtonian potential V(r), respectively.
The leading radiative corrections to V(r) come from the so-
called nonanalytic parts of the amplitude, which diverge in
the infrared (IR) limit of vanishing three-momenta for the
external gravitationally scattered fields. Using a similar
approach, we compute the general matter loop corrections
to the graviton propagator, as well as the modifications to
the Newtonian potential V(7). The matter contributions to
V(r) at the one-loop level affect only the graviton self-
energy in a generic 2 — 2 scattering process. Thus, we
shall show that the contributions of massive matter fields
to the resummed graviton self-energies become relevant
in the nonrelativistic limit and therefore contribute to the
Newtonian potential.

The layout of the paper is as follows. After this
introductory section, Sec. II presents a gauged Abelian
Higgs model with minimal coupling to gravity. This model
serves as an illustrative example, which will help us to
define our theoretical PQG framework that can include
scalars, fermions and spin-1 fields. Based on this frame-
work, we discuss the properties of the corresponding
diffeomorphically invariant path integral for the gauged
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Abelian Higgs model. Given that the model has no
gravitational anomalies [36], we derive the master Ward
identity (WI) associated with the invariance of the path
integral under diffeomorphisms.

In Sec. III, we study the minimization conditions
pertinent to the one-loop effective action, where the
renormalization of the cosmological constant A plays a
key role to the renormalization of the graviton tadpole
graphs. To further illuminate this deep connection, we
derive a low-energy theorem that involves graviton corre-
lation functions to all orders in perturbation theory. This
graviton low-energy theorem (GLET) may also be utilized
to obtain a nonperturbative relation between the tadpole
contributions and the graviton self-energy at zero external
momentum.

In Sec. IV, we calculate the matter contributions to the
graviton self-energy for the gauged Abelian Higgs model
with minimal coupling to gravity. To deal with UV
infinities, we adopt the method of dimensional regulariza-
tion [37]. We then proceed to renormalize the massive
matter-field contributions to the graviton self-energy, after
properly including the cosmological constant CT SA, as
well as higher-dimensional Planck-suppressed operators of
the Riemann tensor. We thus show that the graviton field
acquires no mass at the one-loop level. We explicitly
demonstrate how this result persists to all orders, as a
consequence of the GLET and the WI due to invariance of
the path integral under diffeomorphisms.

In Sec. V, we first review the tree-level calculation for the
gravitationally mediated scattering process between two
scalar fields, where the classical part of the Newtonian
potential V(r) is recovered. We then incorporate the self-
energy contributions to the graviton propagator, which is
used to determine the matter quantum corrections to the
Newtonian potential. Our analytic results are expressed
in terms of modified Bessel and Struve functions of the
particle masses in the loop. In the massless limit of the loop
masses, we reproduce the analytic result given in (1.1),
for particles with spin s = 0, %, 1. In the same section, we
comment on the independence of V(r) on the gravitational
gauge-fixing parameters, as well as on gauge-fixing
parameters due to gauge bosons in the loop. Section VI
summarizes our conclusions. Finally, relevant Feynman
rules and other technical details that were useful in our
computations have been presented in the Appendix.

II. THEORETICAL FRAMEWORK OF
QUANTUM GRAVITY

In this section, we first outline our theoretical framework
within the context of an Abelian Higgs model with minimal
coupling to gravity, by making use of the background field
method. We then write down the generating functional for
this model and discuss its invariance under transformations
of diffeomorphism. From the latter, we derive a master WI
for diffeomorpshims, which gives rise to an important WI
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that relates the graviton self-energy to the graviton tadpole
graphs to all orders in perturbation theory.

To begin with, we write down the action S of an Abelian
Higgs model minimally coupled to gravity as a sum of two
terms:

1
K

where S is the Hilbert—FEinstein action of gravity with a
cosmological constant A and Sy, = [d*x,/=gL) is the
part of the action that only contains the matter Lagrangian
L. In addition, we denote with g, the global metric of
the space and g = detg,,, while our convention for the
Minkowski metric 7, is #,, = diag(l,-1,-1,-1). In
(2.1), R is the Ricci scalar and k a gravitational coupling
constant, which is related to Newton’s constant G by
K> = 161G.

The matter action S;, describes a gauged Abelian Higgs
model based on the gauge group U(1),, which realizes
spontaneous symmetry breaking. In detail, the matter
action S, is given by

1
SM — /d4x\/—_g {—49""9”7}7,41/ po +g/w(v ¢)Tvv¢

2\ 2
—z<¢f¢ —’2’7) ] +5;.

where S, is the fermionic sector of the model, F,
d,A, — 0,A, is the field strength tensor associated w1th the
gauge field Aﬂ, and ¢ = 2( v+ H +iG) is a complex
scalar field with hypercharge Y, = 1. Moreover, V,, is the
covariant derivative with respect to both the gauge group
and the group of diffeomorphisms. Thus, for the scalar
field ¢, the covariant derivative is simply given by
V,p=0,¢—ieA,p. Here, we follow the standard pro-
cedure of general covariantization, namely by first writing
down the matter Lagrangian L;, in flat space and then
making the substitution #,, — g,, and 9, = V,. In (2.2),
we have also included an overall factor \ /=g, so as to get a
fully frame-independent action.

Adopting the background field method (BFM), we
decompose the fields into background and quantum fields
as follows:

(2.2)

H=H+H?  G=G+G2% A ,=A4,+Af

(2.3)

where an overbar denotes a background field, while
a superscript Q denotes a quantum field. The Higgs
mechanism will generate a mass m, to the gauge field
in the broken phase, given by my = ev, as well as a
mass for the Higgs field itself determined through the
relation m?%, = 20>,
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The fermionic part Sy in (2.2) of the matter action may
contain left- and right-handed chiral fermions. For sim-
plicity, we assume one Dirac fermion y with hypercharge
quantum number Y,, = 1, with vectorlike couplings to the
U(1)y gauge bosons. This simple setup is also free of chiral
anomalies [38,39]. In curved spacetime, spinors have
nontrivial transformation properties under the group of
diffeomorphisms, which is usually accounted for by the
spin connection. Hence, with the inclusion of the Dirac
fermion field y = w<, the fermionic part of the action S I
reads

1 ) 1_,.
Sp= / d*x\/=g [5 (V,r@)ieay 'y = Swlicar” (V)
(2.4)

where the covariant derivative acting on y is given by

Vol =02 -0,y - ieA2yQ. (2.5)
In the above, 6., = [y, 7] are the Lorentz-group gen-
erators in the splnorlal representation, a)“b is the spin

connection, which is determined by means of the vielbeins
e, as follows:

Wi = —g*e (D, el — eblg,). (2.6)
Note that the vielbein fields e are defined through the
relations

a,v . SH
ea_él/a

; 2.7)

9w = eﬁefnab’ elzell: = 6Z’ ¢
where the Latin indices a, b etc. refer to the tangent space
of the curved spacetime which is locally flat.

To quantize gravity within the BFM framework, we
decompose the metric g,, as

_ 7 0y _ - 0

g;w - 77;41/ + K(h/w + h;w) - g;w + Khﬂv’ (28)
where hMQy is the quantum fluctuation of the metric, h
the background field and g, = 1, + Kh . In the absence
of a classical gravitational field 4, we have Gy = M, and
the curved space reduces to a Minkowski flat space in this
case. In this paper, we will consider a flat background to
carry out perturbative calculations within the framework of
linearized quantum gravity.

To eliminate the degeneracy in the field space due to the
symmetry of diffeomorphisms, we use the gauge fixing
condition
)57 (Vahs, -

G, = (- oV, ,h2) ek = w,,

Hlap

(2.9)

where w,(x) is an arbitrary function and &4 is the back-
ground vielbein field. Employing the Faddeev-Popov
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gauge fixing procedure, we introduce the gauge-fixing
action

1 _ _
SGE.pift = ~2e, / d*xv/=gg" 57 (Vah,%, - Gvuhgﬁ)}
D

x [ (Vshi — oV, k)], (2.10)
which in turn induces the ghost action
Sch.piff = — / d*x\/=gi (Qaﬁvavﬁ’h + 7Ry

+ (1 - 20)g{lﬁvyv(z77/i)’ (211)

where 7, and 7, are the ghost vector fields associated with
the graviton field 4,

In addition to the diffeomorphisms group, we must also
gauge-fix the U(1), gauge group. To this end, we consider
the gauge fixing term

1
Scru(1) = —E/ d*xy/ —g[gﬂyvﬂAyQ

+ eEcGe (v + HO)P?, (2.12)

which has the property of preserving general covariance
while breaking the invariance of the gauge group. It also
preserves the Higgs-boson low-energy theorem (HLET)
[40—44] in its canonical form [45]. The gauge-fixing action
Scr,u(1) also induces a Faddeev-Popov ghost action, which
is given by

Sehu() = — / d'x —ga{g’wvﬂvy
&2
+?§G[(U+HQ)2 - (GQ)Z]}C (2.13)
where ¢, ¢ are the U(1), Faddeev-Popov ghosts. Note that
the scalar ghosts ¢, ¢ and their vector counterparts 7,,, 7, are

all anticommuting negative norm fields.

