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The three-dimensional volume inside a spherical black hole can be defined by extending an intrinsic
flat-spacetime characterization of the volume inside a two-sphere. For a collapsed object, the volume grows
with time since the collapse, reaching a simple asymptotic form, has a compelling geometrical
interpretation. Perhaps surprisingly, it is large. The result may have relevance for the discussion on the
information paradox.
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I. INTRODUCTION

How much space is there inside the black hole formed by
a collapsed star of massm? Not too much, one might think:
in flat space, the volume inside a sphere with radius r ¼ 2m
(in G ¼ c ¼ 1 units) is 4

3
πð2mÞ3, which corresponds to a

few km3 for a stellar black hole. But flat-space intuition
does not apply to the curved geometry inside the hole:
inside an eternal hole described by Kruskal geometry, there
is, in a sense, an entire second asymptotic region.
In fact, the question is not well posed: what do we

mean by “the” volume inside the horizon? Which
three-dimensional spacelike surface are we considering?
The volume of the t ¼ const surfaces, where t is a time
coordinate, depends on the arbitrary choice of coordinates.
The issue has been discussed by various authors [1–8].
Here we suggest a different way of thinking about the

volume of the space inside a black hole. Our starting point is
the simple observation that the exterior of the Schwarzschild
metric is static, but the interior is not. The interior keeps
changing. Therefore a good notion of (interior) volume can
be time dependent. The horizon is naturally foliated by two-
spheres, and we can ask if there is a natural definition of
“interior volume” associated to a single two-sphere.
In Minkowski spacetime there is a simple characterization

of the volume inside a two-sphere that remains meaningful in
a spherically symmetric curved geometry: the volume inside
a two-sphere S is the volume of the largest spacelike
spherically symmetric surface Σ bounded by S. This is what
we mean by “volume inside a sphere” in flat spacetime; Σ,
indeed, lies on the simultaneity surface determined by S.
This characterization provides a coordinate-independent
definition to the notion of “volume inside a sphere” which
remains valid in the case of spherical black holes, and
captures the idea of “how much space is inside.”
The horizon of a spherically symmetric hole is foliated

by (spacelike) spheres Sv. A convenient labeling of the
spheres is asymptotic time, namely the null coordinate v
which at past infinity is related to Minkowski polar
coordinates by v ¼ rþ t. See Fig. 1. We find that the

volume VðvÞ inside the sphere Sv grows with v. This makes
sense: even if its surface area remains constant, the horizon
is still an outgoing null surface and the interior volume
keeps growing with time. Matter, so to say, has newer and
newer space to fall into.
In this paper we compute VðvÞ. The calculation demands

solving the differential equation that determines the
maximal-volume surface Σ. We find that, setting v ¼ 0
at collapse time (see Fig. 1), the volume takes the simple
expression

VðvÞ ¼
v→∞

3
ffiffiffi
3

p
πm2v ð1Þ

when v is large with respect to m. The bulk of the volume
turns out to be due to a region in the vicinity of a constant
value of the radial coordinate. That is: inside the hole there
is a long spacelike three-dimensional cylinder with slowly
varying radius, which grows longer with time.
This is a surprising result, because the volume is large.

For instance, the black hole Sagittarius A� has radius
∼106 km and age ∼109 years. Inside it, there is space for
∼1034 km3, enough to fit a million Solar Systems!

FIG. 1. Conformal diagram of a collapsing object spacetime.
The sphere Sv is on the horizon, at time v. The spacelike surface
Σv whose volume we are computing is the one of maximum
volume among those bounded by Sv.
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If a black hole of initial mass m has a lifetime ∼m3 in
Planck units as predicted by Hawking radiation theory,
there might be room inside it for a spacelike surface with
volume V ∼m5. For a stellar black hole, this is larger than
our Universe.
There is a lot of available real estate inside a black hole,

according to classical general relativity!
The result can be extended to other spherically sym-

metric geometries, like the nonsingular black hole metric
considered in Refs. [9] and [10]; in Appendix Awe treat the
Reissner-Nordström case. It can also be extended to
the case of a Kruskal black hole. We do so in Appendix B.
The volume turns out to be infinite (as expected) but the
difference VðΔvÞ ¼ Vðv2Þ − Vðv1Þ can be appropriately
defined and is finite: it grows linearly inΔv ¼ v2 − v1 when
Δv is large.
In the last section, we present some considerations on the

relevance of these results for the “information paradox”
discussion.