A. The diffeomorphically invariant path integral

To quantize the Abelian Higgs model with minimal
coupling to gravity, we introduce the generating functional

H.GA, 0,0, T 6. ]

Dd exp {iS[ﬁ,w, ho H, Gy, i, A

+ /d“x\/—g(J’,j”h,% +Jwl + 9, +JyHC
+JsG2 + JﬁA,?)} : (2.14)

where N is an unphysical overall normalization constant
and

PHYSICAL REVIEW D 91, 064047 (2015)
D® = Dh% DASDHODGL D2 Dy 2 (2.15)

is a shorthand notation for the integral measure. Under
infinitesimal ~diffeomorphisms, x* — x'# = x* + ke#(x)
with e#(x) < 1, the action S of the theory remains invariant
provided the fields transform as follows:

G = G + k(G060 + G0 €0 + €,0%9,,).  (2.16a)
H' = H + ke, H, (2.16b)

G = G+ ke"0,3, (2.16c¢)

w'? =y + ke" O ?, (2.16d)

P'e =2 + ke®0, 2, (2.16¢)

A, = A, +ke“0, A, +k(0,e") A, (2.16f)

There is now a degree of arbitrariness in the way the
transformations are attributed separately for the back-
ground and quantum fields, within the context of the
BFM. We choose to distribute the metric transformation as

fz;w = BMD +0,e, +0,€, + K(/'aga,,ea + l_zZ@,ea + €aa"13ﬂ,,),
(2.17a)

h;,% = h,,Q,, + K(hg%aﬂea + ho%ayea + eaaahﬁ). (2.17Db)

Similarly, we distribute the transformations of the H, G
and A, fields as

H' = H + xe®0,H, H'? = H? + ke®0,HC,

(2.18a)

G =G + xe®d,G, G? = G?9 + ke“9,G¢  (2.18b)
Al = A, +ke0,A, + k(0,69 A,,

AL = AZ + ke DAL + k(D,6")AS. (2.18c¢)

It is now crucial to check whether the symmetry trans-
formations in (2.16) for the action S of the theory leave the
integral measure D® invariant as well. For this purpose, we
need to calculate the Jacobian determinant associated with
the transformations of diffeomorphism, i.e.

5% (x)
5‘1’,;' (y))

where @; € {h9,, H2, G2, 2,52, AZ}. Using the fact that

Jle] = det< (2.19)

det(I + A) = 1+ Tr(A) + O(A?) (2.20)

for small A, we obtain that
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10 X
et(iIZI Qéy;) 1 —%Ka(O) / dxd,e(x).  (2.21a)
10 X
det(?l;g((y))> ~1 —%;«3(0) / d*xd,e'(x),  (221b)
ALY _ y .
et(aAyQ(y)> 1 —x5(0) / dxd,e(x).  (221c)
SHS(x)\
det(éh/%(y)) =1 (2.21d)

Consequently, for scalars, fermions and spin-1 fields, there
seems to be a deviation from 1. However, one may observe
that the integral appearing in the measure’s transformation
actually vanishes,

/d“x@,,e" =0, (2.22)

since fields (as well as gauge transformed fields) are taken

to vanish sufficiently rapidly at the boundaries, i.e.,
e(x) = 0, as x > Foo0.

B. Master Ward identity for diffeomorphisms

Given the diffeomorphisms invariance of the generating
functional Z, we may now derive a master WI associated
with this symmetry. To this end, we require that the part of
Z containing the source terms remains invariant under the
infinitesimal diffeomorphisms (2.16). To accomplish this,
the sources need to transform as tensors of the relevant rank
as follows:

T =T+ k(€001 — JHedke, — T e,), (2.23a)
= Jy + kel i, (2.23b)

Jo =Jg +ke“0,Jg. (2.23¢)

T, =T, + K€"y, (2.23d)

Ji, =J, + k0., (2.23¢)

I = T4 + k(€200 — €,0MT%). (2.23f)

Under these transformations, along with the diffeomor-
phisms (2.16) and (2.17), the generating functional Z
remains invariant. Therefore, writing X' = X + 6X for
Xe{h, HGA,JI J, ], ulcJ4}, we obtain

A g b ” 9 II[ 9
the identity

(2.24)

57
d*xy Z5x = 0.
[#55
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Defining the generating functional of connected Green’s
functions W by

Zlh, . H .G A, 1. J,. T, Iy J. 4]
=exp(iW(h,, .H.G, A, J}" . J,.J,.Ju.JG. J4)).
(2.25)
we obtain
SW
d* —— 85X =0. 2.26
J 35 (226)

Next, we define the one particle irreducible (1PI) effective
action I' by means of a Legendre transform of W:

Ulh,.w.w.H .G, A, h, HGA,

= Wlh,,.H.G, A, J} 1. T, I Jg. J4]

— / dx/=g(I by + T w + 00,

FIgH + JgG + JEA,), (2.27)
where
LW oW oW
=S —51, Ve,
114 ow oW
H=—, G=—. Ay=—. (2.28)
5y 7 A

To have an invariant effective action, we must require
that the source terms remain invariant. As a consequence,
the Legendre transform variables transform like their
quantum field counterparts, i.e. according to the trans-
formations (2.16) with the identification X¢ — X for
X e{h,.w,w.H G,A,}. This allows us to write

Uk, W H G A, h, H, G A
=Tlh,.v.w.H.G.A, h, HGA] (229
For vanishing arguments of the quantum fields 4, H, G,
Ay, we have
Lk, W H. .G A =Th,.wv.w.HGA,) (230)

which is a statement of invariance for the background field
effective action defined by

F[hw,l//,y'/,lzl, G,A”] EF[i_zW,l//,l/_/, H,G 0,0,0,0].

(2.31)

sy

An immediate consequence of this invariance is the master
Ward identity
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or

51_1/“, (x)

or _or

(0, — 0,4 = A0,) o+ k0 H o
"

_ _ 1 _
{5gay +x (hga,, + 0,k + 5 aahw)}

JPY.) DY) D )
+ k0 G66+61;/K8 W + k0 y/&l_/—O, (2.32)
where «a is a free index. By appropriate differentiation of
(2.32) with respect to the fields of the theory, this
master WI can be used to deduce further WIs and
relations between correlation functions of the back-
ground fields.

Since we are interested here only in graviton correlation
functions, we may take the matter field arguments of the
effective action to zero. This yields a simpler version of the
master WI:

=0.

_ I sr
6(18 h(la a h(l 78(1}1 _
(i )|

(2.33)

Differentiating functionally with respect to %,,(y) and
converting the result into the momentum space, we obtain
the Ward identity

K o o
pﬂn;mpa(p) + E (nvpp”Thﬂ + ’,]vo'pﬂTlZM _ pl/TZ ) =0,
(2.34)

where p* is the graviton momentum, IT**/°(p) is the
IPI graviton self-energy, and 7%° is the I-point correla-
tion function for the graviton tadpoles. Figure 1 gives a
graphical representation of the Ward identity (2.34), where
the zigzag lines indicate gravitons.

We conclude this section by commenting on the
appearance of the terms depending on the graviton
tadpoles 7% in the Ward identity (2.34). In fact, their
appearance is where Yang-Mills theory and PQG explic-
itly differ, as tadpole graphs for Yang-Mills fields vanish
identically due to Lorentz covariance. On the other hand,
previous studies in PQG mostly focused on massless
particle contributions to the graviton self-energy [13—16],
for which the tadpole contributions were unimportant,
since these contributions vanish identically in the context
of DR. Thus, the self-energy becomes transverse in this
case, as a consequence of the WI (2.34), with 7" = 0. In
the massive case, however, the tadpole graphs do not
vanish in DR, thus signifying the presence of longitudinal

nv,po
MM@MM L
p#( ) 2

FIG. 1.

@)

Diagrammatic representation of the Ward identity (2.34), where the zigzag lines denote gravitons.
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modes in the graviton self-energy. In the next two
sections, we will explicitly demonstrate how these longi-
tudinal modes disappear after minimization of the effec-
tive action and renormalization of the cosmological
constant.

II1. MINIMIZATION CONDITIONS AND
COSMOLOGICAL CONSTANT
RENORMALIZATION

In this section, we discuss the minimization of the
effective action I', in the presence of background graviton
fields, and elucidate its connection with the renormalization
of the cosmological constant A. We also derive a low-
energy theorem that relates graviton tadpoles with the
graviton self-energy at zero external momentum. As we
will see, this theorem plays a central role to ensure the
masslessness of gravitons.