II. VOLUME INSIDE A SPHERE

Consider a (metric) two-dimensional sphere S immersed
in flat Minkoswki spacetime. Let R be its radius and A ¼
πR2 its area. We say that it encloses the volume V ¼ 4

3
πR3.

What does this mean? It means that there is a three-
dimensional spacelike surface Σ bounded by S which has
volume V. But there are a lot of spacelike surfaces bounded
by S in spacetime: which one do we mean, to define the
interior volume? The answer can be given in two equivalent
manners:

(i) Σ lies on the same simultaneity surface as S;
(ii) Σ is the largest spherically symmetric surface

bounded by S.
These two characterizations of Σ are equivalent. To see this,
we can choose (without loss of generality) coordinates
ðx; y; z; tÞ where S is given by t ¼ 0, r2 ≡ x2 þ y2 þ
z2 ¼ R2. A spherically symmetric surface Σ bounded by
S is defined by the function t ¼ tðrÞ, r ∈ ½0; R�, with
tðRÞ ¼ 0. Its volume is

V ¼
Z

R

0

dr4πr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
dtðrÞ
dr

�
2

s
ð2Þ

which is maximized by tðrÞ ¼ 0 (because any variation
adds a contribution in the timelike directions and reduces
the volume), namely by the Σ on the simultaneity surface.
The “space inside S” is therefore the largest spherically
symmetric space bounded by S.
Let us nowmove to a curved spacetime. Given a sphere S

in a spherically symmetric geometry, what is the volume
inside it? Lacking flatness, simultaneity surfaces have no
special significance, in general. But the second definition
of the space inside S extends immediately, and we adopt
it from now on. This allows us to define the volume V

enclosed in any two-dimensional sphere S in a spherically
symmetric spacetime.

III. FORMULATION OF THE PROBLEM

Consider the geometry of a collapsed object. We work in
ingoing Eddington-Finkelstein coordinates ðv; r; θ;ϕÞ.
For simplicity, we take a null spherical shell of energy
m collapsing along the v ¼ 0 surface. Before this surface,
spacetime is flat. After this surface, the geometry is a
Schwarzschild black hole and the line element is the
standard Schwarzschild geometry in Eddington-Finkelstein
coordinates

ds2 ¼ −fðrÞdv2 þ 2dvdrþ r2dΩ2; ð3Þ

where fðrÞ ¼ 1 − 2m=r and dΩ2 ¼ sin2θdϕ2 þ dθ2. The
relation with the Schwarzschild coordinates t; r; θ;ϕ, is
given by v ¼ tþ R

dr
fðrÞ ¼ tþ rþ 2m ln jr − 2mj.

The horizon is at r ¼ 2m. It is foliated by spheres Sv
defined by r ¼ 2m and constant v. The sphere Sv is defined
physically as the one crossed by a light signal sent by a
stationary observer at large (with respect to m) distance r
from the hole, at proper time t ¼ v − r.
For each Sv we are interested in the spherically sym-

metric three-dimensional surface Σv which is bounded by
Sv and has maximal three-dimensional volume. The vol-
ume of this surface is called VðvÞ. Our objective is now to
compute VðvÞ. This a well-defined problem.

IV. THE MAXIMIZATION PROBLEM

A three-dimensional spherically symmetric surface Σ,
can be thought of as the direct product of a two-sphere and
a curve γ in the v-r plane:

Σ≡ γ × S2; ð4Þ

γ ↦ðvðλÞ; rðλÞÞ: ð5Þ

The curve γ is given here in parametric form, with an
arbitrary parameter λ. We choose λ ¼ 0 on the horizon
(r ¼ 2m) and call λf (f for “final”) the value of λ at r ¼ 0.
Thus, the initial and final end points of γ are given by

rð0Þ ¼ 2m; rðλfÞ ¼ 0; ð6Þ

vð0Þ ¼ v; vðλfÞ ¼ vf: ð7Þ

The surface Σ is coordinatized by λ; θ;ϕ. The line
element of the induced metric on Σ is

ds2Σ ¼ ð−fðrÞ _v2 þ 2_v _rÞdλ2 þ r2dΩ2 ð8Þ

where the dot indicates differentiation by λ. We hereafter do
not consider the flat part inside the horizon (under the null
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shell) which would have contributed to the volume by
about 4πð2mÞ3=3. We are interested in the asymptotic
behavior of the volume, when v ≫ m and it will be seen
that this contribution becomes negligible. The condition
that Σ is spacelike reads