In the context of the BFM, the minimization of the
effective action with respect to the background fields
translates into the generic condition:

or

5%, =0, (3.1)
for X € {h,,.w.w.H,G,A,}. Specifically, we require
that the vacuum expectation value (VEV) v of the
Higgs boson be translation and Lorentz invariant, i.e.,
d,v=0. If we define ' = O 4 =) where rH
represents the quantum corrections, we obtain the follow-
ing equations:

oI - 2
6_H = fI:I(H7 G’ A,,u Vo, ,u(z), /1(), 60) - /10’[10 (’U(z) - l—(()))
Srn=1)
su Y (32)
oI - Sr(n=1)
G = Jo(H.G.A, vo. i3 do.eo) +—~—=0.  (33)
U ornzh)
v oy 0, (3.4)
U ornzh)
o o 0, (3.5)
or - Sr(n=1)
@* “(H,G,A,, vy, 45, o, €0) + 5 =0, (3.6)

o @) @) ]
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oI 1 1. 1. K -
=—g"*—-R A AH ——RW — —TH
oh,, 27 <z< o+ 0)) kT2
51—‘(n21)
2 ", (3.7)
ohy,

where

fg([:l, G,Aﬂ, ’U(),,Ll%,/{(), 60) = Q””aﬂa,f]—f— E%A”Aﬂ(vo + H)

2
—ﬂo U0(200H+H2 + GZ) +H<(7JO +H)2 +GZ —%)],
0

(3.8)

fG(I:I’ _7AM7U03/'£(2),/IO, e())
— 30 .0 G 2AUR ( Ao - \2 | 72 ﬂ%
=g"0,0,G + egA AuG+§G (vo+H)*+G> ===,

J5(H,G. A, v9, 15, 20. €0)
=35 (0,0,A, - 0,0,4,) - eo((vo + H)'G - GO )

+e3A" ((vo + H)* + G?), (3.10)

(3.11)

and e/ represents the background vielbein field. Here, a
bar on a field (other than y) represents a background
field and a subscript O indicates a bare (unrenormalized)

PHYSICAL REVIEW D 91, 064047 (2015)

kinematic parameter, such as the bare coupling constant
eo and the bare Higgs VEV v, In the BFM, the
background fields are not free but obey their respective
equations of motion with some specified boundary
conditions. Thus, we assume that all the background
fields satisfy these constraints without determining their
analytical form. Finally, in the present model under study,
only the Higgs boson and the graviton can have nonzero
tadpole contributions.

Let us now turn our attention to discussing quantum
loop effects on the cosmological constant A. Observe that
the generating functional Z defined in (2.14) is well
specified, except of an overall normalization constant N.
In theories in which gravitons are treated as classical
background fields, such a constant N seems to be equiv-
alent to renormalization of A. However, in theories of
quantum gravity, the cosmological constant is accompanied
by a factor /=g, which prevents the factorization of A from
the path integral. To deal with this problem, we treat the
cosmological term ,/=gA as an interaction in the action
and renormalize A, by renormalizing the effective action
I'[0] by means of a gauge-invariant CT SA. This can be done
by first writing Ag = A+ JA and then imposing the
condition

I[0] = Ag + Al +T=D[0] = A. (3.12)

Assuming a flat Minkowski background after renormaliza-
tion, we set A = 0, such that ,, remains a solution of the
background equations of motion. Notice that A is renor-
malized only through the Higgs VEV v, and the quartic
coupling constant 4, [cf. (3.11)]. At the one-loop level, the
contribution T1[0] to the cosmological constant may
graphically be represented as

TN TN R
T[] = v+ '\ 1 H + ! 1 G+ c
\\_,/ \\_// R
+ A+ Mu + ™ (3.13)

Writing AY = Ay + 8Ay, it is not difficult to see that SAy = 0 at the one-loop level. Therefore, the renormalization

condition (3.12) simplifies to

SA +TW[0] = 0. (3.14)
In the DR scheme, the individual graphs contributing to F(')[O] can be calculated explicitly. In this way, we obtain
TN d ; 2 4
\ 1 dk 1 m m
! = - | = In(—k? 2y = — ([ ZH 2 —H 3.15
L 2/(%)(1111( K 4 m2) 2(477)2( ' Ag(miy) + ) (3.15)
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d 2 4
Q v = —2/ (;lwl)cd In (_k2+mfp) = —<47T)2 (?Ao(m?p)jL nj;") (3.16)

3i mi m* i Ecm> Emt
_ DA (m2) = A AA 2) 4264 3.17
2(4x)? ( y Aolm) 12) T2y ( 3 AolSama) + 74 ) (3.17)
TN d ; 2 2.4
\ 1 d’k i Eam &em
] I In(— 2 2 _ 7‘414 2 ag''ta )
\\ /I G 2 / (2’/T)d D( k +§GmA) 2(471’)2 ( 9 0(§GmA) + 4 ) ) (3.18)
E d’k 2 2 i €em 2 &my
’ ’.' ¢ = _/ (2m)d In (_k + gGmA> = = (47)2 <2A0(§GmA) + 4) ) (.19)
<
Sl =0, hyuw = 0. (3.20)
N 0‘ . '
Here, Ay(m?) is the tadpole loop integral defined in d = 4 — 2¢ as
o [d% 1 1 m?
Ao(mz) = (271'/,{)4 d ?m = m2 |:E + 1—1In <F>:| s (321)

where 1/eé = 1 /e — yg + In4x, with y; being the Euler-Mascheroni constant and u the "t Hooft mass renormalization scale.
We note that the sum

/ . 3 2 4
O T
/ . .

N T

is independent of the U(1), gauge fixing parameter ;. Thus, at the one-loop level, the cosmological constant CT SA is
found to be

2 m2 m? 1 m2 m? 3 m2 m4
SA = YA (m2)+ L) - —H A (m?) +—2) - A A (m2) -4 ). 3.23
(4n)? ( 5 Aolmy) +5 > 2(47)? < 5 Aolmy) + 20472 \ 2 o(m3) = (3.23)

The fact that §A is independent of &; and the diffeomorphism-fixing parameters &, and o reflects the gauge invariance of
the effective action at its minimum [46] and provides a consistency check for the correctness of our analytic results.

Let us now analyze the minimization conditions (3.2) and (3.7) related to the Higgs and the graviton tadpoles,
respectively. For the Higgs tadpole condition, we have
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S0 H H 7 H
=Ty = ----- ! VH+ ——--- ! VG + —---- A
oH \ , \ ,
N - N
Ny N
H .
T ¢ (3.24)
oy
Expressing the bare Higgs VEV vy as vg = v + dv, (3.2) reads
2060+ Ty =0 (3.25)
at the one-loop level, from which we deduce the Higgs VEV CT
Ty
ov = . 3.26
S yhe (3.26)
To deal with the graviton tadpole condition (3.7), we first define
5F(1) h/u/ // \\ h/u/ // \\ h/u/
= WWW 1 H+ WWWA\, 1 G+ (G
5hlw \\ ! \\ U
huy huy N ..
+ At MWW G
= TP, (3.27)

As done with the Higgs field, we allow for the quantum graviton field 4, to develop a VEV, by replacing h,, — h,,, + 6h,,.
In this way, the one-loop minimization condition for the graviton field becomes

J v [m

From this last equation, we easily see that the second functional derivative with respect to the quantum graviton field is the
inverse graviton propagator in the flat space, i.e.

5h,m(y)] + gn"”éA + Ty =0. (3.28)

G =My

s A (x — ) (3.29)
Oy, (X)0h,6(y) P
By virtue of the latter, (3.28) may be recast into the form
K 12
[ = ) ()] + 5o T () = (3.30)
Solving equation (3.30) for A, yields
c K o
Shye(x) = — / Ay, (x =) (Tﬁ (y) + Enp 5A). (3.31)

It is now instructive to calculate the one-loop graviton tadpole 7% resulting from our Abelian Higgs model. With the aid
of the Feynman rules given in the Appendix, the individual contributions to 7%’ are given by
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h;ul / N : 2 4
\ (T g (2 miy )
WA= gt (T el ) (3.32)
\_/
o TN ; 2 2 4
\ K nz gGmAA 2 gGmA
WM, )G = g ( 5 Ao(Eam?) + 2674 ) (3.33)
h, . 2 4
e (2% v "% 2 My,
= L | - 3.34
v 2(4m)2 ! ( 5 Aolmy) + ) ’ O34
h, ; 2 4
S ik m m
_ nv AA 2y A
TSP ( 5 Ao(ma) = 3 )
. 2 2 4
(el v gGmAA 2 € My 3.35
+ 4(47_(_)277 ( 2 0(§GmA) + 4 ) ( . )
h 0.“‘0
TR ik Egm? oy E&mh
- H A .
WAL e = e (S R Ao + 5 (3.36)
Sy
Interestingly enough, we observe that the sum
-~ N
hp,l/ // N h/,Ll/ h;u/ - . ; 2 4
\ . 3k m m
A _ g AA 2y A
WG wt VW, a7 ( St Ao(m}) - T
~_ R

is independent of the gauge fixing parameter s, implying
that the graviton tadpoles form a gauge-invariant set of
graphs. This is in stark contrast with the Higgs tadpole and
its VEV CT 6v, which are known to be both gauge-
dependent quantities (e.g., see [45]).

Our effort to gain a better understanding of the gauge-
fixing parameter independence of 7% led us to observe the
following relation:

™ + gnﬂvaA —0. (3.38)
Remarkably, (3.38) holds separately for each of the quantum
fields circulating in the loop. Hence, at the one-loop level,
tadpole graphs are directly linked with the gauge-invariant
renormalization CT SA of the cosmological constant, so 7%°
is a gauge-invariant quantity as well. Moreover, graviton
tadpole graphs cancel against the CT SA in the one-loop
effective action, which implies that there is no VEV
renormalization for the graviton field, i.e. 5k, = 0.

It is important to stress here that our approach to
renormalizing the graviton field differs significantly

from the one outlined, e.g., in [12], where a cosmo-
logical constant was introduced in an ad hoc manner, in
order to cancel the graviton tadpole effects. In our case,
such a cancellation is a result of an explicit computa-
tion, without the need to impose an additional con-
straint. In the next subsection, we will show that the
relation (3.38) leading to the nonrenormalization of the
graviton VEV, with 6h,, =0, is not an one-loop coinci-
dence, but a result that holds to all orders in perturba-
tion for a gravitational theory renormalized to a
Minkowski flat background.