−fðrÞ _v2 þ 2_v _r > 0 ð9Þ

from the requirement that ds2jΣ > 0 for all coordinate
values. The proper volume of Σ is given by

VΣ½γ� ¼
Z

λf

0

dλ
Z
S2
dΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4ð−fðrÞ_v2 þ 2_v _rÞsin2θ

q

¼ 4π

Z
λf

0

dλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4ð−fðrÞ _v2 þ 2_v _rÞ

q
: ð10Þ

The surface Σv that extremizes the volume is determined
by the curve γv that extremizes this integral and by the
specification of v and vf.

V. GEODESICS IN THE AUXILIARY MANIFOLD

The last equation shows that finding Σv is the same as
solving for the equations of motion with the Lagrangian

Lðr; v; _r; _vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4ð−fðrÞ_v2 þ 2_v _rÞ

q
: ð11Þ

It is useful to note that this can be rewritten as

Lðr; v; _r; _vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~gαβdxαdxβ

q
ð12Þ

and can be thought of as the line element of an (auxiliary)
two-dimensional curved spacetime. That is, the metric ~gαβ
is given by

ds2Maux
¼ r4ð−fðrÞdv2 þ 2dvdrÞ ð13Þ

where α; β;… can take the two values v and r. Finding Σv
is equivalent to finding the geodesics of this auxiliary
metric.
Furthermore, Eq. (10) shows that the proper length of

the geodesic in the auxiliary metric (times 4π) is precisely
the volume of Σ.
The condition (9) that Σ be spacelike, suggests that

L > 0, since r is positive. The Lagrangian appears to
vanish at r ¼ 0, which is the final point for the geodesic
but, as can be seen from Eq. (17), _r becomes infinite. Thus,
γ is a spacelike geodesic in Maux. We now recognize that a
well-suited parametrization is to take λ as the proper length
in Maux. After the extremization, we set

Lðr; v; _r; _vÞ ¼ 1

⇒ r4ð−fðrÞ_v2 þ 2_v _rÞ ¼ 1 ð14Þ

and from Eq. (10) we have immediately that

V ¼ 4πλf: ð15Þ

The metric ~gαβ has a Killing vector, ξμ ¼ ð∂vÞμ ∝ ð1; 0Þ.
Since γ is an affinely parametrized geodesic in Maux, the
inner product of ξ with its tangent _xα ¼ ð _v; _rÞ, is conserved

r4ð−fðrÞ _vþ _rÞ ¼ A: ð16Þ

Equations (14) and (16) are all we need to analyze the
geodesics. They can be recast in the form1

_r ¼ −r−4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r4fðrÞ

q
; ð17Þ

_v ¼ 1

Aþ r4 _r
: ð18Þ

It can be easily seen that A has to be negative for the
geodesic to be spacelike. Then, _v and _r are both negative
and there are only positive terms in Eq. (11). By integrating
Eq. (17) we get

VΣ

4π
¼ λf ¼

Z
2M

0

dr
r4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ r4fðrÞ
p : ð19Þ

Equation (19) shows that there is a restriction imposed
on A

A2þ r4fðrÞ> 0⇒A2>−r4VfðrVÞ¼
27

16
m4≡A2

c: ð20Þ

The last condition comes from inspecting the polynomial
−r4fðrÞ. It has roots at r ¼ 0 and r ¼ 2M, and is otherwise
positive in that range and reaches a maximum at rV ¼ 3

2
m.

We integrate numerically Eqs. (17) and (18) below in
Sec. VII; but we can already directly derive the essential
lesson by noticing the following: by inserting a constant
radial value for r, Eqs. (17) and (18) become

A2 ¼ −r4fðrÞ; ð21Þ

_v ¼ 1

A
: ð22Þ

Since −r4fðrÞ > 0 in the range 0 < r < 2M, every
constant r provides a solution. In other words, the r ¼
const surfaces are spacelike geodesics of the auxilliary
manifold or equivalently stationary (maximal) points of the
volume functional (10). Integrating the _v equation we get

λf ¼ Aðvf − vÞ: ð23Þ

1The plus sign choice in Eq. (17) would correspond to
geodesics outside the horizon.
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Thus, the r ¼ const surface with the largest volume
between two given v’s is when A is largest; that is, for
r ¼ rV which gives A ¼ Ac. These considerations provide
the basis for the derivation of the asymptotic volume. This
is done in the next section.