A. The graviton low-energy theorem

Here we will explicitly demonstrate how the relation
(3.38) holds true to all orders in perturbation. As we will
see, this nonperturbative relation is a direct consequence of
a graviton low-energy theorem.

Given the conceptual similarity of the GLET with the so-
called Higgs-boson low-energy theorem [40—45], we begin
our demonstration by briefly reminding the reader of the
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latter. The HLET may be stated by the following defining
equation:

or

— 3.39
ov SH(0) (3:39)
where H(0) denotes a zero-momentum background Higgs
field. This result may be derived from a global shift
symmetry that exists between the Higgs VEV v and the
background Higgs field H of the form

vV =v+s, H =H-3s, (3.40)
for some infinitesimal constant s, provided a compatible
gauge-fixing condition is chosen [45]. Taking a functional
derivative with respect to H, invoking momentum con-
servation and writing I' =T 4 T("21) " where I[("21)
represents the part of the action containing one- and
higher-order quantum loop effects, we obtain

0 5F(n21) 52F(n21)
o <6FI(O)) "~ SH(0)5H(0)

(3.41)

Therefore, one consequence of the HLET relevant to our
discussion here is the relation of the Higgs-boson tadpole to
quantum effects on the Higgs-boson mass.

We may now try to extend the basic idea of HLET to
theories of quantum gravity. As discussed in Sec. II, the
full spacetime metric g,, may be decomposed in the BFM
framework of quantum gravity as follows:

G = My + K(h;w + huv)7 (3.42)
where g, =n,, —l—ld_z,w is the background metric [cf. (2.8)].
In close analogy to HLET, it is not difficult to observe that
there is a similar symmetry for the effective action I" of the
complete matter-gravity theory. In particular, the effective
action I" remains invariant under the shift transformations:

- - 1
Wy = hy, ——s (3.43)

/o
Muw = M + Suws ©

v
where s,, is an arbitrary tensor. Since the generating
functional (2.14) remains invariant under the shift sym-
metry (3.43), we can derive the shift Ward identity:

0z 1 oz
- [0 (3.44)
o, « S, (x)
which implies
ow 1 ow
- —/ o palm—} (3.45)
My K Sh,,, (x)

by virtue of (2.25). With the aid of (2.27), we may translate
the last result into the shift WI for the effective action:

PHYSICAL REVIEW D 91, 064047 (2015)

ar 1 or
——/d4x _ =0, (3.46)
My K Sh,, (X)
or equivalently in momentum space:
or
K 0 I'=—= . (3.47)
My h,,(0)

Equation (3.47) is the defining equation for the GLET,
where £, (0) is a zero-momentum graviton field. Now, if
we consider the counterterm in the effective action,

AS = / d*x\/=gsA, (3.48)

in order to cancel I'"1[0], we obtain the relation (3.38):
™ + gnﬂvm =0,

which holds true to all orders in perturbation theory. Hence,
the one-loop relation (3.38) is a consequence of the GLET.

In addition to relating the graviton tadpole to the
cosmological constant, the GLET can also relate the
graviton tadpole to the graviton self-energy at zero external
momentum:

) <5F(n21)> 52F(n21)
K = =— _ .
M \Shys(0)) 61y, (0)5h,,,(0)

(3.49)

Since graviton tadpoles vanish identically for massless
fields in the loop in the DR scheme, the graviton self-
energy at zero external momentum will vanish as well, by
means of (3.49). Consequently, the GLET (3.47) can also
guarantee the masslessness of the graviton field in DR, if all
particles in the quantum loops are massless. As we will see
in the next section, however, this is not in general true, if
massive particles occur in the graviton self-energy. In this
case, both the GLET (3.47) and the diffeomorphism WI
(2.34) will be needed to render the graviton massless to
all orders in perturbation, assuming a flat Minkowski
background.

IV. MATTER CONTRIBUTIONS TO THE
GRAVITON SELF-ENERGY

In this section, we will first demonstrate explicitly how
upon renormalization, the graviton self-energy obeys the
property of transversality entailing in a massless graviton
field. Subsequently, we will compute the matter contribu-
tions to the graviton self-energy tensor resulting from
massive scalar, pseudoscalar, fermion, and vector-boson
particles in the loops.
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MWW, MWWW ! ]
\\_,// \ //
H W"W%
(a) (b)

FIG. 2. The Higgs contribution to the graviton self-energy.

A. Transversality of the graviton self-energy

The graviton self-energy transition h,,(p) = h,,(p),
which we denote as IT"*?(p), receives two renormaliza-
tions: (i) from the bare cosmological constant A, which
induces a CT proportional to §A for the graviton mass in the
effective action [cf. (3.48)]; (ii) from the Ricci scalar R and
the higher-dimensional operators R? and R*R,,,. The latter
contributions (i), which we denote as AIl**?(p), are
transverse in the minimal subtraction scheme (MS) of
renormalization and they have therefore no effect on the
graviton mass.

Taking into account the two contributions mentioned
above, the renormalized graviton self-energy ITy"’(p)
may then be written down as follows:

2
T (p) = 1497 (p) = S PU#°6A + ATV“#7(p), (4.1)

where we have defined the tensor
|
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PHYPO = ﬂﬂ/)”y” + ﬂﬂ/)nyﬁ _ n;w,,l/m’ (42)

for brevity. Employing the identity (3.38) deduced from the
GLET, we may readily obtain the relation

gpuvpagA = —PTY — o TV + T (4.3)

Substituting this last expression back in (4.1) gives

[ K O} (e}
MR (p) = W27 (p) + 2 (T3 + T} = T}7)

+ A9 (p). (4.4)
Based on the WI (2.34) of diffeomorphisms depicted
graphically in Fig. 1 and the fact that p,ATI*7?(p) = 0,
it is not difficult to show that the renormalized graviton
self-energy is transverse, i.e.

PR (p) = 0. (4.5)
Hence, the longitudinal modes of the graviton self-energy
are successfully removed after renormalizing the cosmo-
logical constant. We shall use the transversality identity
(4.5) to check the consistency of our analytic results.

We may now decompose the renormalized graviton self-
energy tensor IlR”’(p) in terms of independent rank-4
Lorentz tensors that depend on #* and p*p“. More
explicitly, ITy"”?(p) may be expressed as follows:

TR (p) = p*p*p? p"F1(p?) + 0 F5(p?) + (00" + 10" ) F3(p?)

+ (i p’p + P p")Fa(p?) + (0" p*p7 + 0t php? + 7 pt pP + 7 p  pP) Fs(p?).

where F; (withi = 1,2, ...,5) is a set of form factors. Note
that the form factors F; are not independent of each other,
as they have to satisfy the transversality condition (4.5),
which gives rise to following set of relations:

p*Fy 4 F4 +2F5 =0,

(4.6)

|

Finally, it is important to remark here that the UV-infinite
contributions of AII***(p) to the form factors F; satisfy
independently the three relations given in (4.7).

B. Massive scalar loops

First, we consider the Higgs-scalar effects on the

Fy+ p*Fy =0, graviton self-energy, as described by the two diagrams
Fy+ p*Fs = 0. (4.7) (a) and (b) in Fig. 2. These are given by the loop integrals
|
M) =3 [ ot Vit ~(p 0 Vi b+ ) : @5
2(a) ~2) @ayd " HEE P »Mu )V aap\—K, P T K, My K —m| [(p + k2 —m3] .
v po 1 Ak e i
lHZ(b) (p) =5 WVHHhh(k’ —k, my) m : (4.9)

Note that the contribution of the would-be Goldstone boson G is obtained by replacing m?% — mefx in the above two

expressions.
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Without including the CTs contained in AII***?(p), the
Higgs contributions to the form factors are given by

2

K
Fi(p?*) = 3600(4r 2 (p7)2 [(a + aq)By(p*. mf. my;)
-+ (a2 + aS)AO(m%,) + (03 + (16)], (4103)
2 K 2 .2 2
Fy(p7) = W(alBo(p . m3;, mi;)
+ (X2A0(m12r_1) + 03), (410b)
2 K 2 .2 2
F3(p*) ZW(WBO(P , My, my)
+ a5A0(m%.1) + (16), (4.100)
2 K 2 2 9
4(p°) = —W(%Bo@ , My, my;)
+ aAg(myy) + a3), (4.10d)
2
K
Fo) = = T00(anye 2 (40P i i)
+ (lsAo(m%_]) + (16), (4106)

A%k 1
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where

a; = 15[8m%, + 16m%, p* + 3(p?)?], (4.11a)
a, = =30(4m?, + 3p?), (4.11b)

a3 = 120m3, + 220m3, p? — 42(p?)?, (4.11c)
ay = 15(p* —4m%)?, (4.114d)

as = =30(8m3, + p?), (4.11e)

ag = 16[15m}; — 10m2,p> + (p*)?].  (4.11f)

In addition, B is the one-loop scalar self-energy integral
defined in d =4 — 2¢ as

1 1 mym
B 2’ 2’ 2 = 2 4_d/_ = — 2—1 ! 2
o(phomium) = e | e e g 2T

1

p nmy

with A(x,y,z) = (x—y—2)*>—4yz. For p?>=0 and
m; = m, = m, the loop function By(0, m?, m?) is related
to the tadpole loop integral Ay(m?) as follows:

Ag(m?) = m(1 + By(0, m*, m?)). (4.13)

We may now calculate the CTs described by
ATI*#°(p) in the MS scheme of renormalization [47].
For the Higgs and Goldstone effects, these CTs may
be represented by the following set of diffeomorphism
invariant operators:

2
V=g |m 1 1
ASy =— [ a&* “HAR4+ R+ _—_RwR |,
" / x2(4n)2€{ ad

6 120 60
(4.14)

2 2 _ 2
L [<mg ) (m_) 222, i3, m3)cosh! (w)] ,

4.12
2mm, ( )

Vi [Eemd 1 1
ASg=— [ d* AR+—R>+_—R"R,|.
G / x2(47z)2_{ 6 “T120" Teo tw

(4.15)

We note that the CTs in ASy agree with [12], after making
the obvious replacement: 1/¢ — 1/e. The inclusion of the
CTs given by ASy and AS; has the effect of removing
simply the 1/ poles that occur through the loop integrals
Ay and By in the form factors F, 5 listed in (4.10).
Finally, observe that the five form factors F' , s satisfy
the transversality relations given in (4.7).

C. Massive fermion loops

Quantum loops due to a Dirac fermion y contribute also
to the graviton self-energy by the two diagrams (a) and (b)
shown in Fig. 3. These two diagrams may be calculated by

177 (p) == [ e (Vi + 0 [ v ke p ko [ L), )

K> —

v (p+ k) —m
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¥ "
@ (b)

FIG. 3. The fermion contribution to the graviton self-energy.

- v,po ddk vpo
ng‘U‘j’; (p) = —/ (2ﬂ)dTr<V’J/vfhh(k, —k,mpy)

Jes)

4

(4.17)

Upon including only the cosmological constant CT SA,
we arrive at the following analytic expressions for the form
factors:

2

F\(P) = Tga0iamcya (@ + @) Bolp? iy, )
+ (o + as)Ag(myy) + (a3 + ag)]. (4.18a)
K2
Fy(p?) = W(%Bo@z’mi,mi)
+ ;Ag(ml) + a3), (4.18b)
K'2
F5(p*) = 3600(4x) (aBo(p*. m,. m})
+ a5A0(m5,) + ag), (4.18c¢)
K2
Fy(p?) = —W(aﬂ?o@z,mi,mi
+ ;mAy(my,) + a3), (4.184)
KZ
Fs(p?) = _W (ayBy(p?, my,, my,)
+ asAg(my,) + ag). (4.18e)
with
ay = —15(p* —4m3,)?, (4.19a)
ay = 30(8mZ, + p?), (4.19b)
as = —16[15my, — 10m2 p? + (p*)?, (4.19¢)
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ay = —15[32mj, + 4ml p* = 3(p?)?], (4.194d)
as = =30(3p* — 16m}), (4.19¢)
ag = —480m;, + 20mZ p* + 18(p?)>. (4.19f)

The UV poles proportional to 1/€ that enter the form
factors F'y 5 . s through the loop integrals A, and B, may
be renormalized after taking into consideration the CT
effective action

2
=g |m 1 1
AS, = [ a&* ~—YR—-—R>+_—RM"R,,|.
v / x(47r)zé[6 60 T fw

(4.20)

This last result is in agreement with [48]. As with the
scalar case, it is not difficult to check that the form factors

2....5 exhibited in (4.18) satisfy the transversality rela-
tions in (4.7).

D. Massive gauge and ghost loops

Finally, we consider quantum loop effects of a massive
gauge boson A, and their respective ghost fields ¢ and
¢ on the graviton self-energy. As displayed in Fig. 4, four
diagrams (a), (b), (c), and (d) contribute. In the Feynman-"t
Hooft gauge £; = 1, these four diagrams may respectively
be evaluated by the following integrals:

AP‘
W\/\M@W\/\/\A A
a,

Ay
(a) (b)
C c
c WW%
(©) (d)

FIG. 4. Gauge- and ghost-field contributions to the graviton
self-energy.

064047-14



MATTER QUANTUM CORRECTIONS TO THE GRAVITON ...

YUV ,PO 1 ddk Uv,A,0
lH4(a) (p) = 2 (2 )d Viaan (k,—(p + k)’mA)

Vf&;fﬂ( —k,p+k,my)

el
K —mi] [(p+k)?—mi]

(4.21)

TUV.PO 1 ddk v,p6.A,0 ir]ﬁé
i (p) = E/Wvﬁffm (k, =k, m3) {kz —mi]
(4.22)

. v,po ddk v
i (p) = —/WV’:M

x (k,=(p + k), ma) Vo, (=k, p + k,my)

AR

TTUV.PO ddk e i

iy (p) = = (2n)? 7 Vit (ks =k, ms) K —m3|
(4.24)

As done before, we proceed by including only the CT A

of the cosmological constant. Then, the form factors are
given by
2
1800(4x)?(p?)?
x [(a + aq)Bo(p*, m3, m3)

+ (@ + as)Ag(mi;) + (a3 + )],

Fl(Pz) =

(4.25a)
L
1800(47)
+ wAg(m3) + ),

2

Fy(p*) = (a1 Bo(p*. m35, my)

(4.25b)

2

Fsy(p?) = 72 (a4By(p*, m%, m3)

3600 (47
+ asAg(m}) + ag), (4.25¢)
2
K
Fyp?)=—— X
() = = 1500(@n)p
+ Ao (my) + a3),

(ay BO(PZ» mﬁ, mfx)
(4.25d)

K2

3600(47)2p2
+ asAg(m3) + o),

Fs(p*) = - (asBo(p*. m3, my)

(4.25¢)
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with
a; = 30(4m’ — 12m3p* — (p?)?),  (4.26a)
a, = 60(p* —2m3), (4.26b)
az = 120m* — 530m?p* + 13(p?)?,  (4.26¢)
ay = 30[8m% + 16m3p* +3(p?)?], (4.26d)
as = —60(4m3 + 3p?), (4.26€)
ag = 240m% + 590m? p> — 99(p?)*. (4.26f)

The form factors become UV finite, after considering the
CT effective action

2
/=9 |m 1 1
AS, = d*x “AR—- —R>+_—R"R
AT / (47)% {3 30 Tt N

(4.27)

Our result in (4.27) agrees with [14] in the limit m, — O.
As with the scalar and fermion cases, gauge and ghost
field contributions to the form factors F'y, s satisfy the
transversality relations stated in (4.7).

.....

E. Summary of results

Even though our calculations pertain to the gauged
Abelian Higgs model, the results we presented here for
the graviton self-energy have a general applicability. At
the one-loop order, only the kinetic part of the matter
Lagrangian contributes, whereas the part associated with
matter interactions only enters at two loops. Thus, at the
one-loop level, we only need to know the matter field
content of the theory in terms of scalar, fermionic, and
gauge degrees of freedom. As a consequence, the total
renormalized graviton self-energy tensor in a given theory
may be summarized as follows:

N
No 2
() = ST () + 5Ty
Py Py
Ny
+y T (pomy ). (4.28)
i1
where I10"” (p, m), II"**°(p, m), and TF,""°(p, m) denote

the scalar, fermion, and gauge- and ghost-field contribu-
tions to the graviton self-energy with a generic mass m,
respectively. Correspondingly, Ny, N 1 and N, denote the
number of scalars, fermions, and gauge bosons. As the total
self-energy is the sum of individual contributions which
satisfy the transversality condition (4.5), it is evident that
the graviton remains massless at the one-loop level. Beyond
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the 1 loop, the validity of the GLET (3.47) and the
diffeomorphism WI (2.34) play a central role to preserve
the property of masslessness of the graviton field to all
orders in perturbation theory.

V. MATTER QUANTUM CORRECTIONS
TO THE NEWTONIAN POTENTIAL

Having computed the matter effects on the graviton self-
energy, we can now proceed to study the one-loop quantum
corrections to the Newtonian potential V(r). As we will see
in this section, the radiatively corrected Newtonian poten-
tial can be derived from the S-matrix element describing
the elastic scattering of two massive particles ¢; and ¢, in
the nonrelativistic limit. We will use these results to
determine the long and short range limits of V(r) and
comment on their relevance. In the massless limit of loop
particles, the known results for V(r) stated in the intro-
duction are reproduced.

For definiteness, we consider the scattering process
@1(P1)@2(P2) = @1(k1)@a(ky), where ¢, and @, are two
different gauge-singlet scalars. The action describing the
interaction of ¢, with gravity is given by

1
S(p = E/ d4xv _g(gﬂbaﬂ(plavgol - m%(p%

+ ¢ 0,020,02 (5.1)
where m; and m, are the masses of the fields ¢; and ¢,,
respectively. We shall use this action to derive the Feynman
rules for the interactions of ¢ and ¢, to the graviton field
h,,,. The analytical expressions for the relevant vertices are
given in the Appendix.

— m3¢3),

A. Tree-level Newtonian potential

It is instructive to briefly review how the classical
Newtonian potential can be inferred from the tree-level
S-matrix element of a given process ¢;(p;)@p,(p2) —
@1(ky)@2(ky). As illustrated in Fig. 5, such a process
proceeds at tree level via the exchange of a single graviton
in the ¢ channel. The momentum space amplitude M. is
given by

~_ p2(p2) p2(k2) __
b (@)
~7 o1(pr) e1(kr) T
FIG. 5. The tree-level scattering diagram.
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three = ivl;lj(plh (pl s _kl )AO,MD,/)G(q) Vfo:gazh <p27 _k2)

(5.2)

where g, = (p,—k;),=(p2—k,), is the four-momentum
of the graviton, V” ooy AN nd Vp pyh ATC the tree-level vertex
functions for the ¢,¢h and (pz(pzh vertices, respectively,
and Ay, ,,(g) is the tree-level graviton propagator.