VI. ASYMPTOTIC EXPRESSION FOR
THE VOLUME

We are now interested in the volume for large v.
The proper length of the geodesic should increase mono-
tonically from S which is situated at the end point ðv; 2mÞ
up to ðvf; 0Þ. The v coordinate of the point where Σv

reaches r ¼ 0 can be easily estimated: it must be before
the formation of the singularity, because this increases the
available volume, and in the large-v limit we can take
vf ¼ 0 without significant error. Let us therefore take the
end of γ at the coordinates (0,0).
Can we guess which path maximizes the volume?

The crucial observation is that in order to maximize λf
when v is very large, the geodesic must spend the maximum
possible time at the radius r where the line element is longer
and the line element happens to have a maximum.2

Therefore we may approximate the geodesic with an initial
and a final transient and an intermediate long steady phase
where _r ∼ 0. Then the auxilliary line element (13) becomes

dsMaux
∼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−r4fðrÞ

q
dv; ð24Þ

with the approximation improving as v increases. The choice
of the minus sign is needed because dv < 0. To maximize
the length, the steady phase of the geodesic must run at the
value of r that maximizes ds=dv, which is given by

d
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−r4fðrÞ

q
¼ 0: ð25Þ

This value of r is the one that maximizes the polynomial
−r4fðrÞ, which we already called rV

rV ¼ 3

2
m: ð26Þ

Therefore, for large v the largest spherically symmetric
spacelike surface is formed by a long stretch at nearly
constant radius rV ¼ 3

2
m, joined to the r ¼ 2M horizon on

one side and to r ¼ 0 to the opposite extreme by transients.3

The infinitesimal proper length in the auxiliary metric is
given by Eq. (24). Thus,

V ≈ −4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4VfðrVÞ

q
v

¼ −4πAcv

¼ 3
ffiffiffi
3

p
πm2v ð27Þ

which is the result anticipated in the Introduction. It is simply
the combination of Eqs. (15) and (23) for vf ¼ 0.
The result extends immediately to other spherically

symmetric spacetimes defined by the metric (3), with a
different function fðrÞ. It is sufficient to find the maximum
of −r4fðrÞ and the asymptotic expression for the volume is
given by Eq. (27) with Ac ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−r4VfðrVÞ

p
.

VII. NUMERICAL ANALYSIS

In order to verify the legitimacy of the approximations
taken in the previous section, and to study the volume for
finite times, we solve the equations defining Σv numeri-
cally. More precisely, we solve Eq. (17) numerically
and plot rðλÞ against λ. The volume is given by (4π times)
λf which is such that rðλfÞ ¼ 0. The result of the numerical
integration is given in Fig. 2 for a range of values of the
integration constant A, which in turn determines v. In all
figures, we have plotted the values for A2 ¼ A2

c þ f10; 1;
10−1;…; 10−5g.
The plot shows that the total volume increases as

A approaches Ac. Values of A close to Ac correspond to
larger v. Figure 2 confirms the analysis of the previous
section: for large volumes, the surface Σ has two transient
regions at the beginning and at the end, and a long steady
region, where most of the volume builds up precisely at the
value 1.5 (that is 3

2
m in m ¼ 1 units) of the radius.

To emphasize this point, we have plotted the integrand of
the volume of Eq. (19) in Fig. 3. Notice that as A → Ac the
major contribution of the volume increasingly comes from
a small region around rV ¼ 3

2
m.

We can visualize the surfaces we have found in an
Eddington-Finkelstein diagram by integrating numerically
Eq. (18) using the result obtained from Eq. (17). This is

FIG. 2 (color online). The area coordinate r, in m ¼ 1 units, as
a function of the volume parameter λ, obtained by integrating
Eq. (17). As A → Ac, λf ¼ V=4π → ∞.

2Recall that the _r ¼ 0 surfaces extremize the volume; see
end of previous section.