Let us briefly discuss the gauge independence of the tree-
level graph. The graviton propagator depends on the gauge
fixing parameters £, and 6. However, as a consequence of
the Ward identity of diffeomorphisms, the vertex functions

Vt/n(/u (p1.—k) and V/;;I;q;zh(Pz,—kz) satisfy

( kl)/t (pl(p]h(Ph

k1)=0
(P2 = k2),Vip pon (P2 —k2) =0,

(5.3)

when the scalar fields are taken to be on shell. As all
dependence on the gauge-fixing parameters £, and o is
carried by terms proportional to the longitudinal four-
momentum ¢, (see the Appendix for an expression for the
graviton propagator), all £p- and o-dependent terms vanish
thanks to (5.3), thus yielding a gauge-invariant result under
the group of diffeomorphisms. In fact, this is equivalent to
replacing the graviton propagator with the propagator in the
gauge &p = %, o = 1 (known as the harmonic or de Donder

gauge):

P
AO,ﬂu,pn(q) - ﬁ . (54)
The nonrelativistic limit of the amplitude M. is
obtained by expanding in the three-momenta of the external
fields and considering only terms that diverge in the IR
limit of vanishing three-momenta. These terms have been
called nonanalytic terms in [30]. Expanding the tree-level
vertex functions, Vwmh and V(M,2 »» about the three-
momenta of the external particles, we obtain the leading
terms of the expansion:

Hv

e 2sisy. v
pin = IKMTS50; 1%

H sy
Prpah = = ikm38,0%.

(5.3)
Employing the elementary identities given in (5.3), the tree-
level amplitude M. in (5.2) takes on the simple form in
the nonrelativistic limit:

K2m2m2
Mtree = |Z1;2 2 (56)

where |g| = |p, — %1| is the three-momentum of the
exchange graviton.

To derive the Newtonian potential from the scattering
amplitude M., we use the relation [30]
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. 1 1 a3 e R
G — / 9 i Meo@).  (57)

" 2m2m, | (27)

Note that the factors 1/2m; and 1/2m, result from the
normalization of single particle states. Using the definition
x> = 162G and the well-known result for the integral

dBqg -1 1
el s =—, 5.8
| >
we obtain the scattering potential
G
V(r) = — 20 (5.9)
r

which is the classical Newtonian potential. Notice that V()
has been obtained by pure quantum field-theoretic means,
and is manifestly gauge invariant and process independent,
1.e. the same result would have been obtained, if we had
considered fermions or vector bosons, instead of scalars, as
external particles.

B. Matter quantum corrections

We shall now compute the one-loop matter quantum
corrections to the scattering process @@, — @¢,, shown
in Fig. 5. Given that ¢; and ¢, are gauge singlets, only self-
energy effects contribute to this process, as illustrated in
Fig. 6. If these scalar fields were charged under a U(1)
gauge group, one must also include vertex and box
contributions. The case of an elastic scattering with charged
scalars was studied in [29], while the scattering process
with external charged fermions under U(1) was analyzed in
[32]. However, we note that quantum effects on the
Newtonian potential do not depend on the specific nature
of the external scattered particles, i.e. the quantum effects
are process independent.

We should remark here that the use of a one-loop
resummed graviton propagator proves necessary. A con-
ventional perturbative expansion in terms of graviton self-
energies produces corrections to the potential which are
linear in the separation, i.e. « r, when the loop mass is

|

PHYSICAL REVIEW D 91, 064047 (2015)
~_p2(p2) Pa(k2) __

-
~ -
~ -
~ -~ -

- ~

e1(p1)

-

FIG. 6. The class of diagrams corresponding to matter effects.

nonzero. This contribution diverges as r — oo. We shall
show that only a calculation of the potential based on the
resummed graviton propagator gives the correct asymptotic
behavior.

1. The amplitude and its nonrelativistic limit

The one-loop transition amplitude shown in Fig. 6 is
given by

iM I-loop — iVZ:(/,I h (pl ’ _kl)A/w,pzr(Q) VZZq;zh(va _kZ),
(5.10)

where A, ,;(q) is the resummed graviton propagator.
To achieve this resummation at one-loop order, we must
resum the Dyson series of the one-loop graviton self-energy
graphs. Specifically, the resummed graviton propagator
A,y 56(q) is defined by the equation

—1luv 5 1 (o3 ()
(85" (q) + TR (0)) Ao (q) = 5 (3% + 53680).
(5.11)

Here, A;'"“"°(q) is the tree-level inverse propagator and
[157°(q) is the renormalized graviton self-energy which
has been calculated explicitly in Sec. I'V.

In order to invert the relation (5.11), we first write the
resummed graviton propagator in terms of its possible form
factors:

Aﬂu,pa(Q) = quUQperAl(qz) + ”ﬂunp0A2<q2) + (’7/4,0’71/0 + I/[DpI/IﬂU)A3<q2)

+ (nﬂl/q[)qﬂ + anQﬂqy)Aél (pZ) + (’Iﬂp%% + Nup9ulo + Mueqv4) + ’/II/O‘Qﬂq[))AS(qz)‘

Employing the method of orthogonal projectors, we
find

4
3(¢%)*(q* — 4F5(4%))
4

- 3(¢%)?*(q*> + 3F5(q?) +2F5(q%))’ (5.13)

Al(qz) =

(5.12)
[
2
) =S )
1
e R ) O
WP p— (5.15)

(> —4F5(q%))
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2
) = 5 =)
2
"3 aE) k) O
w1 1
SO = gy O

where F,, F3 are the graviton self-energy form factors
defined in (4.6).

Let us now discuss the gauge dependence of this
amplitude. Writing out the full Dyson series for the
resummed propagator, we obtain

yo
A;w,/)(r = AQMD,[)(T - AOyy.aﬂngﬂy AOyﬁ,/m
B,y6 AK,
+ Ao,w,apﬂii” Aoyé,/lKHRK'G{AOeg,pa +
(5.18)

Given that the tree-level propagators must contract with
either the tree-level vertex functions VI , or VI* .
where the scalars are on shell, or the renormalized graviton
self-energy I15”°, any term in the propagator which
explicitly depends on components of the longitudinal
four-momenta g, will vanish due to the identities (5.3)
and (4.5). As a consequence, the one-loop transition
amplitude M., becomes independent of the gauge-
fixing parameters £, and o of the diffeomorphisms. Like
the tree-level case, we can use the harmonic gauge for the
graviton propagator [cf. (5.4)] to simplify the calculation.

In the nonrelativistic limit, the one-loop amplitude
becomes

Miseg = =mind 5 (i)
1 1
3 <3F2<—|a|2> F2F5(-aP) - ZM‘
(5.19)

This amplitude diverges as |g| — 0, since both the form
factors F', and F3 vanish in this limit, thanks to (4.7). This
singularity of the transition amplitude M o, as |g| = 0is
a simple manifestation of the masslessness of the graviton
field. When going to the nonrelativistic limit, the presence
of a particle with mass m in the loop requires special care,
as m is another dimensionful parameter entering the
calculation of the amplitude. In this case, one needs to
proceed carefully and compare the size of |g| to m, rather
than simply taking the IR limit |¢| < 1. In fact, one has to
distinguish between three possible cases for a loop particle
with mass m: |g| > m, |q|~m, and |g| < m. In the
calculation that follows, we first compute the potential
in the general case, before translating the aforementioned
three limits into position space.

PHYSICAL REVIEW D 91, 064047 (2015)
2. Computation of the scattering potential

Our aim is now to compute the Newtonian potential
from the one-loop transition amplitude. As before, we may
define the Newtonian potential in close analogy to (5.7),
which may be represented by the one-dimensional integral
of the Fourier transform:

i

V) == [ da(1e Rag(@)). (520)

where g = |g| and M ooy = 217]2—;12/\/11_100[). The above
expression (5.20) includes the tree-level contribution to the
potential, as well as the one-loop matter quantum correc-
tions, through the resummed graviton propagator.

In order to perform the integration, we analytically
continue ¢ to a complex variable and integrate over a
closed contour in the complex plane which includes the
integral of interest (5.20). Given that the value of the closed
contour integral depends upon the residue of the poles
within the contour, we begin by identifying the poles of the
integrand. Explicitly, we find that there are three real poles
for the resummed graviton propagator: the standard one at
g = 0 and two others that occur in the Planck mass range
at g = £q,, where gy ~ Mp. The latter poles signify the
breakdown of perturbative quantum gravity and therefore
we call them Landau poles.

An analytic expression for the square g3 of the Landau
poles may be determined by searching for nonzero roots of
the denominators in (5.19). Assuming the loop masses are
small compared to 1/x* = M3, we may expand the root in
powers of k* and its inverse. It can then be shown that the
Landau pole diverges as k> — 0 and that the pole is a
simple pole. Thus, the leading term in the expansion is the
term proportional to 1/k*. Hence, we obtain the approxi-
mate analytic expression for ¢3:

192072 19207° - -1
]

with =Ny +3N, + 14N, and y = & (23N, + S9N+
142N,), where N, is the number of fields of spin s =0
(scalar), 5 (Weyl fermion), 1 (vector boson) and W(z) is
the Lambert W-function defined by the inverse relation:
7= W(z)e".

One may wonder whether there are other complex poles,
in addition to the three real poles mentioned above. To
address this question, we use the argument principle, which
states that, for some complex function f(z), it holds

1 [ f(z)
27i J, f(2)

dz=N-P, (5.22)

where N is the number of roots of f(z), P is the number of
poles of f(z), and y is a closed contour which contains the
entire complex plane while excluding the branch cuts of the
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function. The integrand qe‘q’Ml_loop(q) may be split into
two parts f1(g) and f>(q):

e

3
K>mym, ( ge 1"
12 \3Fy(¢*) +2F3(¢%) + ¢°

ge” " )
—q* +4F3(q%))’

fa(q) = ) (5.23)

as there are two terms in (5.19). We now observe that, for
every matter field in the loop with mass m, there are two
branch cuts in the complex plane for f(g) and f,(q). The
first branch cut is along the positive imaginary interval
[2mi, +ioo), while the second one is along the negative
imaginary interval [—2mi, —ico). Taking these two branch
cuts into account, we may determine N — P for both
functions independently, using the contour y depicted in
Fig. 7. In both cases, we obtain

N-P=-3. (5.24)
Since the form factors F,(g*), F3(¢*) do not diverge
for finite values of ¢, fi(¢) and f,(¢) have no roots.
This gives P =3 for both functions. Substituting the
expression for the Landau poles (5.21) into the denom-
inator of each function, we obtain zero in both cases
when the loop masses are small compared to Mp.
Therefore, both functions diverge at the same points:
the real pole at ¢ =0 and the two Landau poles
g* = g3. Consequently, the resummed graviton propa-
gator and so Ml_loop(q) has no other complex poles that
we need to worry about.

2mi

—2mi

FIG. 7. The contour used for the complex integral in (5.22) to
compute the number of poles and roots for a single loop mass m.
This contour covers the whole complex plane as R — oo, while
excluding the two branch cuts indicated by the zigzag lines.
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YR2 YR1
"Ybranch
2mai
I L =%

FIG. 8 (color online). The contour used to compute the Fourier
transform in (5.20). For a generic nonzero loop mass m, there is a
branch cut that starts at 2mi and extends to ico as illustrated by
the zigzag line.

Knowing the location of the three real poles, we may
construct a closed contour to compute the Fourier
transform (5.20), which is illustrated in Fig. 8. By
means of this contour, we may evaluate the potential as
follows:

V(r) = Vies(r) + Viranen (1), (5.25)
where
Vielr) = 5 3 Res(ge M iup(0). 4,)
in S o
"GP i, /y ) dq(qe'® Mi100p(q)),
(5.26)

Vbranch(r )

. .
= =5y im | dggeIm( My (iq + ),

(5.27)

and Res(ge'" M 1400p(q). q,) stands for the residue of a
given complex pole g,. The summation in the first term
of Vi(r) is taken over all complex poles, g,, of
qeiqr./\/ll_loop(q). There are no contributions from the
vr1 and yg, contours, as they vanish as the radius of the
contour R goes to infinity. We note that for a radius R
bigger than the size of the Landau pole ¢, the
contributions y, and y., must be included.

Let us first analyze the residue at the physical pole g = 0
for the resummed one-loop amplitude. This is given by

K>m,m,

Res(qeiqer—loop(Q)’ 0) =—a—/—.

1 (5.28)

where
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1 n n —1
—§<1+22a,~+32b,> } (5.29)
i=1 i=1
with
Fy (g Fs(q?
P V1C | B L ViC) (5.30)
aq ¢*=0 aq ¢*=0

In the above, F;; is the jth form factor of the ith field and n
is the number of fields. The formulas for a; and b; derived
from (5.30) only hold if the form factors have nonzero loop
mass (or are analytic in g?). If all particle masses in the
loops vanish, we have a; = b; = 0, implying that o = 1.

As for the residues of the Landau poles, we shall not
include them in the calculation, as these are related with the
potential UV completion of the theory of quantum gravity.
The simplest way to achieve this is to introduce a UV cutoff
just below the Landau pole ¢, in the Fourier transform
(5.20). In this case, the contributions from the yz; and yz,»
contours will not vanish, but the cutoff integral will differ
by terms of O(m/q,) in comparison to the other O(1)
terms. Therefore, we may safely ignore these cutoff sup-
pressed contributions in favor of the other leading terms of
order one.

We may now compute V., (r), using the result for the
residue in (5.28). Computing the remaining contour inte-
gral y., in (5.26) gives rise to the potential

Gm1m2

Vies(r) = —a (5.31)

r

Evidently, this is a rescaled version of the Newtonian
potential. Specifically, for a scalar field of mass my, we

have
- aFZ,H(pz) — sz%'l In m_l%l -1
" ap? |y 384 12 ’
N R AN A
" op* |0 7687° u? ’

For a fermion of mass m,,, we obtain

a. — aFZ.y/(pz) o 5/
YT | 102 [
OF5,,(p?) K*mg, [ <m2> ]
b, = —X—~ =—— 2 In(—2) -1 5.33
v op? 22=0 38472 u? ( )
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Finally, for a massive gauge field of mass m, (without
ghosts), we find

OF 2 2,2 2
aA:42’A(2p ) :—KmA2 [In<m—§‘) —2],
dp 22=0 1927 u
OF 2 2,2 2
by = 2Pl k(Y ol (s34
op po 384nm u
Astronomical observations can only measure the

combination aG, rather than G alone, thus leading to
a renormalization of the Newtonian constant G. However,
we should note that the quantity « differs significantly
from 1 when the loop masses are comparable to the
Planck mass Mp, which is a case that we will not be
considering here.

3. The branch cut contribution

Our next task is to compute the branch cut contribution
Viranch (7). To deal with the complexity of the integrand,
we rewrite the one-loop corrected Newtonian potential as
follows:

V(r) _ _Gm1m2

(a+ AV(r)), (5.35)

where the coefficient a given by (5.29) pertains to the
residue contributions and the dimensionless quantity
AV (r) refers to the part of the potential resulting from
the branch cut, i.e.

Gm1 my

Vbranch(r) = - AV(I’) (536)

r

We observe that the integral Vi ,,.,(r) can be computed
accurately by taking the first order term in a perturbative
expansion in x. To leading order in 2, the contributions to
Viranch (7) from scalar (H), fermion (y) and gauge boson
(A*) loops may be calculated individually, such that AV (r)
is given by the sum:
AV(r) = AVy(r) + AV, (r) + AV,(r). (5.37)
We will first present the calculation for the scalar loops
and then simply state the results of the fermion and gauge
fields. The branch cut effect due to a massive Higgs boson
H is given by the integral

G 4m?,  28m*
AVy(r) = 607;/ dge” qr( __qu+ q4H>
X \/q* —4m?,,

which is analytically calculable. Using the substitution
q = 2my coshx, AVy(r) may be rewritten as

(5.38)
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Gm%,
157

AVy(r) = Am dxe=2mreoshx (cosh?x — 1)

7
X <3 — sech’x + Zsech“x) : (5.39)

To proceed further, we first remind ourselves that the
modified Bessel functions of the second kind K,(7) have
the integral representation

K, (7) = Am dxe="¢M¥ cosh(ax), (5.40)

and so it is

Ko(7) = A " dxetoosh, (5.41)

Moreover, we can use the the hyperbolic trigonometric
identity cosh?>x = (1 + cosh 2x)/2 to calculate the follow-
ing integral:

o R 1
/ dxe~Teoshxcogh?x = 3 (Ko(P) + K5(7)).  (5.42)
0

Apart from integrals containing coshx, there are also

integrals involving sech x, defined as

1,(r) = /oo dxe™oh¥gech”x. (5.43)
0

PHYSICAL REVIEW D 91, 064047 (2015)

We may compute the functions /,(r) recursively, by means
of integration by parts. The relevant integrals of interest are

()= / ™ dxKo(x)

= (L (DK + LKL (1) =), (5.44)
Iy(r) = r(K(r) = 1, (r)), (5.45)
1(r) = 5 (rKo(r) = rIa(r) + 1, (1), (5.46)
14(r) = 212(r) + 5 (1) = 1), (5.47)

where L,(r) is the modified Struve function which has the
integral representation

21—(1 a z
L,(r) = FA2 dx sinh(r cos x)sin**x, (5.48)

Var(a+3)

for Re(a) > —%. The latter representation may be analyti-
cally continued to include other values of the index a of the
modified Struve function L,(r).