3We thank an anonymous referee for pointing out that the
existence of the maximal slide at r ¼ 3

2
m, which is a key point of

this paper, was already noticed numerically in Ref. [11], starting
from a somewhat different approach.
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done in Fig. 4. Depicted, in these coordinates, are the
maximum volume surfaces for different values of A,
starting from the same sphere on the horizon. As A → Ac
the surfaces reach r ¼ 0 at earlier times and the volume
increases. In other words, the hypersurfaces Σv elongate
along rV and build up volume while in that region, before
ending in lower values of v.
Notice that in the region 0 < r ≪ 3m=2, Σv approach

the incoming null direction. This explains why the part
of each Σv that is close to the singularity gives no
contribution to the volume. Notice that there is no direct
relation between the existence of the singularity and
the volume becoming large. Locally, the behavior of the
volume in a black hole spacetime is best captured by the
auxilliary metric (13), in which no infinities are present
because of the r4 factor. In a sense, the volume “does not
see” the singularity.

Finally, we return to the problem we started from: the
black hole generated by a collapsing object. Since the black
hole originates from a collapsed object, v is determined by
the collapse time. The situation is illustrated in Fig. 5,
where, instead of fixing S, we have depicted the surface
of maximal volume for different Sv’s. As we move into
the future of the black hole the volume becomes arbitrar-
ily large.
From the perspective of the maximal-volume spherical

surfaces, the interior of a black hole is close to a cylinder of
approximate radius rV which grows longer with time.

VIII. DISCUSSION: ON THE VALIDITY OF THE
GENERALIZED SECOND LAW

We have observed that in a spherically symmetric
context what we usually mean by “volume inside a sphere”
is the maximal proper volume of a spacelike spherically
symmetric three-dimensional hypersurface bounded by the
sphere. We have computed this volume for a spherically
symmetric black hole formed by a collapsed object. We
have found that the volume inside the hole is given
by Eq. (1).
The interesting aspect of this result is that the interior

volume of the black hole is large and increases with time.
The interior of a black hole “does not last long” in the sense
that all timelike geodesics hit the singularity in a proper
time of order m, but it “is very big” in the sense that a
spacelike region of very large volume fits in it. This large
volume increases linearly with time since the collapse.
The interior region of a black hole keeps increasing fast,

because the horizon is an outgoing null surface. The fact

FIG. 3 (color online). The integrand in Eq. (19) for different
values of A gradually approaching Ac. As A → Ac the volume
contribution comes increasingly from rV ¼ 3m=2.

FIG. 4 (color online). Black hole spacetime in Eddington-
Finkelstein coordinates. The horizon is the vertical line r ¼ 2m.
Dashed lines are the null geodesics. Maximum volume surfaces
for different values of A, starting from the same sphere on the
horizon are depicted.

FIG. 5 (color online). The maximal volume surfaces inside a
black hole formed by a collapsing object. In red is an incoming
spherical null shell that collapses and forms a singularity at
v ¼ 0. (The region below the null shell is flat.) As (asymptotic)
time passes, the interior grows. In green is the horizon.
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that the area of this surface remains constant, which is of
course due to the curvature, does not contradict the fact that
an outgoing null surface encloses an increasingly large
volume as time passes. From this perspective, the con-
formal diagram in Fig. 1 gives a pretty accurate picture of
what happens.
This result might cast some doubts on a common

intuition about the amount of information that a horizon
may contain. An event horizon obeys, most likely, the
generalized second law [12] and therefore it makes sense to
assign it its Bekenstein entropy

S ¼ A
4

ð28Þ

and assume that the sum of this quantity and the external
entropy never decreases. But quantum effects both inside and
at the horizon are likely to make event horizons unphysical.
(See for instance the recent analysis of the Planck star bounce
[10,13–15] and references therein. A different scenario
where the considerations of this paper are also pertinent
has been recently put forward in Ref. [16]). Because of these,
the horizon of a gravitationally collapsed object might be
an apparent horizon. In these conditions, the validity of the
second law of thermodynamics is obviously out of the
question, but the validity of the generalized second law is
far from certain.
The information inside the hole could be recovered:

after crossing the quantum region that replaces the
classical singularity, it may be free to exit. Therefore
the information inside the horizon is not degraded and
should not be counted as entropy. We can still associate
an entropy (28) to an apparent horizon, because this same
quantity measures the quantum field-theoretical entangle-
ment across the horizon (see Ref. [17] and references
therein). This entropy behaves precisely as a thermody-
namical entropy, and is indistinguishable from the
Bekenstein-Bousso entropy as long as the horizon is
present; but it is a quantum von Neumann entropy and,
as such, nothing prevents it from decreasing when we
have access to the black hole interior, which is possible if
the horizon is apparent. Von Neumann entropy, of course
does decrease with time, if we access more observables at
a later time.
If the horizon can disappear in time, the information

contained inside a horizon can exit. The second law of
thermodynamics remains valid, but not its Bekenstein
generalization. As we have shown, the interior of the black
hole has plenty of room to store information.4
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APPENDIX A: VOLUME IN REISSNER-
NORDSTRÖM

In this appendix, we check the reasoning presented in
this paper in a less trivial example. This spacetime,
describing a nonrotating spherically symmetric charged
black hole, can be described by Eq. (3) with

fðrÞ ¼ 1 − 2M=rþQ2=r2: ðA1Þ

There are two horizons on this spacetime located at the
zeros of f, given by

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ðA2Þ

The outer horizon, at rþ, is an event horizon and the inner
horizon, at r−, is an apparent horizon. It is easily calculated
that between r− and rþ the polynomial r4fðrÞ has a
minimum value at

rV ¼ 1

4

�
3M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p �
: ðA3Þ

Then,

A2
c > −r4VfðrVÞ: ðA4Þ

FIG. 6 (color online). The family Σ0 in a Reissner-Nordström
black hole for M ¼ 1 and Q ¼ 0.7. The inner (apparent) horizon
is at r− ≈ 0.29 and the outer (event) horizon is at rþ ≈ 1.71.
We have taken vf ¼ 0.

4After the appearance of this paper on the arXiv, the result we
point out was developed for the spinning case by Bengtsson and
Jacobson in Ref. [18] and for other cases by Yen Chin Ong in
Ref. [19].
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It is then evident that the analysis presented here is
essentially the same in this spacetime (see Fig. 6). The
difference is that instead of looking at the region between
the singularity and the horizon, we look at the region
between the two horizons. If one wishes to include the
volume in the region r < r− then a different analysis must
be carried out for that part since r reacquires its interpre-
tation as a spacelike coordinate. The situation for that
region would be similar to that of Minkowski space (see
Appendix C), i.e. it would yield a constant contribution that
becomes negligible for large times.

APPENDIX B: VOLUME IN KRUSKAL

A straightforward application of the definition of volume
that we have given in the case of a Kruskal spacetime
gives infinite volume for any sphere Sv on the horizon. We
may obtain a finite volume by requiring Σ to be bounded
by two spheres, Sv and Su, one on each of the two outgoing
horizons. Fixing Su, the volume Vðu; vÞ of this surface
clearly satisfies

Vðu; v2Þ − Vðu; v1Þ ∼ 3
ffiffiffi
3

p
πm2ðv2 − v1Þ ðB1Þ

in the asymptotic region.

APPENDIX C: VOLUME IN MINKOWSKI SPACE

It is instructive to see how the definition we gave in the
Introduction and the results in the paper work in the trivial

case of flat space. We can again define a null coordinate
v ¼ tþ r. This is the same as setting fðrÞ ¼ 1 in the line
element (3) or most of the formulas given in the paper. It is
clear from the integral (19) that the maximum volume is
given by A ¼ 0 and that the result is the usual expression for
the volume of a sphere with radius 2M. The equations (17)
and (18) become

_r ¼ 1

r2
; ðC1Þ

_v ¼ 1

r2
ðC2Þ

from which we deduce that dr ¼ dv. Thus, the maximal-
volume hypersurfaces are given by t ¼ v − r ¼ const as
expected. Notice also that the Eddington-Finkelstein
diagram of flat space is the standard depiction of
Minkowski space in polar coordinates with the angular
directions suppressed. That is, the vertical axis is now
t̄ ¼ v − r ¼ t and the Eddington-Finkelstein (EF) diagram
is simply a t vs r plot with the usual 45 degrees causal
structure.
The situation is of course very different. In this case,

there is a finite maximum volume to be achieved, when
A ¼ Ac ¼ 0. By the characterization we gave in Sec. II,
given a sphere Σ, we look for the spacelike surface Σ0 that
spans the interior of the sphere and has the largest volume.
These will always be the t ¼ const surfaces.
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