We are now in a position to analytically compute the
branch cut term AVy(r) in terms of the modified Bessel
and Struve functions. Defining the dimensionless parameter
7y = 2mpyr, we obtain for the Higgs-scalar contribution:

Gm3 [1 . . . R R . T3, 45xF
AVy(r) =~ 360; [5”(7”%1 —45)i4 (L (Pp) Ko (P) + Lo (P ) Ky (Ppy)) — 2H > L (5.49)
+7?;_1K1(IA"H) - 7?’%,[(0(?’1.1) - 387’HK1(?‘H) + 60K0(?‘H) — 36K2(?‘H) . (5.50)

Similarly, for a Dirac fermion y, we define the dimensionless parameter 7, = 2m,,r, in terms of which the branch-cut

contribution reads

Gm2 [l _. . . A A . Trid  15x7,
AV,/,(T') = _@ E”(7r5/_ 15)rV/(L—l(rl//)K0(ryI) +L0(rl//)K1(rlI/)) - 211 +T/ (551)
+775 K (7,) — TP Ko (#,) — 87, K, (7,) — 30K, (?,) + 24K, (F,) | (5.52)

Finally, the branch-cut contribution arising from a U(1) gauge boson A, and its associate ghost field is given by

2
Gmy

AVA(r) = = 360n

+ 143K (P4) — 1475Ko(74) + 40474 K | (P4) — 240K (74) — 192K, (74)],

[7(77% +195)P3 (Lo (74)Ko(7a) + Lo(Pa) K1 (Pa)) = Ty — 19577,

(5.53)

(5.54)

with 74 = 2m,r. We have checked that our perturbative analytical expressions for the branch cut contributions are in
excellent agreement with numerical results derived by using the fully resummed graviton propagator to less than 1 part
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FIG. 9 (color online). Estimates of the branch-cut terms AV (r), AV, (r), and AV ,(r) resulting from scalar, fermion, and gauge
fields, as functions of the distance r, are shown in the upper left, upper right, and lower panels, respectively.

in 107°, Plots of the different contributions to the potential
for different loop masses are given in Fig. 9. These plots
demonstrate the exponential decay of loop effects due to
particles with nonzero mass, as a function of distance r.

Using the above analytical results, it is not difficult to
verify that the loop-corrected potential exhibits the desir-
able property:

lim V(r) = 0.

r—o0

(5.55)

To see this explicitly, we use the large-r asymptotic
formulas for the modified Bessel and Struve functions:

7 I pl-apa-]
Ko~y Ze Ly(r) ~ e — .
a(r) 2 (r) 2rr Val(a + %)
(5.56)

In particular, for the scalar case, the branch-cut term
AVy(r) for 7 > 1 simplifies to

7G 2 —2myr 2
my (e _mH\/;e—Zer>‘

A -
Vu(r) = =320 e Jr 3

(5.57)

For the fermion case, we have for 7, > 1,

7G 2 —2my,r 2
AV, (r) Ty (e

T 60 mm, \ Jr 3

and for the gauge boson case for 74, > 1,

7Gmf‘ e~2mar 2 )
— —_— —Zmar
120, /i, < i T3mavre '

re—2mw> (5.58)

AV,(r) =

(5.59)

In the opposite limit where 7, 4 < 1, we find respec-
tively for the scalar, Dirac fermion, and gauge-boson
contributions to AV(r) that

G Gm | )
AV (r) = iz 4 S (tnlmyr) 4 -+ 5) + O
(5.60)
G Gm? 2 R
AVV,(r) = 52 + 3ﬂw <ln(mv,r) +vg— 3> + O(7),

(5.61)
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4G 2Gmy
15z 3=x

(10mar) + 7= 33) + O

(5.62)

AV ,(r)

In the above small-7 expansion, the first term on the right-
hand side of the above equations represents the correction
to the potential assuming that the particle in the loop is
strictly massless. These leading terms are consistent with
the ones presented in the literature [26,30,34,35]. For
massive fields, however, the relevant subleading correction
to AV(r) is logarithmically enhanced in r, as long as
r<<1/2m.

VI. CONCLUSIONS

We have revisited the calculation of matter quantum
effects on the graviton self-energy, assuming a flat
Minkowski background metric. One of the central goals
of our study has been to obtain a deeper understanding of the
underlying mechanism that renders the graviton massless. To
this end, we have first considered a gauged Abelian Higgs
model, which has been quantized within the framework
of the background field method. After writing down the
respective diffeomorphically invariant path integral, we have
derived a master Ward identity for the path integral as a
consequence of its invariance under diffeomorphisms. This
Ward identity does not ensure by itself the transversality of
the graviton self-energy. The latter property of masslessness
of the graviton is only obtained upon imposing minimization
conditions to the effective action. In this respect, we have
found that the minimization of the effective action is strongly
related with the renormalization of the cosmological constant
A, and this relation can be enforced to all orders in
perturbation theory, by means of a graviton low-energy
theorem, which we derived in this paper.

In the context of the Abelian Higgs model mentioned
above, we have also calculated the matter quantum cor-
rections to the Newtonian potential. As we have not
considered graviton quantum loop effects in our study, it
is evident that matter contributions to the graviton self-
energy are independent of the gauge fixing parameters &y
and o of the diffeomorphisms. In our calculations, however,
the gauge dependence due to diffeomorphisms does for-
mally enter when considering the resummed graviton
propagator. Nevertheless, when calculating the S-matrix
amplitude for the scattering of two scalar fields, this
background gauge dependence is removed by virtue of
the Ward identity derived in Sec. II and the fact that the
gravitationally scattered particles are on their mass shell.
Hence, the analytic results we have presented in this article
are diffeomorphisms invariant. On the other hand, gauge-
boson loops have been calculated in the Feynman-’t Hooft
gauge £; = 1. Since S-matrix elements are independent of
the gauge-fixing parameter s, the graviton self-energy is
expected to be independent of &; as well, especially
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when considering the elastic gravitational scattering of
two gauge-singlet scalars. As a consequence, we expect
that the Newtonian potential V(r) will not depend on the
gauge-fixing parameter &g.

Treating quantum gravity as an effective field theory,
we have presented analytical formulas for matter quantum
effects on the Newtonian potential V(r), in terms of
modified Bessel and Struve functions which depend on
the particle masses in the loop. Thus, we have found that
the corrections to V(r) exhibit an exponential falloff
dependence on the distance r, once the nonrelativistic limit
with respect to the nonzero loop masses is properly taken
into account. In the massless limit of scalars, fermions, and
gauge bosons in the loops, we recover the well-known
results that have been presented in the literature.

Like the well-known Higgs-boson low-energy theorem
that holds in particle-physics models, such as the Standard
Model, the GLET is a very powerful theorem. As was
explicitly shown in this paper, both the GLET (3.47) and
the diffeomorphism WI (2.34) are required to forbid the
appearance of a mass for the graviton field, which might
be induced by quantum-loop effects. We have derived the
GLET for a flat geometry, where a global shift symmetry
between the background graviton field and the Minkowski
metric exists. Given the property of background independ-
ence of the background field method, we expect to be
able to extend this theorem to general curved background
metrics. However, such a generalization is beyond the
scope of the present paper. We hope to be able to report
progress on this issue in a forthcoming communication.
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APPENDIX: FEYNMAN RULES

In this appendix we list all relevant Feynman rules which
have been used in our calculations. We define all momenta
as outgoing from the vertex, obeying energy-momentum
conservation.

1. Graviton propagator

Since our computations pertain to gauge-invariant S-
matrix amplitudes, we employ the simplified form of the
graviton propagator in the harmonic gauge, which is given
by the right-hand side of (5.4). For this choice of gauge,
the diffeomorphisms gauge-fixing parameters &, and o take
on the values £, = 1, 6 = 1/2. For completeness, however,
we present the general expression for the tree-level graviton
propagator for arbitrary gauge parameters &, and o:
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2. Graviton-Scalar-Scalar Vertex
The coupling for the scalar-scalar-graviton vertex H(p)-H(q)-h**(l) reads

\ .
v (2 L UV L,V v
MWW = Vi (p.g) = 5 0"+ " =" (- g+ m)) (A2)
7/

3. Graviton-graviton-scalar-scalar vertex
The quartic coupling H(p)-H(q)-h**(1)-h*° (k) is given by

h = Vi (0,q)

1
B iﬁQ( [4(77meﬁ + PPy — IWQ«SIW&S} (Pads + qapp)

1 vpo 1 v, po 2
+3 (I” =’ ) [(p-q+mH)]> , (A3)
where

JHro =

(" + non”). (A4)

N[ =

Note that the quartic coupling H(p)-H (q)-h**(1)-h*° (k) only depends on the four-momenta p and g of the scalar particles.
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4. Graviton-fermion-fermion vertex

The fermion-fermion-graviton interaction y(p)-y(g)-h**(l) is given by

C 00"+ -0y 2 (- f - 2md)] (A5)

v i
= Vdﬁtwh(p’ q) = )

5. Graviton-graviton-fermion-fermion coupling

The fermion-fermion-graviton-graviton interaction @ (p)-w(q)-h**(1)-h*° (k) reads

= Vigin (0:q)
= iﬁ 1({?7‘“’7”(1)“ —q°) 0" (" —q") + §77””7“(1)" —q7)
8 |4 2
3 VP AT (0 fh o
+3n (" —q )+(u<—>l/)} +(p<—>0))
1 L1y po 1 Hv, po 2
~5 I = [(P— o —2my)]| - (A6)

Like in the scalar case, the quartic coupling y(p)-w(q)-h**(1)-h*° (k) only depends on the four-momenta p and g of the
fermion particles.

6. Graviton-gauge-gauge vertex

The interaction vertex involving two gauge bosons A”(p) and A°(g) and one graviton A**(l) is given by

= Vi (p.a)

ZKJ vpo v loa
= —zl(p-qumi)(?I” P7 —nHnP7)

+n"'p%q" — (n’“’p”qp +0"7p"q” —nP7p"q" + (p < V))
+

1 17 (o8 ag g vo v, (od
g(n“ (P’p” +p"4° +q"q )—[n P'p” + 1" q"q +(u<—>u)D]. (A7)
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7. Graviton-graviton-gauge-gauge quartic coupling

The quartic coupling involving two gauge bosons A%(p) and A?(q) and two gravitons h**(l) and h*°(k) is found to be

where

= Vo (p,q,l)
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